Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 19 marca 2025 08:57
  • Data zakończenia: 19 marca 2025 09:22

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby stworzyć archiwum danych w systemie operacyjnym Ubuntu, należy użyć programu

A. sed
B. tar
C. awk
D. set
Program tar, będący skrótem od "tape archive", jest standardowym narzędziem w systemach Unix i Linux, w tym Ubuntu, do tworzenia oraz zarządzania archiwami danych. Jego główną funkcją jest łączenie wielu plików i katalogów w jeden plik archiwum, co upraszcza przechowywanie i transport danych. Tar umożliwia również kompresję danych za pomocą różnych algorytmów, takich jak gzip czy bzip2, co nie tylko zmniejsza rozmiar archiwum, ale także przyspiesza transfer plików. Osoby pracujące z systemami operacyjnymi opartymi na Unixie często wykorzystują tar do tworzenia kopii zapasowych oraz przenoszenia systemów i aplikacji. Przykładowe polecenie do utworzenia archiwum to: tar -cvf nazwa_archiwum.tar /ścieżka/do/katalogu, gdzie -c oznacza tworzenie archiwum, -v wyświetla postęp operacji, a -f wskazuje nazwę pliku archiwum. Dobre praktyki sugerują tworzenie archiwów w regularnych odstępach czasu oraz ich przechowywanie w bezpiecznych lokalizacjach, aby zabezpieczyć ważne dane.

Pytanie 2

Jaką funkcję pełni serwer FTP?

A. udostępnianie plików
B. nadzorowanie sieci
C. administracja kontami poczty
D. synchronizacja czasu
Serwer FTP to taki ważny element w IT, który głównie służy do przesyłania plików między różnymi systemami w sieci. Dzięki protokołowi FTP przesyłanie danych jest naprawdę sprawne, a do tego mamy różne mechanizmy bezpieczeństwa, jak SSL czy TLS, które pomagają chronić nasze pliki. Użycie serwera FTP jest naprawdę szerokie – od wymiany plików między serwerami, po udostępnianie zasobów użytkownikom. Przykładowo, w firmach zajmujących się tworzeniem oprogramowania, programiści korzystają z serwera FTP, żeby wymieniać się plikami z zespołem, co naprawdę ułatwia współpracę. Fajnie jest też, jak serwery FTP są odpowiednio skonfigurowane, żeby zmniejszyć ryzyko nieautoryzowanego dostępu. Regularne aktualizacje to też kluczowa sprawa, żeby mieć pewność, że korzystamy z najnowszych zabezpieczeń. Jak się spojrzy na standardy branżowe, to FTP jest często wspierany przez różne platformy i systemy operacyjne, co czyni go takim uniwersalnym narzędziem do zarządzania plikami.

Pytanie 3

Jednym z metod ograniczenia dostępu do sieci bezprzewodowej dla osób nieuprawnionych jest

A. dezaktywacja rozgłaszania identyfikatora sieci
B. zmiana kanału transmisji sygnału
C. zmiana standardu szyfrowania z WPA na WEP
D. wyłączenie szyfrowania
Zmienianie kanału nadawania sygnału nie stanowi istotnego środka bezpieczeństwa. Choć może to minimalnie zmniejszyć zakłócenia od innych sieci, nie chroni przed nieautoryzowanym dostępem. Osoby z odpowiednim doświadczeniem mogą łatwo zidentyfikować kanał, na którym sieć nadaje. Wyłączenie szyfrowania jest jednym z najgorszych możliwych kroków, ponieważ otwiera dostęp do sieci dla każdego, kto jest w zasięgu sygnału. To podejście całkowicie pomija podstawowe zasady ochrony danych, co może prowadzić do kradzieży informacji czy złośliwych ataków. Zmiana standardu szyfrowania z WPA na WEP to także nieodpowiednia strategia – WEP jest przestarzałym standardem, który oferuje bardzo niską ochronę i jest łatwy do złamania. Użytkownicy często mylą wrażenie, że zmiana szyfrowania poprawia bezpieczeństwo, a w rzeczywistości może je znacznie osłabić. Kluczowe jest stosowanie aktualnych standardów, takich jak WPA3, aby zabezpieczyć sieci bezprzewodowe. Ignorowanie tych zasad prowadzi do powszechnych błędów, które mogą skutkować poważnymi incydentami bezpieczeństwa.

Pytanie 4

Wykonano test przy użyciu programu Acrylic Wi-Fi Home, a wyniki przedstawiono na zrzucie ekranu. Na ich podstawie można wnioskować, że dostępna sieć bezprzewodowa

Ilustracja do pytania
A. cechuje się bardzo dobrą jakością sygnału
B. osiąga maksymalną prędkość transferu 72 Mbps
C. używa kanałów 10 ÷ 12
D. jest niezaszyfrowana
Sieć bezprzewodowa jest określona jako nieszyfrowana, co oznacza, że nie stosuje żadnych mechanizmów szyfrowania, takich jak WEP, WPA czy WPA2. W kontekście bezpieczeństwa sieci Wi-Fi brak szyfrowania oznacza, że dane przesyłane w sieci są podatne na podsłuch i ataki typu man-in-the-middle. W praktyce, otwarte sieci Wi-Fi są często spotykane w miejscach publicznych, takich jak kawiarnie czy lotniska, gdzie wygoda połączenia jest priorytetem nad bezpieczeństwem. Jednak zaleca się, aby w domowych i firmowych sieciach stosować co najmniej WPA2, które jest uważane za bezpieczniejsze dzięki używaniu protokołu AES. Szyfrowanie chroni prywatność użytkowników i integralność przesyłanych danych. W przypadku nieszyfrowanej sieci, każdy, kto znajduje się w jej zasięgu, może potencjalnie podsłuchiwać ruch sieciowy, co może prowadzić do utraty danych osobowych lub firmowych. Dlatego też, w celu zwiększenia bezpieczeństwa sieci, zaleca się wdrożenie najnowszych standardów szyfrowania i regularną aktualizację sprzętu sieciowego.

Pytanie 5

Urządzenie przedstawione na rysunku

Ilustracja do pytania
A. umożliwia zamianę sygnału pochodzącego z okablowania miedzianego na okablowanie światłowodowe
B. pełni rolę w przesyłaniu ramki pomiędzy segmentami sieci, dobierając port, na który jest ona kierowana
C. jest wykorzystywane do przechwytywania oraz rejestrowania pakietów danych w sieciach komputerowych
D. jest odpowiedzialne za generowanie sygnału analogowego na wyjściu, który stanowi wzmocniony sygnał wejściowy, kosztem energii pobieranej ze źródła prądu
Urządzenie przedstawione na rysunku to konwerter mediów, który umożliwia zamianę sygnału pochodzącego z okablowania miedzianego na okablowanie światłowodowe. Konwertery tego typu są powszechnie stosowane w sieciach komputerowych do rozszerzania zasięgu sygnałów sieciowych za pomocą światłowodów, które oferują znacznie większe odległości transmisji niż tradycyjne kable miedziane. Dzięki wykorzystaniu technologii światłowodowej możliwe jest zmniejszenie strat sygnału i zakłóceń elektromagnetycznych, co jest szczególnie ważne w miejscach o dużym zanieczyszczeniu elektromagnetycznym. Zastosowanie konwerterów mediów jest również zgodne z dobrymi praktykami projektowania nowoczesnych sieci, gdzie dostępność i niezawodność mają kluczowe znaczenie. Urządzenia te wspierają różne typy połączeń, na przykład 1000BASE-T dla Ethernetu po kablach miedzianych i moduły SFP dla sygnałów światłowodowych. Wykorzystując konwertery mediów, można efektywnie integrować różne technologie w sieciach, zapewniając ich elastyczność i skalowalność, co jest zgodne ze standardami IEEE dotyczącymi sieci lokalnych.

Pytanie 6

Jaki procesor pasuje do płyty głównej o podanej specyfikacji?

Ilustracja do pytania
A. A
B. C
C. B
D. D
Procesor Intel Celeron z odpowiedzi A jest kompatybilny z płytą główną, ponieważ oba posiadają gniazdo socket 1150. Socket jest fizycznym i elektrycznym interfejsem pomiędzy procesorem a płytą główną. Użycie odpowiedniego gniazda jest kluczowe, aby zapewnić prawidłowe działanie całego systemu. Płyty główne z gniazdem 1150 są zgodne z procesorami Intel wyprodukowanymi w technologii Haswell. Jest to ważne, gdyż dobór kompatybilnych komponentów wpływa na stabilność i wydajność systemu. Praktyczne zastosowanie tej wiedzy obejmuje składanie komputerów, gdzie wybór odpowiednich części zapewnia optymalne działanie. Socket 1150 obsługuje również pamięć DDR3, co jest zgodne z opisem płyty głównej. Wybór odpowiedniego procesora jest kluczowym elementem w projektowaniu systemów komputerowych, a zastosowanie standardów i dobrych praktyk, takich jak dopasowanie socketu, minimalizuje ryzyko problemów z kompatybilnością, co jest istotne w kontekście profesjonalnej budowy komputerów.

Pytanie 7

Zgodnie z zamieszczonym fragmentem testu w systemie komputerowym zainstalowane są

Ilustracja do pytania
A. pamięć fizyczna 0,49 GB i plik wymiany 1,20 GB
B. pamięć fizyczna 0,70 GB i plik wymiany 1,22 GB
C. pamięć fizyczna 0,50 GB i plik wymiany 1,00 GB
D. pamięć fizyczna 0,49 GB i plik wymiany 1,22 GB
Niepoprawne odpowiedzi dotyczą różnic w interpretacji i odczycie wartości pamięci fizycznej oraz pliku wymiany. Napotykane błędy wynikają często z błędnego rozumienia jednostek miary oraz mechanizmów zarządzania pamięcią przez systemy operacyjne. Pamięć fizyczna odnosi się do zainstalowanego RAM, podczas gdy plik wymiany to logiczna przestrzeń na dysku twardym, której system operacyjny używa jako wirtualnego rozszerzenia pamięci RAM. Niepoprawne odczytanie tych wartości może wynikać z pomylenia jednostek miary takich jak MB i GB, co jest powszechnym problemem w interpretacji danych systemowych. Niezrozumienie tego, jak system wykorzystuje pamięć fizyczną i wirtualną, prowadzi do błędnych wniosków dotyczących wydajności komputera. Użytkownicy często nie uwzględniają różnic między pamięcią używaną a dostępną, co jest kluczowe, by odpowiednio zarządzać zasobami systemowymi. W kontekście zawodowym takie nieporozumienia mogą prowadzić do niewłaściwych decyzji związanych z zakupem czy konfiguracją sprzętu komputerowego. Dlatego tak ważne jest, aby regularnie poszerzać swoją wiedzę na temat zarządzania pamięcią w systemach komputerowych oraz umiejętnie interpretować dane związane z jej użyciem i alokacją w celu optymalizacji wydajności systemu.

Pytanie 8

Co nie ma wpływu na utratę danych z dysku HDD?

A. Zniszczenie talerzy dysku
B. Sformatowanie partycji dysku
C. Fizyczne uszkodzenie dysku
D. Utworzona macierz dyskowa RAID 5
Zniszczenie talerzy dysku, fizyczne uszkodzenie dysku oraz sformatowanie partycji dysku to czynniki, które mogą prowadzić do utraty danych. Zniszczenie talerzy dysku jest jedną z najpoważniejszych awarii, gdyż talerze są nośnikami informacji. Jeśli talerze ulegną zniszczeniu, dostęp do zapisanych danych staje się niemożliwy. W przypadku fizycznego uszkodzenia dysku, na przykład wskutek upadku, uszkodzenia elektroniki lub nadmiernego nagrzewania, również istnieje ryzyko utraty danych. Takie uszkodzenia mogą prowadzić do przeczuć, że dysk jest w pełni sprawny, podczas gdy w rzeczywistości może dojść do uszkodzenia sektorów, co uniemożliwia odczyt danych. Sformatowanie partycji dysku to kolejna operacja, która może prowadzić do utraty danych. Formatowanie, zwłaszcza szybkie, nie usuwa fizycznie danych, ale sprawia, że system operacyjny nie jest w stanie ich odczytać, co może wprowadzać w błąd użytkowników o bezpieczeństwie swoich plików. Typowym błędem myślowym jest założenie, że po sformatowaniu dane są całkowicie usunięte, a tymczasem często można je odzyskać przy użyciu odpowiednich narzędzi. Dlatego ważne jest, aby przed wykonaniem jakiejkolwiek operacji ryzykownej, jak formatowanie, zawsze tworzyć kopie zapasowe, co jest fundamentalną praktyką w zarządzaniu danymi.

Pytanie 9

Zatrzymując pracę na komputerze, możemy szybko wznowić działania po wybraniu w systemie Windows opcji

A. zamknięcia systemu
B. stanu wstrzymania
C. wylogowania
D. uruchomienia ponownego
Opcja 'stanu wstrzymania' w systemie Windows to funkcja, która pozwala na szybkie wstrzymanie pracy komputera, co umożliwia użytkownikowi powrót do tej samej sesji pracy w bardzo krótkim czasie. Gdy komputer jest w stanie wstrzymania, zawartość pamięci RAM jest zachowywana, co oznacza, że wszystkie otwarte aplikacje i dokumenty pozostają w takim samym stanie, w jakim były przed wstrzymaniem. Przykładem zastosowania może być sytuacja, gdy użytkownik chce na chwilę odejść od komputera, na przykład na przerwę, i chce szybko wznowić pracę bez potrzeby ponownego uruchamiania programów. Stan wstrzymania jest zgodny z najlepszymi praktykami zarządzania energią, ponieważ komputer zużywa znacznie mniej energii w tym trybie, co jest korzystne zarówno dla środowiska, jak i dla użytkowników, którzy korzystają z laptopów. Warto również zaznaczyć, że funkcja ta może być używana w połączeniu z innymi ustawieniami oszczędzania energii, co pozwala na optymalne zarządzanie zasobami systemowymi.

Pytanie 10

NAT64 (Network Address Translation 64) to proces, który dokonuje mapowania adresów

A. IPv4 na adresy IPv6
B. MAC na adresy IPv4
C. IPv4 na adresy MAC
D. prywatne na adresy publiczne
Niezrozumienie funkcji NAT64 często prowadzi do mylnych interpretacji, zwłaszcza w kontekście mapowania adresów. Na przykład, pomylenie translacji adresów IPv4 na adresy MAC jest całkowicie błędne; adresy MAC odnoszą się do warstwy łącza danych w modelu OSI i nie są bezpośrednio związane z procesem translacji adresów IP. Adresy MAC są unikalnymi identyfikatorami sprzętowymi kart sieciowych, a NAT64 działa na poziomie wyżej, zajmując się adresami IP. Podobnie, próba przypisania translacji adresów MAC na adresy IPv4 wskazuje na brak zrozumienia, że te dwa typy adresów pełnią różne role w komunikacji sieciowej. Co więcej, mapowanie prywatnych adresów IP na publiczne również nie jest związane z NAT64, choć jest to proces, który może być realizowany przez inne techniki NAT, takie jak PAT (Port Address Translation). NAT64 jest zatem specyficznie skoncentrowany na integracji IPv4 i IPv6, a wszelkie inne koncepcje mogą prowadzić do zamieszania i nieefektywnego zarządzania adresacją w sieciach. Kluczowe jest, aby w pełni zrozumieć, jakie funkcje pełnią różne protokoły i mechanizmy, aby uniknąć typowych pułapek w analizie i implementacji rozwiązań sieciowych.

Pytanie 11

Na zdjęciu przedstawiono

Ilustracja do pytania
A. toner
B. tusz
C. taśmę barwiącą
D. kartridż
Tusz jest płynną substancją stosowaną głównie w drukarkach atramentowych gdzie dysze nanoszą go na papier w postaci mikroskopijnych kropli. W odróżnieniu od taśmy barwiącej tusz nie wymaga mechanicznego uderzania w papier i jest stosowany w urządzeniach które wymagają wysokiej jakości kolorowych druków. Z kolei toner to suche sproszkowane pigmenty używane w drukarkach laserowych które są przenoszone na papier za pomocą elektrostatycznego ładunku a następnie utrwalane przez rolki grzewcze. Toner cechuje się wysoką precyzją i jest idealny do druku dużych nakładów czarno-białych dokumentów. Kartridż w kontekście drukarek najczęściej odnosi się do pojemnika na tusz lub toner ale nie jest to odpowiednie określenie dla taśm barwiących które mają inną konstrukcję i zastosowanie. Typowym błędem jest mylenie tych komponentów ze względu na podobieństwo ich nazewnictwa i funkcji jako materiałów eksploatacyjnych. Wybór niewłaściwego elementu eksploatacyjnego może prowadzić do nieprawidłowego działania urządzenia i obniżenia jakości drukowanych materiałów. Ważne jest zrozumienie różnic w technologii druku aby prawidłowo identyfikować i stosować odpowiednie materiały.

Pytanie 12

Użytkownik uszkodził płytę główną z gniazdem procesora AM2. Uszkodzoną płytę można wymienić na model z gniazdem, nie zmieniając procesora i pamięci

A. AM1
B. FM2
C. FM2+
D. AM2+
Odpowiedź AM2+ jest poprawna, ponieważ gniazdo AM2+ jest wstecznie kompatybilne z procesorami AM2. Oznacza to, że jeśli użytkownik posiada procesor AM2, może go bez problemu zainstalować na płycie głównej z gniazdem AM2+. AM2+ wspiera również nowsze procesory, co daje możliwość przyszłej modernizacji systemu. W praktyce, jeśli użytkownik chce zaktualizować komponenty swojego komputera, wybór płyty głównej z gniazdem AM2+ jest korzystny, ponieważ umożliwia dalszy rozwój technologiczny bez konieczności wymiany pozostałych elementów. Ponadto, płyty główne AM2+ mogą obsługiwać szybsze pamięci RAM, co dodatkowo zwiększa wydajność systemu. W branży komputerowej takie podejście do modernizacji sprzętu jest uznawane za najlepszą praktykę, ponieważ pozwala na efektywne wykorzystanie istniejących zasobów, minimalizując koszty i czas przestoju związany z wymianą całego systemu.

Pytanie 13

Na diagramie działania skanera, element oznaczony numerem 1 odpowiada za

Ilustracja do pytania
A. zamiana sygnału analogowego na sygnał cyfrowy
B. zamiana sygnału optycznego na sygnał elektryczny
C. wzmacnianie sygnału optycznego
D. wzmacnianie sygnału elektrycznego
Zamiana sygnału optycznego na sygnał elektryczny jest kluczowym etapem działania skanera, który umożliwia dalsze przetwarzanie zeskanowanego obrazu. Proces ten zachodzi w detektorze światła, który jest elementem przetwarzającym odbity lub przechodzący strumień świetlny na sygnał elektryczny. W skanerach wykorzystuje się najczęściej fotodiody lub matryce CCD/CMOS, które są czułe na zmiany intensywności światła. Dzięki temu skaner jest w stanie odczytać różnice w jasności i kolorze na skanowanym dokumencie. Praktycznym zastosowaniem tej technologii jest tworzenie cyfrowych kopii dokumentów, które można łatwo przechowywać, edytować i przesyłać. Precyzyjna zamiana sygnału optycznego na elektryczny jest zgodna ze standardami branżowymi i jest podstawą dla dalszych operacji, takich jak wzmacnianie sygnału czy jego digitalizacja. Wykorzystanie odpowiednich detektorów światła zapewnia wysoką jakość skanowania oraz dokładność odtwarzanych barw i szczegółów, co jest szczególnie ważne w zastosowaniach graficznych i archiwizacji dokumentów.

Pytanie 14

Określ właściwą sekwencję działań potrzebnych do zamontowania procesora w gnieździe LGA na nowej płycie głównej, która jest odłączona od zasilania?

A. 5, 2, 3, 4, 1, 6, 7
B. 5, 1, 7, 3, 6, 2, 4
C. 5, 6, 1, 7, 2, 3, 4
D. 5, 7, 6, 1, 4, 3, 2
Aby poprawnie zamontować procesor w gnieździe LGA na nowej płycie głównej, należy rozpocząć od lokalizacji gniazda procesora, co jest kluczowe dla dalszych działań. Po zidentyfikowaniu gniazda, odginamy dźwignię i otwieramy klapkę, co umożliwia umiejscowienie procesora w gnieździe. Następnie należy ostrożnie włożyć procesor, uważając na odpowiednie dopasowanie pinów oraz kierunek montażu, co jest zgodne z oznaczeniami na płycie głównej. Po umieszczeniu procesora, zamykamy klapkę i dociągamy dźwignię, co zapewnia stabilne połączenie. W kolejnych krokach nakładamy pastę termoprzewodzącą, co jest niezbędne do efektywnego odprowadzania ciepła, a następnie montujemy układ chłodzący, który powinien być odpowiednio dobrany do specyfikacji procesora. Na końcu podłączamy układ chłodzący do zasilania, co jest kluczowe dla prawidłowego działania systemu. Taka struktura montażu jest zgodna z najlepszymi praktykami w branży i zapewnia długotrwałą wydajność systemu komputerowego.

Pytanie 15

Zaprezentowany komunikat jest rezultatem wykonania następującego polecenia

C:\Windows NT_SERVICE\TrustedInstaller:(F)
           NT_SERVICE\TrustedInstaller:(CI)(IO)(F)
           ZARZĄDZANIE NT\SYSTEM:(M)
           ZARZĄDZANIE NT\SYSTEM:(OI)(CI)(IO)(F)
           BUILTIN\Administratorzy:(M)
           BUILTIN\Administratorzy:(OI)(CI)(IO)(F)
           BUILTIN\Użytkownicy:(RX)
           BUILTIN\Użytkownicy:(OI)(CI)(IO)(GR,GE)
           TWÓRCA-WŁAŚCICIEL:(OI)(CI)(IO)(F)

A. icacls C:\Windows
B. subst C:\Windows
C. attrib C:\Windows
D. path C:\Windows
Polecenie path jest używane do wyświetlania lub ustawiania ścieżki dostępu do programów wykonywalnych. Nie zarządza ono uprawnieniami do plików lub katalogów, a jedynie określa, gdzie system Windows będzie poszukiwał plików wykonywalnych. Natomiast polecenie attrib zmienia atrybuty plików lub katalogów, takie jak ukryty czy tylko do odczytu, ale nie zarządza uprawnieniami dostępu, które są widoczne na liście ACL. Subst to polecenie, które tworzy aliasy dla ścieżek katalogów, przypisując im literę dysku. Umożliwia to uproszczenie dostępu do często używanych katalogów poprzez skrócenie ścieżki, co również nie ma związku z zarządzaniem uprawnieniami do katalogów. Typowe błędy to mylenie pojęć związanych z zarządzaniem uprawnieniami z innymi funkcjonalnościami związanymi z plikami i katalogami. Zarządzanie uprawnieniami jest kluczową funkcją w systemach operacyjnych, która wymaga użycia narzędzi takich jak icacls, które umożliwiają modyfikowanie i przeglądanie list kontroli dostępu, co jest istotne dla bezpieczeństwa i ochrony danych w systemie.

Pytanie 16

Protokół ARP (Address Resolution Protocol) służy do konwersji adresu IP na

A. nazwę domenową
B. adres IPv6
C. nazwę komputera
D. adres sprzętowy
Czasem możesz się pomylić w odpowiedziach, co może być związane z niejasnościami co do ról różnych protokołów i pojęć w sieciach. Zgłoszenie, że ARP zmienia adres IP na adres IPv6, to błąd, bo ARP działa tylko w przypadku adresów IPv4. Dla IPv6 mamy NDP, który ma bardziej zaawansowane funkcje, takie jak nie tylko mapowanie adresów, ale też zarządzanie komunikacją. Można też się pomylić, myląc adresy IP z witryną komputera. Adres IP to unikalny identyfikator urządzenia w sieci, podczas gdy nazwa komputera to taki bardziej przyjazny sposób identyfikacji, który można zamienić na IP przez DNS, ale nie przez ARP. Dlatego też, jeśli pomylisz adres sprzętowy z nazwą domenową, możesz się pogubić w tym, jak działają różne protokoły sieciowe. Nazwa domenowa jest używana do identyfikacji zasobów, ale nie jest bezpośrednio powiązana z adresowaniem sprzętowym. Takie błędy mogą prowadzić do mylnych wniosków o tym, jak działają różne protokoły w sieciach, co jest naprawdę istotne dla zrozumienia i kierowania nowoczesnymi systemami IT.

Pytanie 17

Jakość skanowania można poprawić poprzez zmianę

A. typ formatu pliku wejściowego
B. rozmiaru wydruku
C. rozdzielczości
D. wielkości skanowanego dokumentu
Poprawa jakości skanowania poprzez zmianę rozdzielczości jest kluczowym aspektem, który bezpośrednio wpływa na detale i klarowność skanowanych dokumentów. Rozdzielczość skanowania, mierzona w punktach na cal (dpi), określa liczbę szczegółów, które skanowane urządzenie jest w stanie zarejestrować. Wyższa rozdzielczość pozwala na uchwycenie mniejszych detali, co jest szczególnie ważne w skanowaniu dokumentów tekstowych, zdjęć czy rysunków. Przykładowo, skanowanie dokumentu w rozdzielczości 300 dpi zapewnia odpowiednią jakość dla większości zastosowań biurowych, podczas gdy skanowanie archiwalnych fotografii lub szczegółowych rysunków technicznych może wymagać wartości powyżej 600 dpi. Warto również pamiętać, że wyższa rozdzielczość skutkuje większym rozmiarem pliku, co może wymagać efektywnych metod zarządzania i przechowywania danych. Standardy branżowe wskazują na dobór rozdzielczości w zależności od celu skanowania, co podkreśla znaczenie świadomego wyboru tej wartości.

Pytanie 18

Aby chronić sieć WiFi przed nieautoryzowanym dostępem, należy między innymi

A. włączyć filtrowanie adresów MAC
B. wybrać nazwę identyfikatora sieci SSID o długości co najmniej 16 znaków
C. dezaktywować szyfrowanie informacji
D. korzystać tylko z kanałów wykorzystywanych przez inne sieci WiFi
Wyłączenie szyfrowania danych to jedno z najgorszych rozwiązań w kontekście zabezpieczania sieci bezprzewodowej. Szyfrowanie jest kluczowym elementem ochrony przesyłanych informacji, a jego brak naraża dane na podsłuch i przechwycenie przez nieautoryzowane osoby. Współczesne standardy zabezpieczeń, takie jak WPA3, zapewniają silne szyfrowanie, które znacząco utrudnia dostęp do danych osobom trzecim. Kolejny błąd to stosowanie nazwy identyfikatora sieci SSID o długości min. 16 znaków, co samo w sobie nie stanowi skutecznego zabezpieczenia. Choć dłuższe SSID jest mniej przewidywalne, nie zapewnia rzeczywistej ochrony, jeśli sieć jest nadal dostępna publicznie i bez odpowiednich dodatkowych zabezpieczeń. Wreszcie, korzystanie wyłącznie z kanałów używanych przez inne sieci WiFi jest mylnym podejściem. Takie działanie może prowadzić do przeciążenia sygnału i obniżenia jakości połączenia, a nie do poprawy bezpieczeństwa. Kanały te mogą być także łatwiejsze do wykrycia przez potencjalnych intruzów, co może zredukować skuteczność strategii bezpieczeństwa. Dlatego kluczowe jest, aby przy zabezpieczaniu sieci bezprzewodowej stosować złożone, wielowarstwowe podejścia, a nie polegać na pojedynczych rozwiązaniach, które mogą wprowadzać w błąd i dawać fałszywe poczucie bezpieczeństwa.

Pytanie 19

Aby odzyskać dane z dysku, który został sformatowany, warto użyć programu typu

A. IRC
B. sniffer
C. p2p
D. recovery
Odpowiedź "recovery" jest poprawna, ponieważ programy typu recovery (odzyskiwania danych) są specjalnie zaprojektowane do przywracania utraconych lub usuniętych plików z dysków twardych, które zostały sformatowane lub usunięte. Proces formatowania dysku nie usuwa fizycznie danych, lecz jedynie oznacza obszary dysku jako dostępne do zapisu. Programy do odzyskiwania danych potrafią skanować dysk w poszukiwaniu pozostałości plików oraz ich struktur, co umożliwia ich przywrócenie. Przykładem popularnych narzędzi są Recuva, EaseUS Data Recovery Wizard oraz TestDisk, które są stosowane w praktyce zarówno przez specjalistów IT, jak i użytkowników indywidualnych. W branży informatycznej standardem jest również wykonywanie regularnych kopii zapasowych, co może znacząco ułatwić proces odzyskiwania danych. W sytuacji, gdy dane zostały utracone, zaleca się nie zapisywać nowych informacji na danym dysku, aby zwiększyć szanse na odzyskanie danych.

Pytanie 20

Gdy w przeglądarce internetowej wpiszemy adres HTTP, pojawia się błąd "403 Forbidden", co oznacza, że

A. brak pliku docelowego na serwerze.
B. użytkownik nie dysponuje uprawnieniami do żądanego zasobu.
C. adres IP karty sieciowej jest niewłaściwie przypisany.
D. wielkość wysyłanych danych przez klienta została ograniczona.
Błąd 403 Forbidden nie jest związany z brakiem pliku docelowego na serwerze, co skutkowałoby błędem 404 Not Found. Gdy serwer nie może znaleźć żądanego zasobu, zwraca właśnie ten kod błędu, informując, że zasób nie istnieje. Ograniczenia dotyczące wielkości wysyłanych danych przez klienta są natomiast związane z błędami typu 413 Payload Too Large, które występują, gdy przesyłane dane przekraczają dozwolony rozmiar ustalony przez serwer. Wreszcie, błąd związany z niewłaściwym adresem IP karty sieciowej ma charakter związany z problemami w konfiguracji sieci, a nie z uprawnieniami dostępu do zasobów na serwerze. Typowe błędy myślowe w tym przypadku mogą wynikać z braku zrozumienia różnicy pomiędzy różnymi kodami błędów HTTP oraz ich znaczeniem. Ważne jest, aby użytkownicy i programiści byli świadomi, że każdy kod błędu HTTP ma swoje specyficzne znaczenie i zastosowanie, co jest kluczowe w procesie diagnozowania problemów z dostępem do zasobów w internecie. Zrozumienie tych różnic jest niezbędne do skutecznego zarządzania aplikacjami webowymi oraz do zapewnienia, że użytkownicy otrzymują odpowiednie komunikaty w przypadku wystąpienia problemów.

Pytanie 21

Jaki jest pełny adres do logowania na serwer FTP o nazwie ftp.nazwa.pl?

A. http://ftp.nazwa.pl/
B. ftp:\ftp.nazwa.pl/
C. http:\ftp.nazwa.pl/
D. ftp://ftp.nazwa.pl/
Odpowiedzi, które zaczynają się od "http://" lub "http:\", są błędne, ponieważ wskazują na protokół HTTP (Hypertext Transfer Protocol), który służy głównie do przesyłania dokumentów HTML i nie jest przeznaczony do transferu plików. Protokół HTTP nie obsługuje bezpośrednich operacji na plikach, takich jak przesyłanie lub pobieranie plików w sposób, który oferuje FTP. Użycie "ftp:\" zamiast "ftp://" jest również niepoprawne, ponieważ "//" jest integralną częścią składni adresu URL, która wymaga tego separatora, aby poprawnie zidentyfikować zasoby. Typowym błędem w myśleniu jest mylenie tych protokołów i nie zrozumienie ich zastosowania. W praktyce, korzystając z niepoprawnego adresu, użytkownik może napotkać problemy z połączeniem, co prowadzi do frustracji i utraty czasu. Warto zatem zrozumieć różnice pomiędzy tymi protokołami, aby móc skutecznie korzystać z narzędzi do transferu danych. Praktyczne zastosowanie FTP w zakresie importu i eksportu plików w środowisku serwerowym wymaga znajomości tych podstawowych różnić, aby zminimalizować błędy i zwiększyć wydajność pracy.

Pytanie 22

Jakiego typu macierz RAID nie zapewnia odporności na awarie żadnego z dysków tworzących jej strukturę?

A. RAID 6
B. RAID 2
C. RAID 4
D. RAID 0
RAID 0 to macierz dyskowa, która wykorzystuje technikę striping, co oznacza, że dane są dzielone na fragmenty i rozdzielane pomiędzy dwa lub więcej dysków. Główną zaletą takiego podejścia jest znaczne zwiększenie prędkości odczytu i zapisu danych, ponieważ operacje mogą być prowadzone równolegle na wszystkich dyskach. Jednakże, RAID 0 nie oferuje żadnej redundancji, co oznacza, że w przypadku awarii jednego z dysków, wszystkie dane przechowywane w macierzy zostaną utracone. Dlatego RAID 0 jest najczęściej stosowany w środowiskach, gdzie priorytetem jest wydajność, na przykład w edytorach wideo, grach komputerowych lub serwerach plików, gdzie szybkość dostępu do danych jest kluczowa, a bezpieczeństwo danych nie jest krytyczne. Przy implementacji RAID 0 należy uwzględnić regularne tworzenie kopii zapasowych oraz inne środki ochrony danych, aby zminimalizować ryzyko utraty informacji.

Pytanie 23

Przy zgrywaniu filmu kamera cyfrowa przesyła na dysk 220 MB na minutę. Wybierz z diagramu interfejs o najniższej prędkości transferu, który umożliwia taką transmisję

Ilustracja do pytania
A. USB 2
B. 1394a
C. 1394b
D. USB 1
Wybór odpowiedniego interfejsu do transferu danych jest istotny dla zapewnienia płynności i niezawodności działania urządzeń cyfrowych. USB 2, choć z prędkością 480 Mbps jest wystarczający dla zgrywania 220 MB na minutę, nie jest najefektywniejszym wyborem pod względem zgodności i zużycia zasobów w kontekście, gdzie 1394a jest dostępne. USB 1, z prędkością jedynie 1,5 Mbps, jest dalece niewystarczające, prowadząc do znacznych opóźnień i niemożności zgrywania w takiej jakości. Interfejs 1394b, choć oferuje wyższą prędkość 800 Mbps, jest niepotrzebny w tej sytuacji, gdyż 1394a już spełnia wymagania przy niższej złożoności infrastruktury. Błędne podejście może wynikać z nieznajomości specyfikacji technicznych interfejsów oraz ich praktycznych zastosowań. Typowym błędem jest również nadmierne poleganie na teoretycznej szybkości interfejsu bez uwzględnienia rzeczywistych warunków operacyjnych, co jest szczególnie ważne przy wielkoformatowych i wymagających aplikacjach multimedialnych.

Pytanie 24

Jak wygląda maska dla adresu IP 92.168.1.10/8?

A. 255.0.0.0
B. 255.255.255.0
C. 255.0.255.0
D. 255.255.0.0
Maska sieciowa 255.0.0.0 jest właściwym odpowiednikiem dla adresu IP 92.168.1.10/8, ponieważ zapis /8 oznacza, że pierwsze 8 bitów adresu jest używane do identyfikacji sieci, co daje nam 1 bajt na identyfikację sieci. W tym przypadku, adres 92.168.1.10 znajduje się w klasie A, gdzie maska sieciowa wynosi 255.0.0.0. Przykładowe zastosowania takiej maski obejmują sieci o dużej liczbie hostów, gdzie zazwyczaj wymaga się więcej niż 65 tysięcy adresów IP. W praktyce maska /8 jest stosowana w dużych organizacjach, które potrzebują obsługiwać wiele urządzeń w jednej sieci. Przykładem może być operator telekomunikacyjny lub duża korporacja. Ponadto, zgodnie z zasadami CIDR (Classless Inter-Domain Routing), maskowanie w sposób elastyczny pozwala na bardziej efektywne zarządzanie adresacją IP, co jest szczególnie ważne w dobie rosnącej liczby urządzeń sieciowych. Warto także pamiętać, że w praktyce stosowanie maski /8 wiąże się z odpowiedzialnością za efektywne wykorzystanie zasobów adresowych, zwłaszcza w kontekście ich ograniczonej dostępności.

Pytanie 25

Proces, który uniemożliwia całkowicie odzyskanie danych z dysku twardego, to

A. zalanie dysku
B. zatarcie łożyska dysku
C. niespodziewane usunięcie plików
D. zerowanie dysku
Zerowanie dysku to proces, który polega na nadpisaniu wszystkich danych znajdujących się na dysku twardym w celu trwałego ich usunięcia. Proces ten jest nieodwracalny, ponieważ oryginalne dane nie mogą być odzyskane. Zastosowanie zerowania dysku jest szczególnie istotne w kontekście ochrony danych, zwłaszcza w przypadku sprzedaży lub utylizacji nośników, na których mogły znajdować się wrażliwe informacje. W standardach bezpieczeństwa, takich jak NIST SP 800-88, rekomenduje się przeprowadzanie tego typu operacji przed pozbyciem się sprzętu. Przykładem zastosowania zerowania dysku jest sytuacja, gdy firma decyduje się na sprzedaż używanych komputerów, na których przechowywano poufne dane klientów. Dzięki zerowaniu dysku można mieć pewność, że dane te nie dostaną się w niepowołane ręce, co minimalizuje ryzyko wycieków informacji. Warto również wspomnieć, że istnieją różne metody zerowania, w tym nadpisywanie wielokrotne, co jeszcze bardziej zwiększa bezpieczeństwo procesu.

Pytanie 26

Instalacja systemów Linux oraz Windows 7 przebiegła bez problemów. Oba systemy zainstalowały się prawidłowo z domyślnymi konfiguracjami. Na tym samym komputerze, o tej samej konfiguracji, podczas instalacji systemu Windows XP pojawił się komunikat o braku dysków twardych, co może sugerować

A. nieprawidłowe ustawienie zworek w dysku twardym
B. błędnie skonfigurowane bootowanie urządzeń
C. niedobór sterowników
D. logiczne uszkodzenie dysku twardego
Odpowiedź dotycząca braku sterowników jest prawidłowa, ponieważ system Windows XP jest starszą wersją systemu operacyjnego, która może nie mieć wbudowanej obsługi nowszych kontrolerów dysków twardych, takich jak SATA. W przypadku niezainstalowania odpowiednich sterowników, system operacyjny nie będzie w stanie rozpoznać dysków twardych, co skutkuje komunikatem o ich braku. Dobrym przykładem z praktyki jest sytuacja, w której użytkownik instaluje Windows XP na nowoczesnym komputerze, który wykorzystuje złącza SATA, a nie IDE, co wymaga uprzedniego załadowania odpowiednich sterowników podczas instalacji. Standardy branżowe sugerują, że przed rozpoczęciem instalacji starszych systemów operacyjnych warto sprawdzić, czy dostępne są odpowiednie sterowniki, a także czy system BIOS/UEFI jest skonfigurowany w trybie zgodności. W praktyce, wiele problemów ze zgodnością można rozwiązać przez załadowanie sterowników z płyty CD dostarczonej przez producenta płyty głównej, co jest często kluczowe dla pomyślnej instalacji. Zrozumienie tej kwestii jest niezbędne dla każdego, kto chce pracować z różnorodnymi systemami operacyjnymi.

Pytanie 27

Na ilustracji pokazano komponent, który stanowi część

Ilustracja do pytania
A. HDD
B. plotera
C. napędu CD-ROM
D. drukarki igłowej
Element przedstawiony na rysunku to typowa część składana HDD, czyli dysku twardego. Dyski twarde wykorzystują złożone mechanizmy do przechowywania i odczytywania informacji, które są zapisywane na obracających się talerzach magnetycznych. Prezentowany element najprawdopodobniej jest częścią mechanizmu napędowego, który odpowiada za precyzyjne obracanie talerzy. Obrót ten jest kluczowy dla prawidłowego działania dysku, ponieważ głowice odczytu i zapisu muszą mieć dostęp do odpowiednich sektorów na talerzach. W nowoczesnych dyskach HDD stosuje się również technologie poprawiające precyzję i szybkość odczytu danych, takie jak systemy servo. Te mechanizmy pozwalają na dokładne pozycjonowanie głowic, co jest niezbędne dla optymalnej wydajności dysku. W przemyśle standardem jest również stosowanie technologii SMART do monitorowania stanu dysków twardych, co pozwala na wczesne wykrywanie potencjalnych awarii i przedłużenie żywotności urządzenia. HDD to wciąż powszechnie stosowane rozwiązanie w wielu systemach komputerowych, gdzie niezawodność i pojemność są kluczowe, mimo że w ostatnich latach rośnie popularność szybszych dysków SSD.

Pytanie 28

Tryb działania portu równoległego, oparty na magistrali ISA, pozwalający na transfer danych do 2.4 MB/s, przeznaczony dla skanerów i urządzeń wielofunkcyjnych, to

A. Nibble Mode
B. Bi-directional
C. ECP
D. SPP
ECP, czyli Enhanced Capability Port, to zaawansowany tryb pracy portu równoległego, który został zaprojektowany z myślą o zwiększeniu prędkości transferu danych do 2.4 MB/s, co czyni go idealnym rozwiązaniem dla skanerów oraz urządzeń wielofunkcyjnych. ECP wykorzystuje technologię DMA (Direct Memory Access), co pozwala na bezpośrednie przesyłanie danych między urządzeniem a pamięcią komputera, minimalizując obciążenie procesora. Taki sposób komunikacji zapewnia wyższą wydajność oraz szybszy czas reakcji urządzeń. ECP jest również kompatybilny z wcześniejszymi standardami, co oznacza, że można go stosować z urządzeniami, które obsługują starsze tryby, takie jak SPP czy Bi-directional. W praktyce, ECP znajduje zastosowanie w nowoczesnych skanerach, drukarkach oraz urządzeniach wielofunkcyjnych, które wymagają szybkiego przesyłania dużych ilości danych, co jest kluczowe w biurach i środowiskach, gdzie czas przetwarzania jest na wagę złota.

Pytanie 29

Na ilustracji przedstawiono fragment karty graficznej ze złączem

Ilustracja do pytania
A. PCI-Express
B. ISA
C. PCI
D. AGP
Standard PCI (Peripheral Component Interconnect) to interfejs, który był szeroko stosowany przed wprowadzeniem AGP i PCI-Express. PCI obsługuje różne urządzenia, ale jego architektura nie jest zoptymalizowana specjalnie pod kątem grafiki 3D. Użycie PCI dla kart graficznych ogranicza przepustowość, przez co nie spełnia wymagań nowoczesnych aplikacji graficznych. ISA (Industry Standard Architecture) to jeszcze starszy standard o bardzo ograniczonej przepustowości, który nie jest odpowiedni dla współczesnych kart graficznych i został całkowicie zastąpiony przez nowsze rozwiązania. PCI-Express, będący następcą AGP, zapewnia znacznie większą przepustowość i elastyczność dzięki architekturze wieloliniowej; jednak w kontekście tego pytania nie jest właściwą odpowiedzią. PCI-Express jest obecnie standardem dla kart graficznych, oferującym zalety takie jak skalowalność przepustowości i większa efektywność energetyczna. Zrozumienie różnic między tymi standardami jest kluczowe dla inżynierów i techników IT, którzy muszą podejmować świadome decyzje dotyczące konserwacji lub modernizacji sprzętu komputerowego. Częstym błędem przy identyfikacji jest niedocenianie wpływu specjalizacji złącza na wydajność grafiki, co może prowadzić do nieoptymalnych decyzji zakupowych lub projektowych w zakresie sprzętu komputerowego.

Pytanie 30

Redukcja liczby jedynek w masce pozwoli na zaadresowanie

A. mniejszej liczby sieci oraz mniejszej liczby urządzeń
B. większej liczby sieci oraz mniejszej liczby urządzeń
C. mniejszej liczby sieci oraz większej liczby urządzeń
D. większej liczby sieci oraz większej liczby urządzeń
Zmniejszenie liczby jedynek w masce sieciowej oznacza, że więcej bitów jest dostępnych dla części hosta adresu IP, co z kolei pozwala na zaadresowanie większej liczby urządzeń w danej sieci. W praktyce, gdy maska sieciowa ma mniej bitów przeznaczonych na identyfikację sieci (czyli więcej bitów dla hostów), liczba możliwych adresów IP w podanej sieci rośnie, ponieważ każda z tych bitów może przyjmować wartość 0 lub 1. Na przykład, w przypadku maski /24 (255.255.255.0), mamy 256 możliwych adresów, co pozwala na zaadresowanie 254 urządzeń (2 adresy są zarezerwowane: adres sieci i adres rozgłoszeniowy). Jeśli zmniejszymy maskę do /23 (255.255.254.0), liczba dostępnych adresów wzrasta do 512, co umożliwia zaadresowanie 510 urządzeń. Zmiany w maskach sieciowych są kluczowe dla efektywnego zarządzania adresacją IP i powinny być zgodne z najlepszymi praktykami subnettingu, aby uniknąć problemów z zarządzaniem ruchem sieciowym oraz zapewnić odpowiednią wydajność i bezpieczeństwo sieci.

Pytanie 31

Jaki akronim oznacza program do tworzenia graficznych wykresów ruchu, który odbywa się na interfejsach urządzeń sieciowych?

A. MRTG
B. ICMP
C. SMTP
D. CDP
Wybór innych akronimów, takich jak CDP, ICMP czy SMTP, wskazuje na pewne nieporozumienia dotyczące funkcji oraz zastosowania tych protokołów w kontekście monitorowania ruchu sieciowego. CDP, czyli Cisco Discovery Protocol, jest używany do zbierania informacji o urządzeniach Cisco w sieci, ale nie służy do graficznego przedstawiania danych o ruchu. ICMP, czyli Internet Control Message Protocol, jest protokołem używanym głównie do diagnostyki i informowania o błędach w transmisji danych, a nie do monitorowania obciążenia interfejsów. Z kolei SMTP, czyli Simple Mail Transfer Protocol, jest protokołem do wysyłania wiadomości e-mail i nie ma żadnego zastosowania w kontekście monitorowania ruchu sieciowego. Wybierając niewłaściwy akronim, możemy popełnić podstawowy błąd myślowy, polegający na myleniu różnych warstw i funkcji protokołów w architekturze sieci. Zrozumienie, jakie są podstawowe różnice między tymi technologiami oraz ich rolą w zarządzaniu siecią, jest kluczowe dla skutecznego monitorowania i optymalizacji zasobów sieciowych. Uczy to również, jak ważne jest właściwe dobieranie narzędzi oraz protokołów do konkretnego zadania, co stanowi fundament efektywnego zarządzania infrastrukturą IT.

Pytanie 32

Zilustrowany na obrazku interfejs to

Ilustracja do pytania
A. HDMI
B. D-Sub
C. DisplayPort
D. S-Video
Wybór innego interfejsu niż HDMI w tym przypadku jest błędny ponieważ różne interfejsy mają odmienne zastosowania i właściwości. Na przykład S-Video to standard analogowy używany głównie do przesyłania sygnału wideo w niskiej rozdzielczości bez dźwięku co czyni go nieodpowiednim do nowoczesnych zastosowań multimedialnych. DisplayPort z kolei jest cyfrowym interfejsem podobnie jak HDMI ale jest częściej wykorzystywany w środowiskach komputerowych. Oferuje większą przepustowość i wsparcie dla zaawansowanych funkcji takich jak obsługa wielu monitorów co czyni go preferowanym wyborem dla profesjonalistów IT i grafików. Natomiast D-Sub znany także jako VGA to starszy analogowy standard do przesyłania sygnału wideo używany w starszych monitorach i komputerach. Chociaż był powszechnie stosowany jego ograniczenia w przesyłaniu wysokiej jakości obrazu czynią go przestarzałym w kontekście nowoczesnych urządzeń. Częstym błędem jest mylenie tych interfejsów ze względu na ich wygląd lub nieznajomość ich specyfikacji i zastosowań. Ważne jest zrozumienie że w kontekście wymagań współczesnego sprzętu multimedialnego HDMI jest najczęściej wybieranym standardem ze względu na swoją zdolność do przesyłania zarówno wysokiej jakości wideo jak i dźwięku w jednym kablu co daje przewagę nad innymi interfejsami wymienionymi w pytaniu

Pytanie 33

Prezentowany komunikat pochodzi z wykonania polecenia

C:\Windows NT_SERVICE\TrustedInstaller:(F)
          NT_SERVICE\TrustedInstaller:(OI)(CI)(IO)(F)
          ZARZĄDZANIE NT\SYSTEM:(M)
          ZARZĄDZANIE NT\SYSTEM:(OI)(CI)(IO)(F)
          BUILTIN\Administratorzy:(M)
          BUILTIN\Administratorzy:(OI)(CI)(IO)(F)
          BUILTIN\Użytkownicy:(RX)
          BUILTIN\Użytkownicy:(OI)(CI)(IO)(GR,GE)
          TWÓRCA-WŁAŚCICIEL:(OI)(CI)(IO)(F)

A. attrib C:Windows
B. icacls C:Windows
C. path C:Windows
D. subst C:Windows
Polecenie attrib jest używane do wyświetlania lub zmiany atrybutów plików, takich jak ukryty lub tylko do odczytu, i nie jest związane z zarządzaniem uprawnieniami dostępu użytkowników do katalogów. Często mylne jest założenie, że atrybuty mogą wpływać na dostępność plików, podczas gdy w rzeczywistości dotyczą jedynie sposobu ich prezentacji i edycji. Polecenie path służy do ustawiania i wyświetlania ścieżki wyszukiwania plików wykonywalnych w konsoli systemowej. Nie ma żadnego związku z uprawnieniami dostępu, co jest częstym błędem w rozumieniu jego zastosowania. Błędne postrzeganie polecenia path wynika z niepełnego zrozumienia roli zmiennych środowiskowych i ich wpływu na działanie systemu. Subst jest używane do tworzenia wirtualnych dysków z mapowaniem folderów, co służy jedynie do wygodniejszego zarządzania strukturą katalogów w systemie i nie ma żadnego wpływu na zarządzanie uprawnieniami dostępu. Często jest to narzędzie mylone z bardziej zaawansowanymi poleceniami zarządzania dostępem z powodu jego zastosowania w organizacji danych. Właściwe zrozumienie i stosowanie powyższych poleceń wymaga rozpoznania ich szczególnych funkcji i ograniczeń, co jest kluczowe w profesjonalnym zarządzaniu systemem operacyjnym.

Pytanie 34

Ustawienie rutingu statycznego na ruterze polega na

A. wskazaniu adresu sieci docelowej z odpowiednią maską oraz podaniu adresu lub interfejsu do przesłania danych do wyznaczonej sieci
B. określeniu adresu IP serwera DNS dostarczanego przez serwer DHCP
C. przesyłaniu kopii informacji z wybranych portów rutera na określony port docelowy
D. zarządzaniu jakością usług przez definiowanie priorytetu przesyłu dla poszczególnych portów urządzenia
Konfiguracja rutingu statycznego na ruterze polega na precyzyjnym wskazaniu adresu sieci docelowej oraz jej maski, co jest kluczowe w procesie przesyłania pakietów danych. W przypadku rutingu statycznego administrator sieci ręcznie definiuje trasy, które ruter powinien wykorzystać do osiągnięcia określonych sieci. Przykładem może być sytuacja, gdy firma posiada różne lokalizacje i chce, aby dane z sieci lokalnej w biurze A były przesyłane do biura B. Administrator ustawia statyczny ruting, wskazując adres IP biura B i odpowiednią maskę. Dzięki temu ruter wie, gdzie przesyłać ruch, co zwiększa efektywność sieci i zmniejsza ryzyko błędów. W praktyce, dobre praktyki w zakresie rutingu statycznego zalecają dokumentację skonfigurowanych tras oraz ich regularne przeglądanie, aby upewnić się, że nadal odpowiadają potrzebom organizacji i bieżącej topologii sieci. To podejście jest zgodne z zasadami zarządzania siecią i zapewnia lepszą kontrolę nad ruchem danych.

Pytanie 35

Protokół poczty elektronicznej, który umożliwia zarządzanie wieloma skrzynkami pocztowymi oraz pobieranie i manipulowanie na wiadomościach przechowywanych na zdalnym serwerze, to

A. IMAP
B. SMTP
C. POP3
D. TCP
Wybór protokołu TCP nie jest właściwy w kontekście zarządzania pocztą elektroniczną. TCP, czyli Transmission Control Protocol, to protokół komunikacyjny, który zapewnia niezawodne przesyłanie danych w sieci, ale nie jest związany bezpośrednio z przetwarzaniem wiadomości e-mail. TCP działa na poziomie transportu, co oznacza, że zarządza przepływem danych pomiędzy różnymi hostami, natomiast IMAP funkcjonuje na poziomie aplikacji, umożliwiając interakcję z wiadomościami. Z kolei POP3, chociaż jest protokołem używanym do odbierania e-maili, w przeciwieństwie do IMAP, nie obsługuje zarządzania folderami ani synchronizacji na wielu urządzeniach. Oba podejścia - zarówno TCP, jak i POP3 - mogą prowadzić do nieporozumień, ponieważ są stosowane w kontekście e-mail, ale służą różnym celom. SMTP (Simple Mail Transfer Protocol) jest protokołem odpowiedzialnym za wysyłanie wiadomości, a nie za ich odbieranie czy zarządzanie. Wybierając ten protokół, można błędnie zrozumieć jego rolę w całym ekosystemie poczty elektronicznej. Kluczowe jest zrozumienie, że IMAP został zaprojektowany do efektywnego zarządzania wiadomościami na serwerze, co jest kluczowe w dobie rosnącej liczby urządzeń i wymagających aplikacji pocztowych.

Pytanie 36

Nośniki informacji, takie jak dyski twarde, zapisują dane w jednostkach zwanych sektorami, które mają wielkość

A. 128 B
B. 512 B
C. 512 KB
D. 1024 KB
Rozmiary sektorów danych na dyskach twardych mają kluczowe znaczenie dla wydajności przechowywania i zarządzania danymi. Wiele osób może pomylić standardowy rozmiar sektora z innymi jednostkami miary, co prowadzi do błędów w interpretacji. Odpowiedzi wskazujące na 128 B są niewłaściwe, ponieważ ten rozmiar był używany w starszych technologiach, a nowoczesne dyski twarde przyjęły 512 B jako standard. Sektor 512 KB i 1024 KB dotyczą bardziej zaawansowanych systemów plików lub różnego rodzaju dysków optycznych, a nie tradycyjnych dysków twardych. Taka pomyłka może wynikać z braku zrozumienia, jak dane są fizycznie organizowane na nośnikach. Przyjmując błędny rozmiar sektora, można niewłaściwie ocenić pojemność dysku lub jego wydajność. Standardy branżowe jednoznacznie definiują rozmiar sektora jako 512 B, co zapewnia jednolitość i interoperacyjność między różnymi systemami operacyjnymi oraz dyskami. Warto zwrócić uwagę na te normy, aby uniknąć nieporozumień, które mogą prowadzić do nieefektywnego wykorzystania przestrzeni dyskowej lub problemów z wydajnością systemu.

Pytanie 37

Jaką funkcję pełni protokół ARP (Address Resolution Protocol)?

A. Przekazuje informacje zwrotne dotyczące problemów z siecią
B. Określa adres MAC na podstawie adresu IP
C. Obsługuje grupy multicast w sieciach opartych na protokole IP
D. Zarządza przepływem pakietów w ramach systemów autonomicznych
Protokół ARP (Address Resolution Protocol) pełni kluczową rolę w komunikacji w sieciach komputerowych, szczególnie w kontekście sieci opartych na protokole Internet Protocol (IP). Jego podstawowym zadaniem jest ustalanie adresu fizycznego (adresu MAC) urządzenia, które ma przypisany dany adres IP. W momencie, gdy komputer chce wysłać dane do innego komputera w tej samej sieci lokalnej, najpierw musi znać jego adres MAC. Protokół ARP wykorzystuje żądania ARP, które są wysyłane jako multicastowe ramki do wszystkich urządzeń w sieci, pytając, kto ma dany adres IP. Odpowiedzią jest adres MAC urządzenia, które posiada ten adres IP. Dzięki temu, ARP umożliwia prawidłowe kierowanie pakietów w warstwie drugiej modelu OSI, co jest niezbędne do efektywnej komunikacji w lokalnych sieciach. Przykładem praktycznego zastosowania ARP jest sytuacja, w której komputer A chce nawiązać połączenie z komputerem B; ARP poprzez identyfikację adresu MAC umożliwia właściwe dostarczenie informacji, co jest fundamentem działania Internetu i lokalnych sieci komputerowych.

Pytanie 38

Jakie rozwiązanie techniczne pozwala na transmisję danych z szybkością 1 Gb/s z zastosowaniem światłowodu?

A. 10Base5
B. 100Base-FX
C. 10GBase-T
D. 1000Base-LX
Odpowiedź 1000Base-LX jest poprawna, ponieważ jest to standard Ethernet, który umożliwia przesyłanie danych z prędkością 1 Gb/s, korzystając z technologii światłowodowej. Standard ten jest częścią rodziny Gigabit Ethernet i pozwala na transmisję na odległość do 5 km przy użyciu światłowodów jednomodowych, co czyni go idealnym rozwiązaniem dla dużych sieci kampusowych oraz połączeń międzybudynkowych. W praktyce 1000Base-LX znajduje zastosowanie w różnych środowiskach, takich jak centra danych, gdzie wymagana jest wysoka przepustowość i niskie opóźnienia. Ponadto, standard ten jest zgodny z normami IEEE 802.3, co zapewnia jego szeroką akceptację w branży i łatwość integracji z innymi technologiami sieciowymi. Dodatkowo, korzystanie z technologii światłowodowej przyczynia się do zwiększenia odporności na zakłócenia elektromagnetyczne oraz umożliwia dłuższe połączenia bez utraty jakości sygnału, co jest kluczowe w dzisiejszych wymagających środowiskach.

Pytanie 39

Jakie urządzenie powinno być użyte do połączenia komputerów w układzie gwiazdowym?

A. Bridge
B. Transceiver
C. Switch
D. Repeater
Switch, czyli przełącznik, jest kluczowym urządzeniem w topologii gwiazdy, ponieważ umożliwia efektywne i wydajne zarządzanie komunikacją między komputerami w sieci lokalnej (LAN). W topologii gwiazdy wszystkie urządzenia są podłączone do centralnego węzła, którym jest właśnie switch. Dzięki temu, gdy jeden komputer wysyła dane, switch kieruje te dane bezpośrednio do odpowiedniego odbiorcy, minimalizując zatory i zwiększając prędkość transferu. Przykładem zastosowania może być biuro, w którym każdy komputer pracownika jest podłączony do switcha, co umożliwia wydajną komunikację i dobrą organizację pracy w sieci. Dodatkowo, urządzenia te obsługują standardy takie jak IEEE 802.3, co zapewnia zgodność i interoperacyjność w różnych środowiskach sieciowych. Ponadto, wiele nowoczesnych switchów oferuje możliwości zarządzania, takie jak VLAN, co pozwala na segregację ruchu i zwiększenie bezpieczeństwa w sieci, zgodnie z najlepszymi praktykami branżowymi.

Pytanie 40

W dokumentacji jednego z komponentów komputera zawarto informację, że urządzenie obsługuje OpenGL. Jakiego elementu dotyczy ta dokumentacja?

A. karty sieciowej
B. dysku twardego
C. karty graficznej
D. mikroprocesora
Odpowiedź dotycząca karty graficznej jest poprawna, ponieważ OpenGL (Open Graphics Library) to standardowy interfejs programowania aplikacji (API) służący do renderowania grafiki 2D i 3D. Karty graficzne są kluczowymi komponentami komputerów, które wykorzystują OpenGL do przetwarzania i renderowania grafiki w grach, aplikacjach inżynieryjnych oraz wizualizacjach naukowych. Przykładowo, w grach komputerowych, OpenGL pozwala na tworzenie złożonych scen 3D oraz efekty wizualne, co wpływa na jakość i immersyjność rozgrywki. Karty graficzne współczesnych komputerów, takich jak te od firm NVIDIA czy AMD, oferują pełne wsparcie dla OpenGL, co jest standardem w branży gier i grafiki komputerowej. Dobre praktyki przy projektowaniu aplikacji z wykorzystaniem OpenGL obejmują optymalizację renderowania, zarządzanie pamięcią oraz efektywne korzystanie z zasobów GPU, co przekłada się na lepszą wydajność i jakość wizualną.