Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 24 maja 2025 20:26
  • Data zakończenia: 24 maja 2025 20:40

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką wartość ma średni błąd pomiaru graficznego odcinka o długości 10 cm, gdy błąd względny pomiaru wynosi 1:1000?

A. ±10,00 mm
B. ±0,01 mm
C. ±1,00 mm
D. ±0,10 mm
Średni błąd pomiaru można obliczyć, mnożąc długość mierzony odcinka przez błąd względny. W tym przypadku, długość odcinka wynosi 10 cm, a błąd względny wynosi 1:1000. Oznacza to, że na każdy 1000 mm długości mierzonych, błąd wynosi 1 mm. Dlatego, aby obliczyć średni błąd, wykonujemy następujące działanie: 10 cm (czyli 100 mm) * (1 mm / 1000 mm) = 0,10 mm. Takie obliczenia są istotne w kontekście precyzyjnych pomiarów, zwłaszcza w inżynierii i metrologii, gdzie dokładność i minimalizacja błędów pomiarowych są kluczowe. Przykładem zastosowania tej wiedzy jest projektowanie elementów mechanicznych, gdzie tolerancje muszą być ściśle określone, aby zapewnić ich poprawne funkcjonowanie. Stosowanie właściwych standardów, takich jak ISO 2768, które definiują tolerancje ogólne dla wymiarów, jest niezbędne dla uzyskania wysokiej jakości wyrobów.

Pytanie 2

Korzystając z danych zamieszczonych w tabeli, oblicz kąt skręcenia pomiędzy układami współrzędnych wtórnym i pierwotnym.

Numer punktuUkład pierwotnyUkład wtórny
XpYpXwYw
1100,00100,00400,00400,00
2123,00134,00377,00366,00
3145,00162,00355,00338,00
4200,00200,00300,00300,00

A. 300g
B. 50g
C. 200g
D. 250g
Prawidłowa odpowiedź to 200g, co oznacza kąt skręcenia między układami współrzędnych wtórnym i pierwotnym. Aby obliczyć kąt skręcenia, ważne jest zrozumienie, jak układy współrzędnych są ze sobą powiązane. Kąt ten można określić poprzez analizę różnic między danymi w układzie pierwotnym a tymi w układzie wtórnym. W praktyce, poprawne obliczenie kąta skręcenia jest kluczowe w dziedzinach takich jak inżynieria, architektura oraz robotyka, gdzie precyzyjne określenie orientacji obiektów jest niezbędne do prawidłowego działania mechanizmów i systemów. Kiedy zmieniamy orientację układów współrzędnych, musimy uwzględnić nie tylko kąt, ale także zmiany w lokalizacji oraz ewentualne przekształcenia, które mogą wpłynąć na dalsze obliczenia. Znajomość prawidłowego obliczania kąta skręcenia jest zgodna z najlepszymi praktykami w zakresie projektowania systemów, w których precyzja ma kluczowe znaczenie dla ich funkcjonowania.

Pytanie 3

Miary określające lokalizację mierzonej pikiety nazywają się

A. przecięciami
B. domiarami biegunowymi
C. kątami wierzchołkowymi
D. domiarami prostokątnymi
Wybierając inne odpowiedzi, można napotkać na pewne nieporozumienia dotyczące terminologii geodezyjnej. Kąty wierzchołkowe są terminem używanym w geometrii, ale w kontekście pomiarów geodezyjnych nie odnoszą się one bezpośrednio do określania położenia pikiet. W rzeczywistości, kąt wierzchołkowy to kąt utworzony przez dwa boki figury geometrycznej, a nie narzędzie do pomiaru lokalizacji punktów w przestrzeni. Przecięcia odnoszą się do miejsc, w których dwie linie się krzyżują, co w kontekście geodezji nie jest adekwatnym opisem miar położenia. Może to prowadzić do błędnych założeń, ponieważ nie uwzględnia istoty pomiarów opartych na kierunkach i odległościach. Domiary prostokątne, z kolei, polegają na określaniu punktów na podstawie układów prostokątnych, co również nie jest zgodne z podstawowymi zasadami pomiarów biegunowych. Użycie tych terminów zamiast domiarów biegunowych może prowadzić do zamieszania w analizach geodezyjnych oraz ograniczać trafność pomiarów. Dlatego ważne jest, aby podczas nauki geodezji skoncentrować się na poprawnym użyciu terminologii, aby uniknąć błędów w praktyce pomiarowej.

Pytanie 4

Na łatach niwelacyjnych umiejscowionych w punktach 100 oraz 101 dokonano pomiarów l100 = 1 555, l101 = 2 225. Jaka jest różnica wysokości Δh100-101 między punktami 100 a 101?

A. 6,700 m
B. -0,670 m
C. -0,670 cm
D. 0,670 m
Wybór odpowiedzi, która nie jest zgodna z poprawnym wynikiem, może wynikać z kilku typowych błędów myślowych związanych z interpretacją odczytów niwelacyjnych. W przypadku błędnych odpowiedzi, takich jak 6,700 m, można zauważyć, że wynika to z mylnego założenia, iż obliczenia należy wykonać w jednostkach niezwiązanych z rzeczywistą różnicą wysokości. To podejście ignoruje fakt, że różnice wysokości powinny być podawane w metrach, a nie w centymetrach. Odpowiedzi, które sugerują zmiany w wysokości, są często wynikiem nieprawidłowego zrozumienia sposobu działania niwelacji, gdzie kluczowe jest rozróżnienie między odczytem wysokości a rzeczywistą różnicą wysokości między punktami. Warto również zwrócić uwagę na jednostki. Odpowiedź -0,670 cm jest niepoprawna, ponieważ zamiast tego powinno być -0,670 m. Użycie nieodpowiednich jednostek może prowadzić do dramatycznych różnic w interpretacji danych geodezyjnych. Kluczowe w tej dziedzinie jest przestrzeganie właściwych norm oraz praktyk, które wymagają, aby wyniki były jednoznaczne i precyzyjnie wyrażone w standardowych jednostkach miary. W związku z tym, aby uniknąć takich pomyłek, istotne jest zrozumienie podstawowych zasad niwelacji oraz poprawne stosowanie wzorów i jednostek. W praktyce geodezyjnej, znajomość odpowiednich norm i procedur jest niezbędna dla uzyskania dokładnych wyników pomiarów.

Pytanie 5

Jakie jest wartość azymutu odcinka AB, jeśli współrzędne punktów A i B to: YA = 100,00; XA = 100,00; YB = 150,00; XB = 50,00?

A. 225°
B. 45°
C. 135°
D. 315°
Azymut to kąt między kierunkiem północnym a linią łączącą dwa punkty, mierzony w stopniach w kierunku zgodnym z ruchem wskazówek zegara. Aby obliczyć azymut prostej AB, wykorzystujemy wzór na azymut: Az = arctan((Y_B - Y_A) / (X_B - X_A)). W przypadku podanych współrzędnych A(100, 100) i B(50, 150) obliczamy różnice: Y_B - Y_A = 150 - 100 = 50 oraz X_B - X_A = 50 - 100 = -50. Wstawiając wartości do wzoru, otrzymujemy: Az = arctan(50 / -50). Obliczenie daje nam wartość -45°, co po dodaniu 360° daje nam 315°. Jednak, aby uzyskać azymut w kontekście kierunku z A do B, musimy skorygować nasz wynik. Kierunek z A do B wskazuje, że poruszamy się w dół i w lewo, co implikuje, że azymut wynosi 135°. Dodatkowo w praktyce geodezyjnej azymut jest niezwykle istotny dla orientacji w terenie, planowania tras oraz w inżynierii, gdzie precyzyjne określenie kierunków jest kluczowe dla prawidłowego wykonania projektów.

Pytanie 6

Jeśli dokonano poniższych pomiarów kąta pionowego: w pierwszym ustawieniu lunety KL = 83,3400g oraz w drugim ustawieniu lunety KP = 316,6700g, to wartość kąta nachylenia α wynosi

A. 83,3350g
B. 16,6700g
C. 16,6650g
D. 83,3400g
Aby obliczyć wartość kąta nachylenia α na podstawie odczytów lunety, należy zastosować odpowiednią formułę, która polega na odjęciu wartości odczytu w położeniu I od wartości odczytu w położeniu II. W tym przypadku, odczyt w położeniu II wynosi 316,6700g, a w położeniu I 83,3400g. Obliczenie tego daje: α = KP - KL = 316,6700g - 83,3400g = 233,3300g. Jednak, aby uzyskać kąt nachylenia w kontekście geodezyjnym, należy zauważyć, że kąt nachylenia w kontekście pomiarów geodezyjnych jest często wyrażany jako kąt w stosunku do poziomu, a nie w bezwzględnych jednostkach. W takim przypadku, odpowiednia wartość α, jaką otrzymujemy (16,6650g), odnosi się do różnicy wysokości lub kątów nachylenia. W praktyce, poprawne obliczenie kątów nachyleń jest kluczowe w wielu zastosowaniach geodezyjnych oraz inżynieryjnych, takich jak budowa dróg, mostów czy budynków, gdzie precyzyjne pomiary wysokości i nachyleń mają fundamentalne znaczenie dla bezpieczeństwa oraz trwałości konstrukcji.

Pytanie 7

Który z poniższych błędów nie jest usuwany przez pomiar z punktu centralnego w niwelacji geometrycznej?

A. Zakrzywienie powierzchni ziemi.
B. Osadzenie instrumentu.
C. Różne położenie zera pary łat.
D. Refrakcja pionowa.
Różne miejsca zera pary łat odnoszą się do różnic w ustawieniu łat, które mogą wpływać na dokładność pomiarów wysokości. W niwelacji geometrycznej, aby uzyskać precyzyjne wyniki, istotne jest, aby instrument niwelacyjny był umieszczony w odpowiedniej pozycji, a poziom zerowy łat był równy na obu końcach odcinka pomiarowego. Pomiar ze środka niwelacji, czyli wykonanie pomiaru od punktu, w którym instrument jest stabilnie ustawiony, minimalizuje wpływ potencjalnych błędów wynikających z asymetrii umiejscowienia łat. Przykładowo, w praktyce budowlanej, stosowanie niwelacji geometrycznej z pomiarem ze środka jest kluczowe podczas wyznaczania poziomych powierzchni fundamentów, co zapewnia ich równość i zmniejsza ryzyko osiadania budynku. W standardach branżowych, takich jak PN-EN ISO 17123, podkreśla się znaczenie precyzyjnego ustawienia instrumentów oraz odpowiedniego pomiaru, aby zmniejszyć błędy systematyczne i uzyskać wysoką dokładność pomiarów.

Pytanie 8

Jakich informacji nie powinno się zamieszczać w opisie obiektu podczas aktualizacji mapy zasadniczej?

A. Oznaczenia literowego źródła danych o lokalizacji
B. Numeru porządkowego obiektu
C. Oznaczenia literowego funkcji obiektu
D. Liczby kondygnacji nadziemnych
Oznaczenie literowe źródła danych o położeniu to informacja, która nie jest istotna dla opisu budynku w kontekście aktualizacji mapy zasadniczej. W praktyce, aktualizacja ta powinna skupiać się na danych, które są kluczowe dla identyfikacji i charakterystyki obiektów budowlanych. Numer porządkowy budynku oraz oznaczenie literowe funkcji budynku są istotne dla klasyfikacji i lokalizacji obiektów, co jest zgodne z obowiązującymi normami w zakresie ewidencji budynków. Liczba kondygnacji nadziemnych również ma znaczenie, ponieważ wpływa na klasyfikację obiektów oraz ich przeznaczenie. Oznaczenie źródła danych jest natomiast informacją techniczną, która dotyczy pochodzenia danych, a nie samego budynku. W dobrych praktykach kartograficznych i urbanistycznych koncentrujemy się na danych, które mają bezpośredni wpływ na planowanie przestrzenne oraz podejmowanie decyzji inwestycyjnych.

Pytanie 9

W jakim celu stosuje się metodę biegunową w pomiarach geodezyjnych?

A. Do określania współrzędnych punktów na podstawie jednej odległości i dwóch kątów.
B. Do wyznaczania kątów poziomych pomiędzy punktami w terenie.
C. Do określania kąta nachylenia powierzchni w projektach architektonicznych.
D. Do wykonywania pomiarów przemieszczeń w pionie w budownictwie.
Metoda biegunowa to jedna z najważniejszych i najczęściej stosowanych metod w geodezji. Jej głównym celem jest określanie współrzędnych punktów w terenie na podstawie jednej odległości i dwóch kątów — poziomego i pionowego. Dzięki tej metodzie można precyzyjnie ustalić lokalizację punktów w przestrzeni, co jest kluczowe w wielu zastosowaniach inżynieryjnych i budowlanych. W praktyce geodezyjnej metoda ta jest nieoceniona ze względu na swoją dokładność i efektywność. Na przykład, przy realizacji projektów infrastrukturalnych, takich jak budowa dróg, mostów czy budynków, precyzyjne określenie położenia punktów względem siebie jest niezbędne do prawidłowego przebiegu prac. Metoda biegunowa jest również szeroko stosowana w kartografii oraz przy tworzeniu map topograficznych. W standardach branżowych i dobrych praktykach geodezyjnych uznawana jest za podstawową technikę pomiarową, której znajomość jest niezbędna dla każdego profesjonalnego geodety. Dzięki jej zastosowaniu możliwe jest unikanie błędów w lokalizacji i zapewnienie zgodności projektów budowlanych z planami.

Pytanie 10

Kto odpowiada za ustanowienie i prowadzenie krajowej geodezyjnej ewidencji sieci uzbrojenia terenu?

A. geodeta uprawniony
B. wojewoda
C. główny geodeta kraju
D. starosta
Wybór wojewody jako osoby odpowiedzialnej za prowadzenie Krajowej geodezyjnej ewidencji sieci uzbrojenia terenu jest błędny, ponieważ wojewoda pełni funkcje administracyjne na poziomie województwa, ale nie ma kompetencji do zarządzania ewidencją geodezyjną na poziomie krajowym. Jego odpowiedzialność obejmuje nadzór nad działaniami samorządów w danym województwie, co nie jest równoważne z prowadzeniem ewidencji geodezyjnej. Geodeta uprawniony, z kolei, posiada odpowiednie kwalifikacje do wykonywania prac geodezyjnych, jednak jego rola ogranicza się do realizacji konkretnych zadań, a nie do zarządzania systemem ewidencji na poziomie krajowym. Starosta, jako przedstawiciel administracji powiatowej, także nie ma odpowiednich uprawnień do prowadzenia Krajowej geodezyjnej ewidencji, jego kompetencje dotyczą lokalnych spraw administracyjnych i nie obejmują nadzoru nad geodezją w skali kraju. Dlatego istotne jest zrozumienie hierarchii i kompetencji w strukturze administracji geodezyjnej, aby móc prawidłowo identyfikować odpowiedzialności w tym obszarze.

Pytanie 11

Jaki jest błąd względny dla odcinka o długości 150,00 m, który został zmierzony z błędem średnim ±5 cm?

A. 1:3000
B. 1:300
C. 1:30000
D. 1:30
Błąd względny jest kluczowym pojęciem w metrologii, które pozwala ocenić wiarygodność pomiarów. Obliczenie błędu względnego polega na podzieleniu błędu pomiarowego przez wartość zmierzoną, następnie mnożoną przez 100%, aby uzyskać wynik w procentach. W tym przypadku długość odcinka wynosi 150,00 m, a błąd średni wynosi ±5 cm, co jest równoważne ±0,05 m. Obliczamy błąd względny: (0,05 m / 150,00 m) * 100% = 0,0333% (co odpowiada 1:3000). W praktyce, wiedza o błędzie względnym jest niezwykle ważna w inżynierii i naukach przyrodniczych, gdzie precyzja pomiarów ma kluczowe znaczenie. Przykładem zastosowania tego typu obliczeń może być budownictwo, gdzie dokładne pomiary długości i kątów są niezbędne do zapewnienia stabilności konstrukcji. Ustalanie błędów względnych pomaga również w porównywaniu jakości różnych instrumentów pomiarowych oraz ich przydatności w różnych warunkach. Standardy ISO oraz normy krajowe definiują także wymagania dotyczące dopuszczalnych błędów pomiarowych w różnych dziedzinach, co czyni tę wiedzę niezbędną dla profesjonalistów.

Pytanie 12

Jakim znakiem geodezyjnym powinno się zaznaczyć punkt sytuacyjnej osnowy pomiarowej na twardej nawierzchni drogi?

A. Palik drewniany
B. Słupek marmurowy
C. Słupek betonowy
D. Bolec metalowy
Bolec metalowy jest odpowiedni do oznaczania punktów osnowy pomiarowej na utwardzonych nawierzchniach, takich jak jezdnie, ze względu na swoje właściwości trwałości oraz odporności na uszkodzenia mechaniczne. W praktyce geodezyjnej, stosowanie bolców metalowych pozwala na precyzyjne wytyczanie punktów, które są często narażone na mechaniczne obciążenia wynikające z ruchu drogowego. Metalowy bolec można łatwo zamontować w nawierzchni, co minimalizuje konieczność ingerencji w strukturę jezdni, w przeciwieństwie do słupków betonowych czy marmurowych, które wymagają bardziej skomplikowanego przygotowania terenu. Dodatkowo, standardy pomiarowe, takie jak normy ISO dotyczące geodezji, zalecają stosowanie trwałych i łatwych do identyfikacji znaczników, co czyni bolec metalowy najlepszym wyborem. W praktyce, zastosowanie bolców metalowych zapewnia długotrwałą widoczność punktów pomiarowych, co jest kluczowe dla dokładności i wiarygodności pomiarów geodezyjnych.

Pytanie 13

Jaki dokument geodezyjny jest kluczowy do zlokalizowania w terenie punktu osnowy geodezyjnej?

A. Opis topograficzny punktu
B. Szkic przeglądowy
C. Dziennik pomiaru kątów osnowy
D. Dziennik pomiaru boków osnowy
Opis topograficzny punktu jest kluczowym dokumentem geodezyjnym, który zawiera wszelkie istotne informacje o lokalizacji punktu osnowy geodezyjnej. Dokument ten zazwyczaj zawiera szczegółowy opis otoczenia punktu, w tym jego położenie w terenie, charakterystykę sąsiednich obiektów oraz wskazówki dotyczące dotarcia do punktu. Dzięki tym informacjom geodeta może precyzyjnie zlokalizować punkt osnowy, co jest niezbędne do przeprowadzania dalszych pomiarów i prac geodezyjnych. W praktyce, opis topograficzny jest często stosowany w projektach, gdzie precyzyjne pomiary są kluczowe, jak w inżynierii lądowej czy planowaniu przestrzennym. Standardy geodezyjne, takie jak normy ISO oraz krajowe przepisy dotyczące geodezji, wskazują na konieczność sporządzania takich opisów, co podkreśla ich znaczenie w branży. Dobrą praktyką jest także sporządzanie aktualizacji opisu topograficznego, zwłaszcza w rejonach intensywnie rozwijających się, aby zapewnić, że informacje pozostają aktualne.

Pytanie 14

Która z podanych czynności nie dotyczy aktualizacji mapy zasadniczej?

A. Dodanie nowych elementów treści mapy
B. Usunięcie sytuacji, która już nie istnieje w terenie
C. Korekta zmian w nazewnictwie
D. Wprowadzenie jedynie wybranych danych
Odpowiedź 'naniesienie tylko wybranych danych' jest prawidłowa, ponieważ proces aktualizacji mapy zasadniczej wymaga kompleksowego podejścia do uzupełniania i weryfikacji danych. Mapa zasadnicza, jako dokument urzędowy, powinna odzwierciedlać pełny stan rzeczy w terenie, co oznacza, że każda istotna zmiana, w tym wprowadzenie nowych elementów, poprawa nazewnictwa oraz usunięcie nieaktualnych obiektów, powinny być wprowadzane w sposób kompleksowy. Na przykład, jeżeli na danym terenie zbudowano nową drogę, to nie wystarczy jedynie nanieść tej drogi – konieczne jest również zaktualizowanie nazw ulic, systemów adresowych oraz wszelkich powiązanych danych. Ponadto, zgodnie z obowiązującymi standardami, w tym normami ISO oraz krajowymi przepisami prawa geodezyjnego, aktualizacja mapy zasadniczej powinna być przeprowadzana w sposób systematyczny i całościowy, aby zapewnić jej rzetelność oraz aktualność. Tylko w ten sposób mapa może służyć jako wiarygodne źródło informacji dla różnych użytkowników, w tym instytucji publicznych, inwestorów oraz obywateli.

Pytanie 15

Jakie urządzenie umożliwia przeprowadzenie odczytu szacunkowego z dokładnością do 0,1 najmniejszej działki limbusa?

A. Noniusz
B. Mikroskop skalowy
C. Mikrometr
D. Mikroskop wskaźnikowy
Mikroskop wskaźnikowy to precyzyjne narzędzie pomiarowe, które umożliwia wykonanie odczytu szacunkowego z dokładnością do 0,1 najmniejszej działki limbusa. Jego konstrukcja opiera się na zasadzie wskazywania wartości na skali, co pozwala na dokładniejsze oceny w porównaniu do innych narzędzi. Znajduje zastosowanie w wielu dziedzinach, takich jak inżynieria, metalurgia, czy nauki przyrodnicze, gdzie precyzyjne pomiary są kluczowe. Mikroskop wskaźnikowy często wykorzystuje się do oceny różnych parametrów, takich jak średnice otworów, grubości materiałów czy kątów. W praktyce, dobre praktyki pomiarowe wymagają stosowania narzędzi, które mogą dostarczyć wiarygodnych i powtarzalnych wyników. Przykładem zastosowania mikroskopu wskaźnikowego może być pomiar wymiarów detali w produkcji precyzyjnych komponentów. Wysoka dokładność tego narzędzia sprawia, że jest ono niezbędne w zastosowaniach, gdzie tolerancje wymiarowe są bardzo wąskie, co oznacza, że każde odstępstwo od normy może prowadzić do poważnych konsekwencji w funkcjonowaniu maszyn i urządzeń.

Pytanie 16

Pomiar odległości wynoszącej 100,00 m zawiera błąd średni ±5 cm. Jaka jest wartość błędu względnego tej odległości?

A. 1/5000
B. 1/2000
C. 1/500
D. 1/1000
Błąd względny jest miarą niepewności pomiaru w stosunku do wartości zmierzonej i oblicza się go jako stosunek błędu absolutnego (w tym przypadku ±5 cm) do wartości zmierzonej (100,00 m). Aby obliczyć błąd względny, możemy skorzystać z wzoru: błąd względny = błąd absolutny / wartość zmierzona. Podstawiając nasze wartości, mamy: błąd względny = 0,05 m / 100 m = 0,0005. Przekształcając tę wartość do postaci ułamka, otrzymujemy 1/2000. W praktyce, obliczanie błędu względnego jest kluczowe w wielu dziedzinach, takich jak inżynieria, nauki przyrodnicze czy metrologia, gdzie precyzyjne pomiary są niezbędne. Standardy metrologiczne, takie jak ISO 5725, wskazują na znaczenie analizy niepewności pomiarowej, co pozwala na lepsze zrozumienie dokładności wyników oraz ich zastosowanie w praktyce. Właściwe określenie błędu względnego umożliwia również porównywanie wyników pomiarów z różnych źródeł oraz ocenę ich dokładności.

Pytanie 17

W terenie odległość 100 m na mapie zasadniczej w skali 1:500 odpowiada długości odcinka wynoszącej

A. 50 cm
B. 20 cm
C. 20 mm
D. 50 mm
Odpowiedź '20 cm' jest jak najbardziej ok, bo w skali 1:500 to znaczy, że każdy 1 cm na mapie to 500 cm w rzeczywistości, czyli 5 metrów. Jak przeliczymy 100 metrów, to dzielimy przez 5, co daje 20 cm. Warto to wiedzieć przy robieniu planów zagospodarowania przestrzennego, bo tam precyzyjne odległości to podstawa. Takie obliczenia są zgodne z normami geodezyjnymi, które wymagają dokładnych informacji przestrzennych. Umiejętność przeliczania w różnych skalach jest potrzebna w wielu branżach, jak urbanistyka czy inżynieria lądowa, a także przy tworzeniu map. Zrozumienie, jak rzeczywistość wygląda w odwzorowaniu na mapie, pomaga w skutecznym planowaniu projektów wymagających precyzyjnych pomiarów i analiz.

Pytanie 18

Na rysunku osnowy pomiarowej nie należy zamieszczać

A. uśrednionych długości linii pomiarowych
B. wyrównanych kątów poziomych
C. numerów punktów osnowy
D. rzędnych oraz odciętych dotyczących szczegółów sytuacyjnych
Odpowiedź wskazująca na brak umieszczania rzędnych i odciętych do szczegółów sytuacyjnych na szkicu pomiarowej osnowy sytuacyjnej jest prawidłowa. Szkic osnowy sytuacyjnej ma na celu przedstawienie relacji pomiędzy punktami geodezyjnymi, ich numerami oraz geometrią układu, a nie szczegółów dotyczących elewacji czy innych informacji topograficznych. Umieszczanie rzędnych i odciętych na takim szkicu mogłoby prowadzić do zamieszania i nieczytelności, ponieważ podstawowym celem jest ukazanie układu punktów w płaszczyźnie poziomej. W praktyce, taki szkic powinien być bezpośrednim odzwierciedleniem wyników pomiarów, co wymaga skupienia się na podstawowych informacjach, takich jak długości linii pomiarowych czy wyrównane wartości kątów. Stosowanie się do tej zasady jest zgodne z normami geodezyjnymi, co zapewnia klarowność i spójność dokumentacji geodezyjnej. W praktyce, w przypadku prowadzenia pomiarów sytuacyjnych, geodeci często tworzą osobne rysunki lub wykresy, w których przedstawiają rzędne, co pozwala na precyzyjne odwzorowanie terenu i szczegółów topograficznych.

Pytanie 19

Która z metod niwelacji opiera się na określaniu różnic w wysokości pomiędzy punktami terenu za pomocą zmierzonych kątów pionowych oraz odległości poziomych między tymi punktami?

A. Trygonometryczna
B. Reperów
C. Punktów rozproszonych
D. Geometryczna
Metoda niwelacji trygonometrycznej opiera się na wyznaczaniu różnic wysokości pomiędzy punktami terenowymi przy użyciu pomiarów kątów pionowych oraz odległości poziomych. Ta technika jest szczególnie przydatna w sytuacjach, gdzie bezpośredni dostęp do punktów jest utrudniony lub niemożliwy. W praktyce, inżynierowie często wykorzystują niwelację trygonometryczną do tworzenia bardziej skomplikowanych projektów budowlanych, takich jak mosty czy drogi, gdzie precyzyjne określenie różnic wysokości jest kluczowe. Zastosowanie tej metody pozwala na obliczenia przy użyciu wzorów trygonometrycznych, co zwiększa efektywność pomiarów. Standardy branżowe, takie jak normy ISO dotyczące geodezji, wskazują na niwelację trygonometryczną jako jedną z zalecanych metod w skomplikowanych projektach geodezyjnych, co świadczy o jej uznawanej wartości i praktyczności w dziedzinie inżynierii i geodezji.

Pytanie 20

Jakie wartości przyjmują kąty zenitalne (z)?

A. 0° – 300°
B. 0° – 400°
C. 0° – 100°
D. 0° – 200°
Kąty zenitalne, oznaczane jako 'z', to miary kątów, które wskazują położenie obiektów w przestrzeni w stosunku do zenitu, czyli punktu na niebie znajdującego się bezpośrednio nad obserwatorem. Kąty te przyjmują wartości od 0° do 200°. Wartość 0° odpowiada bezpośredniemu położeniu obiektu w zenicie, natomiast 200° oznacza, że obiekt znajduje się na niebie w kierunku, który można określić jako 'pod' horyzontem, co jest konceptem bardziej teoretycznym, ponieważ w praktyce kąty nie mogą przekraczać 180°. W kontekście astronomii i geodezji, wiedza na temat kątów zenitalnych jest kluczowa przy obliczaniu pozycji ciał niebieskich, a także przy orientacji w terenie. Dzięki zastosowaniu kątów zenitalnych można precyzyjnie określić lokalizację obiektów w przestrzeni trójwymiarowej, co jest niezbędne w praktyce nawigacyjnej i w badaniach geograficznych. Standardy takie jak IAU (International Astronomical Union) oraz normy geodezyjne podkreślają wagę precyzyjnego pomiaru kątów zenitalnych w różnego rodzaju zastosowaniach, od mapowania po obserwacje astronomiczne.

Pytanie 21

Zbiór punktów o współrzędnych X, Y ustalonych w sieciach geodezyjnych o najwyższej precyzji określamy mianem osnowy

A. dokładną
B. niwelacyjną
C. podstawową
D. pomiarową
Osnowa geodezyjna to zbiór punktów o znanych współrzędnych, stanowiących podstawę do prowadzenia prac pomiarowych w geodezji. Wyróżnia się osnowę geodezyjną podstawową, która charakteryzuje się najwyższą dokładnością i stabilnością. Punkty te są wykorzystywane jako referencyjne w procesie pomiarowym, co zapewnia wysoką jakość i precyzję wyników. Osnowa podstawowa jest podstawą dla dalszej analizy i opracowywania danych w geodezji, jak również w infrastrukturze, takiej jak budownictwo i planowanie przestrzenne. Przykłady zastosowania osnowy podstawowej obejmują wytyczanie granic działek, pomiary inżynieryjne oraz tworzenie map topograficznych. W praktyce, dokładność osnowy podstawowej może wynikać z zastosowania technologii, takich jak GNSS, które umożliwiają precyzyjne określenie położenia punktów w przestrzeni. Zgodnie z normami geodezyjnymi, osnowa podstawowa jest niezbędna dla zapewnienia wiarygodności i spójności danych geodezyjnych w danym obszarze.

Pytanie 22

W jakiej skali sporządza się mapy zasadnicze dla niewielkich miejscowości, obszarów metropolitalnych i stref przemysłowych?

A. 1 : 1000
B. 1 : 2000
C. 1 : 5000
D. 1 : 500
Odpowiedź 1 : 1000 jest poprawna, ponieważ mapy zasadnicze małych miast, aglomeracji miejskich i obszarów przemysłowych sporządzane są w skali 1 : 1000, co oznacza, że 1 jednostka na mapie odpowiada 1000 jednostkom w rzeczywistości. Przykładowo, jeśli na mapie widoczna jest odległość 1 cm, w rzeczywistości jest to 1000 cm, czyli 10 m. Taka skala pozwala na szczegółowe odwzorowanie urbanistycznych i przestrzennych aspektów obszarów miejskich, co jest niezwykle istotne w planowaniu przestrzennym oraz zarządzaniu infrastrukturą. Przykłady zastosowania obejmują analizy gęstości zabudowy, lokalizację nowych inwestycji, a także ochronę środowiska. Zgodnie z obowiązującymi standardami, mapy zasadnicze powinny być aktualizowane regularnie, aby odzwierciedlały zmiany w zagospodarowaniu przestrzennym, co zwiększa ich użyteczność w praktyce.

Pytanie 23

Jaką długość ma odcinek na mapie o skali 1:40 000, jeśli na mapie w skali 1:20 000 jego długość wynosi 50 cm?

A. 50 cm
B. 25 cm
C. 5 cm
D. 2,5 cm
Odpowiedź 25 cm jest poprawna, ponieważ aby przeliczyć długość odcinka na mapie w nowej skali, należy uwzględnić relację między skalami. W skali 1:20 000, 50 cm na mapie odpowiada 10 000 m w rzeczywistości (50 cm * 20 000). W skali 1:40 000 ten sam 10 000 m w rzeczywistości odpowiada 25 cm na mapie (10 000 m / 40 000). Dlatego długość odcinka w skali 1:40 000 wynosi 25 cm. Praktycznym zastosowaniem tej wiedzy jest umiejętność przeliczania długości odcinków na mapach w różnych skalach, co jest kluczowe w geodezji, kartografii i planowaniu przestrzennym. W wielu zastosowaniach, takich jak projektowanie infrastruktury lub analiza lokalizacji, precyzyjne przeliczenie długości i powierzchni w różnych skalach jest niezbędne, aby zapewnić zgodność z rzeczywistością i precyzję planów. Warto również dodać, że znajomość konwersji skali jest istotna dla osób pracujących z mapami, które muszą interpretować dane w kontekście różnych zastosowań terenowych.

Pytanie 24

Niwelacja trygonometryczna polega na określaniu różnic wysokości wybranych lokalizacji na podstawie obserwacji

A. odległości pionowej i kąta poziomego
B. odległości poziomej i kąta poziomego
C. odległości poziomej i kąta pionowego
D. odległości pionowej i kąta pionowego
Niwelacja trygonometryczna polega na wyznaczaniu różnic wysokości wybranych punktów na podstawie obserwacji odległości poziomej i kąta pionowego. W praktyce, metoda ta wykorzystuje triangulację, gdzie pomiar kąta pionowego, a także odległości między punktami, pozwala na obliczenie różnic wysokości. Zastosowanie tej metody jest szerokie w inżynierii lądowej, geodezji oraz budownictwie. Na przykład, w przypadku budowy dróg czy mostów, niezbędne jest precyzyjne ustalenie różnic wysokości, aby zapewnić odpowiednią infrastrukturę i bezpieczeństwo. W kontekście standardów branżowych, zgodnie z normami ISO 17123-1:2001, pomiary niwelacji trygonometrycznej muszą być wykonywane z zachowaniem odpowiedniej staranności, co minimalizuje błędy pomiarowe i zwiększa dokładność wyników. Warto również zauważyć, że umiejętność wykonywania niwelacji trygonometrycznej jest kluczowa dla geodetów, którzy muszą podejmować decyzje na podstawie dokładnych danych o wysokościach.

Pytanie 25

Wyznacz wysokość punktu HP, mając dane:
- wysokość stanowiska pomiarowego Hst = 200,66 m,
- wysokość instrumentu i = 1,55 m,
- pomiar kreski środkowej na łacie s = 1150.

A. HP = 201,06 m
B. HP = 203,36 m
C. HP = 197,96 m
D. HP = 200,26 m
Aby obliczyć wysokość punktu HP, należy zastosować wzór: HP = Hst - i + s, gdzie Hst to wysokość stanowiska pomiarowego, i to wysokość instrumentu, a s to odczyt kreski środkowej na łacie. W naszym przypadku mamy: Hst = 200,66 m, i = 1,55 m oraz s = 1150 mm (czyli 1,150 m). Podstawiając wartości do wzoru, otrzymujemy: HP = 200,66 m - 1,55 m + 1,150 m = 201,06 m. Ta metoda jest fundamentalna w geodezji, szczególnie w pomiarach wysokościowych, gdzie precyzyjne ustalenie wysokości punktu odniesienia jest kluczowe dla dokładności dalszych pomiarów. W praktyce, szczególnie w inżynierii lądowej i budowlanej, umiejętność poprawnego stosowania takich obliczeń jest niezbędna, aby zapewnić zgodność z zasadami i standardami branżowymi. Zrozumienie podstawowych zasad obliczeń wysokości jest również przydatne w kontekście projektowania i analizy terenu, gdzie precyzyjne dane wysokościowe są wykorzystywane do oceny ukształtowania terenu oraz planowania infrastruktur takich jak drogi czy mosty.

Pytanie 26

Na jakiej długości od początku trasy usytuowany jest punkt oznaczony 2/3+57,00 m?

A. 557,00 m
B. 2557,00 m
C. 357,00 m
D. 2357,00 m
Prawidłowa odpowiedź to 2357,00 m, ponieważ oznaczenie 2/3+57,00 m wskazuje na sposób określania odległości na trasie. W kontekście geodezji i inżynierii lądowej, '2/3' oznacza dwa trzecie odcinka, które zostało już wyznaczone. Przyjmując, że '57,00 m' to dodatkowa odległość, którą należy dodać, obliczamy 2/3 z 3000 m (przykładowo, jeśli pełna długość trasy wynosi 3000 m), co daje 2000 m, a następnie dodajemy 57,00 m, co łącznie daje 2357,00 m. Takie podejście przydaje się w praktyce inżynieryjnej, gdyż pozwala na precyzyjne wyznaczanie punktów na trasach, co jest kluczowe dla prawidłowego prowadzenia robót budowlanych czy projektowania infrastruktury. W standardach geodezyjnych, takich jak PN-EN 1878, określone są metody pomiaru i oznaczania odległości, które są niezbędne w każdym projekcie budowlanym.

Pytanie 27

Osoba, która nie przekaże dokumentacji opracowanej w trakcie prac geodezyjnych lub kartograficznych do państwowego zasobu geodezyjnego oraz kartograficznego, może być ukarana

A. ograniczeniem wolności
B. pozbawieniem wolności
C. grzywną
D. odebraniem uprawnień zawodowych
Odpowiedź, że osoba, która nie przekaże materiałów powstałych w wyniku prac geodezyjnych lub kartograficznych do państwowego zasobu geodezyjnego i kartograficznego, może zostać ukarana grzywną, jest poprawna. Zgodnie z ustawą o geodezji i kartografii, każdy geodeta ma obowiązek dostarczenia wyników swoich prac do odpowiednich instytucji. Niezastosowanie się do tego obowiązku jest traktowane jako wykroczenie, które podlega karze grzywny. Przykładowo, jeśli geodeta wykonuje pomiary terenu i nie złoży dokumentacji w zasobie geodezyjnym, naraża się na konsekwencje prawne. Taka regulacja ma na celu zapewnienie, że dane geodezyjne będą dostępne dla innych użytkowników, co jest kluczowe dla planowania przestrzennego, ochrony środowiska oraz prowadzenia inwestycji budowlanych. Zgodność z tym obowiązkiem jest istotnym elementem dobrych praktyk w branży geodezyjnej oraz przyczynia się do transparentności i jakości danych w publicznym obiegu.

Pytanie 28

W jakiej skali w systemie PL-2000 wykonany jest dokument mapy zasadniczej o godle 7.125.30.10.3.4?

A. 1:2000
B. 1:1000
C. 1:500
D. 1:5000
Odpowiedź 1:500 jest poprawna, ponieważ arkusz mapy zasadniczej o godle 7.125.30.10.3.4 w systemie PL-2000 jest sporządzony w skali 1:500, co jest zgodne z normami dotyczącymi szczegółowości map oraz ich zastosowania w projektowaniu urbanistycznym. W skali 1:500, każdy centymetr na mapie odpowiada 5 metrom w terenie, co pozwala na precyzyjne odwzorowanie szczegółów terenowych, takich jak granice działek, układ dróg czy lokalizacja budynków. Tego rodzaju szczegółowość jest niezbędna w procesie planowania przestrzennego, projektowania infrastruktury oraz w działaniach związanych z zarządzaniem nieruchomościami. W praktyce, architekci i urbaniści wykorzystują mapy w tej skali do analizy przestrzennej, co pozwala na lepsze podejmowanie decyzji. Zrozumienie skali mapy i jej zastosowania jest kluczowe dla każdego specjalisty w dziedzinie geodezji i kartografii, a znajomość standardów PL-2000 ułatwia realizację projektów zgodnie z obowiązującymi przepisami prawymi i technicznymi.

Pytanie 29

Jakie informacje nie są uwzględniane w szkicu polowym przy pomiarze szczegółów terenowych metodą ortogonalną?

A. Sytuacyjne szczegóły terenowe
B. Domiary prostokątne
C. Numery obiektów
D. Wysokości punktów terenu
Wysokości punktów terenu nie są zazwyczaj umieszczane na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną, ponieważ ten typ szkicu koncentruje się głównie na przedstawieniu układu przestrzennego obiektów oraz ich relacji do siebie. Metoda ortogonalna zazwyczaj wykorzystywana jest do pomiaru szczegółów sytuacyjnych i domiarów prostokątnych, które są kluczowe dla dokładnego odwzorowania terenu na mapie. Wysokości punktów terenu, mimo że są ważnym aspektem w geodezji, są zazwyczaj dokumentowane oddzielnie, na przykład w postaci profili wysokościowych lub na innych rodzajach dokumentów, które bardziej skupiają się na aspektach terenowych. W praktyce oznacza to, że inżynierowie i geodeci muszą być świadomi, jakie informacje są dla nich kluczowe na różnych etapach projektowania, aby odpowiednio dobierać metody pomiarowe i dokumentacyjne.

Pytanie 30

W jakiej skali według układu PL-2000 wykonany jest arkusz mapy zasadniczej z godłem 7.125.30.10.3?

A. 1:500
B. 1:2000
C. 1:1000
D. 1:5000
Odpowiedź 1:1000 jest prawidłowa, ponieważ w układzie PL-2000 arkusz mapy zasadniczej o godle 7.125.30.10.3 jest sporządzony w skali 1:1000. Tego typu skala jest powszechnie stosowana w dokumentacji geodezyjnej, ponieważ pozwala na szczegółowe przedstawienie małych obszarów, takich jak działki budowlane czy obiekty infrastrukturalne. W praktyce, dla geodetów i urbanistów, skala 1:1000 umożliwia precyzyjne planowanie przestrzenne oraz analizę zagospodarowania terenu. Ponadto, zgodnie z obowiązującymi przepisami prawno-geodezyjnymi, mapy w takiej skali muszą spełniać określone standardy jakości, co zapewnia ich użyteczność w procesach decyzyjnych związanych z inwestycjami budowlanymi. Dodatkowo, w kontekście normatywów, skala ta jest uznawana za optymalną dla przedstawienia szczegółowych informacji, takich jak granice działek, ukształtowanie terenu, czy lokalizację istniejącej infrastruktury. W związku z tym, posługiwanie się skalą 1:1000 w arkuszach mapy zasadniczej jest nie tylko zgodne z wymaganiami, ale również efektywne z punktu widzenia praktycznego zastosowania w geodezji i urbanistyce.

Pytanie 31

Precyzja graficzna mapy odpowiada długości terenowej, która wynosi 0,1 mm na mapie. Z jaką precyzją został zaznaczony punkt na mapie w skali 1:5000?

A. ± 0,50 m
B. ± 50,00 m
C. ± 0,05 m
D. ± 5,00 m
Wybór odpowiedzi ± 50,00 m, ± 0,05 m lub ± 5,00 m pokazuje, że mamy do czynienia z pewnymi nieporozumieniami, jeśli chodzi o interpretację skali mapy i przeliczanie jednostek. Przy skali 1:5000 ważne jest, żeby zrozumieć, że jednostka na mapie odpowiada pięciokrotnemu powiększeniu w rzeczywistości. Odpowiedź ± 50,00 m jest zdecydowanie za duża, co sugeruje, że mogłeś się pomylić w zrozumieniu skali. Podobnie, ± 0,05 m pomija fakt, że 0,1 mm na mapie to tak naprawdę 0,5 m w terenie, więc ta odpowiedź też nie jest trafiona. Odpowiedź ± 5,00 m pokazuje, że myślisz o większym błędzie pomiarowym, ale nie uwzględnia skali. Te błędy mogą naprawdę wpłynąć na ważne rzeczy, jak planowanie przestrzenne, gdzie precyzyjna lokalizacja punktów ma kluczowe znaczenie. Więc warto zwracać uwagę na detale dotyczące skali i przeliczania jednostek, żeby uniknąć pomyłek i mieć pewność, że wyniki będą rzetelne.

Pytanie 32

Dlaczego w geodezji ważna jest kalibracja przyrządów pomiarowych?

A. Aby przyspieszyć proces wykonywania pomiarów.
B. Aby ułatwić transport sprzętu na miejsce pomiaru.
C. Aby zapewnić dokładność i wiarygodność pomiarów.
D. Aby zredukować zużycie materiałów pomiarowych.
Kalibracja przyrządów pomiarowych jest kluczowa w geodezji, ponieważ zapewnia dokładność i wiarygodność wyników pomiarów. W geodezji precyzja pomiarów jest fundamentalna, gdyż nawet najmniejsze błędy mogą prowadzić do znaczących nieścisłości w odwzorowaniu terenu czy projektowaniu infrastruktury. Regularna kalibracja gwarantuje, że instrumenty pomiarowe działają zgodnie z ich specyfikacjami i są w stanie generować wyniki zgodne z wymaganiami projektowymi oraz normami branżowymi. Bez kalibracji, sprzęt mógłby generować błędne odczyty z powodu zużycia, zmian w warunkach środowiskowych czy niewłaściwej obsługi. Praktyczne zastosowanie kalibracji widoczne jest na przykład w budownictwie, gdzie precyzyjne pomiary są niezbędne do prawidłowego wykonania konstrukcji. Ponadto, kalibracja jest zgodna z dobrymi praktykami branżowymi i standardami ISO, które wymagają, by wszystkie urządzenia pomiarowe były regularnie kontrolowane i kalibrowane. Dzięki temu geodeci mogą być pewni, że ich praca jest dokładna i zgodna z oczekiwaniami klientów oraz przepisami prawa.

Pytanie 33

Dokumentacja, która zawiera wyniki geodezyjnych pomiarów sytuacyjnych oraz wysokościowych, jak również efekty przetworzenia tych danych, jest kompletowana i przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego w formie operatu

A. szacunkowego
B. pomiarowego
C. katastralnego
D. technicznego
Odpowiedź 'technicznego' jest prawidłowa, ponieważ operat techniczny to dokumentacja, która zawiera szczegółowe dane dotyczące geodezyjnych pomiarów sytuacyjnych i wysokościowych. W skład operatu technicznego wchodzą nie tylko wyniki pomiarów, ale również ich opracowanie oraz analizy, co czyni go kluczowym dokumentem w procesie przekazywania informacji do Państwowego Zasobu Geodezyjnego i Kartograficznego. W praktyce, operat techniczny jest niezbędny w przypadkach takich jak sporządzanie map, ustalanie granic działek czy przygotowywanie analiz przestrzennych. Zgodnie z normami branżowymi, operaty techniczne powinny być sporządzane zgodnie z odpowiednimi przepisami prawa geodezyjnego, co zapewnia ich rzetelność i zgodność z obowiązującymi standardami. Przykładowo, w sytuacjach, gdzie wymagane jest pozyskanie informacji do celów inwestycyjnych, operat techniczny stanowi podstawowy dokument, który pozwala na przeprowadzenie dalszych analiz i decyzji administracyjnych.

Pytanie 34

W jakim zakrescie znajduje się wartość azymutu boku AB, jeżeli różnice współrzędnych pomiędzy punktem początkowym a końcowym boku AB są takie, że ΔXAB < 0 oraz ΔYAB < 0?

A. 100200g
B. 200300g
C. 300400g
D. 0100g
Azymut boku AB, w którym różnice współrzędnych ΔXAB i ΔYAB są ujemne, wskazuje na kierunek południowo-zachodni. W systemie azymutalnym, azymut wyrażany jest w stopniach, gdzie 0° wskazuje na północ, a 270° na zachód. Ponieważ zarówno ΔX, jak i ΔY są ujemne, oznacza to, że punkt końcowy znajduje się na lewo i poniżej punktu początkowego, co odpowiada zakresowi azymutu od 200° do 300°. Taki przedział azymutu jest istotny w geodezji i nawigacji, gdzie dokładne określenie kierunku ma kluczowe znaczenie dla precyzyjnych pomiarów i wytyczania dróg. Przykładem zastosowania może być nawigacja w terenie, gdzie geodeta musi precyzyjnie określić kierunek, aby przeprowadzić pomiary terenowe lub przygotować mapę. Zrozumienie azymutu oraz jego wartości w kontekście współrzędnych jest fundamentem w geodezji oraz kartografii, co jest zgodne z wytycznymi standardów geodezyjnych.

Pytanie 35

Do trwałych metod stabilizacji punktów osnowy poziomej nie zaliczają się

A. trzpienie metalowe
B. paliki drewniane
C. rurki stalowe
D. słupy betonowe
Paliki drewniane nie są odpowiednie do trwałego sposobu stabilizacji punktów osnowy poziomej z kilku powodów. Przede wszystkim, drewno jako materiał jest podatne na degradację, zwłaszcza w warunkach atmosferycznych, co prowadzi do utraty stabilności i dokładności pomiarów geodezyjnych. Z czasem paliki mogą gnić, ulegać deformacji lub przesuwać się w wyniku zmian wilgotności i temperatury. W praktyce geodezyjnej preferuje się materiały o wysokiej trwałości i odporności na czynniki zewnętrzne, takie jak metale i beton, które zapewniają długoterminową stabilność punktów osnowy. Na przykład, trzpienie metalowe i rurki stalowe, wykorzystywane w stabilizacji punktów, są odporne na korozję i mechaniczne uszkodzenia, co czyni je bardziej niezawodnymi w długim okresie. Zgodnie z normami geodezyjnymi, zastosowanie stałych punktów o wysokiej trwałości jest niezbędne do zapewnienia dokładności pomiarów i ich powtarzalności w czasie, co jest kluczowe w projektowaniu i realizacji inwestycji budowlanych oraz infrastrukturalnych.

Pytanie 36

Na czym polega metoda niwelacji trygonometrycznej?

A. Na obliczaniu różnic wysokości na podstawie pomiarów kątów i odległości.
B. Na tworzeniu profili terenu za pomocą modelowania 3D, co nie dotyczy bezpośrednio pomiarów wysokościowych.
C. Na bezpośrednim pomiarze długości przy użyciu miarki, co nie ma związku z pomiarami wysokościowymi.
D. Na określaniu współrzędnych punktów za pomocą GPS, co nie jest związane z niwelacją trygonometryczną.
Metoda niwelacji trygonometrycznej jest jedną z kluczowych technik stosowanych w geodezji do pomiaru różnic wysokości między punktami terenowymi. Polega ona na wykorzystaniu pomiarów kątów oraz odległości poziomych lub skośnych, aby obliczyć różnice wysokości. Metoda ta wykorzystuje trygonometrię, w szczególności funkcje trygonometryczne, takie jak sinus i tangens, do przekształcenia danych kątowych i odległościowych w różnice wysokości. Dzięki temu można precyzyjnie określić wysokość punktów w terenie bez konieczności fizycznego przemieszczania się między nimi. W praktyce, niwelacja trygonometryczna jest stosowana w sytuacjach, gdy teren jest trudny do przebycia lub gdy pomiary wymagają dużej dokładności, np. w budownictwie mostów czy tuneli. Dodatkowo, ta technika jest przydatna w miejscach, gdzie niemożliwe jest zastosowanie tradycyjnych metod niwelacji, takich jak niwelacja geometryczna. Korzystanie z tej metody wymaga jednak precyzyjnych instrumentów, takich jak tachimetry, oraz umiejętności analizy danych pomiarowych w kontekście matematycznym. Metoda ta jest zgodna z normami i standardami geodezyjnymi, co czyni ją niezastąpioną w wielu profesjonalnych zastosowaniach.

Pytanie 37

Jakim kolorem na mapie zasadniczej przedstawia się przewód elektroenergetyczny?

A. pomarańczowym
B. niebieskim
C. czerwonym
D. żółtym
Przewód elektroenergetyczny na mapie zasadniczej rysuje się kolorem czerwonym, co jest zgodne z obowiązującymi normami oraz standardami w branży elektroenergetycznej. Kolor ten został przyjęty jako uniwersalny sposób oznaczania wszelkiego rodzaju linii energetycznych, aby zminimalizować ryzyko pomyłek i zwiększyć bezpieczeństwo użytkowników map. Praktyczne zastosowanie tej konwencji jest nieocenione, zwłaszcza w kontekście planowania i zarządzania infrastrukturą energetyczną. Na przykład, inżynierowie i technicy często korzystają z map zasadniczych podczas lokalizacji przewodów, co ułatwia im wykonywanie prac konserwacyjnych, inspekcji oraz modernizacji. Dodatkowo, zgodność z ogólnokrajowymi i międzynarodowymi standardami, takimi jak normy ISO oraz regulacje dotyczące bezpieczeństwa, potwierdza zasadność przyjęcia koloru czerwonego do oznaczania przewodów elektroenergetycznych. Warto również zauważyć, że kolor czerwony jest powszechnie kojarzony z zagrożeniem, co dodatkowo zwiększa ostrożność podczas pracy w pobliżu instalacji energetycznych.

Pytanie 38

Wyniki pomiarów należy skorygować przed ich użyciem w obliczeniach, uwzględniając poprawki związane z błędami

A. pozorne.
B. średnie.
C. grube.
D. systematyczne.
Odpowiedź "systematyczne" jest prawidłowa, ponieważ odnosi się do błędów systematycznych, które są stałymi odchyleniami wyników pomiarów spowodowanymi przez określone czynniki, takie jak nieprawidłowości w użytym sprzęcie, błędy w metodzie pomiarowej czy wpływ otoczenia. Korygowanie wyników pomiarów w celu eliminacji tych błędów jest kluczowe dla uzyskania dokładnych i wiarygodnych danych. Przykładem może być pomiar temperatury, gdzie błędy systematyczne mogą wynikać z nieprawidłowo skalibrowanego termometru. Poprawki wprowadzane na etapie analizy danych, takie jak kalibracja sprzętu przed pomiarem lub stosowanie kompensacji wpływu temperatury otoczenia, są zgodne z najlepszymi praktykami w naukach przyrodniczych i inżynieryjnych. Eliminowanie błędów systematycznych jest również zgodne z normami ISO, które podkreślają znaczenie dokładności i precyzji w procesach pomiarowych, co jest kluczowe dla zapewnienia wysokiej jakości wyników badań oraz ich rzetelności.

Pytanie 39

Na kopii mapy powinny być zaznaczone wyniki wywiadu terenowego przeprowadzonego podczas geodezyjnych prac związanych z pomiarami sytuacyjnymi oraz wysokościowymi?

A. klasyfikacyjnej
B. zasadniczej
C. sozologicznej
D. topograficznej
Wyniki wywiadu terenowego, które są kluczowe w procesie pomiarów geodezyjnych, powinny być zaznaczone na mapie zasadniczej. Mapa zasadnicza to dokument, który przedstawia szczegółowe dane dotyczące ukształtowania terenu, istniejącej infrastruktury oraz innych elementów przestrzennych. Wykonywanie pomiarów sytuacyjnych i wysokościowych w terenie jest niezbędne do zapewnienia aktualności tych informacji. Zgodnie z obowiązującymi standardami geodezyjnymi, wyniki pomiarów powinny być wprowadzane do mapy zasadniczej w sposób, który umożliwia ich późniejsze wykorzystanie w różnych dziedzinach, takich jak planowanie przestrzenne, ochrona środowiska czy inwestycje budowlane. Przykładem zastosowania może być proces aktualizacji danych w przypadku budowy nowego obiektu, gdzie dokładne odwzorowanie w terenie ma kluczowe znaczenie dla dalszych prac. W praktyce, geodeci często korzystają z technologii GPS oraz skaningu laserowego, aby dokładnie zarejestrować zmiany, które następnie odzwierciedlane są na mapach zasadniczych, co zgodne jest z dobrą praktyką branżową.

Pytanie 40

Który z wymienionych obiektów przestrzennych zalicza się do pierwszej kategorii szczegółów terenowych?

A. Most
B. Plac zabaw
C. Tama
D. Boisko sportowe
Most jest obiektem przestrzennym, który pełni kluczową rolę w infrastrukturze transportowej. Jest to konstrukcja, która umożliwia przemieszczanie się ludzi oraz pojazdów nad przeszkodami, takimi jak rzeki, doliny czy inne drogi. Z perspektywy planowania przestrzennego i urbanistyki, mosty są niezwykle istotne, ponieważ łączą różne obszary geograficzne, co wpływa na rozwój społeczno-gospodarczy regionów. Przykładem zastosowania mostów mogą być mosty wiszące, które charakteryzują się dużą wytrzymałością i mogą być budowane w miejscach, gdzie inne rodzaje mostów byłyby niepraktyczne. Wzorcowe projekty mostów powinny odnosić się do norm, takich jak Eurokod, które definiują wymagania dotyczące bezpieczeństwa, użyteczności i trwałości tego typu infrastruktury. Ponadto, mosty mogą wpływać na ekosystemy rzeczne, dlatego ich projektowanie powinno uwzględniać zasady zrównoważonego rozwoju, co oznacza minimalizowanie wpływu na środowisko.