Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 15 maja 2025 14:20
  • Data zakończenia: 15 maja 2025 14:42

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jakie materiały wykorzystuje się do wytwarzania rdzeni magnetycznych w transformatorach?

A. paramagnetyki
B. diamagnetyki
C. antyferromagnetyki
D. ferromagnetyki
Ferromagnetyki są materiałami, które wykazują silne właściwości magnetyczne, co czyni je idealnymi do zastosowania w produkcji rdzeni magnetycznych transformatorów. W szczególności, ferromagnetyki, jak żelazo, nikiel czy kobalt, mają zdolność do silnego namagnesowania oraz do zatrzymywania magnetyzmu po usunięciu zewnętrznego pola magnetycznego. Dzięki tym właściwościom, rdzenie ferromagnetyczne minimalizują straty energetyczne i zwiększają efektywność transformatorów. W praktyce, zastosowanie ferromagnetyków w transformatorach pozwala na zmniejszenie rozmiaru urządzenia oraz zwiększenie jego mocy, co jest szczególnie ważne w urządzeniach elektrycznych o dużej mocy, takich jak transformatory w stacjach elektroenergetycznych. Dobre praktyki w branży zalecają również stosowanie materiałów o wysokiej permeabilności i niskich stratach histerezowych, co przyczynia się do jeszcze lepszej wydajności energetycznej transformatorów.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Aby zobrazować funkcjonowanie systemu mechatronicznego na panelu HMI, należy zainstalować oprogramowanie typu

A. CAE
B. CAM
C. SCADA
D. CAD
Odpowiedź SCADA (Supervisory Control and Data Acquisition) jest poprawna, ponieważ oprogramowanie to jest kluczowe dla wizualizacji i monitorowania systemów mechatronicznych w czasie rzeczywistym. SCADA umożliwia integrację różnych urządzeń i czujników, co pozwala na efektywne zbieranie danych oraz ich analizę. Dzięki graficznym interfejsom użytkownika (HMI), operatorzy mogą w prosty sposób przeglądać dane, reagować na alarmy oraz zarządzać procesami. Przykładem zastosowania SCADA może być kontrola procesów produkcyjnych w fabrykach, gdzie system zbiera informacje o stanie maszyn i automatycznie podejmuje działania w celu utrzymania wydajności produkcji. W branży przemysłowej SCADA jest standardem, który wspiera automatyzację oraz poprawia efektywność operacyjną, wpisując się w najlepsze praktyki zarządzania procesami. Dodatkowo, wiele systemów SCADA jest zgodnych z międzynarodowymi standardami, co zapewnia ich interoperacyjność i umożliwia integrację z innymi systemami zarządzania.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Podczas inspekcji urządzenia mechatronicznego zauważono - w trakcie ruchu przewodu - nieszczelność w miejscu przyłącza wtykowego w siłowniku pneumatycznym. Jaką metodę naprawy należy zastosować?

A. uszczelnienie przyłącza taśmą teflonową
B. wymiana uszczelki pomiędzy przyłączem a siłownikiem
C. dokręcenie przyłącza kluczem dynamometrycznym
D. wymiana przyłącza
Użycie taśmy teflonowej do uszczelnienia przyłącza może wydawać się szybkim sposobem na rozwiązanie problemu, ale w rzeczywistości to podejście nie załatwia wszystkich spraw związanych z nieszczelnością w systemach pneumatycznych. Ta taśma jest raczej do uszczelniania połączeń gwintowych, a w przypadku zużytych lub uszkodzonych elementów, jak przyłącza, to tak naprawdę nie rozwiązuje problemu. Może to prowadzić do dodatkowych kłopotów, jak zatykanie przepływu powietrza, co wpływa na całą wydajność systemu. Wymiana uszczelki między przyłączem a siłownikiem też nie jest właściwą odpowiedzią, bo to nie wyeliminuje nieszczelności, jeśli same przyłącze jest uszkodzone. Dokręcanie przyłącza kluczem dynamometrycznym może dać chwilowe rezultaty, ale jeśli siła jest za duża, to jeszcze bardziej uszkodzi elementy, a na dłuższą metę i tak będziesz musiał wymienić całe przyłącze. W inżynierii mechatronicznej ważne jest, żeby korzystać z dobrych komponentów i przestrzegać standardów jakości. Dlatego zawsze lepiej wymienić uszkodzony element na nowy, zgodny z wymaganiami producenta, żeby to rzeczywiście miało sens.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Wskaź prawidłową sekwencję montażu składników w systemie przygotowania sprężonego powietrza?

A. Filtr powietrza, reduktor, smarownica
B. Smarownica, filtr powietrza, reduktor
C. Reduktor, smarownica, filtr powietrza
D. Reduktor, filtr powietrza, smarownica
Filtr powietrza, reduktor, smarownica to prawidłowa kolejność montażu elementów składowych w zespole przygotowania sprężonego powietrza. Rozpoczynamy od filtra powietrza, który jest kluczowy w procesie oczyszczania powietrza z zanieczyszczeń, takich jak pyły, woda i oleje, aby zapewnić wysoką jakość sprężonego powietrza. Następnie, po filtracji, powietrze trafia do reduktora ciśnienia, który obniża ciśnienie powietrza do pożądanego poziomu, co jest niezbędne do dalszej obróbki i właściwego działania urządzeń pneumatycznych. Ostatnim elementem jest smarownica, która dostarcza odpowiednią ilość oleju do sprężonego powietrza, co zmniejsza tarcie w narzędziach pneumatycznych i wydłuża ich żywotność. Takie podejście jest zgodne z najlepszymi praktykami w branży pneumatycznej, co pozwala na osiągnięcie optymalnej efektywności i bezpieczeństwa w operacjach z wykorzystaniem sprężonego powietrza.

Pytanie 13

Siłownik hydrauliczny o powierzchni tłoka A = 20 cm2 musi wygenerować siłę F = 30 kN. Jakie powinno być ciśnienie oleju?

A. 150 bar
B. 15 bar
C. 15 000 bar
D. 1 500 bar
Odpowiedź 150 bar jest prawidłowa z uwagi na zastosowanie wzoru na obliczenie ciśnienia w siłowniku hydraulicznym. Ciśnienie (p) oblicza się według wzoru p = F / A, gdzie F to siła wywierana przez siłownik, a A to powierzchnia czynna tłoka. W tym przypadku F wynosi 30 kN, co jest równoznaczne z 30 000 N, a A wynosi 20 cm², co należy przeliczyć na m² (20 cm² = 0,002 m²). Podstawiając wartości do wzoru: p = 30 000 N / 0,002 m² = 15 000 000 Pa, co daje 150 bar (1 bar = 100 000 Pa). W praktyce, w hydraulice przemysłowej, utrzymywanie właściwego ciśnienia ma kluczowe znaczenie dla efektywności działania układów, co wpływa na bezpieczeństwo oraz niezawodność maszyn. Technologie hydrauliczne są powszechnie stosowane w budownictwie, przemyśle motoryzacyjnym i lotniczym, gdzie precyzyjne sterowanie siłą i ruchem jest niezbędne.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Dobierz minimalny zestaw sterownika S7-200 do realizacji sterowania windą w budynku trzykondygnacyjnym. Wykorzystaj w tym celu opis elementów wejściowych/wyjściowych podłączonych do sterownika.

Elementy
wejściowe
jeden czujnik na każdej kondygnacji informujący o stanie drzwi zewnętrznych (otwarte/zamknięte)
jeden czujnik na każdej kondygnacji informujący o położeniu windy
jeden przycisk na każdej kondygnacji przywołujący windę
3 przyciski wewnątrz windy służące do wyboru kondygnacji
jeden przycisk wewnątrz windy informujący o awarii (AWARIA)
Elementy
wyjściowe
dwa styczniki załączające otwieranie i zamykanie drzwi
dwa styczniki uruchamiające jazdę kabiny na dół i jazdę kabiny do góry

A. S7-200 o 14 wejściach i 10 wyjściach
B. S7-200 o 8 wejściach i 6 wyjściach
C. S7-200 o 24 wejściach i 16 wyjściach
D. S7-200 o 6 wejściach i 4 wyjściach
Odpowiedź "S7-200 o 14 wejściach i 10 wyjściach" jest poprawna, ponieważ aby skutecznie zrealizować system sterowania windą w budynku trzykondygnacyjnym, należy uwzględnić liczbę niezbędnych wejść i wyjść. W przypadku takiego systemu potrzeba przynajmniej 13 wejść do monitorowania różnych czujników oraz 4 wyjścia do kontroli silników i sygnalizacji świetlnej. Sterownik S7-200 o 14 wejściach i 10 wyjściach zapewnia wystarczające zasoby, aby nie tylko zrealizować podstawowe funkcje, ale także pozostawia pewien zapas na przyszłe rozszerzenia lub dodatkowe czujniki. Praktyczne zastosowanie tego typu sterownika w budynkach wielokondygnacyjnych jest zgodne z normami automatyki budynkowej, które zalecają przy projektowaniu systemów zwracanie uwagi na elastyczność i możliwość rozbudowy. Warto również wspomnieć, że dobór odpowiednich komponentów jest kluczowy dla zapewnienia bezpieczeństwa użytkowników, co podkreśla znaczenie przestrzegania dobrych praktyk inżynieryjnych w projektowaniu systemów automatyki.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Przy wykonywaniu lutowania elementów dyskretnych na płytce PCB powinno się nosić

A. fartuch ochronny
B. rękawice odporne na wysoką temperaturę
C. okulary ochronne
D. obuwie ochronne z gumową podeszwą
Zakładanie rękawic żaroodpornych, butów ochronnych na podeszwie gumowej lub okularów ochronnych, choć w niektórych sytuacjach ma swoje uzasadnienie, nie zapewnia kompleksowej ochrony, jaką oferuje fartuch ochronny. Rękawice żaroodporne są przeznaczone do ochrony rąk przed wysoką temperaturą, co w kontekście lutowania nie jest kluczowe, ponieważ lutowanie wiąże się z precyzyjną pracą narzędziami. Rękawice mogą ograniczać czucie i precyzję, co w przypadku lutowania elementów dyskretnych jest niezwykle istotne. Buty ochronne na podeszwie gumowej mogą chronić stopy przed upadkiem ciężkich przedmiotów, ale nie oferują ochrony odzieży, co czyni je niewystarczającymi w tej konkretnej sytuacji. Okulary ochronne są istotne w kontekście ochrony oczu, lecz nie chronią reszty ciała, co jest kluczowe w przypadku pracy z gorącymi materiałami. Kluczowym błędem w myśleniu jest pomijanie znaczenia kompleksowej ochrony odzieżowej, która powinna obejmować nie tylko konkretne części ciała, ale także całe ubranie, które minimalizuje ryzyko kontaktu z niebezpiecznymi substancjami. W kontekście standardów bezpieczeństwa, takie podejście do ochrony nie spełnia wymagań dotyczących odzieży roboczej określonych w normach BHP.

Pytanie 18

Podnośnik hydrauliczny do samochodów dysponuje tłokiem roboczym o średnicy 100 mm. Tłoczek pompy w tym urządzeniu ma średnicę 10 mm. Kiedy podnośnik unosi obciążenie wynoszące 20 kN, jaka jest siła działająca na tłoczek pompy?

A. 200 N
B. 20 N
C. 2000 N
D. 2 N
Odpowiedź 200 N jest prawidłowa, ponieważ w hydraulicznych systemach podnośników działa zasada Pascala, która stwierdza, że zmiana ciśnienia w cieczy rozprzestrzenia się równomiernie we wszystkich kierunkach. W tym przypadku mamy do czynienia z tłokiem roboczym o średnicy 100 mm, co daje mu promień 50 mm. Obliczając pole powierzchni tego tłoka, używamy wzoru na pole koła: A = πr², co daje A = π(50 mm)² = 7854 mm². Tłoczek pompy z średnicą 10 mm ma promień 5 mm, więc jego pole wynosi A = π(5 mm)² = 78,5 mm². Wykorzystując równanie siły F = P*A, gdzie P to ciśnienie, możemy wyznaczyć siłę na tłoczku. Siła działająca na tłok roboczy wynosi 20 kN, czyli 20000 N. Ciśnienie w układzie obliczamy jako P = F/A = 20000 N / 7854 mm² = 2,546 N/mm². Następnie obliczamy siłę na tłoczku pompy: F = P*A = P * 78,5 mm² = 2,546 N/mm² * 78,5 mm² = 200 N. Takie obliczenia są kluczowe w inżynierii hydraulicznej, ponieważ pozwalają na prawidłowe dobieranie komponentów oraz ich późniejsze eksploatowanie zgodnie z normami bezpieczeństwa.

Pytanie 19

Największe ryzyko związane z urządzeniami elektrycznymi wynika z możliwości

A. dotknięcia odizolowanych części będących pod napięciem
B. pojawu przerwy w obwodzie elektrycznym
C. wystąpienia zwarcia doziemnego
D. dotknięcia elementów urządzenia elektrycznego mających uziemienie
Dotknięcie odizolowanych elementów znajdujących się pod napięciem stanowi poważne zagrożenie dla zdrowia i życia ludzi. Elementy te, jeśli są odizolowane, mogą wydawać się bezpieczne, jednak w momencie, gdy dojdzie do naruszenia izolacji, stają się źródłem niebezpiecznego napięcia elektrycznego. Przykładem może być uszkodzona wtyczka lub przewód, w którym izolacja została przerwana, a przewodnik stał się dostępny. W takich sytuacjach, dotykając odizolowanego elementu, osoba może stać się drogą, przez którą prąd elektryczny przepływa do ziemi, co może prowadzić do porażenia elektrycznego. Zgodnie z normami bezpieczeństwa, takimi jak PN-EN 61140, urządzenia elektryczne powinny być projektowane z myślą o minimalizowaniu ryzyka kontaktu z elementami pod napięciem. Regularne przeglądy oraz stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowo-prądowe, mogą znacznie zredukować to ryzyko. Odpowiednia edukacja użytkowników i pracowników w zakresie bezpieczeństwa elektrycznego jest kluczowa dla zapobiegania wypadkom.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Podczas działania silnika prądu stałego zauważono intensywne iskrzenie na komutatorze spowodowane nagromadzeniem pyłu ze szczotek. Aby naprawić tę awarię, należy wyłączyć silnik, a następnie

A. przetrzeć komutator olejem
B. posmarować olejem szczotki
C. umyć komutator wodą
D. wykonać szlifowanie komutatora
Wykonanie szlifowania komutatora jest niezbędnym krokiem w usuwaniu iskrzenia spowodowanego osadzeniem się pyłu ze szczotek. Szlifowanie komutatora polega na usunięciu nierówności i zanieczyszczeń, co zapewnia lepszy kontakt elektryczny pomiędzy komutatorem a szczotkami. Nierównomierne zużycie komutatora prowadzi do iskrzenia, które może z czasem doprowadzić do uszkodzenia zarówno szczotek, jak i innych elementów silnika. Szlifowanie powinno być przeprowadzane przy użyciu odpowiednich narzędzi, takich jak papier ścierny o odpowiedniej gradacji, aby uzyskać gładką powierzchnię komutatora. Ważne jest również, aby po szlifowaniu dokładnie oczyścić komutator z pyłu, aby zapobiec ponownemu pojawieniu się problemu. Takie procedury są zgodne z zaleceniami producentów silników i standardami branżowymi, co zapewnia długotrwałą i niezawodną pracę silnika. Dbanie o regularne konserwacje, w tym szlifowanie komutatora, jest kluczowe dla utrzymania wydajności silników prądu stałego.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Siłownik hydrauliczny jest zasilany olejem pod ciśnieniem p = 60 barów oraz ma przepływ Q = 85 l/min. Jaka jest moc hydrauliczna, którą pobiera siłownik?

A. 5,1 kW
B. 51,0 kW
C. 85,0 kW
D. 8,5 kW
Obliczanie mocy hydraulicznej siłownika wymaga zrozumienia podstawowych wzorów oraz jednostek, co często prowadzi do błędnych interpretacji wśród osób mniej doświadczonych. Na przykład, przyjęcie mocy 5,1 kW bywa wynikiem nieprawidłowego przeliczenia ciśnienia lub natężenia przepływu. Niektórzy mogą błędnie zakładać, że ilość energii zużytej przez siłownik jest po prostu suma ciśnienia i przepływu bez uwzględnienia jednostek, co prowadzi do mylnych konkluzji. Z kolei odpowiedź 51,0 kW może wynikać z błędnego pomnożenia ciśnienia przez natężenie bez właściwej konwersji jednostek, co jest kluczowym krokiem w tego typu obliczeniach. Często w takich błędach ludzie zapominają, że moc hydrauliczna jest inna od mocy mechanicznej, co może prowadzić do nieporozumień przy projektowaniu systemów hydraulicznych. Ostatecznie, ignorując odpowiednie konwersje jednostek oraz właściwe zastosowanie wzorów, można nadmiernie ocenić moc siłownika, co skutkuje niewłaściwym doborem komponentów i potencjalnymi problemami w operacyjności systemu hydraulicznego. W związku z tym, kluczowe jest, aby inżynierowie stosowali się do odpowiednich norm i dobrych praktyk, takich jak te zawarte w normach ISO oraz normach branżowych dotyczących hydrauliki, aby uniknąć takich pułapek w obliczeniach.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jakie urządzenie umożliwia pomiar temperatury łopat sprężarki o ruchu obrotowym?

A. manometru
B. termistora
C. tensometru
D. pirometru
Wybór tensometru do pomiaru temperatury wirujących łopat sprężarki przepływowej jest nieadekwatny, ponieważ tensometry służą do pomiaru deformacji materiałów, a nie temperatury. Ich działanie opiera się na pomiarze zmiany oporu elektrycznego w wyniku odkształcenia, co jest zupełnie inną kategorią pomiarów. Z kolei termistory, mimo że są czujnikami temperatury, działają na zasadzie zmiany oporu elektrycznego w odpowiedzi na zmiany temperatury, co może być stosunkowo powolne w kontekście dynamicznych warunków panujących w obrębie wirujących części sprężarki. Systemy kontroli w przemyśle często wymagają szybkich i dokładnych pomiarów, a termistory mogą nie zaspokajać tych potrzeb z uwagi na swoją konstrukcję i czas reakcji. Manometry, natomiast, służą do pomiaru ciśnienia gazów lub cieczy, co jest zupełnie innym parametrem niż temperatura. Pomiar ciśnienia nie ma bezpośredniego związku z temperaturą wirujących łopat, co czyni tę odpowiedź nieodpowiednią. Użycie niewłaściwych urządzeń pomiarowych prowadzi do błędnych wniosków i potencjalnych awarii, co podkreśla znaczenie wyboru odpowiednich narzędzi pomiarowych w kontekście specyficznych zastosowań inżynieryjnych. W praktyce inżynieryjnej istotne jest, aby wybierać urządzenia, które odpowiadają wymaganiom procesów, a zrozumienie różnic między różnymi typami czujników jest kluczowe dla zapewnienia efektywności operacyjnej i bezpieczeństwa systemów.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Analogowy czujnik ultradźwiękowy umożliwia bezdotykowy pomiar odległości przeszkody od samego czujnika. Zjawisko, które jest tu wykorzystywane, polega na tym, że fala o wysokiej częstotliwości, napotykając przeszkodę, ulega

A. wzmocnieniu
B. pochłonięciu
C. odbiciu
D. rozproszeniu
Ultradźwiękowy czujnik analogowy działa na fajnej zasadzie odbicia fal dźwiękowych, które są praktycznie niesłyszalne dla nas, ale doskonale sprawdzają się w pomiarze odległości. Kiedy czujnik wysyła impuls ultradźwiękowy w stronę jakiejś przeszkody, to ta fala odbija się od niej i wraca. Mierzymy czas, jaki upływa od momentu wysłania sygnału do powrotu i na tej podstawie obliczamy, jak daleko jest ta przeszkoda. Tego typu czujniki wykorzystujemy w różnych dziedzinach, na przykład w robotyce, automatyce czy w systemach parkowania. Dobrym przykładem może być monitorowanie poziomu cieczy w zbiornikach – czujnik świetnie określa poziom wody, mierząc czas, który falę zajmuje na pokonanie drogi tam i z powrotem. W motoryzacji też są popularne, bo pomagają kierowcom parkować, informując ich o odległości do przeszkód. Ogólnie, użycie ultradźwiękowych czujników jest zgodne z normami jakości i bezpieczeństwa, jak na przykład ISO 9001, co gwarantuje, że są one naprawdę niezawodne.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Który z zaworów powinno się zastosować w układzie pneumatycznym, aby przyspieszyć wysuw tłoczyska w siłowniku dwustronnego działania?

A. Podwójnego sygnału
B. Przełącznika obiegu
C. Szybkiego spustu
D. Dławiąco zwrotnego
Wybór niewłaściwego zaworu w układzie pneumatycznym może prowadzić do istotnych problemów w kontekście efektywności i funkcjonalności systemu. Przykładowo, zastosowanie przełącznika obiegu nie przyniesie oczekiwanego zwiększenia prędkości wysuwu tłoczyska, gdyż jego główną funkcją jest kierowanie przepływu powietrza w zależności od pozycji elementu, co nie wpływa na czas działania siłownika. Użycie zaworu dławiąco-zwrotnego, który reguluje przepływ powietrza, może wręcz spowodować zmniejszenie prędkości wysuwu tłoczyska z racji na wprowadzenie dodatkowego oporu. Tego typu zawory są efektywne w kontrolowaniu prędkości, ale ich zastosowanie w sytuacji, gdy celem jest maksymalizacja prędkości, jest błędne. Podobnie, zawór podwójnego sygnału, który może działać w różnych konfiguracjach, nie jest odpowiedni do szybkiego uwalniania powietrza, a jego działanie jest bardziej złożone i nie sprzyja prostym operacjom, takim jak szybki wysuw tłoczyska. Kluczowym błędem w myśleniu jest założenie, że każdy zawór może spełniać tę samą funkcję w systemie pneumatycznym, co prowadzi do nieefektywnej pracy całego układu.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Pracownik obsługujący urządzenia pneumatyczne generujące wibracje powinien mieć na sobie

A. fartuch ochronny
B. buty na gumowej podeszwie
C. kask ochronny
D. okulary ochronne
Fartuch ochronny, okulary ochronne oraz kask ochronny to elementy odzieży ochronnej o ważnym znaczeniu, jednak w kontekście pracy z urządzeniami pneumatycznymi wytwarzającymi drgania ich zastosowanie nie jest adekwatne do specyficznych zagrożeń. Fartuch ochronny ma na celu zabezpieczenie odzieży i ciała przed substancjami chemicznymi czy mechanicznymi uszkodzeniami, ale nie chroni dolnej części ciała ani nie wpływa na stabilność podczas pracy w środowisku, gdzie występują drgania. Okulary ochronne są niezwykle ważne w kontekście ochrony wzroku, zwłaszcza w przypadku ryzyka wystąpienia odłamków czy odprysków, jednak nie mają wpływu na ochronę przed drganiami. Kaski ochronne z kolei są niezbędne w sytuacjach zagrażających głowie, jak w przypadku pracy w pobliżu elementów mogących spaść, ale nie zabezpieczają przed skutkami wibracji. Stosowanie tych środków może prowadzić do błędnego przekonania, że zapewniają pełną ochronę w warunkach pracy z drganiami, co jest mylące. Kluczowe jest zrozumienie, że każda sytuacja robocza wymaga indywidualnej analizy ryzyk, a dobór środków ochronnych powinien być zgodny z zaleceniami dotyczącymi konkretnego rodzaju zagrożeń. W kontekście drgań, obuwie o odpowiedniej konstrukcji staje się najważniejszym elementem zabezpieczającym przed ich szkodliwym wpływem na organizm.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Ile watomierzy jest wymaganych do pomiaru mocy czynnej przy użyciu metody Arona w trójfazowych układach elektrycznych?

A. 3
B. 2
C. 4
D. 1
Zastosowanie jednego watomierza do pomiaru mocy czynnej w układzie trójfazowym jest niewłaściwe, ponieważ nie jest w stanie zarejestrować pełnego obrazu obciążenia trzech faz. W przypadku użycia jednego przyrządu, pomiar będzie ograniczony i będzie dotyczył tylko jednej fazy, co prowadzi do zafałszowania wyników. Podobnie, wybór trzech watomierzy w tej metodzie byłby zbędny, ponieważ wprowadzałoby to dodatkowe koszty i złożoność w analizie danych, gdzie dwa watomierze są wystarczające. Wykorzystanie czterech watomierzy jest nadmiarowe i niepraktyczne, gdyż nie wprowadza żadnych korzyści w kontekście pomiaru ani analizy, a jedynie zwiększa ryzyko błędów pomiarowych i komplikacji operacyjnych. Kluczowym błędem myślowym jest przekonanie, że większa liczba watomierzy automatycznie poprawia jakość pomiaru; w rzeczywistości, dla uzyskania wiarygodnych wyników w systemach trójfazowych ważne jest, aby wykonać pomiary w sposób zorganizowany i zgodny z uznawanymi standardami pomiarowymi. Konsekwencje błędnych wyborów mogą prowadzić do nieefektywności w zarządzaniu energią oraz trudności w identyfikacji źródeł strat energii w systemie. W praktyce, stosowanie dwóch watomierzy dąży do równowagi pomiędzy dokładnością pomiarów a prostotą konfiguracji.

Pytanie 37

Jakiego typu silnik prądu stałego powinno się użyć w systemie napędowym dla bardzo ciężkiej przepustnicy?

A. Obcowzbudny
B. Bocznikowy
C. Szeregowy
D. Bezszczotkowy
Silnik prądu stałego szeregowy jest najlepszym wyborem do obsługi bardzo ciężkiej przepustnicy ze względu na swoje właściwości charakterystyczne. Jego konstrukcja powoduje, że w momencie rozruchu generuje on znaczny moment obrotowy, co jest kluczowe przy napędzie elementów wymagających dużej siły. W silniku szeregowym uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem twornika, co sprawia, że przy niskich prędkościach obrotowych, gdy przepustnica jest obciążona, prąd w obwodzie wzbudzenia jest wysoki, co prowadzi do zwiększenia pola magnetycznego i efektywnego momentu obrotowego. Przykłady zastosowania silników szeregowych to napędy w systemach transportowych, dźwigach oraz w aplikacjach, gdzie wymagana jest znaczna moc przy niskich prędkościach. Zgodnie z normami branżowymi, wykorzystanie silników szeregowych w takich zastosowaniach jest powszechnie akceptowane i polecane z uwagi na efektywność energetyczną oraz niezawodność działania.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.