Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 czerwca 2025 14:31
  • Data zakończenia: 7 czerwca 2025 14:42

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Z czego składa się pneumohydrauliczny wzmacniacz ciśnienia?

A. przemiennik pneumohydrauliczny oraz siłownik hydrauliczny
B. akumulator hydrauliczny połączony szeregowo z pneumatycznym siłownikiem
C. siłownik pneumatyczny połączony szeregowo z siłownikiem hydraulicznym
D. przemiennik pneumohydrauliczny oraz siłownik pneumatyczny
Prawidłowa odpowiedź wskazuje na połączenie siłownika pneumatycznego z siłownikiem hydraulicznym, co jest kluczowym elementem w konstrukcji pneumohydraulicznych wzmacniaczy ciśnienia. Tego rodzaju wzmacniacze wykorzystują siłę sprężonego powietrza do generowania ciśnienia hydraulicznego, co pozwala na efektywne przetwarzanie energii. Przykładem zastosowania pneumohydraulicznych wzmacniaczy ciśnienia są systemy automatyki przemysłowej, gdzie precyzyjne sterowanie ruchem jest niezbędne. W praktyce, dzięki zastosowaniu siłowników pneumatycznych i hydraulicznych, możliwe jest osiągnięcie większej siły roboczej przy jednoczesnym wykorzystaniu mniejszej ilości energii. Tego rodzaju rozwiązania są zgodne z normami ISO oraz dobrymi praktykami w dziedzinie hydrauliki i pneumatyki, co zapewnia ich skuteczność oraz niezawodność w długoterminowym użytkowaniu. Zastosowanie takiego rozwiązania w przemyśle umożliwia realizację złożonych procesów technologicznych, a także zwiększa bezpieczeństwo operacji, minimalizując ryzyko awarii.

Pytanie 4

Który z zaworów pozwala na przepływ czynnika roboczego tylko w jednym kierunku?

A. Rozdzielający
B. Zwrotny
C. Odcinający
D. Przelotowy
Zawór zwrotny jest kluczowym elementem w systemach hydraulicznych i pneumatycznych, który umożliwia przepływ czynnika roboczego tylko w jednym, określonym kierunku. Działa on na zasadzie automatycznego zamykania, gdy ciśnienie w przeciwnym kierunku przekracza określony poziom. Dzięki temu zapobiega to cofaniu się płynów, co jest szczególnie ważne w układach, gdzie nieprzerwany przepływ w jednym kierunku jest krytyczny dla działania systemu. Przykładem zastosowania zaworu zwrotnego mogą być systemy hydrauliczne w maszynach budowlanych, gdzie konieczne jest, aby olej hydrauliczny nie wracał do zbiornika, gdy siłownik jest pod obciążeniem. Zawory zwrotne są również stosowane w instalacjach wodociągowych, aby zapobiegać cofaniu się wody, co mogłoby prowadzić do zanieczyszczenia systemu. W praktyce, dobór odpowiedniego zaworu zwrotnego powinien być zgodny z normą PN-EN ISO 4414, która definiuje zasady użytkowania urządzeń pneumatycznych, oraz z normą PN-EN 982, dotyczącą systemów hydraulicznych. Zrozumienie działania zaworów zwrotnych i ich zastosowania jest kluczowe dla inżynierów i techników pracujących w dziedzinach hydrauliki i pneumatyki.

Pytanie 5

Jakim przyrządem mierzy się czas trwania skoku siłownika elektrycznego?

A. mikrometrem
B. czujnikiem zegarowym
C. miliwoltomierzem
D. stoperem
Czas wykonania skoku siłownika elektrycznego mierzy się za pomocą stopera, ponieważ jest to narzędzie umożliwiające dokładne i precyzyjne określenie czasu trwania określonego zdarzenia. W przypadku siłowników elektrycznych, które są często wykorzystywane w automatyce i robotyce, czas reakcji oraz czas skoku mają kluczowe znaczenie dla efektywności pracy całego systemu. Stoper pozwala na mierzenie czasu z wysoką dokładnością, co jest niezbędne w procesach, gdzie synchronizacja ruchów jest istotna. W praktyce, w laboratoriach oraz w zakładach produkcyjnych, zastosowanie stopera w badaniach wydajności siłowników elektrycznych pozwala na optymalizację pracy maszyn oraz zwiększenie ich niezawodności. Takie pomiary mogą być również wykorzystywane do analizy wpływu różnych parametrów, takich jak obciążenie, napięcie zasilania czy rodzaj zastosowanej mechaniki, na czas odpowiedzi siłownika. Dzięki temu można wprowadzać usprawnienia oraz dostosowywać parametry pracy do specyficznych wymagań procesów technologicznych.

Pytanie 6

W jaki sposób można aktywować samowzbudną, bocznikową prądnicę prądu stałego, która nie uruchamia się z powodu braku magnetyzmu szczątkowego?

A. Podłączyć prądnicę na krótko do pracy silnikowej
B. Odwrócić kierunek prędkości obrotowej na przeciwny
C. Zmienić sposób podłączenia w obwodzie wzbudzenia
D. Zwiększyć opór w obwodzie wzbudzenia
Aby uruchomić samowzbudną, bocznikową prądnicę prądu stałego, która nie wzbudza się z powodu utraty magnetyzmu szczątkowego, właściwym rozwiązaniem jest podłączenie prądnicy na chwilę do pracy silnikowej. Ta metoda pozwala na przywrócenie magnetyzmu szczątkowego dzięki zastosowaniu zewnętrznego źródła energii, które na krótko napędza prądnicę, generując prąd wzbudzenia. W praktyce, gdy prądnica jest zasilana z zewnętrznego źródła mocy, wirnik zaczyna się obracać, co prowadzi do wzbudzenia pola magnetycznego poprzez wzajemne oddziaływanie między wirnikiem a stojanem. Warto zauważyć, że takie podejście jest często stosowane w praktyce, zwłaszcza w sytuacjach, gdy prądnice są dłużej nieużywane. Dobrą praktyką jest również regularne wykonywanie testów sprawnościowych prądnic, aby upewnić się, że nie utraciły magnetyzmu. Zrozumienie tego procesu jest kluczowe dla operatorów oraz inżynierów, którzy zajmują się eksploatacją i konserwacją maszyn elektrycznych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie czynności są niezbędne do utrzymania sprawności urządzeń hydraulicznych?

A. Miesięczny demontaż oraz montaż pomp
B. Regularna wymiana rozdzielacza
C. Codzienna wymiana oleju
D. Regularna wymiana filtrów
Okresowa wymiana filtrów w urządzeniach hydraulicznych jest kluczowa dla zapewnienia ich sprawności oraz wydajności. Filtry hydrauliczne mają za zadanie zatrzymywać zanieczyszczenia, które mogą uszkodzić pompy, zawory oraz inne elementy układu hydraulicznego. Zanieczyszczenia te mogą pochodzić z różnych źródeł, takich jak procesy tarcia wewnętrznych komponentów, a także z zewnątrz, na przykład w wyniku nieprawidłowego napełniania systemu olejem. Regularna wymiana filtrów zgodnie z zaleceniami producentów oraz standardami branżowymi, takimi jak ISO 4406, pozwala na minimalizację ryzyka awarii oraz wydłużenie żywotności całego systemu hydraulicznego. Przykładem dobrych praktyk jest wprowadzenie harmonogramu konserwacji, który uwzględnia częstotliwość wymiany filtrów, co pozwala na monitorowanie stanu oleju oraz zanieczyszczeń w systemie. Taka praktyka jest szczególnie ważna w zastosowaniach przemysłowych, gdzie nieprzewidziane przestoje mogą generować znaczne straty finansowe.

Pytanie 10

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. pięciodrogowy dwupołożeniowy (5/2)
B. pięciodrogowy trójpołożeniowy (5/3)
C. trójdrogowy dwupołożeniowy (3/2)
D. trójdrogowy trójpołożeniowy (3/3)
Zawór pięciodrogowy trójpołożeniowy (5/3) to właściwy wybór, bo pozwala na pełną kontrolę nad ruchem tłoczyska w siłowniku pneumatycznym. Można go zatrzymać w dowolnej pozycji, co jest super ważne w różnych zastosowaniach. Ten zawór ma pięć portów i trzy położenia robocze, co oznacza, że możemy zasilać siłownik z jednej strony (położenie 1), z drugiej (położenie 2) lub zatrzymać go w neutralnej pozycji (położenie 3). Dzięki temu wszystko działa precyzyjnie, co jest kluczowe np. w automatyce produkcyjnej czy robotyce. Używanie takich standardowych komponentów, jak zawory 5/3, to naprawdę dobry pomysł, bo zapewniają one niezawodność i łatwość w podłączeniu do innych części systemu. Przykładem mogą być linie montażowe, gdzie dokładne pozycjonowanie elementów jest mega istotne dla efektywności.

Pytanie 11

Który z podanych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Żeliwo szare
B. Stal niskowęglowa
C. Stal wysokowęglowa
D. Żeliwo białe
Stal niskowęglowa to jeden z najpopularniejszych materiałów, jeśli chodzi o konstrukcje spawane. Ma świetne właściwości mechaniczne i jest łatwa do spawania. Niska zawartość węgla sprawia, że jest elastyczna i nie pęka tak łatwo podczas spawania. Dzięki tym zaletom, stal niskowęglowa znajduje różne zastosowania - w budownictwie, przemyśle stoczniowym czy motoryzacyjnym. Na przykład, używa się jej do produkcji belek, rur czy ram, gdzie potrzebna jest solidność i wytrzymałość na obciążenia. Zresztą, normy takie jak EN 10025 dokładnie określają wymagania dla stali konstrukcyjnych, co tylko potwierdza jej znaczenie w przemyśle. Z mojego doświadczenia, stal niskowęglowa jest lepszym wyborem niż stal wysokowęglowa, bo ma lepsze właściwości spawalnicze i mniejsze ryzyko wystąpienia naprężeń wewnętrznych, co jest mega istotne w konstrukcjach spawanych.

Pytanie 12

Elektryczne żelazko wyposażone w termoregulator bimetaliczny stanowi przykład

A. sterowania w układzie otwartym
B. układu sterowania programowalnego
C. układu regulacji automatycznej
D. sterowania sekwencyjnego
Żelazko elektryczne z termoregulatorem bimetalicznym jest doskonałym przykładem układu regulacji automatycznej, ponieważ wykorzystuje mechanizm, który automatycznie dostosowuje temperaturę grzania w zależności od wymagań użytkownika i właściwości materiału, który jest prasowany. Termoregulator bimetaliczny składa się z dwóch różnych metali, które rozszerzają się różnie pod wpływem temperatury, co powoduje odkształcenie i włączenie lub wyłączenie zasilania do grzałki żelazka. Przykładem praktycznego zastosowania tego rozwiązania jest żelazko, które automatycznie dostosowuje temperaturę do rodzaju tkaniny, co zapobiega ich przypaleniu lub uszkodzeniu. Tego typu regulacja automatyczna jest zgodna z zasadami efektywności energetycznej oraz komfortu użytkowania, co czyni ją standardem w projektowaniu urządzeń gospodarstwa domowego. Zastosowanie termoregulatorów bimetalicznych w żelazkach jest zgodne z najlepszymi praktykami w dziedzinie automatyki i kontrolowania procesów, zapewniając niezawodność oraz bezpieczeństwo eksploatacji urządzeń. Dodatkowo, układy regulacji automatycznej są szeroko stosowane w różnych dziedzinach przemysłu, gdzie precyzyjne utrzymywanie parametrów jest kluczowe dla jakości produkcji.

Pytanie 13

Gdy ciśnienie w zbiorniku kompresora rośnie, zakładając, że wilgotność i temperatura powietrza pozostają niezmienne, stan pary wodnej w zgromadzonym powietrzu

A. oddala się od linii punktu rosy
B. zbliża się do linii punktu rosy
C. nie zmienia się, pod warunkiem, że wilgotność absolutna jest stała
D. nie zmienia się w stosunku do linii punktu rosy
Wzrost ciśnienia w zbiorniku sprężarki powoduje, że powietrze staje się bardziej sprężone. Przy stałej wilgotności i temperaturze, wilgotność względna powietrza wzrasta, co oznacza, że stan pary wodnej w powietrzu zbliża się do linii punktu rosy. Linia punktu rosy jest granicą, przy której para wodna zaczyna kondensować w ciecz. W praktyce, im wyższe ciśnienie, tym więcej pary wodnej może być obecne w powietrzu, co prowadzi do podwyższenia ciśnienia cząstkowego pary wodnej. W zastosowaniach przemysłowych, kontrola ciśnienia i wilgotności powietrza jest kluczowa, zwłaszcza w procesach, w których może wystąpić kondensacja, jak w systemach pneumatycznych czy podczas przechowywania materiałów wrażliwych na wilgoć. Przykładowo, w przemyśle spożywczym lub farmaceutycznym, monitoring tych parametrów zapewnia, że procesy technologiczne przebiegają zgodnie z normami jakości, co z kolei wpływa na trwałość oraz bezpieczeństwo produktów końcowych.

Pytanie 14

Która budowa siłownika hydraulicznego umożliwia uzyskanie największego skoku przy niewielkiej długości cylindra?

A. Teleskopowa
B. Tłokowa z dwustronnym tłoczyskiem
C. Tłokowa z jednostronnym tłoczyskiem
D. Nurnikowa
Konstrukcje teleskopowe siłowników hydraulicznych charakteryzują się tym, że składają się z kilku cylindrów, które są wciągane jeden w drugi. Dzięki temu, nawet przy stosunkowo krótkiej długości całkowitej, teleskopowe siłowniki mogą osiągnąć znaczny skok. Jest to szczególnie przydatne w zastosowaniach, gdzie przestrzeń jest ograniczona, a wymagana jest duża ruchomość, na przykład w dźwigach, podnośnikach czy maszynach budowlanych. Teleskopowe siłowniki są często wykorzystywane w przemyśle, gdzie zaawansowane rozwiązania hydrauliczne są wymagane do efektywnej pracy. W standardach branżowych, takich jak ISO 6022, podkreśla się znaczenie teleskopowych siłowników w kontekście ich zdolności do pracy w ograniczonej przestrzeni, co czyni je niezastąpionymi w wielu zastosowaniach. W praktyce, przy odpowiednim doborze materiałów oraz technologii produkcji, teleskopowe siłowniki mogą pracować z dużymi obciążeniami i przy wysokich ciśnieniach, co zapewnia ich trwałość i niezawodność.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jaką metodę spawania wykorzystuje się z gazem o właściwościach chemicznych aktywnych?

A. MIG
B. MAG
C. SAW
D. TIG
Metoda spawania MAG (Metal Active Gas) wykorzystuje gaz chemicznie aktywny, najczęściej w postaci mieszanki argonu z dwutlenkiem węgla lub innymi gazami, co pozwala na uzyskanie wysokiej jakości spoiny. W przeciwieństwie do MIG (Metal Inert Gas), gdzie stosuje się gazy obojętne, takie jak argon, w MAG aktywne gazy wpływają na proces spawania, co przyczynia się do lepszego wtopienia materiału oraz zwiększenia odporności na niepożądane zjawiska, takie jak utlenianie. Przykładem zastosowania technologii MAG jest spawanie wszelkiego rodzaju konstrukcji stalowych, takich jak ramy budynków, kontenery i elementy maszyn. Dobre praktyki w tej metodzie obejmują dobór odpowiednich parametrów spawania, jak prędkość, napięcie i natężenie prądu, co jest zgodne z normami EN ISO 4063. Dzięki temu proces staje się bardziej efektywny i kontrolowany, co jest niezwykle ważne w przemyśle metalowym.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Napięcie składa się z dwóch elementów: zmiennej sinusoidalnej oraz stałej. Aby zmierzyć stałą część tego napięcia, można użyć oscyloskopu w trybie

A. AC
B. ADD
C. GND
D. DC
Wybór jednego z pozostałych trybów oscyloskopu, takich jak AC, GND czy ADD, prowadzi do błędnej interpretacji składowych napięcia. W trybie AC oscyloskop filtruje składową stałą, co oznacza, że użytkownik nie zobaczy wartości stałej napięcia, a jedynie zmienną część sygnału. To uniemożliwia dokładne pomiary, gdyż w wielu aplikacjach inżynieryjnych istotna jest analiza zarówno składowej stałej, jak i zmiennej. Z kolei tryb GND wyłącza sygnał całkowicie, co również nie pozwala na obserwację jakichkolwiek składowych napięcia. Wybór trybu ADD może wprowadzać w błąd, ponieważ nie służy on do wydobywania składowych stałych, a do dodawania dwóch sygnałów. Typowe błędy myślowe obejmują utożsamianie pomiaru sygnałów AC z pomiarem całkowitym napięcia, co może prowadzić do fałszywych wniosków na temat działania układów. Właściwe rozumienie trybu DC na oscyloskopie jest kluczowe dla efektywnej diagnostyki i analizy systemów elektronicznych, a także dla przestrzegania standardów branżowych, które podkreślają znaczenie całościowego podejścia do pomiarów.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Która z wymienionych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Zaginanie
B. Klejenie
C. Spawanie
D. Zgrzewanie
Klejenie jest jedną z technik łączenia elementów wykonanych z tworzyw sztucznych, jednak jej zastosowanie nie prowadzi do trwałego połączenia w sensie mechanicznym, jak to ma miejsce w przypadku zgrzewania, spawania czy zaginania. Kleje używane do łączenia tworzyw sztucznych często działają na zasadzie adhezji, co oznacza, że wiążą elementy poprzez przyciąganie molekularne, a nie poprzez ich fuzję. W praktyce oznacza to, że w przypadku obciążeń mechanicznych, czy zmian temperatury, połączenie może ulegać osłabieniu. Zgrzewanie i spawanie polegają na miejscowym podgrzaniu materiału i połączeniu go w stanie ciekłym, co tworzy jednorodną strukturę. Zaginanie jest techniką formowania, która także nie prowadzi do trwałych połączeń, ale zmienia kształt materiału. W zastosowaniach przemysłowych, takich jak produkcja mebli z tworzyw sztucznych czy elementów elektronicznych, klejenie stosowane jest głównie w procesach, gdzie ważna jest estetyka lub kiedy inne metody są niepraktyczne. Warto zwrócić uwagę na dobór odpowiednich klejów, które są zgodne z typem tworzywa sztucznego oraz wymaganiami aplikacyjnymi, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Podczas naprawy pieca indukcyjnego pracownik doznał poparzenia ramienia. Jaką pomoc powinien otrzymać w pierwszej kolejności?

A. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie miejsca oparzone polewać wodą utlenioną
B. miejsca oparzone posmarować tłustym kremem, a następnie na ranę oparzeniową zastosować okład z 1% kwasu octowego
C. miejsca oparzone polewać zimną wodą, a następnie na ranę oparzeniową założyć jałowy opatrunek
D. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie na ranę oparzeniową nałożyć okład z 3% roztworu sody oczyszczonej
Odpowiedź dotycząca polewania miejsc oparzonych zimną wodą jest prawidłowa, ponieważ pierwszym krokiem w przypadku oparzeń jest schłodzenie uszkodzonego miejsca. Schłodzenie oparzenia zimną wodą (najlepiej w temperaturze pokojowej lub lekko chłodnej) powinno trwać od 10 do 20 minut. Dzięki temu zmniejsza się ból oraz ogranicza głębokość oparzenia. Woda działa również jako czynnik nawilżający, co jest istotne, ponieważ oparzenia mogą prowadzić do dalszej utraty wilgoci. Po schłodzeniu, na oparzenie należy nałożyć jałowy opatrunek, co jest standardową praktyką w pierwszej pomocy. Opatrunek chroni ranę przed zanieczyszczeniami oraz sprzyja procesowi gojenia. Warto wspomnieć, że w przypadku poważniejszych oparzeń, w tym oparzeń drugiego i trzeciego stopnia, niezbędna jest konsultacja z lekarzem. Stosowanie jałowego opatrunku jest zgodne z wytycznymi zawartymi w podręcznikach dotyczących pierwszej pomocy."

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Elastyczny przewód elektryczny, służący do łączenia elementów systemu elektrycznego w aplikacjach mechatronicznych, powinien być

A. zakończony na końcach tulejkami
B. równo przycięty na końcach
C. odizolowany na dowolną długość
D. zaizolowany na końcach
Zakończenie przewodu giętkiego tulejkami to naprawdę ważna sprawa, zwłaszcza z perspektywy bezpieczeństwa i skuteczności połączeń w systemach mechatronicznych. Tulejki, czyli końcówki przewodów, dają mocne i trwałe połączenia, co zmniejsza ryzyko różnych awarii, zarówno mechanicznych, jak i elektrycznych. Jak dobrze wiemy, dzięki tulejkom żyły przewodów są lepiej chronione przed uszkodzeniami mechanicznymi czy korozją, co na pewno wydłuża ich żywotność. Poza tym, użycie tulejek ułatwia podłączanie przewodów do różnych elementów systemu, jak złącza czy komponente elektroniczne. To jest w sumie istotne w układach mechatronicznych, bo często trzeba coś zmieniać. I jeszcze jedno: stosowanie tulejek jest zgodne z branżowymi normami i standardami, a to ma znaczenie nie tylko dla bezpieczeństwa operatorów, lecz także dla niezawodności całego systemu. Dlatego warto korzystać z tulejek w zakończeniach przewodów giętkich, bo to po prostu najlepsza praktyka w tej dziedzinie.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jaki instrument pomiarowy powinno się użyć do określenia amplitudy, częstotliwości oraz kształtu sygnałów w instalowanych urządzeniach mechatronicznych?

A. Multimetr
B. Mostek RLC
C. Oscyloskop
D. Częstościomierz
Oscyloskop to zaawansowane narzędzie pomiarowe, które umożliwia wizualizację kształtu sygnałów elektronicznych w czasie rzeczywistym. Działa na zasadzie przetwarzania napięcia, które jest przedstawiane na ekranie w formie wykresu, gdzie oś X reprezentuje czas, a oś Y napięcie. Dzięki oscyloskopowi inżynierowie mogą analizować zarówno amplitudę, jak i częstotliwość sygnałów, co jest niezbędne przy projektowaniu i testowaniu urządzeń mechatronicznych. W praktyce oscyloskop jest wykorzystywany do badania układów elektronicznych, diagnostyki usterek czy oceny jakości sygnału. Na przykład, podczas analizy sygnałów z czujników w systemach automatyki przemysłowej, oscyloskop pozwala na szybkie wychwycenie anomalii w komunikacji czy nieprawidłowości w działaniu układów przetwarzających dane. W branży mechatronicznej standardem jest korzystanie z oscyloskopów, które spełniają normy IEC 61010, zapewniając bezpieczeństwo i dokładność pomiarów. Używanie oscyloskopu to nie tylko praktyka, ale i dobra praktyka, umożliwiająca skuteczną analizę skomplikowanych sygnałów.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Aby zwiększyć prędkość ruchu tłoczyska siłownika poprzez szybsze odpowietrzenie, wykorzystuje się zawór

A. podwójnego sygnału
B. szybkiego spustu
C. przełączania obiegu
D. regulacji ciśnienia
Zawór szybkiego spustu to naprawdę ważny element w systemach hydraulicznych. Dzięki niemu można szybko pozbyć się cieczy z siłownika, co z kolei przyspiesza ruch tłoczyska. Głównym celem tego zaworu jest zmniejszenie oporu hydraulicznego, co sprawia, że siłownik działa szybciej. Można to zaobserwować w maszynach budowlanych, jak koparki czy ładowarki, gdzie szybkość ruchu ramion jest kluczowa. W branży musimy pamiętać, że projektowanie hydrauliki powinno uwzględniać optymalizację przepływu cieczy, a zawór szybkiego spustu to jeden z najlepszych sposobów na osiągnięcie tego. Oczywiście, nie tylko przyspiesza działanie, ale też poprawia precyzję sterowania, co jest niezwykle istotne tam, gdzie liczy się dokładność. Warto też regularnie sprawdzać stan zaworu, żeby mieć pewność, że wszystko działa bez zarzutu w różnych warunkach.

Pytanie 30

Urządzenie do pomiaru o zakresie od 0,1 do 10 m3/s to

A. miernik mętności
B. miernik prędkości
C. czujnik poziomu
D. przepływomierz
Przepływomierz to urządzenie, które służy do pomiaru przepływu cieczy lub gazów w określonym czasie. Miernik o zakresie pomiarowym od 0,1 do 10 m³/s jest typowym przykładem przepływomierza, który znajduje zastosowanie w różnych branżach, takich jak przemysł chemiczny, energetyczny czy wodociągowy. Przepływomierze mogą działać na różnych zasadach, w tym na zasadzie pomiaru różnicy ciśnień, elektromagnetycznych czy ultradźwiękowych. Przykładem zastosowania jest monitoring zużycia wody w systemach wodociągowych, gdzie dokładne pomiary przepływu pomagają w zarządzaniu zasobami oraz w identyfikacji nieszczelności w instalacjach. W kontekście dobrej praktyki, regularna kalibracja przepływomierzy jest kluczowa, aby zapewnić ich dokładność i niezawodność, co jest zgodne z normami ISO 9001 dotyczących zarządzania jakością.

Pytanie 31

Jakie materiały wykorzystuje się do wytwarzania rdzeni magnetycznych w transformatorach?

A. paramagnetyki
B. antyferromagnetyki
C. diamagnetyki
D. ferromagnetyki
Ferromagnetyki są materiałami, które wykazują silne właściwości magnetyczne, co czyni je idealnymi do zastosowania w produkcji rdzeni magnetycznych transformatorów. W szczególności, ferromagnetyki, jak żelazo, nikiel czy kobalt, mają zdolność do silnego namagnesowania oraz do zatrzymywania magnetyzmu po usunięciu zewnętrznego pola magnetycznego. Dzięki tym właściwościom, rdzenie ferromagnetyczne minimalizują straty energetyczne i zwiększają efektywność transformatorów. W praktyce, zastosowanie ferromagnetyków w transformatorach pozwala na zmniejszenie rozmiaru urządzenia oraz zwiększenie jego mocy, co jest szczególnie ważne w urządzeniach elektrycznych o dużej mocy, takich jak transformatory w stacjach elektroenergetycznych. Dobre praktyki w branży zalecają również stosowanie materiałów o wysokiej permeabilności i niskich stratach histerezowych, co przyczynia się do jeszcze lepszej wydajności energetycznej transformatorów.

Pytanie 32

Parametry zamieszczone w tabeli charakteryzują

ParametrWartość
Wydajność21 l/min
Prędkość obrotowa1500 obr./min
objętość geometryczna14 cm³/obr.
zakres obrotówod 800 do 3500 obr/min
ciśnienie nominalne25 MPa
ciśnienie maksymalne26 MPa

A. pompę hydrauliczną.
B. kompresor olejowy.
C. silnik hydrauliczny.
D. silnik elektryczny.
Parametry przedstawione w tabeli jednoznacznie wskazują na pompę hydrauliczną. Wydajność 21 l/min, prędkość obrotowa 1500 obr./min oraz zakres obrotów od 800 do 3500 obr./min są typowe dla tego typu urządzeń. Pompy hydrauliczne są kluczowymi elementami w układach hydraulicznych, wykorzystywanych w różnych aplikacjach przemysłowych, takich jak maszyny budowlane, rolnicze oraz w systemach automatyki. Objętość geometryczna 14 cm3/obr. i ciśnienie nominalne 25 MPa są również charakterystyczne dla hydrauliki. Dobre praktyki obejmują regularne monitorowanie tych parametrów, co pozwala na optymalizację wydajności i zapobieganie awariom. W przypadku pomp hydraulicznych, ich dobór do konkretnego zastosowania jest kluczowy, aby zapewnić efektywność systemu oraz jego niezawodność. Warto również zwrócić uwagę na normy branżowe, które regulują parametry działania pomp hydraulicznych, co potwierdza znaczenie tych wartości w prawidłowym ich funkcjonowaniu.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

W wyniku kontaktu dłoni pracownika ze strumieniem wysoko sprężonego dwutlenku węgla doszło do odmrożenia drugiego stopnia (zaczerwienienie dłoni, pojawienie się pęcherzy). Jakie czynności należy podjąć udzielając pierwszej pomocy?

A. usunąć z palców poszkodowanego biżuterię, ogrzać dłoń i zastosować jałowy opatrunek
B. smarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
C. podać środki przeciwbólowe i przetransportować poszkodowanego do szpitala
D. oblać dłoń wodą utlenioną i nałożyć opatrunek
Odpowiedź ta jest prawidłowa, ponieważ w przypadku odmrożenia drugiego stopnia kluczowe jest odpowiednie postępowanie mające na celu minimalizację uszkodzeń tkanek oraz wsparcie w procesie ich regeneracji. Zdjęcie biżuterii z palców poszkodowanego jest istotne, aby uniknąć dodatkowego ucisku na obrzęknięte obszary. Rozgrzewanie dłoni powinno odbywać się w sposób kontrolowany, najlepiej poprzez zastosowanie ciepłej wody (nie gorącej) oraz unikanie bezpośrednich źródeł ciepła, które mogą spowodować dalsze uszkodzenia tkanek. Nałożenie jałowego opatrunku ma na celu ochronę uszkodzonej skóry przed zakażeniem oraz wspieranie procesu gojenia. W przypadku odmrożeń istotne jest również monitorowanie stanu poszkodowanego i przekazanie mu informacji o konieczności wizyty u specjalisty, jeśli objawy się nasilają. W przypadku zastosowania tej procedury można skutecznie pomóc w przywróceniu prawidłowego funkcjonowania dłoni.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Maksymalne napięcie na analogowym wejściu kontrolera PLC wynosi 10 V DC, a rozdzielczość tego wejścia, wynosząca około 40 mV, zapewnia zastosowanie kontrolera PLC z przetwornikiem A/C.

A. 64-bitowym
B. 8-bitowym
C. 16-bitowym
D. 32-bitowym
Odpowiedź 8-bitowa jest właściwa, ponieważ przy maksymalnym napięciu wejściowym wynoszącym 10 V oraz rozdzielczości na poziomie 40 mV można obliczyć liczbę dostępnych poziomów pomiarowych dla wejścia analogowego. Wejście 8-bitowe może reprezentować 256 wartości (2^8), co pozwala na podział napięcia 10 V na 256 poziomów. Dlatego pojedynczy krok napięcia wynosi 10 V / 256 = około 39,06 mV. Taka wartość jest bardzo bliska podanej rozdzielczości 40 mV, co czyni tę odpowiedź poprawną. W praktycznych zastosowaniach systemów automatyki, 8-bitowe przetworniki A/C są często wystarczające do monitorowania podstawowych parametrów, takich jak temperatura czy ciśnienie. Pomimo postępu technologicznego, wiele starszych systemów nadal wykorzystuje przetworniki 8-bitowe, co czyni je ważnym elementem w analizie i modernizacji istniejących instalacji. Warto również zauważyć, że zgodnie z normami branżowymi, takich jak IEC 61131, stosowanie prostych rozwiązań w kontrolerach PLC jest często preferowane ze względu na ich niezawodność i łatwość w integracji.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.