Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 4 czerwca 2025 06:16
  • Data zakończenia: 4 czerwca 2025 06:24

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Licznik impulsów rewersyjnych to urządzenie

A. które wykonuje dodawanie i odejmowanie impulsów
B. które zajmuje się dodawaniem impulsów
C. które dokonuje odejmowania impulsów
D. które zapisuje w pamięci określoną liczbę impulsów
Wybór odpowiedzi, która ogranicza się do dodawania impulsów, nie oddaje pełnego zakresu funkcji rewersyjnego licznika impulsów. Liczniki te, jak sama nazwa wskazuje, mają zdolność do rewersji, co oznacza, że mogą nie tylko akumulować impulsy, ale także je odejmować. Podejście, które koncentruje się wyłącznie na dodawaniu, pomija kluczowy aspekt ich wszechstronności, co jest niezwykle istotne w zastosowaniach przemysłowych. W kontekście pomiarów, na przykład w systemach automatyki, często potrzebne jest nie tylko zliczanie, ale także korekta błędów, co wymaga funkcji odejmowania. Zrozumienie zasady działania rewersyjnych liczników impulsów jest kluczowe, aby uniknąć nieporozumień dotyczących ich zastosowania. Próba wyboru opcji, która mówi tylko o zliczaniu impulsów w pamięci, również jest myląca, ponieważ nie oddaje ona dynamiki działania takich urządzeń. W praktyce, liczniki te muszą reagować na zmieniające się warunki operacyjne, co wymaga zarówno dodawania, jak i odejmowania impulsów. Ignorowanie tej funkcji prowadzi do uproszczonego postrzegania złożonych systemów automatyki, co może skutkować błędnymi decyzjami w inżynierii i projektowaniu układów sterujących.

Pytanie 2

Sterowanie za pomocą Pulse Width Modulation (PWM) w systemach kontrolnych odnosi się do regulacji przez

A. zmianę szerokości impulsu
B. zmianę fazy impulsu
C. amplitudy impulsu
D. częstotliwości
Odpowiedzi związane z zmianą fazy impulsu, częstotliwości czy amplitudy impulsu nie pasują do PWM. Zmiana fazy impulsu to bardziej sprawa synchronizacji sygnałów, co znajduje zastosowanie np. w komunikacji, a to nie ma związku z regulowaniem mocy czy średniego prądu w PWM. Częstotliwość w PWM właściwie zostaje taka sama, gdy zaczynasz regulować szerokość impulsu; można nią trochę bawić się, ale to nie jest kluczowa sprawa w tym temacie. Co do amplitudy impulsu, to też nie jest coś, na czym PWM się opiera - tu chodzi głównie o czas, w którym sygnał jest w stanie wysokim w odnoszeniu do całego okresu sygnału. To też błąd, jeśli mylone są różne techniki modulacji z PWM, bo każda ma swoje zasady. Fajnie by było, jakbyś rozróżniał PWM od innych metod, bo jego prawdziwą zaletą jest zarządzanie mocą bez strat, które powstają przy ciągłym włączaniu i wyłączaniu. To bardzo ważne w bardziej zaawansowanych systemach, które muszą być wydajne oraz elastyczne.

Pytanie 3

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. buty ochronne
B. okulary ochronne
C. maskę przeciwpyłową
D. kask ochronny
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.

Pytanie 4

Do jakiej kategorii pomiarów można zakwalifikować pomiar długości gwintowanego fragmentu śruby przy użyciu przymiaru kreskowego?

A. Złożonych
B. Bezpośrednich
C. Pośrednich
D. Uwikłanych
Pomiar długości nagwintowanego odcinka śruby z wykorzystaniem przymiaru kreskowego klasyfikowany jest jako pomiar bezpośredni, ponieważ zachodzi bezpośrednie porównanie wymiaru obiektu z jednostką miary, jaką jest przymiar. W praktyce oznacza to, że długość mierzona jest bezpośrednio z wykorzystaniem narzędzia, a nie poprzez obliczenia lub pomiary pośrednie. Przykładem zastosowania pomiaru bezpośredniego jest pomiar długości wałków, rur czy elementów konstrukcji, gdzie można zastosować przymiar lub suwmiarkę. W branży inżynieryjnej stosowanie pomiarów bezpośrednich jest kluczowe dla zapewnienia dokładności wymiarowej w procesie produkcji oraz w kontroli jakości. Zgodnie z normami ISO, pomiary bezpośrednie są preferowane w przypadkach, gdzie wymagana jest wysoka precyzja, co podkreśla znaczenie tych metod w codziennych zastosowaniach inżynieryjnych.

Pytanie 5

Która z poniższych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Klejenia
B. Zaginania
C. Spawania
D. Zgrzewania
Zaginanie to proces, który polega na deformacji materiału w celu nadania mu odpowiedniego kształtu, ale nie łączy trwale dwóch lub więcej elementów. W kontekście tworzyw sztucznych, zaginanie może być wykorzystane do formowania jednego elementu, na przykład przy produkcji obudów czy detali dekoracyjnych. Nie wymaga to jednak żadnych dodatkowych technik łączenia, co czyni je nieodpowiednim wyborem do trwałego łączenia. Techniki takie jak zgrzewanie, spawanie czy klejenie są stosowane do tworzenia trwałych połączeń, natomiast zaginanie jest bardziej procesem wytwórczym. Zgodnie z normami branżowymi, takimi jak ISO 527 dotyczące właściwości mechanicznych tworzyw sztucznych, zginanie może być stosowane do testowania elastyczności materiałów, ale nie do ich łączenia. Przykładem zastosowania zaginania może być produkcja elementów meblowych, gdzie tworzywa sztuczne są formowane w odpowiednie kształty bez potrzeby ich łączenia z innymi elementami. Dlatego zaginanie jest techniką, która doskonale sprawdza się w kształtowaniu detali, ale nie w ich trwałym łączeniu.

Pytanie 6

Jakie są właściwe etapy postępowania podczas rozbierania urządzenia mechatronicznego?

A. Wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów ustalających
B. Odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających
C. Zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających
D. Odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, wyciągnięcie elementów ustalających
Prawidłowa kolejność czynności podczas demontażu urządzenia mechatronicznego zaczyna się od odłączenia instalacji zewnętrznych, co jest kluczowe dla zapewnienia bezpieczeństwa i ochrony przed przypadkowymi uszkodzeniami. Po odłączeniu zasilania i innych systemów zewnętrznych, można przejść do zdjęcia osłon i pokryw, które mają na celu ochronę wewnętrznych komponentów przed zanieczyszczeniami oraz uszkodzeniami mechanicznymi. Następnie, wyciągnięcie elementów zabezpieczających jest niezbędne, by umożliwić dostęp do kluczowych części mechanizmu. Na końcu usuwa się elementy ustalające, co pozwala na swobodne wyjęcie podzespołów. Ta sekwencja jest zgodna z najlepszymi praktykami w zakresie BHP i technik demontażu, które podkreślają znaczenie bezpieczeństwa w miejscu pracy oraz minimalizację ryzyka uszkodzenia sprzętu. Przykładem zastosowania tej metody może być demontaż silnika elektrycznego, gdzie każdy z tych kroków ma kluczowe znaczenie dla skuteczności i bezpieczeństwa operacji.

Pytanie 7

Ciśnienie o wartości 1 N/m2 to

A. 1 Pa
B. 1 mmHg
C. 1 at
D. 1 bar
Ciśnienie równe 1 N/m² jest równoznaczne z 1 Pa (paskalem), co jest jednostką miary ciśnienia w układzie SI. Definicja ciśnienia mówi, że jest to siła działająca na jednostkę powierzchni. W praktyce, 1 Pa oznacza, że na powierzchnię o wymiarach 1 m² działa siła o wartości 1 N. Paskal jest powszechnie stosowany w wielu dziedzinach, takich jak inżynieria mechaniczna, budownictwo oraz nauki przyrodnicze. Dla przykładu, w kontekście hydrauliki, ciśnienie 1 Pa jest niewielkie, ale w kontekście atmosferycznym, na poziomie morza, ciśnienie wynosi około 101325 Pa (czyli 1 atm), co pokazuje, jak mała jest jednostka 1 Pa w porównaniu do standardowego ciśnienia atmosferycznego. W praktyce, ciśnienie wyrażane w paskalach jest również często używane w procesach przemysłowych i laboratoryjnych, co czyni tę jednostkę kluczową w zrozumieniu i obliczeniach dotyczących sił działających w różnych systemach.

Pytanie 8

Elementy zespołów przeznaczone do montażu powinny być ułożone na stanowisku pracy zgodnie z

A. rozmiarem
B. poziomem skomplikowania
C. kolejnością montażu
D. formą
Porządkowanie części podzespołów według wielkości, kształtu czy stopnia złożoności może wydawać się logiczne, jednak w praktyce takie podejście jest mało efektywne. Porządkowanie według wielkości może prowadzić do sytuacji, w której mniejsze komponenty będą trudniej dostępne w momencie, gdy będą one potrzebne do montażu. W przypadku kształtów, różnorodność elementów w produkcji często sprawia, że klasyfikacja według formy nie przynosi rzeczywistych korzyści, a wręcz może powodować dezorganizację, zwłaszcza w przypadku, gdy elementy o różnych kształtach są montowane w podobnym czasie. Natomiast porządkowanie według stopnia złożoności może prowadzić do błędnych założeń dotyczących samego procesu montażu; bardziej złożone elementy niekoniecznie muszą być montowane jako ostatnie. Tego typu klasyfikacje mogą rodzić nieporozumienia, co do rzeczywistych wymagań procesu montażu, a także zwiększać ryzyko błędów ludzkich, które mogą prowadzić do uszkodzeń komponentów lub, co gorsza, do nieprawidłowego działania całego systemu. Wydajne organizowanie stanowiska pracy jest kluczowe dla każdej produkcji, a zastosowanie odpowiednich praktyk, takich jak planowanie kolejności montażu, pozwala na zaoszczędzenie czasu i zasobów, jednocześnie zwiększając jakość finalnego produktu.

Pytanie 9

Silniki, które mają największy moment rozruchowy to

A. synchroniczne prądu przemiennego
B. szeregowe prądu stałego
C. bocznikowe prądu stałego
D. asynchroniczne prądu przemiennego
Silniki szeregowe prądu stałego charakteryzują się największym momentem rozruchowym spośród różnych typów silników elektrycznych. Dzieje się tak, ponieważ w silniku szeregowym wirnik i uzwojenie wzbudzenia są połączone szeregowo, co prowadzi do zmaksymalizowania prądu, który płynie przez uzwojenie wzbudzenia podczas rozruchu. W rezultacie moment obrotowy generowany w chwilach niskich prędkości jest znacznie większy niż w innych typach silników. Praktycznie rzecz biorąc, silniki te są często stosowane w aplikacjach, gdzie wymagany jest wysoki moment obrotowy przy niskich prędkościach, takich jak wózki widłowe, dźwigi czy pojazdy elektryczne. Dzięki ich konstrukcji, silniki te mogą przekazywać dużą moc przy niewielkich prędkościach, co czyni je idealnym wyborem w sytuacjach, gdzie siła jest kluczowa. W branży inżynieryjnej standardy dotyczące doboru silników pod kątem momentu rozruchowego są ściśle przestrzegane, co pozwala na optymalne dobieranie urządzeń do konkretnych zadań.

Pytanie 10

Aby zweryfikować ciągłość układów elektrycznych, wykorzystuje się

A. omomierz
B. woltomierz
C. watomierz
D. amperomierz
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru rezystancji elektrycznej, a jego zastosowanie w zakresie sprawdzania ciągłości połączeń elektrycznych jest kluczowe. W praktyce, omomierz jest wykorzystywany do wykrywania ewentualnych przerw w obwodach oraz oceny jakości połączeń. Na przykład, w instalacjach elektrycznych, przed oddaniem do użytkowania, ważne jest, aby sprawdzić, czy wszystkie połączenia są prawidłowo wykonane i czy nie występują utraty kontaktu. Normy takie jak PN-IEC 60364-6 podkreślają znaczenie przeprowadzania pomiarów ciągłości przewodów ochronnych, co można zrealizować właśnie przy pomocy omomierza. Warto również zauważyć, że pomiar ciągłości powinien być wykonywany w stanie nieenergetycznym instalacji, co zapewnia bezpieczeństwo oraz dokładność pomiarów. Umiejętność posługiwania się omomierzem w kontekście sprawdzania połączeń elektrycznych jest istotna dla każdego elektryka, a także dla osób zajmujących się konserwacją i przeglądami instalacji elektrycznych.

Pytanie 11

Silnik komutatorowy był narażony na długotrwałe przeciążenie, co doprowadziło do pojawienia się zwarć międzyzwojowych. Proces naprawy silnika polega na wymianie

A. uzwojenia.
B. szczotek.
C. łożysk.
D. komutatora.
Wymiana uzwojenia w silniku komutatorowym jest kluczowym zabiegiem naprawczym, zwłaszcza gdy występują zwarcia międzyzwojowe. Zwarcia te mogą mieć różne przyczyny, w tym długotrwałe przeciążenie, które prowadzi do degradacji izolacji między zwojami. Wymiana uzwojenia polega na demontażu starego uzwojenia oraz nawinięciu nowego, co wymaga precyzyjnych umiejętności oraz znajomości technik nawijania. Uzwojenia są odpowiedzialne za generowanie pola magnetycznego, które napędza wirnik, dlatego ich stan bezpośrednio wpływa na wydajność całego silnika. W praktyce, przed przystąpieniem do wymiany, należy dokładnie zdiagnozować przyczynę uszkodzenia oraz przeprowadzić testy elektryczne, aby upewnić się, że nowe uzwojenie będzie działało poprawnie. Standardy takie jak IEC 60034 dotyczące silników elektrycznych podkreślają znaczenie odpowiednich materiałów izolacyjnych oraz technik montażowych, co zwiększa żywotność i niezawodność silnika. Właściwe podejście do wymiany uzwojenia przyczynia się do minimalizacji ryzyka wystąpienia podobnych problemów w przyszłości.

Pytanie 12

Elementy z komponentów przeznaczone do montażu urządzenia powinny być posegregowane na stanowisku roboczym według

A. poziomu złożoności
B. wielkości
C. kształtu
D. kolejności montażu
Wydaje mi się, że organizowanie podzespołów według ich wielkości, kształtu czy skomplikowania to nie jest najlepszy pomysł. Może to wyglądać na sensowne, ale w praktyce jest to dość mylące, bo nie bierze pod uwagę procesu montażu. Na przykład, mniejsze części czasem są kluczowe w konkretnych etapach i jak je poukładamy według wielkości, to można się pomylić. A jeśli chodzi o formy czy kształty, to też nie za bardzo to działa, bo to nie pokazuje, w jakiej kolejności te rzeczy powinny być składane. A klasyfikowanie według złożoności to już w ogóle może wprowadzać dodatkowy bałagan, zwłaszcza jak te trudniejsze elementy składa się w prostszy sposób. Takie nieprawidłowe podejścia mogą wynikać z braku pełnego zrozumienia zasad organizacji w pracy, co jest naprawdę kluczowe w produkcji. Warto by było spojrzeć na różne narzędzia i metody, jak diagramy pracy czy wizualne instrukcje, bo one naprawdę pomagają lepiej zorganizować proces montażu, w przeciwieństwie do innych kryteriów.

Pytanie 13

Jakie materiały wykorzystuje się do wytwarzania rdzeni magnetycznych w transformatorach?

A. diamagnetyki
B. ferromagnetyki
C. paramagnetyki
D. antyferromagnetyki
Ferromagnetyki są materiałami, które wykazują silne właściwości magnetyczne, co czyni je idealnymi do zastosowania w produkcji rdzeni magnetycznych transformatorów. W szczególności, ferromagnetyki, jak żelazo, nikiel czy kobalt, mają zdolność do silnego namagnesowania oraz do zatrzymywania magnetyzmu po usunięciu zewnętrznego pola magnetycznego. Dzięki tym właściwościom, rdzenie ferromagnetyczne minimalizują straty energetyczne i zwiększają efektywność transformatorów. W praktyce, zastosowanie ferromagnetyków w transformatorach pozwala na zmniejszenie rozmiaru urządzenia oraz zwiększenie jego mocy, co jest szczególnie ważne w urządzeniach elektrycznych o dużej mocy, takich jak transformatory w stacjach elektroenergetycznych. Dobre praktyki w branży zalecają również stosowanie materiałów o wysokiej permeabilności i niskich stratach histerezowych, co przyczynia się do jeszcze lepszej wydajności energetycznej transformatorów.

Pytanie 14

Jakie metody wykorzystuje się do produkcji prętów?

A. wytłaczanie
B. odlewanie
C. walcowanie
D. tłoczenie
Odpowiedzi takie jak odlewanie, wytłaczanie i tłoczenie, choć są powszechnie stosowane w przemyśle metalowym, nie są odpowiednie dla procesu produkcji prętów. Odlewanie polega na wlewaniu ciekłego metalu do form, gdzie stwardnieje w pożądanym kształcie. Ta metoda, choć efektywna dla produkcji części o skomplikowanych kształtach, nie zapewnia wymaganego stopnia jednorodności ani kontrolowanej struktury mikro w prętach, co jest kluczowe dla ich późniejszego zastosowania. Wytłaczanie, z drugiej strony, polega na formowaniu metalu poprzez przepychanie go przez matrycę; chociaż jest to skuteczna technika dla tworzenia długich elementów, pręty wymagają specyficznych wymiarów i właściwości mechanicznych, które lepiej osiągnąć poprzez walcowanie. Tłoczenie, będące procesem kształtowania blachy lub cienkowarstwowych materiałów poprzez użycie nacisku, nie jest także odpowiednie do produkcji prętów, które wymagają szczególnej precyzji w grubości i długości. Zrozumienie różnicy między tymi metodami obróbki jest kluczowe dla wyboru odpowiedniego procesu w zależności od zamierzonych zastosowań prętów. Typowym błędem myślowym jest traktowanie wszystkich metod obróbczych jako równoważnych, bez uwzględnienia ich specyfiki oraz wymagań technicznych danego produktu. Właściwe podejście do wyboru technologii obróbczej ma kluczowe znaczenie dla jakości i wydajności produkcji.

Pytanie 15

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. oceny stopnia naprężenia
B. analizy stopnia zużycia
C. weryfikacji czystości paska
D. sprawdzenia wymiarów
Wszystkie wymienione czynności, z wyjątkiem sprawdzenia stopnia naprężenia, są istotnymi operacjami przygotowawczymi, które należy wykonać przed montażem nowego paska klinowego. Weryfikacja wymiarów jest kluczowym krokiem, ponieważ właściwe dopasowanie paska do przekładni pasowej zapewnia jego prawidłowe działanie. W przeciwnym razie, jeśli pasek będzie za długi lub za krótki, może prowadzić do nadmiernego zużycia, a nawet uszkodzenia innych elementów układu napędowego. Kontrola czystości paska oraz otoczenia montażowego również nie może być pomijana. Zanieczyszczenia mogą prowadzić do niewłaściwego osadzenia paska, co z kolei może skutkować awariami. Ocena stopnia zużycia jest równie ważna, gdyż pozwala na identyfikację, czy wymiana paska jest rzeczywiście konieczna. Typowym błędem myślowym jest przekonanie, że sprawdzenie naprężenia można wykonać przed montażem paska. Jednakże naprężenie dotyczy już zamontowanego paska, dlatego nie jest to czynność przygotowawcza. Właściwe zrozumienie procesu montażu paska klinowego i związanych z nim operacji przygotowawczych jest kluczowe dla zapewnienia długotrwałego i niezawodnego działania układów napędowych.

Pytanie 16

Który z wymienionych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Stal wysokowęglowa
B. Żeliwo szare
C. Żeliwo białe
D. Stal niskowęglowa
Stal niskowęglowa jest materiałem, który jest powszechnie stosowany w konstrukcjach spawanych, ponieważ charakteryzuje się dobrą spawalnością oraz wystarczającą wytrzymałością, co czyni ją idealnym wyborem do różnorodnych zastosowań inżynieryjnych. Zawartość węgla w stali niskowęglowej nie przekracza 0,3%, co zapewnia jej dużą plastyczność i łatwość w obróbce. Materiały te są często stosowane w budowie konstrukcji stalowych, takich jak wieże, mosty oraz różne elementy przemysłowe. Dodatkowo, stal niskowęglowa może być poddawana różnym procesom, takim jak hartowanie czy odpuszczanie, co pozwala dostosować jej właściwości do specyficznych wymagań projektu. W praktyce, zgodnie z normą EN 10025, stal niskowęglowa łączy w sobie zdolności do spawania z dobrą odpornością na zmęczenie, co czyni ją niezastąpionym materiałem w inżynierii konstrukcyjnej i mechanice. Przykłady zastosowań obejmują budowę ram samochodowych, elementów maszyn oraz innych konstrukcji narażonych na dynamiczne obciążenia.

Pytanie 17

Zamieniając stycznikowy system sterowania silnikiem elektrycznym na system oparty na sterowniku PLC, należy

A. rozłączyć główny obwód i obwód sterujący silnikiem, a następnie podłączyć wszystkie elementy do sterownika
B. odłączyć stycznik z układu i w jego miejsce wstawić sterownik
C. rozłączyć jedynie obwód sterujący silnikiem i podłączyć jego elementy do sterownika PLC
D. usunąć przyciski sterujące i zastąpić je sterownikiem
Rozłączenie wyłącznie obwodu sterowania silnika i podłączenie jego elementów do sterownika PLC jest prawidłowym podejściem, ponieważ zapewnia pełną funkcjonalność układu, jednocześnie umożliwiając integrację z nowoczesnymi systemami automatyki. W praktyce oznacza to, że istniejący obwód sterowania, który może składać się z przycisków, przekaźników i innych komponentów, zostanie podłączony do PLC, co umożliwi programowanie i zdalne sterowanie. Zastosowanie PLC w miejsce tradycyjnego stycznika zwiększa elastyczność i możliwości modyfikacji układu, co jest zgodne z aktualnymi trendami w automatyce przemysłowej. Ponadto, standardy takie jak IEC 61131-3 definiują zasady programowania dla urządzeń PLC i zapewniają, że systemy te są kompatybilne z różnorodnymi komponentami automatyki. Wymiana i modernizacja obwodów sterowania za pomocą PLC to praktyka, która pozwala na bardziej zaawansowane funkcje, takie jak monitorowanie stanu maszyny czy zdalne zarządzanie, co jest kluczowe w dzisiejszym przemyśle.

Pytanie 18

Jakie napięcie musi być zastosowane do zasilania prostowniczego układu sześciopulsowego?

A. jednofazowym symetrycznym 2 x 115 V
B. trójfazowym 230 V/400 V
C. stałym 24 V
D. stałym 110 V
Układ prostowniczy sześciopulsowy jest systemem, który przekształca prąd przemienny w prąd stały, wykorzystując sześć diod do realizacji prostowania. Aby zapewnić efektywną pracę tego układu, wymagane jest zasilanie trójfazowe o napięciu 230 V/400 V. Taki typ zasilania pozwala na uzyskanie stabilnego i wydajnego prostowania, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak zasilanie napędów elektrycznych, systemów zasilania awaryjnego czy też w aplikacjach w automatyce. Warto zauważyć, że standardowe zasilanie trójfazowe w systemach przemysłowych jest powszechnie stosowane, co sprzyja kompatybilności urządzeń. Dobre praktyki w projektowaniu systemów elektrycznych zalecają użycie prostowników o odpowiednich parametrach zgodnych z wymaganiami odbiorników, co zapewnia ich długotrwałą i niezawodną pracę.

Pytanie 19

Aby zabezpieczyć połączenia gwintowe przed niekontrolowanym odkręceniem, należy zastosować przeciwnakrętkę oraz wykorzystać

A. jednym kluczem płaskim
B. dwoma kluczami nasadowymi
C. jednym kluczem nasadowym
D. dwoma kluczami płaskimi
Użycie dwóch kluczy płaskich do zabezpieczenia połączeń gwintowych poprzez zastosowanie przeciwnakrętki jest standardową praktyką w branży. Dwa klucze płaskie pozwalają na jednoczesne blokowanie nakrętki oraz przeciwnakrętki, co minimalizuje ryzyko ich samoczynnego odkręcenia. W praktyce, jeden klucz jest używany do obracania nakrętki, podczas gdy drugi klucz stabilizuje przeciwnakrętkę. Tego typu połączenia są powszechnie stosowane w mechanice, budownictwie oraz inżynierii, gdzie obciążenia i wibracje mogą prowadzić do poluzowania elementów. Zastosowanie dwóch kluczy płaskich jest zgodne z zasadami dobrej praktyki inżynieryjnej, które podkreślają znaczenie prawidłowego montażu i konserwacji połączeń gwintowych. Ważne jest również, aby używać kluczy o odpowiednim rozmiarze, co zapewnia właściwe dopasowanie oraz minimalizuje ryzyko uszkodzenia zarówno gwintów, jak i narzędzi. Takie podejście jest kluczowe dla zapewnienia trwałości i niezawodności połączeń mechanicznych.

Pytanie 20

Silnik elektryczny o mocy 4 kW generuje na wale moment obrotowy 13,1 Nm przy jakiej prędkości obrotowej?

A. 524 obr/min
B. 5487 obr/min
C. 2916 obr/min
D. 305 obr/min
Jak chcesz obliczyć prędkość obrotową silnika elektrycznego, to możesz skorzystać z takiego wzoru: P = M * ω. Tu P to moc w watach, M to moment obrotowy w niutonometrach, a ω to prędkość kątowa w radianach na sekundę. Jak przekształcisz ten wzór, to dostaniesz ω = P / M. Dla tego silnika mamy: P = 4000 W i M = 13,1 Nm. Jak to obliczysz, to wyjdzie ω = 4000 W / 13,1 Nm, co daje jakieś 305,34 rad/s. Żeby przeliczyć na prędkość obrotową w obr/min, używamy przelicznika: 1 rad/s = 9,5493 obr/min. Więc 305,34 rad/s * 9,5493 to około 2916 obr/min. To pokazuje, że silniki elektryczne, mając daną moc i moment obrotowy, mogą naprawdę kręcić się szybko, co jest super ważne w różnych miejscach, gdzie potrzebna jest precyzyjna kontrola prędkości, jak w maszynach. Zrozumienie tych obliczeń jest istotne, żeby dobrze dobierać silniki do konkretnych zadań i optymalizować procesy mechaniczne w różnych branżach.

Pytanie 21

Jakiego typu przewód jest zalecany do komunikacji w magistrali CAN?

A. Przewodu dziewięciożyłowego
B. Przewodu koncentrycznego
C. Skrętki czteroparowej, ekranowanej
D. Skrętki dwuprzewodowej
Skrętka dwuprzewodowa jest preferowanym wyborem do komunikacji w magistrali CAN (Controller Area Network) ze względu na jej zdolność do minimalizacji zakłóceń oraz zapewnienia odpowiedniej jakości sygnału. W systemach CAN, które są często używane w automatyce przemysłowej i motoryzacji, ważne jest, aby przewód miał niską impedancję i był odporny na zakłócenia elektromagnetyczne. Skrętka dwuprzewodowa, dzięki swoim właściwościom, pozwala na zastosowanie metody różnicowej, co oznacza, że sygnał jest przesyłany na dwóch przewodach o przeciwnych napięciach. Takie rozwiązanie znacząco poprawia odporność na zakłócenia zewnętrzne oraz pozwala na dłuższe odległości transmisji, co jest kluczowe w systemach, gdzie urządzenia mogą być rozmieszczone na dużych przestrzeniach. W przypadku komunikacji w magistrali CAN, standardy takie jak ISO 11898 określają parametry techniczne, które muszą być spełnione przez przewody, co dodatkowo podkreśla znaczenie wyboru właściwego typu kabla. Dobrze wykonana instalacja z użyciem skrętki dwuprzewodowej zapewnia stabilność sieci oraz wysoką niezawodność przesyłanych danych.

Pytanie 22

Jeśli na tłok siłownika o powierzchni S = 0,003 m2 działa ciśnienie czynnika wynoszące 2 MPa, to jaka jest siła działająca na tłok?

A. 9 kN
B. 6 kN
C. 2 kN
D. 12 kN
Wybór błędnej odpowiedzi często wynika z nieprawidłowego zastosowania wzoru na siłę wywieraną przez ciśnienie. Wiele osób może mylnie założyć, że siła jest równoznaczna z ciśnieniem, co prowadzi do niepoprawnych obliczeń. Na przykład, przy wyborze 2 kN, może to sugerować, że ktoś pomylił jednostki lub nie uwzględnił prawidłowej powierzchni tłoka. Z kolei wybór 12 kN może wynikać z błędnego pomnożenia ciśnienia przez powierzchnię, w sytuacji gdy dana osoba nie przeliczyła jednostek na pascale. Ważne jest, aby pamiętać, że ciśnienie to siła działająca na jednostkę powierzchni, a zatem do obliczenia całkowitej siły musimy pomnożyć ciśnienie przez odpowiednią powierzchnię. W przypadku ciśnienia 2 MPa, co odpowiada 2 * 10^6 Pa, oraz powierzchni 0,003 m², obliczenia prowadzą jednoznacznie do wyniku 6 kN. Typowe błędy myślowe przy takich zadaniach obejmują niedokładne przeliczenia jednostek, błędne zrozumienie zależności między ciśnieniem, siłą i powierzchnią oraz pomijanie istotnych danych w zadaniu. Kluczowe jest, aby podczas rozwiązywania problemów hydraulicznych stosować właściwe wzory i zachować ostrożność w przeliczaniu jednostek, co ma ogromne znaczenie w kontekście projektowania i eksploatacji systemów hydraulicznych.

Pytanie 23

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Niebieskim
B. Żółtym
C. Czarnym
D. Brązowym
W przypadku wyboru czarnego, brązowego lub żółtego koloru dla przewodu neutralnego, należy zwrócić uwagę na to, że każdy z tych kolorów jest zarezerwowany dla innych funkcji w instalacji elektrycznej. Kolor czarny jest zazwyczaj stosowany dla przewodów fazowych, a jego użycie w roli przewodu neutralnego mogłoby prowadzić do mylenia z przewodem fazowym, co stanowi poważne zagrożenie bezpieczeństwa. Z kolei brązowy, podobnie jak czarny, również identyfikuje przewody fazowe. Przewód brązowy w połączeniu z czarnym mógłby wprowadzać w błąd podczas wykonywania prac serwisowych, co zwiększa ryzyko błędów i potencjalnych wypadków. Zastosowanie koloru żółtego, który w połączeniu z zielonym jest przeznaczony dla przewodu ochronnego, również jest nieprawidłowe, ponieważ mogłoby prowadzić do niejednoznaczności w identyfikacji ochrony przeciwporażeniowej. Właściwe oznaczenie przewodów jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z obowiązującymi normami. W związku z tym, nieprzestrzeganie tych zasad prowadzi do niebezpiecznych sytuacji, które mogą skutkować poważnymi konsekwencjami zdrowotnymi oraz materialnymi.

Pytanie 24

Modulacja szerokości impulsu (PWM) w systemach sterujących odnosi się do regulacji poprzez zmianę

A. fazy sygnału
B. częstotliwości sygnału
C. szerokości impulsu
D. amplitudy impulsu
Szerokość impulsu (PWM) odnosi się do metody modulacji, w której czas, przez jaki sygnał jest w stanie wysokim, jest zmieniany w stosunku do czasu, przez jaki jest w stanie niskim. To pozwala na kontrolowanie mocy dostarczanej do obciążenia, co ma kluczowe znaczenie w aplikacjach takich jak regulacja prędkości silników elektrycznych, sterowanie jasnością diod LED czy zarządzanie temperaturą w układach grzewczych. W praktyce, zmiana szerokości impulsu w sygnale PWM pozwala na uzyskanie różnych poziomów mocy bez konieczności zmiany napięcia. Przykładowo, w przypadku silnika DC, poprzez zwiększenie szerokości impulsu można znacząco podnieść jego prędkość obrotową. Stosując PWM, można również osiągnąć większą wydajność energetyczną, co jest istotne w kontekście standardów ochrony środowiska i efektywności energetycznej. Z tego powodu techniki PWM znalazły zastosowanie w wielu nowoczesnych układach automatyki przemysłowej, co podkreśla ich znaczenie w dzisiejszej technologii.

Pytanie 25

W zakładzie produkcyjnym ustalono, że ciśnienie względne powietrza w zbiorniku wynosi +3 bary. Co oznacza, że nadciśnienie pNAD oraz ciśnienie absolutne (bezwzględne) pABS mają wartości:

A. pNAD = 2 bar, pABS = 1 bar
B. pNAD = 3 bar, pABS = 4 bar
C. pNAD = 3 bar, pABS = 3 bar
D. pNAD = 1 bar, pABS = 2 bar
Odpowiedź jest prawidłowa, ponieważ ciśnienie względne powietrza w zbiorniku wynoszące +3 bary oznacza, że wartość nadciśnienia (pNAD) wynosi 3 bary. Ciśnienie absolutne (pABS) oblicza się jako sumę ciśnienia atmosferycznego i ciśnienia względnego. W standardowych warunkach na poziomie morza ciśnienie atmosferyczne wynosi około 1 bara. Dlatego pABS = pNAD + pATM = 3 bary + 1 bar = 4 bary. Wiedza ta jest kluczowa w różnych zastosowaniach inżynieryjnych, takich jak projektowanie układów pneumatycznych i hydraulicznych, gdzie zachowanie ciśnienia jest kluczowe dla efektywności i bezpieczeństwa urządzeń. Przykładowo, w systemach pneumatycznych nadciśnienie jest wykorzystywane do napędu siłowników, a znajomość prawidłowych wartości ciśnień pozwala na optymalne ich zaprojektowanie zgodnie z normami ASME oraz ISO, co zapewnia ich prawidłowe funkcjonowanie i bezpieczeństwo użytkowania.

Pytanie 26

Wyłącznik silnikowy może zadziałać na skutek

A. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
B. braku jednej fazy zasilającej silnik
C. uruchomienia silnika przy niewielkim obciążeniu
D. użycia stałego napięcia w obwodzie sterowania silnika
Skojarzenie uzwojeń silnika w gwiazdę zamiast w trójkąt nie jest przyczyną zadziałania wyłącznika silnikowego, lecz wynika z różnicy w napięciu oraz charakterystyce obciążenia. W przypadku silników małej mocy, skojarzenie w gwiazdę zmniejsza napięcie na uzwojeniach, co jest korzystne przy rozruchu. Włączenie silnika pod niewielkim obciążeniem, co również sugeruje niepoprawna odpowiedź, nie powinno powodować zadziałania wyłącznika, o ile obciążenie jest w granicach dopuszczalnych parametrów silnika. Nieprawidłowe myślenie w tym kontekście często prowadzi do przekonania, że każdy typ obciążenia jest równie niebezpieczny dla silnika, podczas gdy rzeczywistość jest bardziej złożona. Zastosowanie stałego napięcia w obwodzie sterownia silnika jest również błędnym założeniem, gdyż silniki asynchroniczne są zaprojektowane do pracy z napięciem przemiennym. Stosowanie napięcia stałego w takim kontekście prowadziłoby do uszkodzenia silnika, co jest sprzeczne z zasadami jego działania. Kluczowe jest zrozumienie, że prawidłowe zasilanie i odpowiednie parametry pracy silnika to fundamenty jego efektywności i bezpieczeństwa.

Pytanie 27

W sieci TN - C doszło do przerwania przewodu PEN. Jakie są tego konsekwencje?

A. spadkiem napięcia zasilającego do 0,5 UN
B. pojawieniem się napięcia na obudowie urządzeń podłączonych do gniazda z bolcem ochronnym
C. przepaleniem bezpieczników w obwodzie
D. brakiem zasilania dla wszystkich odbiorników
Odpowiedź jest prawidłowa, ponieważ przerwanie przewodu PEN w sieci TN-C prowadzi do sytuacji, w której obudowy urządzeń podłączonych do gniazd z bolcem ochronnym mogą stać się naładowane. Przewód PEN pełni rolę zarówno przewodu neutralnego, jak i ochronnego, dlatego jego przerwanie wprowadza ryzyko wystąpienia napięcia na obudowach urządzeń. W przypadku braku przewodu ochronnego, prąd zwarciowy nie ma drogi do ziemi, co może skutkować niebezpiecznym wzrostem napięcia na obudowach urządzeń. W praktyce, takie zjawisko może wystąpić w instalacjach, gdzie nie zastosowano odpowiednich środków ochrony, takich jak wyłączniki różnicowoprądowe. Zgodnie z normą PN-IEC 60364, w przypadku sieci TN-C konieczne jest zachowanie szczególnej ostrożności i regularne wykonywanie pomiarów, aby zapewnić bezpieczeństwo użytkowników. Wszelkie nieprawidłowości w funkcjonowaniu sieci powinny być bezzwłocznie usuwane, aby zminimalizować ryzyko porażenia prądem elektrycznym.

Pytanie 28

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 bar, ma maksymalną liczbę cykli nmax = 50/min oraz zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania tego siłownika?

A. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
B. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
C. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
D. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
Wybrana odpowiedź jest poprawna, ponieważ wymagana wydajność sprężarki tłokowej wynosi co najmniej 5,3 m3/h, aby sprostać zapotrzebowaniu siłownika. Siłownik wykonuje 50 cykli na minutę, zużywając 1,4 litra powietrza na cykl. Łączne zużycie powietrza wynosi 50 cykli/min x 1,4 litra/cykl = 70 litrów/minutę, co przelicza się na 4,2 m3/h. Wybór sprężarki o wydajności 5,3 m3/h zapewnia odpowiedni zapas, co jest zgodne z praktykami inżynieryjnymi, które zalecają uwzględnienie marginesu zapasu wydajności dla osiągnięcia stabilnej pracy. Dodatkowo, maksymalne ciśnienie 1,0 MPa (10 bar) spełnia wymagania robocze siłownika, który działa przy ciśnieniu 8 bar. Użycie sprężarki z wyższym ciśnieniem pozwoli również na ewentualne straty ciśnienia w systemie oraz wzmożone zapotrzebowanie w przypadku intensywnej pracy siłownika, co jest istotne w aplikacjach przemysłowych, takich jak automatyzacja produkcji oraz systemy transportu pneumatycznego.

Pytanie 29

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. wprowadzania regulacji
B. analizy zużycia styków
C. usuwania kurzu
D. sprawdzania dokręcenia śrub zacisków
Dokonywanie regulacji w układzie stycznikowo-przekaźnikowym nie jest elementem konserwacji, ponieważ tego typu układy mają z góry ustalone parametry pracy, które powinny być stałe i stabilne. Konserwacja polega raczej na zapewnieniu ich prawidłowego działania poprzez kontrolę i ewentualne czyszczenie, a nie na wprowadzaniu jakichkolwiek zmian w ich ustawieniach. Przykładem dobrej praktyki w zakresie konserwacji jest regularne czyszczenie styków styczników, które zapewnia ich dłuższą żywotność oraz minimalizuje ryzyko awarii. W kontekście standardów, normy IEC dotyczące konserwacji urządzeń elektrycznych podkreślają znaczenie utrzymania ich w stanie gotowości, co jest osiągane poprzez systematyczne kontrole i monitorowanie stanu technicznego, a nie przez zmianę parametrów pracy.

Pytanie 30

Podczas działania silnika prądu stałego zauważono intensywne iskrzenie na komutatorze spowodowane nagromadzeniem pyłu ze szczotek. Aby naprawić tę awarię, należy wyłączyć silnik, a następnie

A. umyć komutator wodą
B. posmarować olejem szczotki
C. przetrzeć komutator olejem
D. wykonać szlifowanie komutatora
Przetrwanie komutatora olejem, umycie go wodą lub smarowanie szczotek olejem to podejścia, które nie adresują podstawowego problemu, jakim jest iskrzenie spowodowane zanieczyszczeniami. Przetarcie komutatora olejem może chwilowo zmniejszyć tarcie, jednak nie eliminuje zanieczyszczeń, a wręcz może prowadzić do ich utrwalenia, co pogarsza sytuację. Woda, choć skutecznie usunie brud, nie jest odpowiednia do czyszczenia komutatorów silników elektrycznych, ponieważ może spowodować korozję oraz uszkodzić izolację. Dodatkowo, wprowadzenie wilgoci do wnętrza silnika może prowadzić do poważnych uszkodzeń. Smarowanie szczotek olejem również nie jest właściwym rozwiązaniem, ponieważ olej może osadzać się na komutatorze, co z kolei zwiększa ryzyko iskrzenia. To podejście pomija fundamentalny problem, jakim jest niewłaściwe działanie komutatora. Istotne jest zrozumienie, że każdy z wymienionych sposobów nie eliminuje problemu z iskrzeniem, a jedynie maskuje objawy, co może prowadzić do dalszego zużycia i uszkodzeń. Kluczowe w konserwacji silników prądu stałego jest regularne sprawdzanie stanu komutatora oraz jego szlifowanie, co jest uznawane za najlepszą praktykę w branży.

Pytanie 31

Nie wolno stosować gaśnicy do gaszenia pożaru sprzętu elektrycznego, który jest pod napięciem

A. śniegowej
B. proszkowej
C. halonowej
D. pianowej
Gaśnice pianowe są odpowiednie do gaszenia pożarów urządzeń elektrycznych pod napięciem, ponieważ stosują pianę, która tworzy warstwę izolacyjną, zmniejszając ryzyko przewodnictwa prądu. Wodna piana, będąca podstawą tych gaśnic, działa na zasadzie odcięcia dostępu tlenu oraz chłodzenia. W przypadku pożaru elektrycznego, najważniejsze jest, aby zminimalizować ryzyko porażenia prądem, co czyni gaśnice pianowe bezpieczniejszym wyborem niż inne typy gaśnic. Przykładem zastosowania gaśnicy pianowej może być pożar w serwerowni, gdzie niezbędne jest szybkie i skuteczne działanie. Warto również wspomnieć, że zgodnie z normami NFPA oraz standardami ochrony przeciwpożarowej, użycie gaśnic pianowych w takich sytuacjach jest zalecane jako najlepsza praktyka. Dodatkowo, gaśnice te są uniwersalne i mogą być używane do gaszenia innych rodzajów pożarów, takich jak pożary cieczy palnych, co czyni je wszechstronnym narzędziem w walce z ogniem.

Pytanie 32

Podczas działania napędu zwrotnego z użyciem silnika prądu stałego zaobserwowano, że prędkość obrotowa silnika jest różna w obu kierunkach oraz że iskrzenie szczotek przy obrocie w jedną stronę jest znacznie większe niż przy obrocie w kierunku przeciwnym. Jakie kroki należy podjąć w celu naprawy silnika?

A. Obtoczyć oraz przeszlifować komutator
B. Znormalizować nacisk szczotek
C. Zamienić łożyska
D. Ustawić szczotki w strefie neutralnej
Ustawić szczotki w strefie neutralnej jest kluczowym działaniem w przypadku silników prądu stałego, które doświadczają nierówności prędkości obrotowej oraz nadmiernego iskrzenia szczotek. Strefa neutralna to obszar w komutatorze, w którym nie występuje pole magnetyczne, co minimalizuje zjawisko iskrzenia. Ustawienie szczotek w tej strefie pozwala na równomierne rozłożenie nacisku na komutator i zmniejszenie zużycia materiału szczotek. W praktyce, aby to osiągnąć, należy dokładnie wyregulować położenie szczotek względem komutatora, co wymaga precyzyjnych narzędzi pomiarowych. Przykładem zastosowania tej metody jest konserwacja silników w przemyśle, gdzie regularne kontrole i ustawienia szczotek wpływają na wydajność silnika oraz jego żywotność. Ponadto, poprawne ustawienie szczotek ma znaczenie w kontekście efektywności energetycznej silnika, co jest zgodne z aktualnymi standardami branżowymi dotyczącymi eksploatacji urządzeń elektrycznych.

Pytanie 33

Z czego wykonuje się rdzeń wirnika silnika indukcyjnego?

A. z litego materiału magnetycznego izotropowego
B. z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie
C. z litego materiału magnetycznego anizotropowego
D. z pakietu blach elektrotechnicznych nie izolowanych od siebie
Rdzeń wirnika silnika indukcyjnego wykonany jest z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie, co jest powszechną praktyką w projektowaniu maszyn elektrycznych. Taki zabieg ma na celu minimalizację strat energetycznych, które występują w wyniku prądów wirowych. Wysokiej jakości blachy elektrotechniczne, produkowane zgodnie z normami, takimi jak EN 10106, charakteryzują się niską stratnością magnetyczną oraz wysoką przewodnością magnetyczną. Dzięki ich zastosowaniu, rdzeń wirnika jest bardziej efektywny w generowaniu pola magnetycznego, co przekłada się na lepsze parametry pracy silnika, mniejsze straty ciepła oraz wyższą efektywność energetyczną. Przykładem zastosowania tej technologii są silniki asynchroniczne, które są powszechnie wykorzystywane w przemyśle, automatyce oraz napędach elektrycznych. Prawidłowe wykonanie rdzenia wirnika z blach elektrotechnicznych ma kluczowe znaczenie dla żywotności i niezawodności silnika.

Pytanie 34

Po wymianie łożysk należy przykręcić pokrywę łożyska śrubami metrycznymi M6x80. Wskaż na podstawie tabeli, jaka powinna być wartość momentu dociągającego.

Nazwa elementuMoment dociągający dla śrub [Nm]
M5M6M8M10M12M16M20
Tabliczka łożyska--254575170275
Pokrywa łożyska58152020--
Skrzynka zaciskowa-47,512,5-20-

A. 15 Nm
B. 8 Nm
C. 4 Nm
D. 25 Nm
Moment dociągający śrub M6x80 wynoszący 8 Nm jest zgodny z normami branżowymi dotyczącymi montażu łożysk. Właściwie dobrany moment pozwala na odpowiednie przyleganie elementów oraz zapobiega ich luzowaniu się w trakcie eksploatacji. Przykręcanie pokrywy łożyska z właściwym momentem jest kluczowe dla zapewnienia trwałości i stabilności całej konstrukcji. Zbyt niski moment dociągający może prowadzić do luzów, co w konsekwencji może powodować uszkodzenia łożysk oraz innych komponentów. Z kolei zbyt wysoki moment może prowadzić do uszkodzenia gwintów lub deformacji elementów, co również wpływa negatywnie na funkcjonowanie maszyny. Dlatego ważne jest, aby stosować się do zaleceń producenta oraz norm technicznych przy dokręcaniu elementów. Przykłady zastosowania tej wiedzy obejmują montaż łożysk w silnikach, skrzyniach biegów oraz innych mechanizmach, gdzie precyzyjne dociąganie śrub ma kluczowe znaczenie dla bezpieczeństwa i wydajności.

Pytanie 35

Negatywny wpływ intensywnych fal elektromagnetycznych emitowanych przez działające urządzenie mechatroniczne można zredukować, stosując osłonę w postaci obudowy

A. z żywicy epoksydowej
B. drewnianej
C. metalowej
D. polwinitowej
Ekranowanie urządzeń mechatronicznych to istotny aspekt zapewnienia ich sprawnego działania w obliczu zagrożeń elektromagnetycznych. Wybór materiału do ekranowania jest kluczowy, ponieważ różne materiały posiadają różne właściwości w zakresie ochrony przed falami elektromagnetycznymi. Obudowy drewniane, choć mogą być estetyczne, nie oferują praktycznie żadnej ochrony przed falami elektromagnetycznymi. Drewno jest materiałem dielektrycznym, co oznacza, że nie ma właściwości odbijających ani pochłaniających fale elektromagnetyczne w sposób efektywny. W przypadku obudowy polwinitowej, choć materiał ten ma pewne właściwości izolacyjne, to jednak nie zapewnia wystarczającego ekranowania. Polwinit, podobnie jak drewno, nie jest w stanie skutecznie eliminować fal elektromagnetycznych. Obudowy z żywicy epoksydowej również mają swoje ograniczenia, ponieważ nie są w stanie odbijać fal elektromagnetycznych, a ich działanie ogranicza się głównie do izolacji. Wybierając materiał do ekranowania, należy kierować się wiedzą na temat właściwości materiałów oraz ich zdolności do redukcji zakłóceń elektromagnetycznych. W praktyce oznacza to, że nieprawidłowy wybór materiału ekranowania, jak drewno czy polwinit, prowadzi do poważnych problemów z funkcjonowaniem urządzeń, co może skutkować ich awarią lub nieprawidłowym działaniem w środowisku o dużych zakłóceniach elektromagnetycznych. Dlatego kluczowe znaczenie ma znajomość standardów branżowych i dobrych praktyk w zakresie wyboru materiałów do ekranowania.

Pytanie 36

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Liczba wrzecion.
B. Dokładność pozycjonowania.
C. Najwyższa prędkość ruchu dla poszczególnych osi.
D. Gramatura wtrysku.
Gramatura wtrysku to parametr odnoszący się głównie do procesów wtrysku tworzyw sztucznych, a nie frezowania. Frezarki numeryczne są urządzeniami przeznaczonymi do obróbki skrawaniem, a ich kluczowe parametry dotyczą precyzji i wydajności obróbczej. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to istotne wskaźniki efektywności operacyjnej frezarek. Na przykład, liczba wrzecion określa, ile narzędzi może być jednocześnie używanych do obróbki, co wpływa na zwiększenie wydajności procesu. Powtarzalność pozycjonowania definiuje zdolność maszyny do powtarzania tych samych operacji z dokładnością, co jest kluczowe w produkcji seryjnej. Maksymalna prędkość ruchu osi wpływa na szybkość realizacji zleceń, co ma bezpośrednie przełożenie na czas produkcji oraz koszty. Zrozumienie tych parametrów jest niezbędne dla efektywnego planowania procesów produkcyjnych oraz optymalizacji pracy frezarek numerycznych.

Pytanie 37

Aby zmierzyć nierówności osiowe (bicie) obracającej się tarczy, należy użyć

A. suwmiarki
B. średnicówki mikrometrycznej
C. czujnika zegarowego
D. mikrometru
Suwmiarka, choć jest narzędziem pomiarowym, nie jest odpowiednia do precyzyjnego pomiaru bicia wirującej tarczy. Jej głównym przeznaczeniem jest pomiar długości, szerokości i wysokości z dokładnością do dwóch miejsc po przecinku. W przypadku pomiarów dynamicznych, takich jak bicie, suwmiarka ma zbyt niską czułość. Mikrometr jest narzędziem o jeszcze wyższej dokładności, jednak jego zastosowanie ogranicza się głównie do pomiarów liniowych i nie jest przystosowany do rejestrowania dynamicznych zmian, takich jak te, które występują podczas obrotu tarczy. Średnicówka mikrometryczna, podobnie jak mikrometr, służy do pomiarów średnic, co również nie sprawdza się w kontekście pomiaru bicia. Narzędzia te mogą prowadzić do pomyłek, ponieważ ich konstrukcja nie pozwala na uchwycenie dynamiki ruchu i nie są przystosowane do pomiarów w czasie rzeczywistym. Dlatego stosowanie ich do pomiaru nierówności osiowej może wprowadzać w błąd i prowadzić do nieprawidłowych wyników, co jest sprzeczne z zasadami dobrej praktyki inżynieryjnej. W kontekście precyzyjnych pomiarów mechanicznych, zawsze należy wybierać narzędzia zaprojektowane specjalnie do danego celu, co pozwoli uniknąć niepotrzebnych błędów i zapewnić wysoką jakość pracy.

Pytanie 38

Jakie urządzenie pomiarowe wykorzystuje się do określania podciśnienia?

A. Pirometr
B. Wakuometr
C. Wariometr
D. Dynamometr
Wakuometr to urządzenie pomiarowe, które służy do pomiaru podciśnienia, czyli ciśnienia mniejszego niż ciśnienie atmosferyczne. Wakuometry są kluczowe w wielu branżach, takich jak przemysł chemiczny, farmaceutyczny czy spożywczy, gdzie kontrola ciśnienia odgrywa fundamentalną rolę w procesach technologicznych. Na przykład, w systemach próżniowych stosowanych do pakowania żywności, wakuometry pomagają monitorować poziom podciśnienia, co jest niezbędne dla zapewnienia odpowiedniej jakości i trwałości produktów. W kontekście medycyny, wakuometr może być używany do pomiaru ciśnienia w systemach laboratoryjnych, gdzie precyzyjna kontrola ciśnienia jest niezbędna do uzyskania wiarygodnych wyników. Praktyczna znajomość wakuometrów i ich zasad działania jest również istotna w kontekście bezpieczeństwa, ponieważ niewłaściwe pomiary podciśnienia mogą prowadzić do poważnych awarii technicznych. Zgodność z normami takimi jak ISO 9001, które podkreślają znaczenie precyzyjnych pomiarów w procesach produkcyjnych, jest kluczowa dla zapewnienia wysokiej jakości i niezawodności urządzeń pomiarowych.

Pytanie 39

Aby połączyć dwa stalowe elementy w procesie zgrzewania, należy

A. stopić je w miejscu styku z użyciem spoiwa.
B. stopić je w miejscu zetknięcia bez użycia spoiwa.
C. wprowadzić płynne spoiwo pomiędzy te elementy.
D. docisnąć je podczas podgrzewania miejsca łączenia.
Zgrzewanie to proces łączenia materiałów, w którym kluczowe jest zastosowanie odpowiedniego nacisku oraz podgrzewania w miejscu styku elementów. W odpowiedzi wskazano, że łączone materiały należy docisnąć z jednoczesnym ich podgrzaniem, co jest zgodne z zasadami zgrzewania oporowego oraz zgrzewania elektrycznego. W procesie tym ciepło generowane jest w wyniku oporu elektrycznego, co prowadzi do stopienia metalu w miejscu styku, a następnie do jego związania. Praktycznym przykładem zastosowania tej metody jest produkcja konstrukcji stalowych, gdzie zgrzewanie jest powszechnie używane do łączenia blach. Kluczowym aspektem jest kontrola temperatury oraz siły docisku, co powinno być zgodne z normami, takimi jak ISO 14731, które określają wymagania dotyczące zgrzewania. Zgrzewanie zapewnia wytrzymałe połączenia, co jest niezbędne w przemyśle motoryzacyjnym, budowlanym oraz w produkcji urządzeń przemysłowych.

Pytanie 40

Jakie są etapy podstawowych cykli działania sterownika PLC?

A. Inicjalizacja sterownika, aktualizacja stanu wyjść, aktualizacja stanu wejść, wykonanie programu
B. Inicjalizacja sterownika, aktualizacja stanu wejść, wykonanie programu, aktualizacja stanu wyjść
C. Aktualizacja stanu wyjść, inicjalizacja sterownika, wykonanie programu, uaktualnianie stanu wejść
D. Aktualizacja stanu wejść, inicjalizacja sterownika, aktualizacja stanu wyjść, wykonanie programu
Wybór niewłaściwych sekwencji cykli pracy sterownika PLC może prowadzić do licznych błędów w działaniu systemu, co ma bezpośredni wpływ na efektywność procesów automatyki. W przypadku pierwszej z niepoprawnych odpowiedzi, sekwencja zaczyna się od aktualizacji stanu wyjść przed odczytem stanu wejść, co jest fundamentalnym błędem. Sterownik PLC powinien najpierw poznać aktualny stan otoczenia (wejść), zanim podejmie decyzje, które wyjścia należy aktywować. W drugim przykładzie, sekwencja rozpoczyna się od aktualizacji stanu wejść, co jest poprawne, ale inicjalizacja sterownika powinna zająć miejsce przed tym krokiem, aby zapewnić, że wszystkie parametry są odpowiednio ustawione. Trzecia odpowiedź pokazuje, że aktualizacja stanu wyjść następuje przed wykonaniem programu, co jest sprzeczne z zasadą logiki sterowania, gdyż decyzje dotyczące wyjść powinny być oparte na obliczeniach i analizach przeprowadzonych w trakcie wykonania programu. Wreszcie, ostatnia odpowiedź wprowadza dodatkowy chaos, gdyż zaczyna się od aktualizacji stanu wyjść oraz nie uwzględnia sekwencji wykonania programu. Takie podejścia mogą prowadzić do nieprzewidywalnych rezultatów, błędów w automatyce oraz problemów z bezpieczeństwem. Kluczowe jest, aby zrozumieć, że każdy z tych kroków jest od siebie zależny, a ich odpowiednia sekwencja jest fundamentem prawidłowego działania systemów sterowania.