Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 12 maja 2025 13:24
  • Data zakończenia: 12 maja 2025 13:52

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Rozpoczęcie demontażu elektrozaworu w systemie elektropneumatycznym wymaga najpierw odłączenia

A. przewodów elektrycznych
B. ciśnienia zasilającego układ
C. napięcia zasilającego
D. przewodów pneumatycznych
Odłączenie napięcia zasilającego jest kluczowym krokiem przed demontażem elektrozaworu w układzie elektropneumatycznym. Zgodnie z zasadami bezpieczeństwa, zawsze należy najpierw wyłączyć zasilanie elektryczne, aby uniknąć ryzyka porażenia prądem oraz uszkodzenia komponentów. W praktyce, przed przystąpieniem do demontażu, operator powinien upewnić się, że urządzenie zostało odłączone od źródła zasilania i oznakować miejsce pracy, aby uniknąć przypadkowego włączenia. W standardach branżowych, takich jak PN-EN 60204-1, podkreśla się znaczenie stosowania procedur blokowania źródeł energii w celu zapewnienia bezpieczeństwa pracowników. Przykładem dobrych praktyk jest również stosowanie multimetru do sprawdzenia, czy nie ma napięcia w obwodzie przed przystąpieniem do prac serwisowych. W ten sposób można zminimalizować ryzyko wypadków oraz zapewnić prawidłowe funkcjonowanie systemu po ponownym zainstalowaniu elektrozaworu.

Pytanie 2

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. R
B. T
C. I
D. Q
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 3

W maszynach wirujących można zdiagnozować nieosiowe położenie wałów, niewyważenie mas wirujących lub ugięcie wałów

A. tachometrem
B. analizatorem drgań
C. testerem izolacji
D. rejestratorem prądu
Analizator drgań jest kluczowym narzędziem w diagnostyce maszyn wirujących, ponieważ umożliwia szczegółową analizę drgań generowanych przez maszyny, co pozwala na wykrycie nieprawidłowości związanych z ich ustawieniem, wyważeniem czy ugięciem wałów. Pomiar drgań jest istotnym elementem monitorowania stanu technicznego maszyn, zgodnie z normami ISO 10816 dotyczącymi oceny stanu maszyn na podstawie pomiarów drgań. Analizator drgań może wykryć różne rodzaje nieprawidłowości, takie jak niewyważenie, które prowadzi do nadmiernych drgań i może skutkować uszkodzeniami łożysk czy innych komponentów. Przykładowo, w przypadku silników elektrycznych, analiza drgań może pomóc w ocenie ich wyważenia oraz identyfikacji problemów z łożyskami, co pozwala na wczesne podjęcie działań serwisowych. W praktyce, regularne monitorowanie drgań może znacznie wydłużyć żywotność maszyn, a także zredukować koszty związane z nieplanowanymi przestojami i naprawami.

Pytanie 4

Jaki rodzaj czujnika, montowanego na metalowym cylindrze siłownika pneumatycznego, powinno się wykorzystać do monitorowania położenia tłoka?

A. Czujnik optyczny
B. Czujnik tensometryczny
C. Czujnik indukcyjny
D. Czujnik magnetyczny
Czujnik magnetyczny jest idealnym rozwiązaniem do kontroli położenia tłoka w siłownikach pneumatycznych, w szczególności tych wykonanych z metalu. Działa na zasadzie detekcji pola magnetycznego generowanego przez magnes zamontowany na tłoku. Dzięki temu czujnik może precyzyjnie określić położenie tłoka, co jest kluczowe w aplikacjach wymagających dokładności i powtarzalności. Przykłady zastosowań czujników magnetycznych to automatyka przemysłowa, linie montażowe oraz systemy robotyczne, gdzie precyzyjne pozycjonowanie jest niezbędne. W standardach branżowych, takich jak ISO 6431 czy IEC 60947, czujniki magnetyczne są rekomendowane do monitorowania ruchu w siłownikach, co potwierdza ich trwałość i niezawodność w trudnych warunkach przemysłowych. Ich bezdotykowa natura sprawia, że nie ma ryzyka zużycia mechanicznego, co dodatkowo zwiększa ich żywotność.

Pytanie 5

W trakcie inspekcji efektywności systemu sterującego urządzeń transportujących elementy aluminiowe, w środowisku produkcyjnym o podwyższonym poziomie hałasu powinno się używać

A. rękawic dielektrycznych
B. okularów ochronnych
C. ochronników słuchu
D. kasku ochronnego
Ochronniki słuchu są kluczowym elementem ochrony osobistej w środowisku pracy, gdzie poziom hałasu przekracza dopuszczalne normy. W przypadku kontroli sprawności układu sterowania urządzenia transportującego kształtki aluminiowe, które mogą generować wysokie poziomy hałasu, zastosowanie ochronników słuchu jest niezbędne dla minimalizacji ryzyka uszkodzenia słuchu. Zgodnie z normami takimi jak PN-N-01307:2013, każdy pracownik narażony na hałas o poziomie przekraczającym 85 dB powinien stosować odpowiednie środki ochrony. Ochronniki słuchu mogą występować w różnych formach, takich jak nauszniki lub wkładki douszne, dostosowane do specyfiki pracy. W praktyce, ich stosowanie nie tylko chroni zdrowie pracownika, ale również zwiększa komfort pracy, umożliwiając lepszą koncentrację na wykonywanych zadaniach. Dbanie o zdrowie pracowników poprzez stosowanie wymaganych środków ochrony osobistej jest nie tylko kwestią zgodności z przepisami, ale także wpływa na ogólną wydajność i morale w zespole.

Pytanie 6

Którego urządzenia nie wolno zasilać z źródła napięcia oznaczonego jako 400 V; 3/N/PE ~50 Hz?

A. Silnika prądu stałego o napięciu 400 V
B. Silnika jednofazowego o napięciu 230 V
C. Silnika trójfazowego klatkowego o napięciu międzyfazowym 400 V skojarzonego w Δ
D. Transformatora trójfazowego o napięciu górnym 400 V i skojarzeniu Dy5
Odpowiedzi wskazujące na inne urządzenia, takie jak silnik jednofazowy o napięciu 230 V, transformator trójfazowy o napięciu górnym 400 V, czy silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V skojarzonego w Δ, sugerują pewne nieporozumienia dotyczące zasilania elektrycznego i charakterystyki tych urządzeń. Silnik jednofazowy o napięciu 230 V nie może być podłączony do systemu 400 V bez zastosowania transformatora obniżającego napięcie, ponieważ może to prowadzić do uszkodzenia silnika. Transformator trójfazowy, mimo że może być zasilany napięciem 400 V, wymaga poprawnego doboru napięcia, a jego skojarzenie Dy5 oznacza, że napięcie międzyfazowe wynosi 400 V, co czyni go odpowiednim do pracy w tym systemie. Silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V jest zaprojektowany do pracy w systemach trójfazowych i bywa używany w wielu aplikacjach przemysłowych. Niezrozumienie tych podstawowych zasad zasilania prowadzi często do niebezpiecznych sytuacji w praktyce, takich jak niewłaściwe podłączenie urządzeń do źródeł energii, co może skutkować zarówno uszkodzeniem sprzętu, jak i zagrożeniem dla bezpieczeństwa operatorów. Każde urządzenie powinno być zasilane zgodnie z jego specyfikacją techniczną oraz odpowiednimi normami, aby uniknąć problemów eksploatacyjnych.

Pytanie 7

Który rodzaj smaru powinien być zastosowany do lubrykantowania elementów wykonanych z plastiku?

A. Smar grafitowy
B. Smar litowy
C. Smar molibdenowy
D. Smar silikonowy
Smar silikonowy jest odpowiednim wyborem do smarowania elementów plastikowych z kilku istotnych powodów. Przede wszystkim, silikon jest materiałem, który nie reaguje chemicznie z większością tworzyw sztucznych, co minimalizuje ryzyko ich degradacji czy uszkodzeń. Działa również jako doskonały środek smarny, który zmniejsza tarcie między ruchomymi częściami, co prowadzi do dłuższej żywotności elementów. Smary silikonowe są często stosowane w przemyśle motoryzacyjnym oraz przy produkcji zabawek i sprzętu AGD, gdzie plastikowe komponenty są powszechnie używane. Dodatkowo, smary silikonowe są odporne na działanie wysokich temperatur oraz wilgoci, co czyni je uniwersalnym rozwiązaniem w wielu zastosowaniach. Warto również zauważyć, że smar silikonowy nie przyciąga kurzu, co jest kluczowe w przypadku zastosowań, gdzie czystość powierzchni jest istotna. Zastosowanie smaru silikonowego w odpowiednich aplikacjach jest zgodne z zaleceniami producentów i dobrymi praktykami branżowymi, co zapewnia optymalne funkcjonowanie elementów plastikowych.

Pytanie 8

Analogowy czujnik ultradźwiękowy umożliwia bezdotykowy pomiar odległości przeszkody od samego czujnika. Zjawisko, które jest tu wykorzystywane, polega na tym, że fala o wysokiej częstotliwości, napotykając przeszkodę, ulega

A. pochłonięciu
B. rozproszeniu
C. wzmocnieniu
D. odbiciu
Ultradźwiękowy czujnik analogowy działa na fajnej zasadzie odbicia fal dźwiękowych, które są praktycznie niesłyszalne dla nas, ale doskonale sprawdzają się w pomiarze odległości. Kiedy czujnik wysyła impuls ultradźwiękowy w stronę jakiejś przeszkody, to ta fala odbija się od niej i wraca. Mierzymy czas, jaki upływa od momentu wysłania sygnału do powrotu i na tej podstawie obliczamy, jak daleko jest ta przeszkoda. Tego typu czujniki wykorzystujemy w różnych dziedzinach, na przykład w robotyce, automatyce czy w systemach parkowania. Dobrym przykładem może być monitorowanie poziomu cieczy w zbiornikach – czujnik świetnie określa poziom wody, mierząc czas, który falę zajmuje na pokonanie drogi tam i z powrotem. W motoryzacji też są popularne, bo pomagają kierowcom parkować, informując ich o odległości do przeszkód. Ogólnie, użycie ultradźwiękowych czujników jest zgodne z normami jakości i bezpieczeństwa, jak na przykład ISO 9001, co gwarantuje, że są one naprawdę niezawodne.

Pytanie 9

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w realizacji elementu mechanicznego?

A. Graniczne
B. Nominalne
C. Rzeczywiste
D. Jednostronne
Odpowiedź "Graniczne" jest poprawna, ponieważ wymiary graniczne definiują maksymalne i minimalne wartości dopuszczalne dla wymiarów elementów mechanicznych. W praktyce inżynieryjnej, wymiary graniczne są kluczowe w procesie projektowania, produkcji oraz kontroli jakości, ponieważ określają, w jakim zakresie wymiaru elementu można tolerować błędy wykonania. W projektowaniu przyjmuje się nominalny wymiar, natomiast granice wymiarowe wyznaczają zakres, w którym element może być produkowany, co jest istotne dla zapewnienia odpowiednich właściwości funkcjonalnych oraz interoperacyjności z innymi komponentami. Na przykład, w przemyśle motoryzacyjnym, wymiary graniczne są istotne dla zapewnienia, że wszystkie części pasują ze sobą w pojazdach, co ma wpływ na bezpieczeństwo oraz wydajność. W praktyce, stosowanie norm takich jak ISO 286, które definiują systemy wymiarów granicznych, jest kluczowe dla efektywności procesów produkcyjnych oraz redukcji kosztów związanych z błędami wykonawczymi.

Pytanie 10

Stal niskostopowa zawierająca składniki takie jak krzem, mangan, chrom oraz wanad, cechująca się podwyższoną ilością krzemu, znajduje zastosowanie w produkcji

A. narzędzi do obróbki skrawaniem
B. resorów, sprężyn i drążków skrętnych
C. łożysk tocznych
D. śrub, nakrętek, podkładek
Stal niskostopowa z dodatkami krzemu, manganu, chromu i wanadu charakteryzuje się korzystnymi właściwościami mechanicznymi, które sprawiają, że jest idealnym materiałem do produkcji resorów, sprężyn i drążków skrętnych. Dodatki te poprawiają wytrzymałość oraz odporność na zmęczenie materiału, co jest kluczowe w zastosowaniach, gdzie elementy te muszą wytrzymywać wielokrotne obciążenia dynamiczne. Na przykład, w przemyśle motoryzacyjnym resory i sprężyny używane w systemach zawieszenia pojazdów muszą nie tylko absorbować drgania, ale także bezpiecznie przenosić duże obciążenia. Stal niskostopowa, dzięki swoim właściwościom, może być poddawana różnym procesom obróbczo-wytwórczym, takim jak hartowanie czy odpuszczanie, co dodatkowo zwiększa jej trwałość. Zgodnie z normami ISO i DIN, komponenty wykonane z tej stali powinny spełniać określone wymagania dotyczące wytrzymałości i twardości, co czyni je niezawodnymi w krytycznych zastosowaniach. Przykłady zastosowań obejmują nie tylko przemysł motoryzacyjny, ale także maszyny budowlane i przemysł ciężki, gdzie elementy te są niezbędne do zapewnienia odpowiedniej wydajności i bezpieczeństwa.

Pytanie 11

Czynniki takie jak nacisk, długość gięcia, wysięg, przestrzeń między kolumnami, skok, prędkość dojścia, prędkość operacyjna, prędkość powrotu, pojemność zbiornika oleju oraz moc silnika to cechy charakterystyczne dla?

A. szlifierki narzędziowej
B. frezarki uniwersalnej
C. prasy krawędziowej
D. przecinarki plazmowej
Prawidłowa odpowiedź to prasa krawędziowa, która jest maszyną służącą do formowania blachy poprzez jej zginanie. Parametry, takie jak nacisk, długość gięcia czy odległość między kolumnami, są kluczowe dla efektywności i precyzji procesów gięcia blachy. Nacisk określa maksymalną siłę, jaką prasa może zastosować do zgięcia materiału, a długość gięcia wpływa na wielkość elementów, które mogą być formowane. Wysięg to odległość robocza narzędzi w prasie, co ma znaczenie przy obróbce dłuższych detali. Prędkości dojścia, robocza i powrotu są istotne dla optymalizacji cyklu pracy maszyny, co przekłada się na wydajność produkcji. Dodatkowo pojemność zbiornika oleju oraz moc silnika wpływają na wydajność i stabilność pracy prasy. W kontekście standardów branżowych, prasy krawędziowe muszą spełniać normy dotyczące bezpieczeństwa oraz jakości produkcji, takie jak normy ISO. W przemyśle metalowym prasy krawędziowe są często wykorzystywane do produkcji elementów konstrukcyjnych, obudów czy komponentów maszyn. Przykładem mogą być zastosowania w branży motoryzacyjnej, gdzie precyzyjne zgięcie blach jest kluczowe dla jakości finalnego produktu.

Pytanie 12

Przepisy dotyczące usuwania używanych urządzeń elektronicznych nakładają obowiązek

A. pozostawić je obok kontenera na śmieci
B. przekazać je firmie zajmującej się odbiorem odpadów po wcześniejszym uzgodnieniu
C. wrzucić je do kosza na śmieci
D. wyrzucić je do pojemnika na śmieci po wcześniejszym stłuczeniu szyjki kineskopu
Odpowiedź "przekazać je firmie wywożącej śmieci po uprzednim uzgodnieniu" jest prawidłowa, ponieważ zgodnie z przepisami dotyczącymi gospodarki odpadami, w tym szczególnie dotyczy to urządzeń elektronicznych, istnieją ściśle określone procedury ich utylizacji. Utylizacja tego typu odpadów wymaga, aby były one przekazywane do wyspecjalizowanych firm, które mają odpowiednie zezwolenia i zasoby do ich bezpiecznego przetwarzania. Tego rodzaju przedsiębiorstwa posiadają technologie pozwalające na recykling części elektronicznych oraz odpowiednie metody unieszkodliwiania niebezpiecznych substancji, takich jak rtęć czy ołów, które mogą występować w niektórych urządzeniach. Przykładowo, wiele z tych firm oferuje usługi odbioru z miejsca zamieszkania, co ułatwia użytkownikom przestrzeganie przepisów. Przekazanie urządzeń wykwalifikowanym specjalistom nie tylko zapewnia zgodność z prawem, ale również chroni środowisko i zdrowie ludzi, zmniejszając ryzyko zanieczyszczenia.

Pytanie 13

Jaką liczbę stopni swobody posiada manipulator przedstawiony na diagramie?

A. 4 stopnie swobody
B. 5 stopni swobody
C. 6 stopni swobody
D. 3 stopnie swobody
Odpowiedzi, które mówią o mniejszych stopniach swobody, często wynikają z niepełnego zrozumienia, jak działają manipulatory w przestrzeni. Trzy czy cztery stopnie swobody mogą się sprawdzić w prostszych zadaniach, ale w bardziej skomplikowanych sytuacjach mogą nie dać rady. Na przykład manipulator z trzema stopniami swobody mógłby tylko ruszać się w trzech osiach, a to za mało, jeśli trzeba wykonywać trudniejsze operacje, które wymagają jednoczesnego ruchu i obrotu. Cztery stopnie swobody mogą sprawiać wrażenie, że robot jest bardziej zaawansowany, ale tak naprawdę ograniczają go do jednego, dość prostego ruchu. Ludzie często myślą, że mniej stopni swobody oznacza prostszą konstrukcję, ale w praktyce to może ograniczać roboty w ich działaniach. Jeśli chodzi o nowoczesną automatyzację, to pięć stopni swobody to minimum, by roboty mogły funkcjonować w dynamicznych warunkach. Rozumienie, jaką liczbę stopni swobody wybrać przy projektowaniu, jest naprawdę kluczowe, bo wpływa na efektywność i wszechstronność w automatyzacji.

Pytanie 14

W trakcie montażu systemu elektronicznego chłodzonego radiatorem, należy zapewnić odpowiednią powierzchnię styku pomiędzy układem a radiatorem poprzez

A. pokrycie klejem
B. rozdzielenie papierem
C. pokrycie pastą termoprzewodzącą
D. rozdzielenie folią aluminiową
Pokrycie powierzchni styku układu elektronicznego i radiatora pastą termoprzewodzącą jest kluczowym krokiem w zapewnieniu efektywnego odprowadzania ciepła. Pasta ta, dzięki swojej strukturze, wypełnia mikroskopijne nierówności na powierzchniach stykających się, co zwiększa powierzchnię kontaktu i poprawia przewodnictwo cieplne. W praktyce, stosowanie past termoprzewodzących jest standardem w przemyśle elektronicznym i komputerowym, gdzie minimalizacja temperatury pracy elementów jest kluczowa dla ich wydajności i żywotności. Na przykład, w procesorach komputerowych, zastosowanie pasty termoprzewodzącej pozwala na osiągnięcie niższych temperatur, co przekłada się na stabilność działania i zwiększa wydajność systemu. Ponadto, wybierając odpowiednią pastę, należy zwrócić uwagę na jej przewodnictwo cieplne, co jest zazwyczaj określane w jednostkach W/mK. Użycie pasty zgodnej z normami branżowymi gwarantuje długoterminową niezawodność układów elektronicznych.

Pytanie 15

Prędkość ruchu tłoczyska w siłowniku hydraulicznym ma odwrotną zależność od

A. wydajności siłownika
B. efektywności siłownika
C. powierzchni roboczej tłoka
D. natężenia przepływu medium roboczego do siłownika
Prędkość tłoczyska siłownika hydraulicznego jest odwrotnie proporcjonalna do powierzchni czynnej tłoka, co wynika z podstawowych zasad hydrauliki. W przypadku siłowników hydraulicznych, prędkość tłoczyska (v) obliczana jest na podstawie natężenia przepływu (Q) oraz powierzchni tłoka (A) według wzoru v = Q/A. Gdy powierzchnia tłoka wzrasta, prędkość tłoczyska maleje dla stałego natężenia przepływu, co ilustruje odwrotną proporcjonalność. Praktycznie oznacza to, że w aplikacjach, gdzie wymagane jest szybkie ruch tłoczyska, projektanci siłowników często stosują mniejsze średnice tłoków, aby zwiększyć prędkość przy zachowaniu odpowiedniego ciśnienia. Dobrą praktyką w branży jest także uwzględnianie tego związku podczas doboru siłowników do konkretnych zastosowań, co wpływa na efektywność całego systemu hydraulicznego. Również w kontekście oszczędności energii, dobór odpowiedniej powierzchni tłoka pozwala na optymalizację pracy układu hydraulicznego.

Pytanie 16

Aby chronić silnik przed wystąpieniem napięcia zasilającego po krótkim zgaśnięciu, należy użyć przekaźnika

A. różnicowoprądowy
B. nadnapięciowy zwłoczny
C. podnapięciowy zwłoczny
D. nadprądowy zwłoczny
Wybór innych typów przekaźników, takich jak nadnapięciowy zwłoczny, nadprądowy zwłoczny czy różnicowoprądowy, nie jest odpowiedni w kontekście zabezpieczania silnika przed pojawieniem się napięcia zasilania po krótkotrwałym zaniku. Przekaźnik nadnapięciowy zwłoczny jest zaprojektowany do wyłączania obwodu, gdy napięcie przekracza ustaloną wartość, co w przypadku zaniku napięcia nie zabezpiecza silnika, lecz może doprowadzić do niebezpiecznej sytuacji, gdy napięcie powraca. Nadprądowy zwłoczny z kolei ma na celu zabezpieczenie przed przeciążeniem, a nie przed zanikami napięcia, więc jego funkcjonalność w tym kontekście będzie niewystarczająca. Przekaźnik różnicowoprądowy wykrywa różnice w prądzie między przewodami roboczymi, chroniąc przed porażeniem elektrycznym, ale nie zareaguje na zmiany w napięciu zasilania. Wybór niewłaściwego przekaźnika może prowadzić do potencjalnych uszkodzeń silnika, a także stwarzać ryzyko dla osób pracujących w pobliżu. Dlatego istotne jest zrozumienie specyfiki działania różnych typów przekaźników, aby skutecznie zabezpieczyć urządzenia w warunkach zmienności napięcia zasilania.

Pytanie 17

Podczas działania napędu zwrotnego z użyciem silnika prądu stałego zaobserwowano, że prędkość obrotowa silnika jest różna w obu kierunkach oraz że iskrzenie szczotek przy obrocie w jedną stronę jest znacznie większe niż przy obrocie w kierunku przeciwnym. Jakie kroki należy podjąć w celu naprawy silnika?

A. Zamienić łożyska
B. Obtoczyć oraz przeszlifować komutator
C. Znormalizować nacisk szczotek
D. Ustawić szczotki w strefie neutralnej
Wymiana łożysk nie rozwiąże problemu nierównej prędkości obrotowej oraz intensywnego iskrzenia szczotek. Łożyska odpowiadają za utrzymanie osi silnika w odpowiedniej pozycji i zmniejszenie tarcia, jednakże nie mają wpływu na działanie komutatora ani na kontakt szczotek z wirnikiem. Z kolei ujednolicanie nacisku szczotek, chociaż może wydawać się logicznym rozwiązaniem, nie adresuje bezpośrednio problemu iskrzenia, które jest wynikiem niewłaściwego ustawienia szczotek. Obtoczenie i przeszlifowanie komutatora mogą jedynie częściowo poprawić sytuację, ale nie zlikwidują źródła problemu, jakim jest niewłaściwe ustawienie szczotek. Ustawienie szczotek w strefie neutralnej jest nie tylko najlepszym sposobem na rozwiązanie zaobserwowanych problemów, ale także jest zgodne z praktykami stosowanymi w serwisie silników prądu stałego, co podkreśla znaczenie precyzyjnej diagnostyki oraz regulacji. Ostatecznie, te działania powinny być częścią regularnych przeglądów technicznych, aby zapewnić długotrwałą i efektywną pracę silnika.

Pytanie 18

W trakcie użytkowania urządzenia mechatronicznego pracownik doznał porażenia prądem, lecz po chwili odzyskał oddech. Co należy zrobić?

A. położyć go na plecach z uniesionymi nogami
B. ustawić go w pozycji bocznej ustalonej
C. przystąpić do pośredniego masażu serca
D. rozpocząć wykonywanie sztucznego oddychania i kontynuować przez około 30 minut
W sytuacji porażenia prądem elektrycznym, odpowiednie działania są kluczowe, aby zminimalizować ryzyko powikłań oraz uratować życie poszkodowanego. Przystąpienie do sztucznego oddychania przez 30 minut jest niewłaściwe, gdyż powinna być to reakcja ograniczona do momentu, gdy osoba nie oddycha. Długotrwałe sztuczne oddychanie bez oceny stanu pacjenta może prowadzić do dalszych uszkodzeń. Ułożenie osoby na plecach z nogami do góry ma na celu zwiększenie dopływu krwi do mózgu, lecz w kontekście porażenia prądem jest to nieodpowiednia praktyka, gdyż może prowadzić do ryzyka aspiracji i zadławienia. Przystąpienie do pośredniego masażu serca jest tylko wskazane w przypadku zatrzymania krążenia, co nie jest opisanym w pytaniu scenariuszem, gdyż osoba odzyskała oddech. Takie działania w przypadku osoby przytomnej mogą być nie tylko niepotrzebne, ale również niebezpieczne. Wszelkie działania powinny być dostosowane do aktualnego stanu poszkodowanego, a kluczowym elementem pierwszej pomocy jest ciągła ocena jego stanu. Niewłaściwe podejście do tych zasad prowadzi do niebezpiecznych sytuacji i może zagrażać życiu poszkodowanego.

Pytanie 19

Jakie jest przeznaczenie przyłącza oznaczonego literą T na zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P oraz T?

A. Siłownika jednostronnego działania
B. Siłownika dwustronnego działania
C. Zbiornika oleju hydraulicznego
D. Zbiornika sprężonego powietrza
Podłączenie przyłącza oznaczonego literą T do zbiornika oleju hydraulicznego jest kluczowe dla prawidłowego funkcjonowania systemu hydraulicznego. Przyłącze T, znane również jako przyłącze powrotne, służy do odprowadzania oleju hydraulicznego po jego przejściu przez układ. W standardowych zaworach hydraulicznych 4/2, przyłącze T łączy się z zbiornikiem, umożliwiając powrót oleju do obiegu, co zapobiega nadciśnieniu i pozwala na efektywne zarządzanie ciśnieniem w systemie. W praktyce, gdy ciśnienie w systemie wzrasta, olej jest kierowany do zbiornika, gdzie może być schłodzony i ponownie wykorzystywany. Zgodnie z dobrymi praktykami, ważne jest, aby przyłącze T było właściwie zabezpieczone i miało odpowiednią średnicę, aby uniknąć zatorów, co mogłoby prowadzić do uszkodzeń systemu hydraulicznego. Wiele aplikacji przemysłowych, takich jak maszyny budowlane czy linie produkcyjne, korzysta z tego rozwiązania, co potwierdza jego znaczenie w hydraulice.

Pytanie 20

Aby zmierzyć nierówności osiowe (bicie) obracającej się tarczy, należy użyć

A. mikrometru
B. czujnika zegarowego
C. średnicówki mikrometrycznej
D. suwmiarki
Czujnik zegarowy jest narzędziem pomiarowym, które umożliwia precyzyjne określenie nierówności osiowej (bicia) wirujących tarcz. Działa na zasadzie pomiaru odległości, przy czym jego igła stykowa przesuwa się wzdłuż powierzchni obrabianego elementu, rejestrując wszelkie wahania. Dzięki wysokiej dokładności, czujniki zegarowe są standardowo stosowane w inżynierii mechanicznej do oceny i kontrolowania jakości elementów rotacyjnych. W praktyce, czujnik zegarowy jest niezbędny do ustawienia tarczy w maszynach takich jak tokarki czy frezarki. Użytkownik umieszcza czujnik w odpowiedniej pozycji, a następnie obraca tarczę, co pozwala na odczyt bicia. Każde odchylenie od idealnej osi wskazuje na konieczność korekcji ustawienia, co jest kluczowe dla zapewnienia nie tylko precyzyjnego działania maszyny, ale także wydłużenia jej żywotności oraz zapewnienia bezpieczeństwa pracy. Wysoka jakość czujników zegarowych oraz ich precyzyjne kalibracje są zgodne z najlepszymi praktykami w branży mechanicznej.

Pytanie 21

Jakie komponenty powinny być wykorzystane do stworzenia półsterowanego mostka prostowniczego?

A. Diody i tyrystory
B. Triaki
C. Triaki oraz diaki
D. Diody
Półsterowany mostek prostowniczy to układ, który wykorzystuje diody oraz tyrystory do konwersji prądu zmiennego na prąd stały. Użycie diod w tym układzie jest kluczowe, ponieważ pełnią one funkcję prostowników, umożliwiając przepływ prądu w jednym kierunku. Tyrystory natomiast pozwalają na kontrolowanie momentu, w którym prąd zaczyna płynąć, co jest szczególnie istotne w aplikacjach wymagających regulacji mocy. Przykładem zastosowania półsterowanego mostka prostowniczego jest zasilanie silników elektrycznych, gdzie konieczne jest nie tylko prostowanie, ale także kontrolowanie prędkości obrotowej silnika. W takich aplikacjach zarządzanie energią i efektywnością jest kluczowe, a użycie tyrystorów pozwala na uzyskanie lepszej jakości sygnału oraz redukcję strat energii. Zgodnie z normami branżowymi, takie układy są często wykorzystywane w przemyśle automatyki, a ich prawidłowe projektowanie wymaga znajomości zasad działania komponentów elektronicznych oraz ich interakcji w obwodach. W praktyce, dobrze zaprojektowany mostek prostowniczy zwiększa niezawodność i efektywność systemu zasilania.

Pytanie 22

Jaką wielkość fizyczną mierzy się w tensometrach foliowych?

A. Pojemności
B. Rezystancji
C. Indukcyjności
D. Indukcji
Indukcja, pojemność i indukcyjność to wielkości fizyczne, które nie są bezpośrednio związane z działaniem tensometrów foliowych. Indukcja odnosi się do zjawisk elektromagnetycznych, takich jak wytwarzanie siły elektromotorycznej w przewodnikach, co ma zastosowanie w czujnikach indukcyjnych, ale nie w tensometrach. Pojemność opisuje zdolność do przechowywania ładunku elektrycznego w kondensatorach, co nie ma związku z mechanicznymi właściwościami materiałów używanych w tensometrach. Indukcyjność dotyczy zjawisk związanych z przepływem prądu w obwodach, ale również nie ma zastosowania w kontekście pomiaru deformacji. Zrozumienie tych różnic jest kluczowe, aby uniknąć błędów w doborze czujników do konkretnych zastosowań. Wybierając odpowiednie technologie pomiarowe, należy opierać się na zrozumieniu, jak różne właściwości fizyczne materiałów wpływają na ich zastosowanie. Pomocne jest również zapoznanie się z normami branżowymi oraz standardowymi metodami pomiaru, aby zapewnić dokładność i niezawodność wyników, co jest istotne w wielu dziedzinach inżynieryjnych.

Pytanie 23

Który z elementów tyrystora ma funkcję sterowania?

A. Źródło
B. Anoda
C. Katoda
D. Bramka
Bramka tyrystora, znana również jako terminal bramkowy, odgrywa kluczową rolę w jego działaniu, pełniąc funkcję sterującą. W momencie dostarczenia sygnału sterującego na bramkę, dochodzi do zainicjowania przewodzenia prądu pomiędzy anodą a katodą. Tyrystory są szeroko stosowane w aplikacjach wymagających precyzyjnego zarządzania dużymi prądami i napięciami, takich jak prostowniki, regulatory mocy oraz układy przełączające. Dzięki możliwości sterowania prądem za pomocą niskiego napięcia na bramce, tyrystory pozwalają na zdalne zarządzanie obciążeniem bez konieczności stosowania skomplikowanych układów mechanicznych. W praktyce, tyrystory z bramką są kluczowe w systemach automatyki przemysłowej, gdzie stabilna i efektywna kontrola mocy jest niezbędna do zapewnienia prawidłowego funkcjonowania maszyn.

Pytanie 24

Silnik bezszczotkowy (ang. BLDC Brushless Direct Current motor) jest zasilany napięciem

A. stałym
B. dwufazowym
C. trójfazowym
D. jednofazowym
Zasilanie silnika bezszczotkowego napięciem trójfazowym, jednofazowym lub dwufazowym jest nieprawidłowe, ponieważ silniki BLDC są projektowane do pracy z napięciem stałym. Napięcie trójfazowe, które jest powszechnie stosowane w silnikach asynchronicznych, wymaga zastosowania skomplikowanych układów zasilania oraz falowników, co wprowadza dodatkowe koszty i złożoność w systemach. Napięcie jednofazowe również nie jest odpowiednie dla silników BLDC, które są zaprojektowane w celu wykorzystania napięcia stałego do osiągnięcia optymalnej efektywności. W przypadku zastosowania napięcia dwufazowego, silnik nie byłby w stanie wytworzyć odpowiedniego momentu obrotowego, co ograniczałoby jego zastosowanie. Typowe błędy myślowe, które prowadzą do takich koncepcji, wynikają często z mylenia silników bezszczotkowych z innymi rodzajami silników elektrycznych, takimi jak silniki synchroniczne czy asynchroniczne, które rzeczywiście mogą być zasilane różnymi typami napięć. W praktyce, projektanci i inżynierowie powinni być świadomi specyfiki silników bezszczotkowych, aby prawidłowo je integrować w różnych aplikacjach, przestrzegając przy tym standardów branżowych, takich jak IEC 60034, które podkreślają znaczenie odpowiedniego doboru technologii do charakterystyki danego silnika.

Pytanie 25

W jaki sposób można zmienić kierunek obrotów wału w trójfazowym silniku indukcyjnym?

A. zamienić miejscami dwa dowolne fazowe przewody zasilające
B. zwiększyć obciążenie
C. obniżyć częstotliwość zasilania
D. podłączyć przewód neutralny
Żeby zmienić kierunek wirowania wału w silniku indukcyjnym trójfazowym, wystarczy zamienić ze sobą dwa przewody zasilające. To takie proste! Chodzi o to, żeby zmienić kolejność, w jakiej napięcie działa na uzwojenia silnika. W silnikach trójfazowych, wirujące pole magnetyczne jest tworzone przez zasilanie fazowe, a jego kierunek jest zależny od tego, w jakiej kolejności te fazy są podłączone. Jak zamienisz te przewody, to zmienia się sekwencja faz, a to prowadzi do tego, że kierunek wirowania się odwraca. W praktyce to jest często wykorzystywane i jeżeli robisz to na zgodnych zasadach bezpieczeństwa, nie ma ryzyka, że coś się zepsuje. W wielu branżach przemysłowych, gdzie używa się silników trójfazowych, umiejętność zmiany kierunku wirowania jest ważna, żeby maszyny działały prawidłowo, na przykład przy transporcie materiałów czy w produkcji. Zmiana kierunku wirowania sprawia też, że silnik lepiej dopasowuje się do zmieniających się warunków, co jest super istotne w efektywnym zarządzaniu energią.

Pytanie 26

Ciecze hydrauliczne o podwyższonej odporności na ogień, wykorzystywane w miejscach narażonych na wybuch, to ciecze oznaczone symbolami

A. HV, HLP, HLPD
B. HFA, HFC, HFD
C. HPG, HTG, HT
D. HLP, HFA, HTG
Wybór innych odpowiedzi wiąże się z błędnym zrozumieniem klasyfikacji cieczy hydraulicznych oraz ich właściwości. Odpowiedzi HLP oraz HTG odnoszą się do cieczy, które nie mają właściwości trudnopalnych. HLP to oleje hydrauliczne, które mogą być palne i nie są przeznaczone do stosowania w środowiskach o podwyższonym ryzyku pożarowym. Również HTG to oleje typu 'thermo-glycol', które są wykorzystywane do systemów grzewczych, a nie jako cieczy hydraulicznych w warunkach zagrożenia eksplozją. Odpowiedzi takie jak HPG i HT mogą być mylone z cieczami trudnopalnymi, jednak nie odpowiadają standardom wymaganym dla aplikacji, gdzie bezpieczeństwo jest priorytetem. Często błędem myślowym jest przekonanie, że wszystkie oleje mogą być stosowane w każdym warunku, co prowadzi do niebezpiecznych sytuacji w miejscach, gdzie występuje potencjalne ryzyko zapłonu. W celu zapewnienia bezpieczeństwa, kluczowe jest, aby użytkownicy posiadali wiedzę na temat odpowiednich standardów oraz certyfikacji cieczy hydraulicznych, takich jak ISO 12922, które definiują wymagania dotyczące ich palności oraz zastosowania w specyficznych warunkach operacyjnych.

Pytanie 27

Mocno podgrzana ciecz hydrauliczna wytwarza podczas awarii w słabo wentylowanym pomieszczeniu tzw. "mgłę olejową", która może prowadzić do różnych schorzeń

A. układu pokarmowego
B. układu sercowego
C. układu słuchu
D. dermatologicznych
Zrozumienie wpływu rozgrzanej cieczy hydraulicznej na zdrowie człowieka wymaga znajomości mechanizmów działania substancji chemicznych oraz ich skutków zdrowotnych. Odpowiedzi dotyczące narządu słuchu i serca są mylące, ponieważ mgła olejowa głównie działa na skórę, a nie na te narządy. Problemy ze słuchem mogą być wynikiem hałasu w środowisku pracy, nie zaś kontaktu z mgłą olejową. Mylne jest również myślenie, że mgła olejowa wpływa na serce; skutki zdrowotne związane z substancjami chemicznymi, takimi jak oleje hydrauliczne, nie są bezpośrednio związane z układem sercowo-naczyniowym. Do najczęstszych dolegliwości związanych z narażeniem na oleje i smary należą problemy dermatologiczne, związane z podrażnieniem skóry. Problemy z przewodem pokarmowym w tym kontekście także są nieprawidłowe, ponieważ substancje te nie są wprowadzane do organizmu doustnie, a ich wpływ na układ pokarmowy nie jest bezpośredni. Odpowiedź wskazująca na problemy dermatologiczne uwzględnia natomiast rzeczywiste ryzyko zdrowotne, które może wystąpić w wyniku kontaktu ze szkodliwymi substancjami w formie mgły olejowej.

Pytanie 28

Z wykorzystaniem równania F_u = η ∙ S ∙ p oblicz powierzchnię S tłoka siłownika, w przypadku gdy siłownik generuje siłę czynną F_u = 1,6 kN przy ciśnieniu p = 1 MPa oraz współczynniku sprawności η = 0,8.

A. 1500 mm2
B. 1000 mm2
C. 3000 mm2
D. 2000 mm2
Aby obliczyć powierzchnię S tłoka siłownika, możemy skorzystać z podanej zależności Fu = η ∙ S ∙ p. Wstawiając znane wartości: Fu = 1,6 kN (co odpowiada 1600 N), p = 1 MPa (co odpowiada 1 000 000 Pa) oraz η = 0,8, możemy przekształcić równanie, aby znaleźć S. Wyrażenie przyjmuje postać S = Fu / (η ∙ p). Podstawiając wartości, otrzymujemy S = 1600 N / (0,8 ∙ 1 000 000 Pa) = 0,002 m2, co odpowiada 2000 mm2. Tak obliczona powierzchnia tłoka jest zgodna z praktykami inżynieryjnymi i standardami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w projektowaniu siłowników hydraulicznych. W praktyce, takie obliczenia są kluczowe dla zapewnienia efektywności i bezpieczeństwa działania maszyn, w których używane są siłowniki. Przykładem zastosowania może być projektowanie systemów hydraulicznych w maszynach budowlanych, gdzie odpowiednia powierzchnia tłoka bezpośrednio wpływa na osiąganą siłę i efektywność działania siłownika.

Pytanie 29

Przez jaki element manipulatora realizowane są różne operacje manipulacyjne?

A. Regulatora
B. Chwytaka
C. Silnika
D. Sondy
Chwytak jest kluczowym elementem w systemach manipulacyjnych, odpowiedzialnym za wykonywanie operacji manipulacyjnych. Jego zadaniem jest chwytanie, przenoszenie i wydawanie obiektów w zadanych lokalizacjach, co jest fundamentalne w automatyzacji procesów produkcyjnych i logistycznych. Chwytaki mogą mieć różne formy, takie jak chwytaki pneumatyczne, elektryczne czy hydrauliczne, co pozwala na dostosowanie ich do specyfiki manipulowanych obiektów. Przykładowo, w przemyśle motoryzacyjnym chwytaki są wykorzystywane do montażu komponentów, gdzie precyzyjne i szybkie operacje są kluczowe dla efektywności produkcji. W praktyce, dobór odpowiedniego chwytaka wymaga analizy właściwości manipulowanych przedmiotów, takich jak ich waga, kształt i materiał, co jest zgodne z dobrą praktyką projektowania systemów automatyzacji. Standardy, takie jak ISO 9283, dotyczące oceny wydajności chwytaków, są również istotne, zapewniając ich odpowiednią funkcjonalność w zastosowaniach industrialnych.

Pytanie 30

Silnik komutatorowy przez dłuższy czas był przeciążony, co doprowadziło do powstania zwarć międzyzwojowych. Proces naprawy silnika obejmuje wymianę

A. szczotek
B. komutatora
C. łożysk
D. uzwojenia
Wymiana uzwojenia w silniku komutatorowym jest kluczowym krokiem w naprawie uszkodzonego silnika, który uległ długotrwałemu przeciążeniu, prowadzącemu do zwarć międzyzwojowych. Uzwojenie jest odpowiedzialne za generowanie pola magnetycznego, które umożliwia pracę silnika. W przypadku zwarć międzyzwojowych, wirujące pole magnetyczne przestaje działać efektywnie, co prowadzi do znacznych strat energetycznych i potencjalnych uszkodzeń innych komponentów silnika. Wymiana uzwojenia polega na demontażu uszkodzonych zwojów oraz na ich zastąpieniu nowymi, co wymaga precyzyjnego wykonania, aby zapewnić właściwe parametry pracy silnika. Ważne jest, aby stosować materiały o wysokiej jakości oraz przestrzegać norm dotyczących izolacji, co pozwala na długotrwałą i niezawodną pracę silnika. Praktyka pokazuje, że właściwie wymienione uzwojenie znacząco zwiększa efektywność oraz żywotność silnika, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 31

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. weryfikacji czystości paska
B. sprawdzenia wymiarów
C. analizy stopnia zużycia
D. oceny stopnia naprężenia
Odpowiedź 'sprawdzenie stopnia naprężenia' jest poprawna, ponieważ nie jest to czynność przygotowawcza, lecz działa niezbędne do zapewnienia prawidłowej pracy paska klinowego po jego montażu. Zanim pasek zostanie zamontowany, kluczowe jest, aby skupić się na weryfikacji wymiarów, kontroli czystości paska oraz ocenie stopnia zużycia. Weryfikacja wymiarów polega na sprawdzeniu długości i szerokości paska, co zapewnia, że nowy pasek będzie pasował do przekładni pasowej. Kontrola czystości paska jest niezbędna, aby zminimalizować ryzyko uszkodzeń mechanicznych i zapewnić odpowiednie tarcie między paskiem a kołami pasowymi. Ocena stopnia zużycia paska pozwala ustalić, czy stary pasek wymaga wymiany. Najważniejsze standardy branżowe, takie jak ISO 9001, zalecają dokładne przygotowanie przed montażem, co podkreśla znaczenie tych czynności, aby uniknąć problemów z wydajnością i trwałością systemu napędowego.

Pytanie 32

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. tłumik
B. magnes stały
C. membrana
D. zawór dławiący
Magnes stały jest kluczowym elementem siłowników przystosowanych do współpracy z bezdotykowymi sensorami położeń krańcowych, ponieważ umożliwia precyzyjne i niezawodne określenie pozycji roboczej siłownika. Bezdotykowe sensory, takie jak czujniki Halla, działają w oparciu o pole magnetyczne generowane przez magnes stały, co pozwala na zdalne monitorowanie i kontrolowanie pracy siłownika bez ryzyka mechanicznego zużycia. Przykładem zastosowania jest automatyka przemysłowa, gdzie magnesy stałe są wykorzystywane w siłownikach do precyzyjnego pozycjonowania w systemach transportowych. Dobrym standardem w branży jest stosowanie magnesów neodymowych ze względu na ich wysoką siłę magnetyczną oraz kompaktowe wymiary, co przekłada się na mniejsze rozmiary i większą efektywność systemów automatyki. Ponadto, zastosowanie magnesów stałych zwiększa żywotność komponentów, zmniejsza koszty utrzymania i zwiększa niezawodność całego systemu, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 33

Trójfazowy silnik elektryczny o podanych parametrach zasilany jest z sieci.
Silnik elektryczny: moc P = 4 kW i cosφ = 0,75
Zasilany z sieci: 400 V; 3/PE ~, 50 Hz.
Prąd pobierany przez silnik z sieci jest równy

A. 13,33 A
B. 5,77 A
C. 7,70 A
D. 10,00 A
Poprawna odpowiedź wynika z obliczeń mocy dla trójfazowego silnika elektrycznego. Moc czynna (P) silnika można obliczyć za pomocą wzoru P = √3 × U × I × cos(φ), gdzie U to napięcie zasilania, I to prąd, a cos(φ) to współczynnik mocy. W tym przypadku mamy 4 kW mocy, współczynnik mocy 0,75 oraz napięcie 400 V. Obliczając prąd, przekształcamy wzór do postaci I = P / (√3 × U × cos(φ)). Podstawiając wartości, otrzymujemy I = 4000 W / (√3 × 400 V × 0,75) co daje około 7,70 A. Dzięki tym obliczeniom możemy zrozumieć, jak ważne jest uwzględnienie wszystkich parametrów w obliczeniach elektrycznych. Praktyczne zastosowanie tej wiedzy ma miejsce przy projektowaniu instalacji elektrycznych oraz doborze zabezpieczeń, które muszą być odpowiednio dobrane do wartości prądu znamionowego urządzeń. W branży elektrycznej standardy dotyczące doboru mocy i prądu są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności energetycznej.

Pytanie 34

W systemie mechatronicznym jako sposób przenoszenia napędu użyto paska zębatego. Podczas rutynowej inspekcji paska należy ocenić jego stopień zużycia oraz

A. naprężenie
B. temperaturę
C. smarowanie
D. bicie osiowe
Naprężenie paska zębatego jest kluczowym czynnikiem wpływającym na jego wydajność oraz trwałość. Utrzymanie odpowiedniego naprężenia jest niezbędne, aby zapewnić właściwe przeniesienie napędu i uniknąć poślizgu paska. Zbyt niskie naprężenie może prowadzić do niewłaściwego zazębienia zębatek, co w efekcie zwiększa ryzyko uszkodzenia paska oraz zębatek. Z kolei zbyt wysokie naprężenie może powodować nadmierne zużycie łożysk oraz innych elementów mechanicznych, co obniża efektywność całego systemu. Przykładowo, w różnych aplikacjach przemysłowych, takich jak maszyny CNC czy taśmociągi, regularne sprawdzanie i dostosowywanie naprężenia paska jest praktyką zgodną z normami ISO 9001, co zapewnia wysoką jakość procesu produkcyjnego. Dobre praktyki inżynieryjne sugerują, aby kontrola naprężenia była przeprowadzana w cyklach serwisowych, a także po każdej wymianie paska. W przypadku wykrycia nieprawidłowości, należy dostosować naprężenie zgodnie z zaleceniami producenta, co zapewnia optymalną wydajność i minimalizuje ryzyko awarii.

Pytanie 35

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. rozbijanie kropli oleju strumieniem sprężonego powietrza
B. odfiltrowanie cząstek stałych z powietrza
C. rozchodzenie się mgły olejowej w instalacji
D. spływ kondensatu wodnego do najniższego punktu instalacji
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.

Pytanie 36

Próba włączenia napędu z prawidłowo działającym silnikiem trójfazowym za każdym razem powoduje włączenie wyłącznika instalacyjnego. Jakie działanie może potencjalnie rozwiązać ten problem?

A. Podłączenie kondensatora rozruchowego
B. Zastosowanie wyłącznika instalacyjnego zwłocznego
C. Odłączenie uziemienia silnika
D. Zmiana kolejności faz
Pojęcia związane z odłączeniem uziemienia silnika, podłączeniem kondensatora rozruchowego oraz zmianą kolejności faz nie są skutecznymi rozwiązaniami problemu zadziałania wyłącznika instalacyjnego. Odłączenie uziemienia może prowadzić do niebezpiecznych sytuacji, w których niekontrolowane napięcia mogą pojawić się na obudowie silnika, co stwarza ryzyko porażenia prądem elektrycznym. Uziemienie jest kluczowe dla bezpieczeństwa urządzeń elektrycznych, gdyż chroni zarówno operatorów, jak i urządzenia przed skutkami zwarcia. Z kolei zastosowanie kondensatora rozruchowego jest metodą, która może pomóc jedynie w przypadku silników jednofazowych, a nie trójfazowych. Silniki trójfazowe zazwyczaj nie wymagają kondensatorów rozruchowych, ponieważ ich konstrukcja pozwala na efektywny rozruch bez dodatkowego wsparcia. Zmiana kolejności faz, chociaż może wpłynąć na kierunek obrotów silnika, nie rozwiązuje problemu przeciążenia przy rozruchu. W rzeczywistości, zmiana ta może prowadzić do nieprawidłowej pracy silnika, a nawet jego uszkodzenia. Warto również zauważyć, że silniki trójfazowe posiadają obliczone wartości prądowe i odpowiedni dobór wyłączników instalacyjnych powinien brać pod uwagę te parametry, zamiast stosować metody, które mogą wprowadzić dodatkowe ryzyko i nieprawidłowości w działaniu systemu.

Pytanie 37

Jakiego typu silnik należy wykorzystać do zasilania systemu, który wymaga bardzo wysokiego momentu rozruchowego (przekraczającego moment znamionowy)?

A. Szeregowy
B. Asynchroniczny
C. Krokowy
D. Bocznikowy
Silnik szeregowy jest najbardziej odpowiedni do aplikacji wymagających wysokiego momentu rozruchowego, ponieważ jego konstrukcja pozwala na uzyskanie znacznie większego momentu przy niskich obrotach. W silniku szeregowym, uzwojenia wirnika są połączone szeregowo z uzwojeniem stojana, co powoduje, że przepływ prądu przez uzwojenia wirnika i stojana jest taki sam. W rezultacie, gdy silnik startuje, prąd wzrasta, co prowadzi do znaczącego wzrostu momentu obrotowego. Taka charakterystyka sprawia, że silniki szeregowe są powszechnie stosowane w aplikacjach takich jak dźwigi, przenośniki, czy inne urządzenia wymagające dużego momentu rozruchowego. Przykładowo, silniki szeregowe są wykorzystywane w systemach transportu materiałów, gdzie konieczne jest pokonanie początkowego oporu. Dobrą praktyką w branży jest dobór silnika szeregowego do zastosowań, gdzie moment rozruchowy przewyższa moment znamionowy, co zapewnia efektywne i bezpieczne użytkowanie maszyn.

Pytanie 38

Wymiana tranzystora wyjściowego w CMOS sterowniku PLC powinna być przeprowadzana z użyciem

A. opaski uziemiającej
B. butów z izolowaną podeszwą
C. okularów ochronnych
D. bawełnianego fartucha ochronnego
Użycie opaski uziemiającej podczas wymiany tranzystora wyjściowego w układzie CMOS sterownika PLC jest kluczowe dla zapewnienia bezpieczeństwa i zminimalizowania ryzyka uszkodzenia komponentów. Opaska uziemiająca działa jako środek ochronny, który odprowadza ładunki elektrostatyczne z ciała osoby pracującej, zapobiegając ich nagromadzeniu. W obwodach CMOS, które są bardzo wrażliwe na zjawisko ESD (elektrostatyczne wyładowania), nawet niewielkie ładunki mogą prowadzić do uszkodzenia tranzystorów i innych komponentów. Stosowanie opaski uziemiającej jest zgodne z dobrymi praktykami w branży elektronicznej, które zalecają uziemianie operatorów w celu ochrony delikatnych układów. Dodatkowo, przy wymianie tranzystora, ważne jest, aby pracować w odpowiednim środowisku, które ogranicza ryzyko ESD, na przykład poprzez stosowanie mat antystatycznych oraz unikanie materiałów, które mogą generować ładunki elektrostatyczne. Przykładem dobrych praktyk jest przestrzeganie norm IPC, które definiują standardy dotyczące ochrony przed ESD w procesach produkcyjnych oraz serwisowych.

Pytanie 39

Aby zabezpieczyć połączenia gwintowe przed niekontrolowanym odkręceniem, należy zastosować przeciwnakrętkę oraz wykorzystać

A. dwoma kluczami płaskimi
B. jednym kluczem płaskim
C. dwoma kluczami nasadowymi
D. jednym kluczem nasadowym
Użycie dwóch kluczy płaskich do zabezpieczenia połączeń gwintowych poprzez zastosowanie przeciwnakrętki jest standardową praktyką w branży. Dwa klucze płaskie pozwalają na jednoczesne blokowanie nakrętki oraz przeciwnakrętki, co minimalizuje ryzyko ich samoczynnego odkręcenia. W praktyce, jeden klucz jest używany do obracania nakrętki, podczas gdy drugi klucz stabilizuje przeciwnakrętkę. Tego typu połączenia są powszechnie stosowane w mechanice, budownictwie oraz inżynierii, gdzie obciążenia i wibracje mogą prowadzić do poluzowania elementów. Zastosowanie dwóch kluczy płaskich jest zgodne z zasadami dobrej praktyki inżynieryjnej, które podkreślają znaczenie prawidłowego montażu i konserwacji połączeń gwintowych. Ważne jest również, aby używać kluczy o odpowiednim rozmiarze, co zapewnia właściwe dopasowanie oraz minimalizuje ryzyko uszkodzenia zarówno gwintów, jak i narzędzi. Takie podejście jest kluczowe dla zapewnienia trwałości i niezawodności połączeń mechanicznych.

Pytanie 40

Jaką kolejność należy zastosować przy montażu zespołu do przygotowania powietrza, zaczynając od sprężarki?

A. smarownica, filtr powietrza, zawór redukcyjny, manometr
B. filtr powietrza, zawór redukcyjny z manometrem, smarownica
C. manometr, filtr powietrza, smarownica
D. smarownica, filtr powietrza, manometr
Odpowiedź "filtr powietrza, zawór redukcyjny z manometrem, smarownica" jest prawidłowa, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla sprawności i bezpieczeństwa całego systemu przygotowania powietrza. Filtr powietrza powinien być zainstalowany jako pierwszy, ponieważ jego główną rolą jest usunięcie zanieczyszczeń i wilgoci z powietrza, co zapobiega ich przedostawaniu się do kolejnych komponentów systemu. Zawór redukcyjny, wyposażony w manometr, reguluje ciśnienie powietrza, co jest niezbędne do zapewnienia optymalnych warunków pracy dla maszyn i urządzeń odbierających sprężone powietrze. Na końcu montujemy smarownicę, która smaruje ruchome elementy urządzeń zasilanych sprężonym powietrzem, a jej umiejscowienie za zaworem redukcyjnym zapewnia, że smar znajduje się pod odpowiednim ciśnieniem. Taka kolejność montażu jest zgodna z najlepszymi praktykami branżowymi, co pozwala na długotrwałe i niezawodne działanie całego układu.