Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 12 maja 2025 23:06
  • Data zakończenia: 12 maja 2025 23:21

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Co oznacza symbol PE na przewodach elektrycznych?

A. Przewód fazowy
B. Przewód uziemiający
C. Przewód ochronny
D. Przewód neutralny
Symbol PE na przewodach elektrycznych oznacza przewód ochronny. Jest to kluczowy element każdej instalacji elektrycznej, ponieważ zapewnia bezpieczeństwo użytkownikom i chroni urządzenia przed uszkodzeniem w przypadku awarii. W praktyce przewód ochronny jest używany do uziemienia różnych urządzeń elektrycznych, co zapobiega gromadzeniu się ładunków elektrostatycznych i minimalizuje ryzyko porażenia prądem. Normy dotyczące instalacji elektrycznych, takie jak PN-HD 60364, podkreślają znaczenie poprawnego uziemienia i użycia przewodów ochronnych. Takie przewody są zazwyczaj oznaczone żółto-zielonym kolorem i nie powinny być używane do innych celów niż ochrona. Dzięki stosowaniu przewodów ochronnych, możliwe jest odprowadzenie niebezpiecznych prądów zwarciowych do ziemi, co jest standardową praktyką w branży elektrycznej. Z praktycznego punktu widzenia, przewód ochronny jest nieodłącznym elementem instalacji w każdym domu, biurze czy zakładzie przemysłowym.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

W jakiego rodzaju instalacjach elektrycznych typowe jest stosowanie przewodów w karbowanych rurkach?

A. Napowietrznych
B. Wtynkowych
C. Podtynkowych
D. Nadtynkowych
Układanie przewodów w rurkach karbowanych jest charakterystyczne dla instalacji podtynkowych, ponieważ zapewnia to nie tylko estetykę, ale również dodatkową ochronę mechaniczną przewodów. Rurki karbowane, zwane również rurami osłonowymi, są elastyczne i łatwe w instalacji, co pozwala na dostosowanie ich do różnych kształtów i rozmiarów pomieszczeń. Przewody umieszczone w takich rurkach są chronione przed uszkodzeniami mechanicznymi, wilgocią oraz wpływem czynników zewnętrznych. W standardach instalacyjnych, takich jak norma PN-IEC 60364, zaleca się stosowanie rur karbowanych w miejscach, gdzie występuje ryzyko uszkodzeń przewodów, co zwiększa bezpieczeństwo całej instalacji. Przykładem zastosowania mogą być instalacje elektryczne w domach jednorodzinnych, gdzie przewody są układane w ścianach i sufitach, a ich estetyczne ukrycie wraz z ochroną jest kluczowe dla komfortu użytkowania. Warto również zauważyć, że odpowiednia instalacja zgodna z normami oraz zaleceniami producentów rur jest niezbędna do zapewnienia długotrwałej i bezawaryjnej pracy instalacji elektrycznej.

Pytanie 4

Elementem końcowym sieci zasilającej, a także punktem początkowym instalacji elektrycznej budynku jest

A. złącze
B. rozdzielnica główna
C. wewnętrzna linia zasilająca
D. przyłącze
Wybór odpowiedzi związanej z wewnętrzną linią zasilającą, złączem lub rozdzielnicą główną wskazuje na pewne nieporozumienia dotyczące struktury sieci elektroenergetycznej. Wewnętrzna linia zasilająca odnosi się do instalacji, która rozprowadza energię wewnątrz budynku, ale nie jest jej początkiem ani końcowym elementem zewnętrznej sieci zasilającej. Jej działanie jest uzależnione od prawidłowego funkcjonowania przyłącza, które dostarcza energię do budynku. Złącze natomiast jest punktem, w którym energia elektryczna z sieci zewnętrznej łączy się z instalacją budynku, ale nie stanowi ono końca sieci zasilającej. Rozdzielnica główna, mimo że kluczowa w zarządzaniu dystrybucją energii wewnątrz budynku, również nie jest początkiem instalacji elektrycznej, lecz raczej punktem rozdzielającym energię na poszczególne obwody. Typowym błędem myślowym jest utożsamianie tych elementów z przyłączem, co może prowadzić do nieporozumień w projektowaniu oraz wykonawstwie instalacji elektrycznych. Aby uniknąć takich błędów, warto zaznajomić się z pełną strukturą instalacji, co przyczynia się do poprawnej analizy i realizacji projektów elektrycznych.

Pytanie 5

Jakiego urządzenia należy użyć, aby zweryfikować ciągłość przewodu podczas instalacji?

A. Omomierza
B. Watomierza
C. Amperomierza
D. Megaomomierza
Omomierz jest instrumentem pomiarowym, który służy do określania oporu elektrycznego w obwodach. Użycie omomierza do sprawdzenia ciągłości przewodów instalacyjnych jest standardową praktyką w branży elektrycznej. Narzędzie to pozwala na ocenę, czy przewody są poprawnie podłączone i czy nie ma w nich przerw, co jest kluczowe dla bezpieczeństwa i efektywności instalacji. Przykładowo, podczas montażu instalacji elektrycznej w budynkach mieszkalnych, omomierz może być użyty do testowania połączeń między różnymi elementami systemu, co zapewnia, że żadne przerwy w przewodzeniu nie zakłócą działania urządzeń. Dobrą praktyką jest również pomiar oporu izolacji, co może zapobiec potencjalnym awariom i zagrożeniom pożarowym. Warto pamiętać, że w przypadku wyniku wskazującego na wysoką wartość oporu, może to oznaczać problem z przewodem, który należy rozwiązać przed zakończeniem instalacji.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. E27
B. MR11
C. GU10
D. G9
Wybierając inne odpowiedzi, można wpaść w pułapki związane z trzonkami żarówek. Na przykład, GU10 to dość inna sprawa – to do oświetlenia punktowego i ma dwa piny. Myślenie, że wszystkie nowoczesne źródła są podobne, to pułapka, bo różnice w mocowaniach są ważne. MR11, który jest mniejszy od MR16, też ma swoją budowę i nie pasuje do E27. A z G9 bywa podobnie – ludzie myślą, że małe źródła światła są lepsze, a tak naprawdę E27 często oferuje większą wydajność. Ignorując różnice w konstrukcji trzonków, można trafić na kłopoty z dopasowaniem, a czasem trzeba dokupić coś dodatkowego. Dlatego warto znać standardy i specyfikacje, żeby dobrze dobrać żarówki i osprzęt, co się przekłada na oszczędność energii i komfort użytkowania.

Pytanie 8

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. TN-C
B. IT
C. TT
D. TN-S
Wybory układów TN-S, TN-C oraz TT wskazują na niepełne zrozumienie zasad działania systemów elektroenergetycznych. W układzie TN-S, punkt neutralny jest uziemiony, co oznacza, że w razie uszkodzenia izolacji, prąd zwarciowy przepływa bezpośrednio do ziemi, co zwiększa ryzyko porażenia prądem. Nie ma w nim miejsca na dodatkowy bezpiecznik iskiernikowy, ponieważ jest on niekompatybilny z zasadą bezpośredniego uziemienia. Podobnie w przypadku TN-C, gdzie neutralny i ochronny przewód są połączone, ryzyko uszkodzenia izolacji jest wysokie, a wprowadzenie iskiernika w tym układzie byłoby zbędne i niewłaściwe. Układ TT również zakłada, że punkt neutralny jest uziemiony, a zatem straciłby sens użycie bezpiecznika iskiernikowego, ponieważ nie zapewnia on właściwej izolacji i bezpieczeństwa. Zrozumienie różnic między tymi systemami jest kluczowe dla prawidłowego projektowania instalacji elektrycznych, gdzie odpowiedni dobór układu ma wpływ na bezpieczeństwo i niezawodność dostaw energii elektrycznej. W praktyce, błędne podejście do klasyfikacji układów może prowadzić do poważnych konsekwencji, zarówno finansowych, jak i zdrowotnych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Wiatrołap jest oświetlany dwoma żarówkami. Żarówki w oprawach są włączane przez wyłącznik zmierzchowy. Gdy jedna z żarówek przestała świecić, jakie kroki należy podjąć, aby zidentyfikować i usunąć potencjalne przyczyny tej usterki?

A. Wymienić żarówkę, która się nie świeci, sprawdzić przewody i oprawę oświetleniową
B. Zamienić żarówkę, która nie świeci, sprawdzić funkcjonowanie wyłącznika oraz oprawy oświetleniowej
C. Zweryfikować przewody, sprawdzić działanie wyłącznika, wymienić żarówkę
D. Sprawdzić działanie wyłącznika, zweryfikować oprawę i przewody
Odpowiedź polegająca na wymianie żarówki, która się nie świeci, oraz sprawdzeniu przewodów i oprawy oświetleniowej jest prawidłowa, ponieważ pozwala na kompleksowe zdiagnozowanie problemu. W pierwszej kolejności należy wymienić żarówkę, aby upewnić się, że usterka nie leży po stronie źródła światła. Zgodnie z dobrą praktyką, przed wymianą żarówki warto upewnić się, że źródło zasilania jest wyłączone, co zapewnia bezpieczeństwo podczas pracy. Następnie, sprawdzenie przewodów pozwala na wykrycie ewentualnych uszkodzeń lub przerwań, które mogą powodować brak zasilania. Warto również sprawdzić oprawę oświetleniową pod kątem korozji, zanieczyszczeń czy uszkodzeń mechanicznych, które mogą wpływać na funkcjonowanie układu. Przeprowadzanie tych kroków zgodnie z procedurami przewidzianymi w normach elektrycznych pozwala na skuteczną eliminację przyczyn usterki oraz zapobiega ewentualnym przyszłym problemom z oświetleniem. Długoterminowe utrzymanie systemów oświetleniowych w dobrym stanie technicznym jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa użytkowników.

Pytanie 11

Jakie właściwości definiują wyłącznik instalacyjny nadprądowy?

A. Prąd zwarciowy, typ zestyku, napięcie podtrzymania
B. Prąd obciążenia, rezystancja zestyku, czas wyłączenia
C. Napięcie znamionowe, prąd znamionowy, rodzaj charakterystyki
D. Napięcie dopuszczalne, prąd różnicowy, czas zadziałania
Wyłącznik instalacyjny nadprądowy jest kluczowym elementem zabezpieczeń w instalacjach elektrycznych. Parametry takie jak napięcie znamionowe, prąd znamionowy oraz rodzaj charakterystyki definiują jego właściwości i funkcjonalność. Napięcie znamionowe określa maksymalne napięcie, przy którym wyłącznik może pracować bezawaryjnie, co jest istotne w kontekście doboru urządzeń do konkretnej instalacji. Prąd znamionowy to wartość prądu, przy której wyłącznik powinien funkcjonować poprawnie, ale również powinien zareagować w przypadku przekroczenia tej wartości, co jest kluczowe dla ochrony instalacji przed przeciążeniem. Rodzaj charakterystyki (np. A, B, C, D) wskazuje na czas reakcji oraz sposób działania wyłącznika w obliczu przeciążeń oraz zwarć, co pozwala na optymalne dopasowanie do różnych aplikacji, takich jak domowe instalacje, przemysłowe czy zastosowania specjalistyczne. Przykładowo, charakterystyka typu B jest powszechnie stosowana w instalacjach domowych, gdzie występują małe prądy rozruchowe, natomiast typ C jest odpowiedni dla obciążeń z wyższymi prądami rozruchowymi, np. w urządzeniach elektrycznych. Stosowanie wyłączników zgodnie z tymi parametrami jest zgodne z normami IEC 60898 oraz IEC 60947, co zapewnia bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Woltomierz działający na zasadzie magnetoelektrycznej, który mierzy napięcie sinusoidalnie z dodatkiem składowej stałej, wskaże wartość

A. średnią napięcia
B. znamionową napięcia
C. chwilową napięcia
D. skuteczną napięcia
Woltomierz magnetoelektryczny jest narzędziem wykorzystywanym do pomiaru napięcia, a w przypadku napięcia sinusoidalnego z składową stałą, jego wskazanie dotyczy wartości średniej. Wartość średnia napięcia sinusoidalnego, z uwzględnieniem składowej stałej, jest kluczowa w aplikacjach, gdzie istotne jest określenie efektywnego poziomu energii dostarczanej do obciążenia. W praktyce, woltomierze magnetoelektryczne są często używane w pomiarach w systemach zasilania, gdzie zrozumienie i kontrola napięcia oraz prądu są niezbędne dla zapewnienia prawidłowego działania urządzeń. Wartość średnia jest obliczana jako średnia arytmetyczna z okresu sygnału, co w przypadku napięcia sinusoidalnego z składową stałą prowadzi do lepszego zrozumienia zarówno efektywności, jak i bezpieczeństwa systemów elektrycznych. Ustalono w normach IEC, że pomiar wartości średniej jest istotny dla wielu aplikacji w inżynierii elektrycznej, co podkreśla znaczenie tej metody pomiarowej.

Pytanie 14

Jakie urządzenia elektryczne są częścią instalacji przyłączeniowej obiektu budowlanego?

A. Transformator słupowy z rozłącznikiem
B. Wyłącznik różnicowoprądowy oraz ograniczniki przepięć
C. Zabezpieczenia nadprądowe poszczególnych obwodów
D. Zabezpieczenia przedlicznikowe oraz licznik energii elektrycznej
Zabezpieczenia przedlicznikowe i licznik energii to naprawdę ważne elementy, które wchodzą w skład przyłącza budynku. Te zabezpieczenia, jak wyłączniki nadprądowe i różnicowoprądowe, mają za zadanie chronić zarówno instalację, jak i nas samych przed przeciążeniem czy porażeniem prądem. Licznik energii z kolei pozwala nam śledzić, ile energii zużywamy, co jest potrzebne przy rozliczeniach z dostawcą prądu. Jeśli dobrze dobierzemy te zabezpieczenia, to zgodnie z normami PN-IEC 60364, będziemy w lepszej sytuacji. W razie awarii, zabezpieczenia powinny odciąć zasilanie, co chroni sprzęt i nas, ludzi, w budynku. Wszystko sprowadza się do tego, żeby dobrze zamontować i dobrać te elementy, bo to klucz do bezpieczeństwa i sprawności energetycznej budynku. Dlatego ważne, żeby wartości prądowe były dopasowane tak, by instalacja działała optymalnie i uniknęła nagłych przerw w dostawie energii.

Pytanie 15

Jaką rolę pełni uzwojenie pomocnicze w silniku prądu stałego?

A. Wytwarza pole magnetyczne wzbudzenia
B. Obniża rezystancję obwodu twornika
C. Generuje napięcie remanentu
D. Eliminuje niekorzystne zjawiska oddziaływania wirnika
Uzwojenie pomocnicze w silniku prądu stałego to naprawdę ważny element. Dzięki niemu można lepiej kontrolować, jak silnik działa, a to pomaga w unikaniu różnych dziwnych problemów, jak wibracje czy drgania. To wszystko może wpłynąć na trwałość silnika, więc to nie jest mała sprawa. W praktyce uzwojenie pomocnicze działa trochę jak pomocnik, który sprawia, że moment obrotowy jest optymalizowany w różnych warunkach. Jak dobrze się nad tym zastanowić, to silniki z takim uzwojeniem są bardziej efektywne i mogą lepiej działać w sytuacjach, gdzie precyzja jest na wagę złota, jak w robotyce czy automatyce. Wiem, że to może wydawać się skomplikowane, ale standardy jak IEC 60034 pokazują, jak te rzeczy najlepiej zaprojektować, więc warto się z nimi zapoznać.

Pytanie 16

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. zamiana dwóch faz miejscami
B. brak podłączenia dwóch faz
C. brak podłączenia jednej fazy
D. zamiana jednej fazy z przewodem neutralnym
Analizując pozostałe odpowiedzi, można zauważyć, że brak podłączenia dwóch faz nie jest przyczyną zmiany kierunku obrotów silnika, lecz prowadzi do jego nieprawidłowego działania lub całkowitego braku pracy. Silnik trójfazowy wymaga wszystkich trzech faz do uzyskania pełnej mocy i momentu obrotowego. Brak jednej fazy spowoduje, że silnik nie będzie pracował w optymalnych warunkach, a jego działanie może być niestabilne. Z kolei zamiana jednej fazy z przewodem neutralnym nie prowadzi do zmiany kierunku obrotów, lecz może spowodować uszkodzenie silnika lub innych elementów instalacji. Często zdarza się, że osoby zajmujące się instalacjami elektrycznymi nie uwzględniają specyfikacji dotyczących konfiguracji połączeń fazowych, co może prowadzić do nieprawidłowego działania całego systemu. W praktyce, przy każdej zmianie instalacji, należy przeprowadzić dokładną kontrolę schematów połączeń oraz zapewnić zgodność z normami branżowymi, takimi jak PN-EN 60204-1, które regulują bezpieczeństwo maszyn i ich zasilania. Bez znajomości zasad działania silników trójfazowych oraz konsekwencji błędnych podłączeń, istnieje ryzyko nie tylko uszkodzenia sprzętu, ale także zagrożenie dla bezpieczeństwa użytkowników.

Pytanie 17

Jakim oznaczeniem charakteryzuje się przewód jednożyłowy z żyłą wykonaną z aluminium, w izolacji z PVC, o przekroju 2,5 mm2, przeznaczony na napięcie znamionowe izolacji 500 V?

A. YDY 500 V 2,5 mm2
B. ALY 500 V 2,5 mm2
C. ADY 500 V 2,5 mm2
D. YLY 500 V 2,5 mm2
Odpowiedź ADY 500 V 2,5 mm2 jest jak najbardziej trafna. To standardowy symbol przewodu jednożyłowego wykonanego z aluminium, który ma izolację z PVC, czyli polichlorku winylu. W tej nazwie 'A' oznacza, że materiał żyły to aluminium, 'D' informuje nas, że mamy do czynienia z PVC, a 'Y' pokazuje, że to przewód jednożyłowy. Wiedza o takich oznaczeniach jest naprawdę ważna w inżynierii, bo dzięki temu można dobrze dobierać przewody do różnych zastosowań. To jest kluczowe dla bezpieczeństwa instalacji elektrycznych. Przewody o średnicy 2,5 mm2 są szeroko stosowane w budynkach mieszkalnych i przemysłowych, gdzie potrzebna jest odpowiednia wydolność prądowa. Napięcie 500 V oznacza maksymalne napięcie, które można stosować, co jest zgodne z normą PN-EN 60228 dotyczącą przewodów elektrycznych.

Pytanie 18

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. I
B. III
C. IV
D. II
Wybór opraw klasy II, III lub IV wskazuje na nieporozumienie dotyczące standardów bezpieczeństwa i funkcji oświetlenia miejscowego. Klasa II opisuje oprawy, które są podwójnie izolowane, co sprawia, że nie wymagają uziemienia, ale nie są one rekomendowane do zastosowań, gdzie istnieje ryzyko kontaktu z wodą lub innymi cieczyami, co często ma miejsce w miejscach pracy. Wybierając te oprawy na stanowiska robocze, narażamy użytkowników na potencjalne zagrożenia elektryczne. Klasa III z kolei odnosi się do urządzeń zasilanych z niskonapięciowych źródeł, co może być stosowane w niektórych aplikacjach, ale nie jest odpowiednie do typowego oświetlenia miejscowego, które wymaga wyższego napięcia dla efektywnego działania. Klasa IV dotyczy produktów przeznaczonych do zastosowań specjalnych, które są często chronione przed czynnikami zewnętrznymi, ale nie mają zastosowania w standardowych warunkach biurowych czy przemysłowych. Wybór niewłaściwej klasy oprawy może prowadzić do poważnych konsekwencji zdrowotnych i bezpieczeństwa, dlatego zrozumienie tych różnic jest kluczowe w procesie projektowania efektywnego oświetlenia miejscowego. Podstawowym błędem myślowym jest zakładanie, że wszystkie oprawy mogą być stosowane zamiennie, co ignoruje różnice w wymaganiach bezpieczeństwa i funkcjonalności. W kontekście standardów branżowych, stosowanie opraw klasy I jest najlepszą praktyką, ponieważ minimalizuje ryzyko porażenia prądem i zapewnia bezpieczeństwo pracy.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w tabeli?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.

A. Ochrony uzupełniającej.
B. Ochrony przez zastosowanie bardzo niskiego napięcia.
C. Ochrony przy uszkodzeniu (dodatkowej).
D. Ochrony podstawowej.
Wiesz, te środki ochrony, które były w tabeli, jak urządzenia różnicowoprądowe i połączenia wyrównawcze, to naprawdę ważna sprawa, jeśli chodzi o bezpieczeństwo instalacji elektrycznych. Ochrona uzupełniająca to coś, co wchodzi w grę, gdy standardowe zabezpieczenia nie są wystarczające. To szczególnie istotne w miejscach, gdzie ryzyko porażenia prądem jest większe, na przykład w łazienkach czy kuchniach. RCD świetnie działa, bo wyłapuje prąd upływu i go eliminuje, co naprawdę ratuje życie. Połączenia wyrównawcze też mają swoje miejsce, szczególnie tam, gdzie jest kilka źródeł zasilania. Dzięki nim zmniejsza się różnica potencjałów, co podnosi bezpieczeństwo użytkowników. Warto też znać normy, takie jak IEC 60364 i PN-EN 61008, bo one mówią, jak budować te instalacje, żeby były bezpieczne. Zrozumienie ochrony uzupełniającej to klucz do tego, żeby każdy, kto projektuje i wykonuje instalacje elektryczne, mógł to robić dobrze.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Który z wymienionych zestawów narzędzi jest konieczny do realizacji połączeń przewodów typu DY w instalacji elektrycznej, w puszkach rozgałęźnych, przy użyciu złączek śrubowych?

A. Zestaw wkrętaków, szczypce czołowe, prasa ręczna
B. Nóż monterski, szczypce boczne, zestaw wkrętaków
C. Szczypce długie, nóż monterski, szczypce czołowe
D. Nóż monterski, szczypce boczne, szczypce monterskie
Wybór innych zestawów narzędzi może prowadzić do trudności w prawidłowym wykonaniu instalacji elektrycznych. Na przykład, zestaw zawierający kleszcze długie, nóż monterski i kleszcze czołowe nie zapewnia wystarczającej funkcjonalności. Kleszcze długie są przydatne do chwytania i wyginania przewodów, ale nie są optymalne do precyzyjnego cięcia lub usuwania izolacji. Dodatkowo, kleszcze czołowe są bardziej przeznaczone do chwytania i manipulacji w trudnodostępnych miejscach, co nie jest kluczowe przy wykonywaniu połączeń w puszkach rozgałęźnych. Zestaw z kompletem wkrętaków, kleszczami czołowymi i prasą ręczną również nie odpowiada wymaganiom, ponieważ prasa ręczna jest narzędziem do zaciskania złączek, które nie są typowe dla połączeń typu DY w instalacjach elektrycznych. W przypadku zestawu z nożem monterskim, szczypcami bocznymi i kleszczami monterskimi, chociaż niektóre narzędzia są przydatne, to jednak brak wkrętaków sprawia, że nie można prawidłowo wykonać połączenia przy użyciu złączek śrubowych, co jest kluczowe dla bezpieczeństwa. Prawidłowe połączenia elektryczne wymagają nie tylko odpowiednich narzędzi, ale także stosowania standardów i procedur, które zapewniają bezpieczeństwo oraz trwałość instalacji. Dlatego każda decyzja dotycząca doboru narzędzi musi być dokładnie przemyślana, aby uniknąć niebezpiecznych sytuacji w przyszłości.

Pytanie 25

Jaka jest maksymalna moc kuchni elektrycznej zamontowanej w lokalu zasilanym napięciem 400/230V, jeśli obwód zasilający jest chroniony przez wyłącznik nadprądowy typu S-303 CLS6-C10/3?

A. 6,9 kW
B. 3,9 kW
C. 2,9 kW
D. 9,6 kW
W przypadku odpowiedzi, które wskazują na inne wartości mocy, istotne jest zrozumienie kilku kluczowych zasad dotyczących obliczeń mocy oraz właściwego doboru zabezpieczeń dla urządzeń elektrycznych. Na przykład, wiele osób może błędnie sądzić, że maksymalna moc kuchenki elektrycznej może być wyższa niż wskazywana przez wyłącznik, nie uwzględniając, że każdy obwód zasilający ma swoje ograniczenia wynikające z zastosowanych zabezpieczeń. Warto również zauważyć, że przy zasilaniu z napięcia 230 V, przy założeniu, że używamy wyłącznika o prądzie znamionowym 10 A, obliczona moc wynosi tylko 2,3 kW, co jest znacznie poniżej potrzebnej mocy dla typowej kuchenki, która zazwyczaj wymaga większej mocy do efektywnego gotowania. Z kolei założenie, że można użyć wartości mocy 9,6 kW, jest niezgodne z parametrami wyłącznika, co może prowadzić do niebezpieczeństwa przeciążenia i awarii instalacji. Warto pamiętać, że każda instalacja elektryczna powinna być projektowana zgodnie z obowiązującymi normami, a także z praktykami, które zapewniają nie tylko skuteczność, ale przede wszystkim bezpieczeństwo użytkowników. Ustalając maksymalną moc dla urządzeń elektrycznych, należy zawsze odnosić się do specyfikacji producenta oraz obowiązujących przepisów, co pozwoli uniknąć nieprzewidzianych problemów i zagrożeń.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakie oznaczenie literowe odnosi się do przewodu przeznaczonego do zasilania mobilnych odbiorników?

A. YDY
B. LY
C. YAKY
D. OMY
Oznaczenie OMY dotyczy przewodów przeznaczonych do zasilania odbiorników przenośnych, takich jak urządzenia elektryczne wykorzystywane w budownictwie, na eventach czy w przemyśle. Przewody te charakteryzują się elastycznością, co umożliwia ich łatwe dopasowanie do różnych warunków pracy. Zazwyczaj są wykonane z miękkiego PVC, co sprawia, że są odporne na uszkodzenia mechaniczne oraz wpływ warunków atmosferycznych. OMY posiadają także odpowiednie zabezpieczenia przed przeciążeniem oraz zwarciem, co jest kluczowe w kontekście użytkowania mobilnego. W praktyce przewody te są wykorzystywane w takich aplikacjach jak zasilanie narzędzi elektrycznych, oświetlenia scenicznego czy innych urządzeń wymagających mobilności. Dobrą praktyką jest przestrzeganie norm IEC 60227 oraz PN-HD 60364, które regulują kwestie bezpieczeństwa i wydajności przewodów elektrycznych w kontekście ich zastosowań przenośnych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jaką z wymienionych czynności należy wykonać podczas inspekcji działającego transformatora?

A. Weryfikacja poziomu oleju w olejowskazie konserwatora
B. Obsługa przełącznika zaczepów
C. Serwis styków oraz połączeń śrubowych
D. Czyszczenie izolatorów
Podczas oceny konserwacji transformatorów wiele osób może błędnie zinterpretować działania, które powinny być podejmowane w trakcie oględzin. Konserwacja przełącznika zaczepów jest z pewnością istotnym aspektem obsługi transformatora, jednak nie jest to czynność bezpośrednio związana z bieżącym nadzorowaniem jego pracy. Przełączniki zaczepów są kluczowe dla regulacji napięcia, ale ich konserwację przeprowadza się w innych cyklach czasowych, a nie w trakcie standardowych oględzin. Również czyszczenie izolatorów jest istotne, jednak skupia się na usuwaniu osadów oraz zanieczyszczeń, które mogą wpływać na właściwości izolacyjne. Ta czynność również nie jest bezpośrednio związana z monitorowaniem poziomu oleju. Konserwacja styków i połączeń śrubowych jest ważna, aby zapewnić stabilne połączenia elektryczne, ale nie jest to czynność, która powinna być przeprowadzana w czasie standardowych oględzin operacyjnych. Mylne podejście do tych czynności wynika często z braku zrozumienia ich priorytetów w kontekście bieżącej eksploatacji transformatora. Ostatecznie, kluczowym aspektem w pracy z transformatorami jest zapewnienie ich bezpieczeństwa i stabilności działania, co jest realizowane poprzez systematyczne monitorowanie i konserwację, gdzie sprawdzanie poziomu oleju stanowi fundament tej procedury.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jakie akcesoria, oprócz szczypiec, powinien mieć monter do podłączenia kabla YnKY5x120 w rozdzielnicy?

A. Nóż monterski, praskę, ściągacz izolacji
B. Nóż monterski, praskę, zestaw kluczy
C. Lutownicę, zestaw wkrętaków, ściągacz izolacji
D. Ściągacz izolacji, nóż monterski, wkrętak
Kiedy wybierasz narzędzia do podłączenia kabla YnKY5x120 do rozdzielnicy, warto chwilę się zastanowić, co jest najpotrzebniejsze. Jeśli myślałeś o ściągaczu izolacji czy lutownicy, to pamiętaj, że ściągacz, choć przydatny, nie jest najważniejszy w tej sytuacji. Jasne, że ściągacz się przydaje, gdy trzeba zedrzeć izolację z końców przewodów, ale przy kablach o dużym przekroju, jak YnKY5x120, praska jest o wiele bardziej istotna. Lutownica? Hmm, w nowoczesnych instalacjach elektrycznych, to niezbyt dobry pomysł, bo lutowanie może osłabić połączenia i sprawić, że będą mniej trwałe oraz mniej bezpieczne. Prościej mówiąc, teraz standardem są złącza mechaniczne, które zapewniają lepszą jakość połączeń na dłuższą metę. Nóż monterski, praska i komplet kluczy to są te narzędzia, które według norm branżowych naprawdę powinny znaleźć się w twoim wyposażeniu, bo solidne połączenia to podstawa. Często ludziom zdarza się polegać na narzędziach, które nie pasują do konkretnej instalacji, a to może skutkować różnymi awariami. Żeby zapewnić bezpieczeństwo i niezawodność podłączeń, monterzy muszą znać swoje materiały i narzędzia, kierując się najlepszymi praktykami oraz zaleceniami technicznymi.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jakie typy przewodów instaluje się na izolatorach wspornikowych?

A. Szynowe
B. Kabelkowe
C. Rdzeniowe
D. Uzbrojone
Odpowiedzi 'uzbrojone', 'kabelkowe' oraz 'rdzeniowe' są niewłaściwe w kontekście montażu na izolatorach wsporczych, ponieważ każda z tych opcji odnosi się do innego rodzaju przewodów, które nie są projektowane do takiego zastosowania. Uzbrojone przewody, na przykład, są zazwyczaj stosowane w instalacjach, gdzie wymagana jest dodatkowa ochrona mechaniczna, jednak ich montaż polega na umieszczaniu w rurkach lub osłonach, a nie na izolatorach. Kabelkowe to przewody, które są z reguły używane w systemach o niskim napięciu, gdzie ich budowa i sposób prowadzenia nie wymagają izolatorów wsporczych w tradycyjnym sensie. Rdzeniowe przewody są natomiast konstrukcjami, które można spotkać w aplikacjach zasilających, jednak nie są one mocowane na izolatorach. Typowe błędy myślowe związane z tymi odpowiedziami to mylenie różnych typów przewodów oraz nieznajomość ich podstawowych zastosowań. Właściwe zrozumienie różnic między tymi rodzajami przewodów jest kluczowe dla prawidłowego projektowania systemów elektroenergetycznych oraz ich bezpiecznej eksploatacji.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Który z urządzeń umożliwia bezpośredni pomiar cos 9?

A. Watomierz
B. Waromierz
C. Fazomierz
D. Omomierz
Watomierz, omomierz i waromierz to przyrządy, które pełnią różne funkcje, ale nie są odpowiednie do bezpośredniego pomiaru cos φ. Watomierz mierzy moc elektryczną, co jest istotne w kontekście zużycia energii, ale nie informuje nas o kącie fazowym. Zrozumienie tego narzędzia jest kluczowe, jednak nie można go używać do oceny współczynnika mocy, ponieważ wymaga to pomiaru zarówno prądu, jak i napięcia, a także ich faz. Omomierz, z kolei, służy do pomiaru oporu, co w przypadku prądów zmiennych jest niewłaściwe, ponieważ nie uwzględnia on aspektu fazowego. Użycie omomierza w kontekście pomiaru cos φ może prowadzić do mylnych wniosków i błędów w ocenie stanu obwodu. Waromierz, który jest narzędziem do pomiaru energii w obwodach prądu zmiennego, także nie dostarcza informacji o fazie, co czyni go nieprzydatnym w tym kontekście. Wielu użytkowników może myśleć, że wystarcza pomiar mocy lub oporu, jednak te podejścia pomijają kluczowy aspekt, jakim jest kąt fazowy, co jest fundamentalne dla zrozumienia efektywności energetycznej. W praktyce, nieznajomość różnicy między tymi przyrządami a fazomierzem może prowadzić do poważnych problemów w diagnostyce i zarządzaniu systemami elektrycznymi.

Pytanie 37

Jakie działania należy podjąć po odłączeniu zasilania, aby zgodnie z PN-HD 60364-6:2008 Instalacje elektryczne niskiego napięcia, przeprowadzić pomiar rezystancji izolacji kabli?

A. Zasilić badaną instalację napięciem stałym oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
B. Wyłączyć odbiorniki oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
C. Odłączyć odbiorniki, zewrzeć łączniki oraz zapewnić skuteczną ochronę przed dotykiem bezpośrednim
D. Rozłączyć oprawy oświetleniowe, zewrzeć łączniki oświetlenia oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
Wybór innych odpowiedzi, takich jak zewrzenie łączników czy zasilanie instalacji napięciem stałym, jest nieodpowiedni i stwarza poważne zagrożenia. Zewrzenie łączników oświetleniowych lub innych elementów instalacji przed pomiarem rezystancji izolacji jest niebezpieczne, ponieważ może prowadzić do niezamierzonych skutków ubocznych, w tym do uszkodzenia sprzętu lub wystąpienia zwarcia. Na przykład, jeśli zewnętrzne źródło zasilania jest wciąż aktywne, a łączniki są zwarte, może to prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem lub pożar. Zasilanie instalacji napięciem stałym podczas pomiarów również jest niezgodne z najlepszymi praktykami, ponieważ pomiar rezystancji izolacji powinien być przeprowadzany na odłączonej instalacji. Działanie to ma na celu ochronę zarówno osób wykonujących pomiar, jak i samej instalacji, ponieważ wiele urządzeń elektrycznych nie jest przystosowanych do pracy przy wyższych napięciach generowanych przez megomierze. Kluczowe jest, aby podczas prac związanych z instalacjami elektrycznymi przestrzegać standardów bezpieczeństwa oraz procedur operacyjnych, co jest nie tylko kwestią zgodności z przepisami, ale również zdrowego rozsądku. Zaniedbanie tych zasad może prowadzić do poważnych, a nawet tragicznych w skutkach zdarzeń w miejscu pracy.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Który z wymienionych symboli literowych odnosi się do przewodu samonośnego?

A. AsXSn
B. OMY
C. GsLGs
D. YKY
Przewody samonośne są specyficznym typem przewodów używanych w instalacjach elektrycznych, a ich oznaczenie jest ściśle regulowane przez normy branżowe. YKY, OMY oraz GsLGs to oznaczenia, które nie odnoszą się do przewodów samonośnych. YKY to przewód z izolacją PVC, stosowany głównie do instalacji wewnętrznych oraz zewnętrznych, ale nie jest przystosowany do montażu samonośnego. OMY to przewód stosowany w zastosowaniach niskonapięciowych, również nie przewidziany do samonośnych instalacji. GsLGs to przewód przeznaczony do użytku w obszarach o dużej wilgotności, jednak jego konstrukcja nie spełnia wymogów dla przewodów samonośnych. Typowe błędy myślowe w tej kwestii polegają na myleniu różnych typów przewodów i nieznajomości ich zastosowań. Właściwe rozpoznanie przewodów samonośnych jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności energetycznej, dlatego ważne jest, aby stosować się do standardów i dobrych praktyk branżowych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.