Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 10 czerwca 2025 08:21
  • Data zakończenia: 10 czerwca 2025 08:48

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Działanie podejmowane po pobraniu próbki wody, mające na celu zachowanie jej składu chemicznego podczas transportu, określa się mianem

A. oczyszczania
B. mianowania
C. rozcieńczania
D. utrwalania
Utrwalanie próbki wody po jej pobraniu jest kluczowym etapem, który ma na celu zachowanie jej oryginalnego składu chemicznego w trakcie transportu i analizy. Proces ten polega na dodaniu odpowiednich substancji chemicznych lub zastosowaniu metod fizycznych, które zapobiegają zmianom w składzie wody, takim jak rozkład mikroorganizmów czy reakcje chemiczne, które mogą zachodzić w czasie transportu. Przykładem może być dodanie kwasu solnego do próbek wody morskiej w celu zatrzymania wzrostu bakterii. W kontekście standardów, wiele organizacji, w tym EPA i ISO, podkreśla znaczenie tego etapu w procedurach pobierania i analizy próbek wody. Utrwalanie jest istotne nie tylko dla uzyskania dokładnych wyników analitycznych, ale również dla zapewnienia bezpieczeństwa zdrowotnego, ponieważ niektóre zanieczyszczenia mogą mieć poważne konsekwencje dla zdrowia publicznego. Zrozumienie tego procesu pozwala na lepsze planowanie badań i optymalizację metod analitycznych, co jest niezbędne w pracy laboratoriach środowiskowych.

Pytanie 2

Reagent, który reaguje wyłącznie z jednym konkretnym jonem lub związkiem, nazywamy reagente

A. specyficzny
B. maskujący
C. grupowy
D. selektywny
Odczynnik specyficzny to taki, który reaguje z jednym, ściśle określonym jonem lub związkiem chemicznym, co czyni go niezwykle przydatnym w analizach chemicznych i laboratoryjnych. Przykładem może być odczynnik nieselektywnego wykrywania jonów srebra, jakim jest chlorowodorek sodu, który wytrąca białe osady tylko w obecności jonów srebra. W praktyce, zastosowanie odczynników specyficznych pozwala na przeprowadzanie dokładnych analiz jakościowych i ilościowych, co jest kluczowe w laboratoriach chemicznych, analitycznych, a także w przemyśle farmaceutycznym i środowiskowym. Standardy ASTM i ISO promują stosowanie takich odczynników w badaniach laboratoryjnych, co podkreśla ich znaczenie w zapewnieniu wysokiej jakości wyników. W kontekście praktycznym, specyficzność odczynników jest niezwykle ważna w diagnostyce medycznej, gdzie konieczne jest precyzyjne określenie obecności konkretnych biomarkerów.

Pytanie 3

Reakcja neutralizacji wodorotlenku sodu z kwasem solnym zrealizowana jest zgodnie z równaniem:
NaOH + HCl → NaCl + H2O Masy molowe: MNaOH = 40 g/mol, MHCl = 36,5 g/mol Aby zneutralizować 10 g wodorotlenku sodu, wymagane jest

A. 24,013 g roztworu kwasu solnego o stężeniu 38%
B. 36,5 g roztworu kwasu solnego o stężeniu 38%
C. 10 g roztworu kwasu solnego o stężeniu 38%
D. 9,125 g roztworu kwasu solnego o stężeniu 38%
Aby zobojętnić 10 g wodorotlenku sodu (NaOH), najpierw musimy obliczyć liczbę moli NaOH. Liczba moli obliczana jest ze wzoru n = m/M, gdzie m to masa, a M to masa molowa substancji. Masy molowe NaOH wynoszą 40 g/mol, więc liczba moli NaOH to 10 g / 40 g/mol = 0,25 mol. Reakcja zobojętniania NaOH z kwasem solnym (HCl) jest jednoczynnikowa, co oznacza, że jeden mol NaOH reaguje z jednym molem HCl. Zatem potrzebujemy 0,25 mola HCl do zobojętnienia 0,25 mola NaOH. Masy molowe HCl wynoszą 36,5 g/mol, więc masa HCl potrzebna do reakcji wynosi 0,25 mol * 36,5 g/mol = 9,125 g. Roztwór kwasu solnego o stężeniu 38% oznacza, że w 100 g roztworu znajduje się 38 g HCl. Aby obliczyć masę roztworu potrzebnego do uzyskania 9,125 g HCl, można skorzystać ze wzoru: masa roztworu = masa HCl / (stężenie HCl/100) = 9,125 g / (38/100) = 24,013 g. Tak więc do zobojętnienia 10 g NaOH potrzeba 24,013 g roztworu kwasu solnego o stężeniu 38%. Takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne dawkowanie reagentów jest niezbędne dla uzyskania dokładnych wyników.

Pytanie 4

Piknometr służy do określania

A. rozpuszczalności
B. gęstości
C. wilgotności
D. lepkości
Piknometr jest precyzyjnym przyrządem służącym do pomiaru gęstości substancji, co jest niezwykle istotne w wielu dziedzinach, takich jak chemia, biochemia czy inżynieria materiałowa. Gęstość jest definiowana jako masa na jednostkę objętości i ma kluczowe znaczenie w identyfikacji substancji oraz w kontrolowaniu jakości produktów. Piknometry są wykorzystywane w laboratoriach do pomiaru gęstości cieczy, a także ciał stałych po uprzednim ich przekształceniu w zawiesiny. Przykładowo, w analizie chemicznej, znajomość gęstości substancji pozwala na obliczenie stężenia roztworów, co jest krytyczne dla wielu procesów syntezy chemicznej i analitycznej. Zgodnie z zasadami metrologii, pomiar gęstości powinien być przeprowadzany w warunkach kontrolowanej temperatury, a piknometry muszą być kalibrowane, aby zapewnić wiarygodność wyników. Standardy, takie jak ASTM D1481, wyznaczają metody pomiaru gęstości z wykorzystaniem piknometrów, co dodatkowo podkreśla ich znaczenie w praktyce laboratywnej.

Pytanie 5

Naważkę NaOH o masie 0,0400 g rozpuścić w małej ilości wody, a następnie przelać ten roztwór do kolby miarowej o pojemności 500 cm3 i uzupełnić kolbę miarową wodą do tzw. kreski. Masa molowa NaOH wynosi 40,0 g/mol. Jakie jest stężenie molowe przygotowanego roztworu?

A. 0,020 mol/dm3
B. 0,002 mol/dm3
C. 2,000 mol/dm3
D. 0,200 mol/dm3
Aby obliczyć stężenie molowe sporządzonego roztworu wodorotlenku sodu (NaOH), należy najpierw obliczyć liczbę moli substancji. Masa wodorotlenku sodu wynosi 0,0400 g, a jego masa molowa to 40,0 g/mol. Liczba moli NaOH wynosi zatem: n = m/M = 0,0400 g / 40,0 g/mol = 0,001 mol. Roztwór został rozcieńczony do objętości 500 cm³, co odpowiada 0,500 dm³. Stężenie molowe (C) obliczamy ze wzoru: C = n/V, gdzie n to liczba moli, a V to objętość roztworu w dm³. Wstawiając wartości, otrzymujemy: C = 0,001 mol / 0,500 dm³ = 0,002 mol/dm³. Takie obliczenia są fundamentalne w chemii analitycznej i stosowane są w laboratoriach do przygotowywania roztworów o znanym stężeniu. Znajomość stężeń molowych jest kluczowa w reakcjach chemicznych, szczególnie w kontekście analizy ilościowej oraz w procesach przemysłowych, gdzie precyzyjne dawkowanie reagentów ma kluczowe znaczenie dla jakości produktów końcowych.

Pytanie 6

Wskaż jaka zawartość chlorków w próbce wody pozwala na wykorzystanie tej wody do produkcji betonu zgodnie z normą PN-EN 1008.

Wymagania dotyczące zawartości chlorków w wodzie do produkcji betonu według normy PN-EN 1008
substancjadopuszczalna wartość w mg/dm3
chlorki1000

A. 1000 g/dm3
B. 107 mg/m3
C. 10 g/dm3
D. 1000 g/m3
Odpowiedź 1000 g/m3 jest poprawna, ponieważ odnosi się do normy PN-EN 1008, która określa maksymalne dopuszczalne stężenie chlorków w wodzie przeznaczonej do produkcji betonu. Zgodnie z tą normą, stężenie chlorków powinno wynosić maksymalnie 1000 mg/dm3, co można przeliczyć na 1000 g/m3, ponieważ 1 mg/dm3 odpowiada 1 g/m3. Użycie wody z takim stężeniem chlorków w procesie produkcji betonu jest kluczowe, ponieważ nadmiar chlorków może prowadzić do korozji zbrojenia, a tym samym osłabienia konstrukcji betonowych. W praktyce oznacza to, że firmy budowlane i producenci betonu muszą przeprowadzać regularne analizy jakości wody wykorzystywanej do mieszania, aby zapewnić zgodność z normami i uniknąć potencjalnych problemów w przyszłości.

Pytanie 7

Wskaź zestaw reagentów oraz przyrządów wymaganych do przygotowania 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3?

A. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 1 naważka analityczna HCl
B. Kolba pomiarowa na 500 cm3, 1 odważka analityczna HCl 0,1mol/dm3
C. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 4 odważki analityczne HCl 0,1 mol/dm3
D. Kolba pomiarowa na 500 cm3, 2 odważki analityczne HCl 0,1 mol/dm3
Przy wyborze zestawu odczynników i sprzętu do sporządzenia 0,5 dm³ roztworu HCl o stężeniu 0,2 mol/dm³ ważne jest zrozumienie, dlaczego inne opcje są niewłaściwe. Na przykład, użycie kolby miarowej na 1000 cm³ w połączeniu z cylinder miarowym na 500 cm³ oraz jedną naważką analityczną HCl nie odpowiada wymaganiom tego zadania. Takie podejście może sugerować marnotrawstwo materiałów, gdyż nie jest konieczne posiadanie większej kolby do przygotowania mniejszych objętości roztworu. Ponadto, to może prowadzić do błędów w odmierzeniu HCl, co jest kluczowe w kontekście uzyskania pożądanego stężenia. Niepoprawne mieszanie odczynników może skutkować niewłaściwym przygotowaniem roztworu, co może wpłynąć na dalsze eksperymenty oraz wyniki badań. Użycie czterech odważek analitycznych HCl 0,1 mol/dm³ w innym zestawie również jest zbędne, gdyż konieczne są tylko jedne odważki dla uzyskania żądanej ilości moli. Takie nadmierne wyposażenie w sprzęt oraz reagenty może prowadzić do nieefektywności oraz zwiększenia ryzyka błędów w laboratorium. W kontekście dobrych praktyk laboratoryjnych istotne jest dążenie do minimalizacji użycia materiałów oraz przestrzeganie zasad precyzyjnego pomiaru, co jest kluczowe w chemii analitycznej.

Pytanie 8

Eliminacja substancji organicznych z próbki poprzez jej spalenie nazywa się

A. mineralizacja sucha
B. ekstrakcja do fazy stałej
C. mineralizacja mokra
D. roztworzenie
Mineralizacja sucha to proces, w którym substancje organiczne w próbce ulegają całkowitemu spaleniu w wysokotemperaturowym piecu, co prowadzi do ich przekształcenia na minerały oraz gazy, takie jak dwutlenek węgla i woda. Metoda ta jest powszechnie stosowana w laboratoriach analitycznych do oznaczania zawartości węgla organicznego w glebie, osadach czy próbkach biologicznych. Proces mineralizacji suchej zapewnia pełne utlenienie materiału organicznego, co umożliwia dokładne pomiary pozostałych składników mineralnych. Przykładem zastosowania tej metody może być analiza gleby w kontekście oceny jej jakości oraz możliwości rolniczych, gdzie istotne jest określenie zawartości substancji organicznych. Mineralizacja sucha jest zgodna z normami ISO, co podkreśla jej znaczenie w standardowych procedurach analitycznych. Wiedza na temat tej techniki jest kluczowa dla specjalistów zajmujących się analizą chemiczną, geologiczną, czy ochroną środowiska, ponieważ pozwala na uzyskanie rzetelnych danych o składzie próbek.

Pytanie 9

Jakie jest stężenie molowe roztworu, jeśli w 100 cm3 roztworu znajduje się 5,6 g KOH?
MK = 39 g/mol, MO = 16 g/mol, MH = 1 g/mol

A. 1 mol/dm3
B. 100 mol/dm3
C. 10 mol/dm3
D. 0,1 mol/dm3
Aby obliczyć stężenie molowe roztworu, należy najpierw obliczyć liczbę moli KOH zawartych w 5,6 g. Masa molowa KOH wynosi 56 g/mol (39 g/mol dla K + 16 g/mol dla O + 1 g/mol dla H). Możemy więc obliczyć liczbę moli jako: n = m / M = 5,6 g / 56 g/mol = 0,1 mol. Następnie przekształcamy objętość roztworu z centymetrów sześciennych na decymetry sześcienne: 100 cm³ = 0,1 dm³. Stężenie molowe (C) obliczamy korzystając ze wzoru C = n / V, co daje C = 0,1 mol / 0,1 dm³ = 1 mol/dm³. Tego typu obliczenia są niezwykle istotne w chemii analitycznej, gdzie precyzyjne stężenia roztworów są kluczowe dla uzyskania poprawnych wyników eksperymentalnych oraz w syntezie substancji chemicznych. Zrozumienie tych obliczeń pomaga w zachowaniu właściwych proporcji w reakcjach chemicznych, co jest podstawą wielu procesów przemysłowych oraz laboratoriów badawczych.

Pytanie 10

Jaką objętość w warunkach standardowych zajmie 1,7 g amoniaku (masa molowa amoniaku wynosi 17 g/mol)?

A. 11,2 dm3
B. 22,4 dm3
C. 2,24 dm3
D. 4,48 dm3
W przypadku analizy objętości gazu, kluczowe jest zrozumienie, jak molowość substancji wpływa na objętość, jaką zajmuje w danych warunkach. Podstawowym błędem w kilku z niepoprawnych odpowiedzi jest nieprawidłowe zastosowanie zasad dotyczących gazów. Odpowiedzi, które wskazują na 22,4 dm³, 4,48 dm³ oraz 11,2 dm³, wynikają z niezrozumienia liczby moli i ich konwersji na objętość gazu. Odpowiedź 22,4 dm³ sugeruje, że mówimy o całym molu gazu, a nie o 0,1 mola, co jest kluczowe w tym kontekście. W rzeczywistości, tylko 1 mol amoniaku zajmuje 22,4 dm³, a 1,7 g amoniaku to jedynie 0,1 mola. Podobnie, objętości 4,48 dm³ i 11,2 dm³ można uznać za wyniki nieprawidłowych obliczeń, gdzie mogły być pomieszane ilości moli lub zastosowane niewłaściwe przeliczniki. W praktyce, aby uniknąć takich błędów, ważne jest dokładne zrozumienie stoichiometrii reakcji chemicznych oraz umiejętność pracy z jednostkami miary. Często błędy te wynikają z pośpiechu lub nieuwagi podczas rozwiązywania problemów, co w kontekście chemicznym jest szczególnie istotne, gdyż niewłaściwe dane mogą prowadzić do niebezpiecznych sytuacji w laboratoriach i przemyśle.

Pytanie 11

W trakcie korzystania z odczynnika opisanego na etykiecie, należy szczególnie zwrócić uwagę na zagrożenia związane

A. z wybuchem
B. z pożarem
C. z poparzeniem
D. z lotnością
Wybór odpowiedzi związanej z lotnością, poparzeniem czy wybuchem nie uwzględnia kluczowego zagrożenia, jakim jest pożar, które jest szczególnie istotne w kontekście wielu reagentów chemicznych. Lotność substancji chemicznych, chociaż ważna, odnosi się głównie do ich zdolności do przechodzenia w stan gazowy. Substancje lotne mogą tworzyć łatwopalne mieszaniny z powietrzem, lecz to nie zawsze prowadzi do wybuchu. Z kolei poparzenia chemiczne są rzeczywiście zagrożeniem, jednak nie są one bezpośrednio związane z pożarem, a bardziej z reakcjami chemicznymi, które mogą wystąpić w kontakcie z reagentem. Odpowiedź związana z wybuchem odnosi się do specyficznych warunków, które są wymagane, by doszło do takiego zdarzenia, jak np. obecność silnie reaktywnych substancji czy niewłaściwe warunki przechowywania. Typowym błędem myślowym jest mylenie tych zagrożeń lub niewłaściwe ocenianie ich prawdopodobieństwa. Kluczowe jest zrozumienie, że wiele substancji chemicznych, które mogą wydawać się niegroźne, w rzeczywistości mają wysoką tendencję do zapłonu i muszą być przechowywane oraz używane zgodnie z obowiązującymi normami bezpieczeństwa, jak na przykład NFPA (National Fire Protection Association), które dostarczają wytycznych dotyczących ochrony przed pożarami w laboratoriach.

Pytanie 12

Podczas reakcji chlorku żelaza(III) z wodorotlenkiem potasu dochodzi do wytrącenia wodorotlenku żelaza(III) w formie

A. grubokrystalicznego osadu
B. galaretowatego osadu
C. serowatego osadu
D. drobnokrystalicznego osadu
Reakcja chlorku żelaza(III) z wodorotlenkiem potasu prowadzi do wytrącenia wodorotlenku żelaza(III) w postaci galaretowatego osadu. Ta charakterystyka jest istotna w kontekście chemii analitycznej oraz w procesach związanych z oczyszczaniem wód. Galaretowaty osad jest wynikiem specyficznej kinetyki reakcji oraz agregacji cząsteczek w wyniku obecności warunków pH. W praktycznych zastosowaniach, taki osad jest łatwy do rozdzielenia od cieczy, co czyni go użytecznym w procesach filtracji. Ponadto, wodorotlenek żelaza(III) jest często stosowany w przemysłowych aplikacjach, takich jak produkcja pigmentów czy w medycynie do usuwania metali ciężkich z organizmu. Zrozumienie właściwości tego osadu jest kluczowe dla efektywnego projektowania procesów przemysłowych, w których kontrola nad rozdziałem faz jest niezbędna.

Pytanie 13

W celu wydania świadectwa kontroli jakości odczynnika chemicznego - jodku potasu cz.d.a. przeprowadzono jego analizę. Wymagania oraz wyniki badań zapisano w tabeli:
Z analizy danych zawartych w tabeli wynika, że jodek potasu cz.d.a.

WymaganiaWynik badania
Zawartość KImin. 99,5%99,65%
Wilgoćmax. 0,1%0,075%
Substancje nierozpuszczalne w wodziemax. 0,005%0,002%
pH (5%, H2O)6 ÷ 86,8
Azot ogólny (N)max. 0,001%0,0007%
Chlorki i bromki (j. Cl)max. 0,01%0,004%
Fosforany (PO4)max. 0,001%0,0006%
Jodany (IO3)max. 0,0003%0,0001%
Siarczany (SO4)max. 0,001%0,0004%
Metale ciężkie (j. Pb)max. 0,0005%0,00025%
Arsen (As)max. 0,00001%0,000006%
Magnez (Mg)max. 0,001%0,0004%
Sód (Na)max. 0,05%0,015%
Wapń (Ca)max. 0,001%0,0006%
Żelazo (Fe)max. 0,0003%0,0003%

A. nie spełnia wymagań pod względem zawartości metali ciężkich.
B. spełnia wymagania i można wydać świadectwo jakości.
C. nie spełnia wymagań pod względem pH i zawartości jodanów.
D. nie spełnia wymagań pod względem zawartości żelaza.
Wydaje mi się, że w przypadku odpowiedzi, które mówią, że jodek potasu cz.d.a. nie spełnia norm, można łatwo popaść w błąd. Każdy z wymienionych parametrów jakości, jak pH czy zawartość metali ciężkich, musiałby być poniżej normy, a w danych, które analizowaliśmy, tak nie było. Często zdarza się, że ktoś skupia się na jednym parametrze, a nie zwraca uwagi na to, że inne też są okej. To prowadzi do mylnych wniosków – ważne jest, żeby oceniać wszystko razem, a nie na zasadzie pojedynczych wartości. W branży chemicznej to kluczowe, żeby rozumieć, że kontrola jakości to nie tylko jeden wskaźnik. Ignorowanie dobrych wyników na korzyść złych może wynikać z tego, że ktoś nie do końca rozumie normy jakościowe. Bez uwzględnienia całości analizy możemy podejmować złe decyzje dotyczące jakości produktów chemicznych, co może w późniejszym czasie wpłynąć na ich wykorzystanie w farmacji, żywności czy kosmetykach, gdzie normy są niezwykle istotne.

Pytanie 14

Różnica pomiędzy średnim wynikiem pomiaru a wartością rzeczywistą stanowi błąd

A. bezwzględny
B. przypadkowy
C. systematyczny
D. względny
W kontekście pomiarów różnice pomiędzy średnimi wynikami a wartościami rzeczywistymi mogą być opisywane różnymi terminami, jednak użycie pojęcia błędu względnego, systematycznego czy przypadkowego może prowadzić do nieporozumień. Błąd względny to stosunek błędu bezwzględnego do wartości rzeczywistej, co oznacza, że opisuje on błąd w kontekście wielkości zmierzonej. Na przykład, jeśli błąd bezwzględny wynosi 0,5 cm, a wartość rzeczywista to 10 cm, błąd względny wyniósłby 5%. Warto jednak zauważyć, że błąd względny nie informuje nas o rzeczywistej wielkości błędu, a jedynie o jego proporcji do wartości rzeczywistej. Błąd systematyczny odnosi się do błędów, które są stałe lub powtarzalne w danym pomiarze, na przykład spowodowane nieprawidłową kalibracją przyrządów. Takie błędy mogą być trudne do wykrycia, ponieważ wpływają na wszystkie pomiary w podobny sposób, co może prowadzić do błędnych wniosków dotyczących analizowanych danych. Wreszcie, błąd przypadkowy odnosi się do losowych fluktuacji, które mogą wystąpić podczas pomiarów, a ich przyczyny mogą być trudne do zidentyfikowania. Te błędy są niemal nieuniknione w każdym pomiarze, ale nie powinny być mylone z błędami bezwzględnymi, które są ważnym wskaźnikiem dokładności pomiaru. Właściwe zrozumienie tych terminów i ich różnic jest kluczowe dla właściwej analizy wyników oraz podejmowania decyzji opartych na pomiarach.

Pytanie 15

Technika kwartowania (ćwiartkowania) pozwala na redukcję masy próbki ogólnej

A. gazowej
B. półciekłej
C. ciekłej
D. stałej
Metoda kwartowania, czyli ćwiartkowanie, to sposób, który wykorzystuje się w laboratoriach, żeby zmniejszyć masę próbki stałej. Dzięki temu można ją analizować, nie tracąc przy tym jej reprezentatywności. Po prostu dzielimy próbkę na cztery równe części i wybieramy dwie przeciwległe, co daje nam mniejszą próbkę do pracy. To jest ważne zwłaszcza w chemii, gdzie zachowanie proporcji składników ma duże znaczenie. Na przykład, jeśli mamy dużą próbkę gleby i chcemy ją przeanalizować, kwartowanie pozwala nam na zmniejszenie jej do rozmiaru, który jest bardziej odpowiedni do badań, np. mikrobiologicznych czy chemicznych. Dla próbek stałych, takich jak minerały czy różne odpady, kwartowanie jest standardem, bo pozwala nam na uzyskanie reprezentatywnej próbki, a jednocześnie ogranicza straty materiału. Warto też pamiętać, że normy ISO w analizie próbek podkreślają znaczenie uzyskiwania prób reprezentatywnych, co jest kluczowe w wielu badaniach w laboratoriach i przemyśle.

Pytanie 16

Materiały wykorzystywane w laboratoriach, mogące prowadzić do powstawania mieszanin wybuchowych, powinny być przechowywane

A. w różnych punktach laboratorium
B. na otwartym powietrzu pod dachem
C. w izolowanych pomieszczeniach magazynów ogólnych
D. w specjalnie wydzielonych piwnicach murowanych
Materiały stosowane w laboratoriach, które mogą tworzyć mieszaniny wybuchowe, należy przechowywać w izolowanych pomieszczeniach magazynów ogólnych ze względu na ryzyko ich niekontrolowanej reakcji, co może prowadzić do poważnych zagrożeń dla zdrowia i bezpieczeństwa. Izolacja pomieszczeń magazynowych pozwala na ograniczenie rozprzestrzeniania się ewentualnych wybuchów oraz na skuteczne zarządzanie wentylacją i monitoringiem. Przykładem mogą być laboratoria chemiczne, gdzie substancje takie jak rozpuszczalniki organiczne, materiały łatwopalne czy reagenty chemiczne muszą być przechowywane w wyspecjalizowanych pomieszczeniach, które są zgodne z przepisami BHP oraz normami takimi jak NFPA (National Fire Protection Association) czy OSHA (Occupational Safety and Health Administration). Dobre praktyki obejmują również regularne kontrole i audyty stanu magazynów, co pozwala na wczesne wykrywanie potencjalnych zagrożeń oraz zapewnienie odpowiednich środków ochrony, takich jak gaśnice i systemy alarmowe.

Pytanie 17

Odlanie cieczy z nad osadu to

A. destylacja
B. dekantacja
C. sedymentacja
D. filtracja
Dekantacja to proces polegający na oddzieleniu cieczy od osadu poprzez jej zlanie. Jest to technika powszechnie stosowana w laboratoriach chemicznych oraz w przemyśle, szczególnie w produkcji napojów, takich jak wino czy piwo. W praktyce dekantacja umożliwia uzyskanie klarownej cieczy, eliminując niepożądane cząstki stałe. W przypadku win, na przykład, dekantacja jest kluczowym etapem, który pozwala na usunięcie osadu powstałego podczas fermentacji, co poprawia jakość i smak trunku. Proces ten jest zgodny z zasadami dobrych praktyk laboracyjnych, które zalecają stosowanie efektywnych metod separacji, minimalizujących ryzyko kontaminacji. Ważnym aspektem dekantacji jest także precyzja, z jaką należy przeprowadzić ten proces, aby uniknąć zmieszania cieczy z osadem. W kontekście analizy jakości cieczy, dekantacja może być również używana w analizie chemicznej do przygotowania próbek do dalszych badań, co podkreśla jej znaczenie w szerokim zakresie zastosowań.

Pytanie 18

Intensywna reakcja z FeCl3 jest wykorzystywana do identyfikacji

A. amin
B. aldehydów
C. alkenów
D. fenoli
Barwna reakcja z chlorkiem żelaza(III) jest dobrze znanym testem stosowanym do wykrywania fenoli, które wykazują zdolność do tworzenia kompleksów z tym związkiem. Fenole posiadają grupę hydroksylową (-OH) połączoną z pierścieniem aromatycznym, co umożliwia im reagowanie z chlorkiem żelaza(III), prowadząc do powstania charakterystycznego zabarwienia, zazwyczaj fioletowego lub purpurowego. Przykładem zastosowania tej reakcji w laboratoriach chemicznych jest analiza składu substancji organicznych, gdzie obecność fenoli może wskazywać na zanieczyszczenia lub naturalne składniki aktywne. Test ten jest często wykorzystywany w przemyśle kosmetycznym oraz farmaceutycznym, gdzie fenole mogą pełnić rolę konserwantów lub substancji czynnych. Zastosowanie tej metody jest zgodne z normami laboratoryjnymi, które zalecają stosowanie reakcji z chlorkiem żelaza(III) jako jednego z podstawowych sposobów na identyfikację związków fenolowych, co jest uznawane za dobrą praktykę w chemii analitycznej.

Pytanie 19

Podczas oznaczania kwasu siarkowego zachodzi reakcja:

H2SO4 + 2NaOH → Na2SO4 + 2H2O 
Zgodnie z zamieszczoną instrukcją, roztwór poreakcyjny należy

Fragmenty instrukcji zbierania, utylizacji i eliminacji odpadów chemicznych
Lista substancji, które mogą być usunięte z odpadami komunalnymi w postaci stałej, lub wprowadzone do systemu kanalizacyjnego w postaci rozcieńczonych roztworów wodnych, o ile ich ilość nie przekracza jednorazowo 100 g.
Związki nieorganiczne
Siarczany sodu, potasu, magnezu, wapnia, amonu
Kwasy nieorganiczne
Stężone kwasy ostrożnie rozcieńczyć przez wkroplenie z równoczesnym mieszaniem do wody z lodem, a następnie zneutralizować roztworem wodorotlenku sodowego. Po neutralizacji doprowadzić pH roztworu do zakresu 6-8 przelać do pojemnika S. Małe ilości kwasów takich jak siarkowy, solny, azotowy czy fosforowy (nie więcej niż 10 g) po rozcieńczeniu wodą i neutralizacji roztworem wodorotlenku sodowego oraz doprowadzeniu pH takiego roztworu do zakresu 6-8 można wylać do zlewu i obficie spłukać wodą.
Sole nieorganiczne
Stałe sole nieorganiczne – pojemnik N.
Obojętne roztwory soli nieorganicznych pojemnik S. Sole metali ciężkich, sole o właściwościach toksycznych – pojemnik TN.

A. zobojętnić i usunąć z odpadami komunalnymi.
B. wylać do zlewu i spłukać bieżącą wodą.
C. umieścić w pojemniku TN.
D. umieścić w pojemniku S.
Wybór niewłaściwej metody utylizacji roztworu po reakcji kwasu siarkowego z wodorotlenkiem sodu może prowadzić do poważnych konsekwencji zarówno dla środowiska, jak i dla bezpieczeństwa osób pracujących w laboratoriach. Umieszczanie roztworów w pojemnikach przeznaczonych dla odpadów niebezpiecznych, jak sugeruje jedna z odpowiedzi, jest nieadekwatne, ponieważ powstały siarczan sodu jest substancją neutralną i nie stwarza zagrożenia, co jest sprzeczne z zasadami efektywnej gospodarki odpadami. Ponadto, niewłaściwe wylewanie takich roztworów do zlewu bez wcześniejszego rozcieńczenia wodą może prowadzić do lokalnych zanieczyszczeń, a także może być niezgodne z lokalnymi przepisami dotyczącymi utylizacji odpadów chemicznych. Kwestia zobojętniania przed usunięciem jest również problematyczna, ponieważ w większości przypadków neutralizacja nie jest wymagana dla substancji obojętnych i może wprowadzać dodatkowe reakcje chemiczne, które generują odpady, zamiast ich minimalizować. Takie błędne podejścia pokazują, jak ważne jest posiadanie wiedzy na temat właściwego zarządzania odpadami oraz umiejętność rozpoznawania potencjalnych zagrożeń w praktyce laboratoryjnej. Właściwe postępowanie z odpadami chemicznymi powinno być zgodne z normami ochrony środowiska oraz wewnętrznymi procedurami bezpieczeństwa w laboratoriach, co jest kluczowe dla zapewnienia bezpieczeństwa osób oraz minimalizacji wpływu na środowisko.

Pytanie 20

Jakie urządzenie wykorzystuje się do pobierania próbek gazów?

A. czerpak
B. pojemnik
C. barometr
D. aspirator
Aspirator jest urządzeniem zaprojektowanym do pobierania próbek gazów w sposób kontrolowany i skuteczny. Jego działanie opiera się na zasadzie podciśnienia, które umożliwia pobieranie gazów bez narażania ich na zanieczyszczenia czy straty. W praktyce, aspiratory są wykorzystywane w laboratoriach analitycznych, przemyśle chemicznym oraz w monitorowaniu jakości powietrza. Użycie aspiratora pozwala na precyzyjne pobieranie próbek z określonych lokalizacji, co jest kluczowe w analizach, takich jak badanie emisji z kominów, czy ocena stężenia substancji szkodliwych w atmosferze. Standardy, takie jak ISO 17025, podkreślają znaczenie urządzeń do pobierania próbek w kontekście wiarygodności wyników badań. Należy również pamiętać, że aspiratory są często stosowane w połączeniu z odpowiednimi filtrami, co dodatkowo zwiększa jakość pobieranych próbek. Takie podejście zapewnia integrację metod analitycznych z procedurami zapewnienia jakości.

Pytanie 21

Ogólna próbka, jednostkowa lub pierwotna powinna

A. być tym większa, im bardziej jednorodny jest skład produktu
B. mieć masę 1-10 kg dla produktów stałych lub objętość 1-10 dm3 dla cieczy
C. być tym większa, im bardziej niejednorodny jest skład produktu
D. być tym mniejsza, im większa jest niejednorodność składu produktu
Odpowiedź jest poprawna, ponieważ w przypadku próbek ogólnych, jednostkowych lub pierwotnych, ich wielkość powinna wzrastać w miarę zwiększania się niejednorodności składu produktu. Zgodnie z zasadami statystyki i analizy chemicznej, im większa jest różnorodność składników, tym większa próbka jest potrzebna do uzyskania reprezentatywności wyników analizy. Przykładowo, w przemyśle spożywczym, jeśli surowiec ma zróżnicowany skład (np. mieszanka różnych nasion), to do analizy jakościowej lub ilościowej powinno się pobrać większą próbkę, aby uwzględnić wszystkie warianty składników. Normy takie jak ISO 17025 podkreślają znaczenie reprezentatywności próbek w kontekście uzyskiwania wiarygodnych wyników analitycznych. W praktyce, właściwe podejście do pobierania próbek może znacznie wpłynąć na jakość końcowych danych, co jest kluczowe w kontekście kontroli jakości i zapewnienia zgodności z normami.

Pytanie 22

Aby wykonać chromatografię cienkowarstwową, należy przygotować eluent składający się z toluenu, acetonu oraz kwasu mrówkowego w proporcjach objętościowych 10:4:1. Jakie ilości poszczególnych składników powinny być wykorzystane do uzyskania 300 cm3 eluentu?

A. 80 cm3 toluenu, 200 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
B. 200 cm3 toluenu, 80 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
C. 150 cm3 toluenu, 60 cm3 acetonu oraz 15 cm3 kwasu mrówkowego
D. 300 cm3 toluenu, 75 cm3 acetonu oraz 30 cm3 kwasu mrówkowego
Aby przygotować eluent w chromatografii cienkowarstwowej, musimy zachować odpowiednie proporcje objętości składników. W przypadku stosunku 10:4:1 oznacza to, że na każde 10 części toluenu przypada 4 części acetonu i 1 część kwasu mrówkowego. Sumując te proporcje, otrzymujemy 15 części łącznie. Dla 300 cm³ eluentu obliczamy objętości poszczególnych składników w następujący sposób: (10/15) * 300 cm³ = 200 cm³ toluenu, (4/15) * 300 cm³ = 80 cm³ acetonu, oraz (1/15) * 300 cm³ = 20 cm³ kwasu mrówkowego. Przygotowanie eluentu w tych dokładnych proporcjach zapewnia optymalne warunki separacji składników w chromatografii. W praktyce, takie precyzyjne przygotowanie roztworów jest istotne, aby zapewnić powtarzalność wyników oraz zgodność z normami laboratoryjnymi dotyczących analizy chemicznej. Warto również zauważyć, że stosowanie odpowiednich proporcji składników eluentu może wpływać na efektywność separacji i rozdziału substancji, co jest kluczowe w analityce chemicznej.

Pytanie 23

Do 200 g roztworu NaOH (M = 40 g/mol) o stężeniu 10 % dodano wodę destylowaną w kolbie miarowej o pojemności 500 cm3 do znaku. Jakie jest stężenie molowe powstałego roztworu?

A. 1,0 mol/dm3
B. 0,5 mol/dm3
C. 0,1 mol/dm3
D. 4,0 mol/dm3
Błędne odpowiedzi często opierają się na niepoprawnym zrozumieniu pojęcia stężenia oraz na niewłaściwym obliczeniu liczby moli substancji w roztworze. Dla odpowiedzi wskazujących na stężenie 0,5 mol/dm³, można zauważyć, że mogą one wynikać z błędnego założenia, że 200 g roztworu zawiera mniej moli NaOH, niż wynika to z obliczeń. Inną typową pomyłką jest zakładanie, że rozcieńczenie wpływa na całkowitą ilość moli w roztworze, co jest nieprawdziwe. Po rozcieńczeniu liczba moli pozostaje niezmieniona, a zmienia się tylko objętość roztworu, co prowadzi do błędnych wyników stężenia. Odpowiedzi wskazujące na 4,0 mol/dm³ mogą wynikać z mylnego przeliczenia masy substancji na mole bez uwzględnienia objętości roztworu, co jest kluczowe przy obliczaniu stężeń. Niezrozumienie metody obliczania stężenia molowego prowadzi do niepoprawnych wniosków, a także wykazuje brak znajomości podstawowych zasad chemii, takich jak prawo zachowania masy czy zasady przygotowywania roztworów. W praktyce laboratoryjnej ważne jest, aby dokładnie obliczać zarówno masy, jak i objętości, aby uzyskać poprawne wyniki analizy i zapewnić jakość badań.

Pytanie 24

Aby pobrać dokładnie 20 cm3 próbkę wody do przeprowadzenia analiz, należy zastosować

A. cylinder miarowy o pojemności 25 cm3
B. pipetę jednomiarową o pojemności 10 cm3
C. pipetę wielomiarową o pojemności 25 cm3
D. pipetę jednomiarową o pojemności 20 cm3
Pipeta jednomiarowa o pojemności 20 cm3 jest najodpowiedniejszym narzędziem do precyzyjnego pobierania próbki wody o objętości 20 cm3. W praktyce laboratoryjnej, pipety jednomiarowe są projektowane tak, aby umożliwić dokładne i powtarzalne pomiary, co jest kluczowe w analizach chemicznych. Wybierając pipetę o pojemności dokładnie odpowiadającej potrzebnej objętości, minimalizujemy ryzyko błędów pomiarowych i podnosimy jakość uzyskiwanych wyników. W kontekście standardów laboratoryjnych, zgodnie z normą ISO 8655, pipety powinny być kalibrowane i okresowo weryfikowane, aby zapewnić ich dokładność. Użycie pipety o odpowiedniej pojemności, jak w tym przypadku, nie tylko zwiększa precyzję, ale także efektywność pracy w laboratorium, co jest istotne w przypadku wielu analiz wymagających rozcieńczeń lub dokładnych pomiarów składników chemicznych.

Pytanie 25

Urządzeniem pomiarowym nie jest

A. pehametr
B. konduktometr
C. termometr
D. eksykator
Eksykator jest urządzeniem, które nie służy do pomiarów, lecz do przechowywania substancji w warunkach obniżonego ciśnienia atmosferycznego lub w atmosferze kontrolowanej. Używany jest w laboratoriach chemicznych do zabezpieczania materiałów wrażliwych na wilgoć, powietrze lub inne czynniki atmosferyczne. Na przykład, eksykator może być stosowany do przechowywania substancji higroskopijnych, takich jak sól kuchenną, aby zapobiec ich nawilżeniu i degradacji. W praktyce, eksykatory często zawierają substancje osuszające, które pomagają utrzymać odpowiednie warunki w ich wnętrzu. W odróżnieniu od konduktometru, pH-metra i termometru, które są zaprojektowane do wykonywania precyzyjnych pomiarów fizykochemicznych, eksykator pełni jedynie funkcję przechowalniczą, co czyni go przyrządem niepomiarowym według standardów metrologicznych.

Pytanie 26

Na podstawie danych zawartych w tabeli wskaż, które opakowania zawierają produkt zgodny ze specyfikacją.

WŁAŚCIWOŚCINORMA KLASY A
wg specyfikacji produktu
OPAKOWANIE
123
POSTAĆBezbarwna ciecz, bez zanieczyszczeń.
Dopuszcza się niebieskawе zabаrwienie
i obecność skrystalizowanego osadu
Bezbarwna ciecz
Zawartość ługu sodowego
(NaOH), min, % masy
46,046,546,848,0
Węglan sodu (Na₂CO₃),
nie więcej niż, % masy
0,40,30,30,2
Chlorek sodu (NaCl),
nie więcej niż, % masy
0,0200,0150,0140,011
Chloran sodu (NaClO₃),
nie więcej niż, % masy
0,0070,0060,0050,002
Siarczan sodu (Na₂SO₄),
nie więcej niż, % masy
0,0400,0380,0350,029
Zawartość żelaza (Fe₂O₃),
max, WT. PPM
15151510

A. Żadne.
B. Wszystkie.
C. Tylko 1 i 2.
D. Tylko 3.
Wybranie odpowiedzi mówiącej, że żadne opakowania nie są zgodne z normami, to typowy błąd. Może się to brać stąd, że nie widzisz wszystkich ważnych szczegółów w danych. Wydaje mi się, że to trochę przez brak zrozumienia specyfikacji produktu i norm dotyczących jakości opakowań. Czasem ludzie mają tendencję do uogólniania, co prowadzi do błędnych wniosków. Pamiętaj, że każde opakowanie trzeba przeanalizować dokładnie, a stwierdzenie, że nic nie spełnia norm, jest po prostu nietrafione. Gdy mówisz, że tylko niektóre są zgodne, to znaczy, że mogłeś nie uwzględnić wszystkich parametrów z specyfikacji. Każde opakowanie powinno się oceniać z osobna, a złe oceny mogą mieć poważne konsekwencje, jak wprowadzenie wadliwych produktów na rynek, co może skutkować stratami lub zepsuciem reputacji firmy. Dlatego ważne jest, by oceniający też byli dobrze poinformowani i trzymali się standardów, żeby uniknąć takich sytuacji.

Pytanie 27

Do 300 g wody o temperaturze 30oC dodano 120 g substancji, co zaowocowało powstaniem roztworu nasyconego. Jaką ma rozpuszczalność ta substancja w temperaturze 30oC?

A. 40 g
B. 30 g
C. 20 g
D. 50 g
Odpowiedź 40 g jest poprawna, ponieważ oznacza to, że w 300 g wody w temperaturze 30°C maksymalna ilość substancji, która może się w niej rozpuścić, wynosi właśnie 40 g. Rozpuszczalność jest charakterystyczną właściwością substancji i jest określona dla danej temperatury. W praktyce oznacza to, że w celu uzyskania roztworu nasyconego należy dodać substancję do wody, aż osiągnie się stan, w którym wszelka dodatkowa substancja nie rozpuści się, co jest praktycznym krokiem przy przygotowywaniu roztworów w laboratoriach chemicznych. Wartości rozpuszczalności są kluczowe w różnych zastosowaniach, na przykład w przemyśle farmaceutycznym, gdzie odpowiednia rozpuszczalność substancji aktywnej wpływa na efektywność leku. Zrozumienie tego parametru pozwala na precyzyjne formułowanie roztworów o odpowiednich stężeniach, co jest niezbędne w procesach produkcyjnych. Dodatkowo, wiedza o rozpuszczalności substancji jest istotna w analizach chemicznych oraz w ocenie wpływu czynników fizykochemicznych na procesy rozpuszczania.

Pytanie 28

Aby uzyskać roztwór CuSO4 o stężeniu 15%, w jakim stosunku należy połączyć roztwory 10% oraz 20%?

A. 2:1
B. 1:1
C. 2:3
D. 3:2
Odpowiedź 2:1 jest poprawna, ponieważ aby uzyskać roztwór CuSO4 o stężeniu 15% z roztworów 10% i 20%, musimy zastosować regułę mieszania stężeń. Mieszanie dwóch roztworów o różnych stężeniach polega na wykorzystaniu wzoru na stężenie końcowe: C1V1 + C2V2 = C3(V1 + V2), gdzie C1 i C2 to stężenia początkowe roztworów, C3 to stężenie roztworu końcowego, a V1 i V2 to objętości roztworów. W tym przypadku C1=10%, C2=20%, a C3=15%. Przy odpowiednich obliczeniach i zastosowaniu równości, otrzymujemy stosunek V1:V2 równy 1:1. W praktyce, takie mieszanie jest powszechnie stosowane w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne stężenia roztworów są kluczowe dla dalszych reakcji chemicznych czy produkcji. Przykład zastosowania może obejmować przygotowywanie materiałów do analizy chemicznej lub syntezę związków chemicznych, gdzie dokładność stężeń wpływa na wyniki eksperymentów.

Pytanie 29

Laboratoryjny stół powinien być zaopatrzony w instalację gazową oraz

A. elektryczną, próżniową oraz hydrantową
B. elektryczną oraz chłodniczą
C. wodociągową i grzewczą
D. elektryczną i wodociągowo-kanalizacyjną
Odpowiedź wskazująca na wyposażenie stołu laboratoryjnego w instalację elektryczną oraz wodociągowo-kanalizacyjną jest prawidłowa, ponieważ te dwa systemy są kluczowe dla funkcjonowania większości laboratoriów. Instalacja elektryczna zapewnia zasilanie dla urządzeń laboratoryjnych, takich jak mikroskopy, wirówki czy pipety elektroniczne, a także oświetlenie robocze, co jest niezbędne do przeprowadzania precyzyjnych eksperymentów. Z kolei instalacja wodociągowa jest niezbędna do przeprowadzania wielu procesów laboratoryjnych, takich jak mycie sprzętu, przygotowywanie roztworów czy chłodzenie aparatów. W laboratoriach stosuje się także systemy kanalizacyjne, które umożliwiają odprowadzenie zanieczyszczonych cieczy zgodnie z odpowiednimi normami ochrony środowiska. Wymagania te są zgodne z wytycznymi dotyczącymi projektowania i funkcjonowania laboratoriów, które przewidują zapewnienie odpowiednich instalacji, aby zagwarantować bezpieczeństwo i efektywność pracy. Przykładowo, w laboratoriach chemicznych niezwykle istotne jest, aby woda bieżąca była dostępna w łatwy sposób, co ułatwia codzienne czynności oraz zwiększa bezpieczeństwo pracy.

Pytanie 30

Butle gazowe (czasy butli) napełnione wodorem są oznaczone kolorem

A. niebieskim
B. żółtym
C. jasnozielonym
D. czerwonym
Zrozumienie systemu oznaczania butli gazowych jest kluczowe dla bezpieczeństwa pracy z substancjami chemicznymi. Kolorystyka oznaczeń butli gazowych jest ściśle określona przez normy. Odpowiedzi sugerujące żółty, jasnozielony lub niebieski kolor są błędne, ponieważ nie odzwierciedlają one aktualnych praktyk w branży. Żółty kolor często kojarzony jest z gazami toksycznymi, a jasnozielony z gazami szlachetnymi, natomiast niebieski stosuje się zazwyczaj do azotu lub innych gazów obojętnych. Wybierając niepoprawne kolory, można narazić się na poważne konsekwencje, takie jak błędna identyfikacja gazu, co prowadzi do niebezpiecznych sytuacji. W przemyśle, gdzie obsługiwane są różne rodzaje gazów, znajomość i przestrzeganie norm dotyczących oznaczania butli gazowych jest niezbędne. Typowe błędy myślowe prowadzące do takich wniosków to ignorowanie standardów branżowych oraz brak świadomości na temat zagrożeń związanych z niewłaściwym oznaczeniem gazów. Warto pamiętać, że bezpieczeństwo w pracy z niebezpiecznymi substancjami chemicznymi opiera się na dokładnym przestrzeganiu procedur oraz systemów oznaczania, co bezpośrednio wpływa na zdrowie i życie pracowników oraz osób postronnych.

Pytanie 31

Metodą, która nie umożliwia przeniesienia składników próbki do roztworu, jest

A. stapianie
B. mineralizacja
C. roztwarzanie
D. liofilizacja
Liofilizacja to dość ciekawy proces. W skrócie, to suszenie przez sublimację, czyli woda z lodu od razu przechodzi w parę bez przechodzenia przez płynny stan. To ważne w labie, bo kiedy analizujemy próbki chemiczne, składniki muszą być dobrze rozpuszczone w odpowiednich rozpuszczalnikach, żeby wyniki były dokładne. Liofilizacja nie robi roztworu, a jedynie suszy materiał, więc nie nadaje się do przygotowania próbek do analizy. A tak na marginesie, liofilizacja jest popularna w przemyśle farmaceutycznym i spożywczym, gdzie ważne jest, żeby zachować właściwości produktów. Lepiej sprawdzają się inne metody, jak roztwarzanie, które są zgodne z normalnymi procedurami analitycznymi i zapewniają precyzyjne wyniki.

Pytanie 32

Aby wykonać czynności analityczne wskazane w ramce, należy użyć:

Otrzymaną do badań próbkę badanego roztworu rozcieńczyć wodą destylowaną w kolbie miarowej o pojemności 100 cm3 do kreski i dokładnie wymieszać. Następnie przenieść pipetą 10 cm3 tego roztworu do kolby stożkowej, dodać ok. 50 cm3 wody destylowanej.

A. zlewki, kolby ssawkowej, lejka Buchnera, cylindra miarowego.
B. kolby miarowej, tygla, pipety, naczynka wagowego.
C. kolby stożkowej, moździerza, lejka Shotta, naczynka wagowego.
D. kolby stożkowej, kolby miarowej, pipety, cylindra miarowego.
Odpowiedź wskazująca na użycie kolby stożkowej, kolby miarowej, pipety oraz cylindra miarowego jest poprawna, ponieważ każdy z tych przyrządów odgrywa kluczową rolę w procesie analitycznym. Kolba miarowa jest niezbędna do precyzyjnego rozcieńczania roztworów, co jest istotne w chemii analitycznej, gdzie dokładność stężeń ma fundamentalne znaczenie dla uzyskania wiarygodnych wyników. Pipeta, z kolei, pozwala na precyzyjne odmierzanie małych objętości roztworów, co jest kluczowe przy przygotowywaniu prób do analiz. Kolba stożkowa znajduje zastosowanie w mieszaniu reagentów oraz w prowadzeniu reakcji chemicznych, a cylinder miarowy umożliwia dokładne pomiary większych objętości cieczy. Użycie tych instrumentów jest zgodne z najlepszymi praktykami laboratoryjnymi i standardami dotyczącymi chemii analitycznej, co zapewnia rzetelność przeprowadzanych badań oraz powtarzalność eksperymentów.

Pytanie 33

W przypadku kontaktu ze stężonym roztworem zasady, co należy zrobić jak najszybciej?

A. skorzystać z amoniaku
B. zastosować 5% roztwór wodorowęglanu sodu
C. polać 3% roztworem wody utlenionej
D. zmyć bieżącą wodą
W przypadku oblania się stężonym roztworem zasady kluczowe jest jak najszybsze zneutralizowanie i usunięcie kontaktu z substancją. Zmycie bieżącą wodą jest najbardziej efektywną i odpowiednią metodą, ponieważ pozwala na rozcieńczenie zasady oraz fizyczne usunięcie jej z powierzchni skóry lub materiału. Woda działa jako rozpuszczalnik, który zmniejsza stężenie zasady, co z kolei minimalizuje ryzyko uszkodzenia tkanek. W praktyce, zaleca się pod bieżącą wodą przepłukać obszar kontaktu przez co najmniej 15 minut, aby zapewnić skuteczne usunięcie substancji. Ponadto, w sytuacjach laboratoryjnych, przestrzega się standardów BHP, które nakładają obowiązek posiadania odpowiednich stacji do płukania oczu i ciała, aby szybko reagować na takie wypadki. Warto również pamiętać o noszeniu odpowiednich środków ochrony osobistej, takich jak rękawice i gogle, co może zminimalizować ryzyko kontaktu z niebezpiecznymi substancjami. Tylko w przypadku, gdy zasada nie jest zmyta, można myśleć o dalszym postępowaniu, jednak zawsze należy wrócić do podstawowej metody usuwania substancji.

Pytanie 34

Określ, jakie informacje powinny być zarejestrowane w ewidencji wydania substancji niebezpiecznych, stosowanych w badaniach laboratoryjnych?

A. Liczba przeprowadzonych prób z użyciem tej substancji, data wydania
B. Metoda wydania, imię i nazwisko osoby wydającej
C. Ilości wydane, stan magazynowy, imię i nazwisko osoby, której przekazano substancję
D. Data ważności, forma substancji
Odpowiedź dotycząca zapisania wydanych ilości, stanu zapasów oraz nazwiska osoby, której substancja została wydana, jest prawidłowa, ponieważ ewidencja rozchodu substancji niebezpiecznych wymaga szczegółowego dokumentowania tych informacji w celu zapewnienia bezpieczeństwa i zgodności z przepisami. Wydane ilości umożliwiają śledzenie zużycia substancji, co jest niezbędne do oceny ich dostępności i planowania zakupów. Stan zapasów pozwala na zarządzanie zasobami, minimalizując ryzyko ich niedoboru, co jest istotne w kontekście ciągłości pracy laboratorium. Imię i nazwisko osoby, której substancja została wydana, pozwala na identyfikację użytkownika, co jest kluczowe w przypadku ewentualnych incydentów związanych z bezpieczeństwem. W praktyce, takie podejście jest zgodne z normami ISO 14001, które podkreślają znaczenie dokumentacji w zarządzaniu substancjami niebezpiecznymi, a także z dobrą praktyką laboratoryjną (GLP), która nakłada obowiązek ścisłego rejestrowania obiegu substancji chemicznych.

Pytanie 35

Aby uzyskać całkowicie bezwodny Na2CO3, przeprowadzono prażenie 143 g Na2CO3·10H2O (M = 286 g/mol). Po upływie zalecanego czasu prażenia odnotowano utratę masy 90 g. W związku z tym prażenie należy

A. kontynuować, aż do potwierdzenia, że masa soli nie ulega zmianie
B. powtórzyć, ponieważ sól uległa rozkładowi
C. uznać za zakończone
D. kontynuować, ponieważ sól nie została całkowicie odwodniona
Rozważając inne odpowiedzi, warto zauważyć, że powtarzanie procesu prażenia, ponieważ sól uległa rzekomemu rozkładowi, jest błędnym podejściem. W rzeczywistości rozkład Na2CO3·10H2O podczas prażenia nie powinien prowadzić do jego degradacji, o ile temperatura jest odpowiednio kontrolowana. Zastosowanie nieodpowiednich warunków temperaturowych może prowadzić do rozkładu, jednak w kontekście przedstawionego problemu, nie zaobserwowano żadnych dowodów na rozkład substancji. Twierdzenie, że proces można uznać za zakończony, jest również mylne, gdyż wcześniej stwierdzony ubytek masy wskazuje na dalsze odparowywanie wody. Należy pamiętać, że proces odwodnienia soli wymaga czasu, co czyni kontynuację prażenia konieczną, aż do osiągnięcia stałej masy. Ostatecznie, stwierdzenie, że sól nie jest całkowicie odwodniona, jest zasadne, jednak poleganie na tym jako na uzasadnieniu do zakończenia procesu jest niewłaściwe. W praktyce laboratoryjnej, zawsze należy skupiać się na precyzyjnych pomiarach i obserwacjach, aby uzyskać oczekiwane rezultaty bez ryzyka powstawania nieoczyszczonych produktów reakcji.

Pytanie 36

Na ilustracji oznaczono numery 1 i 4:

A. 1 - chłodnicę zwrotną, 4 - kolbę destylacyjną
B. 1 - kolbę destylacyjną, 4 - ekstraktor
C. 1 - kolbę destylacyjną, 4 - chłodnicę zwrotną
D. 1 - ekstraktor, 4 - chłodnicę zwrotną
Wskazane odpowiedzi zawierają wiele nieporozumień dotyczących funkcji poszczególnych elementów aparatury chemicznej. Ekstraktor, który został wymieniony w niektórych z odpowiedzi, jest urządzeniem służącym do wydobywania substancji czynnych z materiału stałego lub cieczy, ale nie jest używany w kontekście destylacji. W praktyce, pomylenie ekstraktora z kolbą destylacyjną prowadzi do błędnych wniosków na temat procesu separacji, gdyż każdy z tych sprzętów ma odmienny cel i zastosowanie. Ekstrakcja polega na fizycznym wydobywaniu substancji, podczas gdy destylacja opiera się na różnicy temperatur wrzenia. Kolejnym błędem jest mylenie chłodnicy zwrotnej z kolbą destylacyjną. Chłodnica zwrotna jest elementem, który pełni rolę kondensatora, a nie zbiornika reakcji. Jej funkcją jest schładzanie par, co pozwala na ich skroplenie. Zrozumienie właściwych ról tych urządzeń jest kluczowe dla poprawnego przeprowadzenia procesów chemicznych. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków mogą wynikać z braku znajomości podstawowych zasad chemii oraz ze słabego zrozumienia, jak różne urządzenia funkcjonują w układach laboratoryjnych i przemysłowych. Przykłady zastosowania tych technik mogą obejmować przemysł farmaceutyczny, gdzie precyzyjna separacja drogich substancji czynnych jest kluczowa dla sukcesu produkcji, co potwierdza znaczenie znajomości tych narzędzi w zawodach związanych z chemią.

Pytanie 37

W karcie charakterystyki chemikaliów znajduje się informacja o przechowywaniu dichromianu(VI) potasu: .. powinien być przechowywany w odpowiednio oznakowanych, szczelnie zamkniętych pojemnikach, w chłodnym, suchym i dobrze wentylowanym magazynie, który posiada instalację elektryczną i wentylacyjną. Z tego opisu wynika, że ten chemikal może być przechowywany

A. w workach papierowych umieszczonych w wentylowanym magazynie
B. w szczelnie zamkniętych słoikach, umieszczonych w wentylowanym pomieszczeniu
C. w drewnianych skrzyniach umieszczonych w wentylowanym pomieszczeniu
D. w workach jutowych umieszczonych w wentylowanym pomieszczeniu
Odpowiedź wskazująca na magazynowanie dichromianu(VI) potasu w szczelnie zamkniętych słoikach w wentylowanym pomieszczeniu jest poprawna, ponieważ spełnia wszystkie wymagania określone w karcie charakterystyki substancji chemicznych. Przechowywanie substancji chemicznych w odpowiednich opakowaniach jest kluczowe dla zapewnienia ich stabilności oraz minimalizacji ryzyka kontaktu z czynnikami zewnętrznymi. Szczelne zamknięcie słoików zapobiega uwolnieniu substancji do atmosfery oraz chroni je przed wilgocią, co jest istotne w kontekście ich właściwości chemicznych. Ponadto, zapewnienie odpowiedniej wentylacji w pomieszczeniu magazynowym jest niezbędne dla redukcji potencjalnych zagrożeń związanych z kumulacją par lub oparów. W praktyce, przechowywanie substancji w takich warunkach jest zgodne z zasadami GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów), który zaleca stosowanie odpowiednich środków ostrożności przy składowaniu substancji niebezpiecznych, a także przestrzeganie lokalnych regulacji dotyczących składowania chemikaliów. Przykładowo, w laboratoriach chemicznych często stosuje się podobne procedury do zapewnienia bezpieczeństwa i ochrony środowiska.

Pytanie 38

Aby przygotować 250 cm3 roztworu wodorotlenku potasu o stężeniu 0,25 mola, potrzebne będzie

A. 3,5 g KOH
B. 0,35 g KOH
C. 35,0 g KOH
D. 14,0 g KOH (K — 39 g/mol, O — 16 g/mol, H — 1 g/mol)
Aby przygotować 0,25-molowy roztwór KOH o objętości 250 cm³, trzeba najpierw policzyć, ile tej substancji potrzebujemy. Wodorotlenek potasu ma masę molową 56 g/mol (liczymy K — 39 g/mol, O — 16 g/mol, H — 1 g/mol). Używając równania C = n/V, gdzie C to stężenie molowe, n to liczba moli, a V to objętość w litrach, możemy ustalić, ile moli potrzebujemy: n = C * V = 0,25 mol/dm³ * 0,250 dm³ = 0,0625 mol. Następnie, żeby obliczyć masę KOH, stosujemy wzór: m = n * M, czyli m = 0,0625 mol * 56 g/mol = 3,5 g. Te obliczenia są naprawdę istotne w chemii analitycznej, bo dokładne przygotowanie roztworów jest kluczowe, żeby wyniki były wiarygodne. Z własnego doświadczenia mogę powiedzieć, że umiejętność liczenia molowości i mas molowych jest podstawą w chemicznych reakcjach i analizach, co ma ogromne znaczenie w laboratorium.

Pytanie 39

W jakiej standardowej temperaturze są kalibrowane szklane naczynia pomiarowe?

A. 25°C
B. 19°C
C. 21°C
D. 20°C
Szklane naczynia miarowe, takie jak pipety, kolby czy cylinder miarowy, są kalibrowane w standardowej temperaturze 20°C. Kalibracja w tej temperaturze jest uznawana za normę, ponieważ zmiany temperatury mogą wpływać na objętość cieczy oraz na precyzję pomiarów. Przykładowo, w laboratoriach chemicznych, gdzie dokładność pomiarów jest kluczowa, naczynia miarowe są używane przy tej temperaturze, aby zapewnić wiarygodność wyników eksperymentów. W praktyce oznacza to, że przy pomiarach z użyciem tych naczyń, operatorzy powinni dążyć do utrzymania temperatury 20°C, aby uniknąć błędów wynikających z rozszerzalności cieczy oraz materiałów, z których wykonane są naczynia. Ponadto, zgodnie z międzynarodowymi standardami ISO i zaleceniami PTB (Physikalisch-Technische Bundesanstalt), kalibracja powinna być przeprowadzana w 20°C dla wszystkich podstawowych pomiarów objętości, co wzmacnia znaczenie tej wartości w praktyce laboratoryjnej.

Pytanie 40

Proces przesiewania próbki prowadzi się za pomocą urządzenia przedstawionego na rysunku

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godzin

A. A.
B. D.
C. C.
D. B.
Wybór odpowiedzi A, B lub D wskazuje na pewne nieporozumienia dotyczące podstawowych zasad przesiewania próbki. Odpowiedzi te mogą sugerować, że użytkownik nie rozumie, że proces przesiewania wymaga zastosowania odpowiednich narzędzi, które są specjalnie zaprojektowane do tego celu. Na przykład, odpowiedzi A i B mogą być mylone z ideą użycia innych metod mechanicznych, takich jak mieszanie czy szarpanie, które nie są właściwe do oddzielania cząstek według ich rozmiaru. W rzeczywistości, metody te nie zapewniają wymaganej precyzji, ponieważ nie segregują one cząstek na podstawie ich właściwości fizycznych. Odpowiedź D sugeruje z kolei inne techniki separacji, takie jak filtracja, która jest stosowana do usuwania większych zanieczyszczeń z cieczy, a nie do przesiewania ciał stałych. Kluczowym błędem myślowym, który może prowadzić do takich odpowiedzi, jest nieporozumienie dotyczące zasad mechaniki ciał stałych i procesów separacji. Przesiewanie i filtracja to dwa różne procesy, które mają swoje specyficzne zastosowania. Zrozumienie tego rozróżnienia jest niezbędne dla prawidłowego podejścia do analizy materiałów sypkich oraz do stosowania norm branżowych, które gwarantują skuteczność i dokładność wyników.