Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 10 czerwca 2025 11:52
  • Data zakończenia: 10 czerwca 2025 12:13

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Sączków o najmniejszych średnicach, nazywanych "twardymi" i oznaczonych kolorem niebieskim, używa się do filtracji osadów?

A. drobnokrystalicznych
B. grubokrystalicznych
C. serowatych
D. galaretowatych
Sączki o najmniejszych porach, oznaczane kolorem niebieskim, są przeznaczone do sączenia osadów drobnokrystalicznych. Te sączki charakteryzują się wysoką zdolnością do zatrzymywania cząstek stałych o niewielkich rozmiarach, co czyni je idealnym narzędziem w procesach laboratoryjnych i przemysłowych, gdzie wymagana jest wysoka jakość filtracji. Przykładem zastosowania takich sączków może być oczyszczanie roztworów chemicznych w laboratoriach analitycznych, gdzie istotne jest usunięcie wszelkich zanieczyszczeń, które mogą wpłynąć na wyniki pomiarów. Ponadto, w branży farmaceutycznej, sączki te są wykorzystywane do filtracji substancji aktywnych, co zapewnia ich czystość i skuteczność. Stosowanie sączków z odpowiednią porowatością zgodnie z wymaganiami procesu filtracji jest zgodne z normami ISO i innymi standardami branżowymi, co podkreśla znaczenie ich właściwego doboru.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Intensywna reakcja z FeCl3 jest wykorzystywana do identyfikacji

A. alkenów
B. fenoli
C. aldehydów
D. amin
Barwna reakcja z chlorkiem żelaza(III) jest dobrze znanym testem stosowanym do wykrywania fenoli, które wykazują zdolność do tworzenia kompleksów z tym związkiem. Fenole posiadają grupę hydroksylową (-OH) połączoną z pierścieniem aromatycznym, co umożliwia im reagowanie z chlorkiem żelaza(III), prowadząc do powstania charakterystycznego zabarwienia, zazwyczaj fioletowego lub purpurowego. Przykładem zastosowania tej reakcji w laboratoriach chemicznych jest analiza składu substancji organicznych, gdzie obecność fenoli może wskazywać na zanieczyszczenia lub naturalne składniki aktywne. Test ten jest często wykorzystywany w przemyśle kosmetycznym oraz farmaceutycznym, gdzie fenole mogą pełnić rolę konserwantów lub substancji czynnych. Zastosowanie tej metody jest zgodne z normami laboratoryjnymi, które zalecają stosowanie reakcji z chlorkiem żelaza(III) jako jednego z podstawowych sposobów na identyfikację związków fenolowych, co jest uznawane za dobrą praktykę w chemii analitycznej.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie środki ochronne należy zastosować podczas sporządzania 1M roztworu zasady sodowej ze stężonego roztworu NaOH, na opakowaniu którego widnieje oznaczenie S/36/37/39?

Numer zwrotu SWarunki bezpiecznego stosowania
S36Używać odpowiedniej odzieży ochronnej
S37Używać odpowiednich rękawic
S38W przypadku niewystarczającej wentylacji używać sprzętu do oddychania
S39Używać okularów lub maski ochronnej

A. Odzież ochronną i maskę tlenową.
B. Fartuch ochronny, rękawice i maskę tlenową.
C. Odzież ochronną, rękawice i okulary ochronne.
D. Gumowe rękawice i maskę ochronną.
Sugerowane odpowiedzi, takie jak gumowe rękawice i maska ochronna, nie uwzględniają pełnego zakresu wymaganych środków ochrony osobistej. Użycie jedynie gumowych rękawic nie zapewnia wystarczającego poziomu ochrony, ponieważ nie chroni ono całego ciała, co jest kluczowe w przypadku substancji chemicznych o silnych właściwościach żrących, jak NaOH. Brak odzieży ochronnej naraża skórę na bezpośredni kontakt, co może prowadzić do poważnych oparzeń. Maska ochronna nie jest odpowiednia w tym kontekście, ponieważ nie gwarantuje ochrony oczu, które są szczególnie wrażliwe na działanie substancji chemicznych. Zatem, koncepcje przedstawione w nieprawidłowych odpowiedziach mogą prowadzić do błędnych wniosków, sugerując, że wystarczająca ochrona może być zapewniona bez komplementarności środków ochrony. W środowisku laboratoryjnym, kluczowe jest stosowanie pełnego zestawu środków ochrony osobistej, co potwierdzają liczne normy i wytyczne dotyczące bezpieczeństwa pracy z substancjami niebezpiecznymi, takie jak normy OSHA czy dyrektywy REACH, które podkreślają znaczenie kompleksowej ochrony w celu minimalizacji ryzyka dla zdrowia i bezpieczeństwa pracowników.

Pytanie 6

Które spośród substancji wymienionych w tabeli pozwolą pochłonąć wydzielający się tlenek węgla(IV)?

IIIIIIIVV
Ca(OH)2(aq)NaOH(s)HNO3(stęż)CuO(s)CaO(s)

A. II, IV, V.
B. I, II, V
C. I, II, IV.
D. I, III, IV.
W przypadku wyboru odpowiedzi, która nie obejmuje substancji I, II i V, można zauważyć, że nie uwzględnia się kluczowych właściwości reakcji chemicznych między tlenkiem węgla(IV) a substancjami, które są zasadami. Takie podejście prowadzi do nieporozumień dotyczących chemii gazów i ich interakcji z zasadami. Odpowiedzi zawierające substancje III (HNO3) i IV (CuO) są w rzeczywistości błędne, ponieważ HNO3 jest kwasem azotowym, który nie ma zdolności do reakcji z CO2 w sposób, który prowadziłby do jego absorpcji; zamiast tego reaguje on z zasadami, a jego właściwości jako kwasu oznaczają, że nie będzie on efektywnym reagentem w kontekście usuwania CO2. CuO, czyli tlenek miedzi(II), również nie jest substancją, która mogłaby reagować z CO2, a jego zastosowanie koncentruje się bardziej na reakcjach utleniania i redukcji metali, co nie ma związku z pochłanianiem tego gazu. Zrozumienie właściwości substancji chemicznych oraz ich reakcji jest kluczowe do prawidłowego wyboru reagentów w procesach przemysłowych. Ignorowanie tych faktów może prowadzić do nieefektywnych rozwiązań w kontekście zarządzania emisją CO2, co jest szczególnie istotne w dobie globalnych wysiłków na rzecz ochrony środowiska oraz zrównoważonego rozwoju.

Pytanie 7

W tabeli przedstawiono wymiary, jakie powinny mieć oznaczenia opakowań substancji niebezpiecznych.
Korzystając z informacji w tabeli, określ minimalne wymiary, jakie powinno mieć oznaczenie dla cysterny o pojemności 32840 dm3.

Pojemność opakowaniaWymiary (w centymetrach)
Nieprzekraczająca 3 litrówco najmniej 5,2 x 7,4
Ponad 3 litry, ale nieprzekraczająca 50 litrówco najmniej 7,4 x 10,5
Ponad 50 litrów, ale nieprzekraczająca 500 litrówco najmniej 10,5 x 14,8
Ponad 500 litrówco najmniej 14,8 x 21,0

A. 5,2 x 7,4 cm
B. 14,8 x 21,0 cm
C. 10,5 x 14,8 cm
D. 7,4 x 10,5 cm
Wybór niewłaściwego wymiaru oznaczenia opakowań substancji niebezpiecznych, takiego jak "7,4 x 10,5 cm" czy "5,2 x 7,4 cm", wskazuje na niepełne zrozumienie wymagań dotyczących oznakowania transportu niebezpiecznych materiałów. W przypadku cysterny o pojemności 32840 dm³, istotne jest, aby wymiary oznaczenia były wystarczająco duże, by zapewnić ich czytelność i widoczność z odpowiedniej odległości. Oznaczenia te muszą być zgodne z międzynarodowymi standardami, które jednoznacznie określają minimalne wymagania dla różnych pojemności. Mniejsze wymiary, takie jak te wskazane w błędnych odpowiedziach, mogą prowadzić do sytuacji, w której oznaczenia są niewidoczne lub nieczytelne w sytuacjach awaryjnych, co z kolei naraża życie ludzi i środowisko na niebezpieczeństwo. Ponadto, nieprzestrzeganie tych norm może skutkować konsekwencjami prawnymi dla przewoźników i przedsiębiorstw zajmujących się transportem substancji niebezpiecznych. Znajomość tych regulacji jest kluczowa dla zapewnienia bezpieczeństwa i ochrony zdrowia publicznego, dlatego ważne jest, aby zawsze stosować się do ustalonych wymagań i standardów.

Pytanie 8

Wskaź sprzęt konieczny do przeprowadzenia miareczkowania?

A. Biureta, kolba stożkowa, kolba miarowa, statyw
B. Pipeta, kolba stożkowa, lejek, statyw
C. Biureta, kolba stożkowa, lejek do biurety, statyw
D. Biureta, kolba miarowa, lejek do biurety, statyw
Wybrana odpowiedź jest poprawna, ponieważ miareczkowanie to technika analityczna, która wymaga precyzyjnego pomiaru objętości roztworu reagentu. Biureta jest kluczowym narzędziem, które pozwala na dokładne dozowanie cieczy, co jest niezbędne do uzyskania precyzyjnych wyników. Kolba stożkowa, w której zazwyczaj odbywa się miareczkowanie, umożliwia łatwe mieszanie roztworów oraz ich obserwację. Lejek do biurety jest istotny, ponieważ umożliwia bezpieczne i precyzyjne napełnianie biurety bez ryzyka rozlania reagentu. Statyw natomiast stabilizuje biuretę, co jest ważne dla bezpieczeństwa i dokładności pomiarów. W praktyce, aby miareczkowanie było skuteczne, należy stosować również odpowiednie techniki pipetowania i mieszania, aby zapewnić jednolite stężenie roztworu oraz uzyskać wiarygodne wyniki analizy. Te komponenty są zgodne z dobrymi praktykami laboratoryjnymi, które podkreślają znaczenie precyzji i poprawności technik analitycznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Metodą, która nie służy do utrwalania próbek wody, jest

A. schłodzenie do temperatury 2-5°C
B. naświetlanie lampą UV
C. dodanie biocydów
D. zakwaszenie do pH < 2
Wybór schłodzenia do temperatury 2-5°C jako metody utrwalania próbki wody jest powszechnie stosowany, ponieważ niskie temperatury spowalniają procesy biologiczne oraz chemiczne, co jest kluczowe dla zachowania stabilności próbki. Metoda ta jest zgodna z wytycznymi ISO, które rekomendują utrzymanie próbek w odpowiednich warunkach, aby zminimalizować ryzyko degradacji i utraty właściwości próbki. Dodanie biocydów to kolejna strategia, która ma na celu eliminację mikroorganizmów, co również wpływa na zachowanie integralności próbki. Zakwaszenie próbki do pH < 2 jest stosowane w niektórych analizach, szczególnie w kontekście metalurgii i chemii analitycznej, aby zdenaturować białka i stabilizować niektóre substancje, co jest istotne w przypadku próbek wymagających analizy chemicznej. Błędem jest jednak założenie, że naświetlanie lampą UV może uznać za metodę utrwalania, ponieważ jego celem jest dezynfekcja, a nie długoterminowe zabezpieczenie próbki. Naświetlanie UV może prowadzić do nieodwracalnych zmian chemicznych, a także do zniszczenia niektórych związków w próbce, co osłabia jakość wyników analiz. W kontekście odpowiednich praktyk laboratoryjnych, należy przestrzegać standardów dotyczących przygotowania próbek, aby zapewnić ich wiarygodność i dokładność analiz.

Pytanie 14

Jakie metody można zastosować do rozdzielania i koncentracji składników próbki?

A. mineralizację suchą
B. rozpuszczanie i rozcieńczanie
C. spawanie
D. wymywanie lub wymianę jonową
Wybrane odpowiedzi, takie jak stapianie, rozpuszczanie i rozcieńczanie czy wymywanie lub wymiana jonowa, wskazują na niewłaściwe podejście do procesu analizy próbek. Stapianie to technika, która polega na podgrzewaniu materiałów do ich stanu ciekłego, jednak nie prowadzi do skutecznego rozdzielania składników próbki, a jedynie do ich fizycznej zmiany stanu skupienia, co nie jest odpowiednie w kontekście analizy chemicznej. Rozpuszczanie i rozcieńczanie mogą być użyteczne w niektórych przypadkach, lecz w kontekście rozdzielania składników próbki nie są wystarczające, ponieważ wiele składników może pozostać w zawiesinie lub nie rozpuścić się w danym rozpuszczalniku. Przykładem może być sytuacja, w której próbka zawiera nieorganiczne sole, które są słabo rozpuszczalne, co prowadzi do niepełnego wydobycia informacji. Wymiana jonowa oraz wymywanie to techniki stosowane głównie w kontekście oczyszczania wody lub usuwania zanieczyszczeń, a nie do analizy składników chemicznych próbki. Te metody nie są w stanie dostarczyć pełnego obrazu zawartości chemicznej, co jest kluczowe w badaniach analitycznych. W praktyce, nieprawidłowe zastosowanie tych technik może prowadzić do błędnych interpretacji wyników i złej oceny jakości analizowanej próbki.

Pytanie 15

Na podstawie danych w tabeli próbkę, w której będzie oznaczany BZT, należy przechowywać

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h

A. w metalowym naczyniu.
B. w polietylenowej butelce.
C. w butelce z ciemnego szkła.
D. w szklanej butelce.
Wybór niewłaściwego materiału do przechowywania próbek do oznaczania BZT może prowadzić do zafałszowania wyników analizy, co jest istotnym problemem w praktykach laboratoryjnych. Przechowywanie próbek w polietylenowej butelce nie jest odpowiednie, ponieważ polietylen może wchodzić w reakcje chemiczne z substancjami obecnymi w próbce, co z kolei może prowadzić do zmiany ich właściwości fizykochemicznych i nieadekwatnych wyników. Metalowe naczynia również nie są zalecane, ponieważ mogą reagować z niektórymi związkami chemicznymi, a ich powierzchnia może prowadzić do adsorpcji substancji, co zniekształca analizowane wartości. Wybór szklanej butelki nie wystarczy, jeśli nie jest to szkło ciemne; przezroczyste szkło nie zapewnia ochrony przed promieniowaniem UV, co prowadzi do degradacji składników próbki. Takie podejście jest sprzeczne z zaleceniami międzynarodowych standardów dotyczących przechowywania próbek w laboratoriach analitycznych, które jasno określają, że próbki wymagają konkretnego typu opakowania, aby uniknąć wpływu światła na ich integralność. Dlatego ważne jest, aby w procesie przechowywania próbek kierować się nie tylko dostępnością materiałów, ale przede wszystkim ich właściwościami chemicznymi i fizycznymi, aby zachować jakość analizy.

Pytanie 16

Przedstawiony schemat ideowy ilustruje proces syntezy z propanu C3H8 → C3H7Cl → C3H6 → C3H6(OH)2 → C3H5(OH)2Cl → C3H5(OH)3

A. glicerolu
B. glikolu propylowego
C. glicyny
D. glikolu etylowego
Wybór glicyny, glikolu propylowego lub glikolu etylowego wskazuje na pewne nieporozumienia w zakresie chemii organicznej oraz procesów syntezy chemicznej. Glicyna jest aminokwasem, a nie alkoholem, co oznacza, że jej struktura chemiczna i właściwości nie są zgodne z wymaganiami procesu syntezy glicerolu. Glicyna jest podstawowym składnikiem białek oraz pełni rolę w metabolizmie jako prekursor wielu ważnych związków, jednak nie bierze udziału w opisanym procesie chemicznym, który dotyczy syntezy alkoholu trójwodorotlenowego. Glikol propylowy i glikol etylowy są związkami chemicznymi, które również nie odpowiadają strukturze glicerolu. Mimo że są to alkohole, ich powiązania z procesem syntezy glicerolu są znikome, a ich zastosowania są różne – glikol propylowy jest powszechnie stosowany jako rozpuszczalnik oraz substancja nawilżająca, a glikol etylowy głównie w chłodnictwie i jako składnik płynów hamulcowych. Zrozumienie różnic pomiędzy tymi substancjami oraz ich właściwościami chemicznymi jest niezwykle istotne dla skutecznego podejścia do syntez chemicznych. Zastosowanie właściwych terminów i zrozumienie ich funkcji w procesie produkcji substancji chemicznych jest kluczowe w pracy chemika i inżyniera chemicznego.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Z uwagi na higroskopijne właściwości tlenku fosforu(V) powinien on być przechowywany w warunkach bez dostępu

A. tlenu
B. powietrza
C. ciepła
D. światła
Tlenek fosforu(V), czyli P2O5, ma naprawdę mocne właściwości higroskopijne, więc potrafi wciągać wilgoć z otoczenia. Dlatego najlepiej trzymać go w suchym miejscu, z dala od powietrza – to ważne, żeby nie doszło do reakcji z wodą, bo wtedy może stracić swoje właściwości. Jak jest za wilgotno, P2O5 może zacząć tworzyć kwas fosforowy, a to zmienia jego charakterystykę i może być problem, gdy chcesz go używać. Ten związek jest często stosowany w produkcji nawozów fosforowych oraz w chemii organicznej, a także w procesach suszenia. Dlatego w chemii ważne są dobre praktyki przechowywania takich substancji, czyli hermetyczne pakowanie i osuszacze. Wiedza o tym, jak prawidłowo składować tlenek fosforu(V), jest kluczowa, żeby zachować jego jakość i skuteczność w różnych zastosowaniach, zarówno przemysłowych, jak i laboratoryjnych.

Pytanie 19

Aby przygotować 500 cm3 roztworu KMnO4 (M = 158 g/mol) o stężeniu 0,02 mol/dm3, ile należy zważyć?

A. 7,95 g KMnO4
B. 1,58 g KMnO4
C. 15,8 g KMnO4
D. 3,16 g KMnO4
W przypadku analizy błędnych odpowiedzi warto zwrócić uwagę na kilka kluczowych aspektów dotyczących obliczeń chemicznych. Często popełnianym błędem jest mylenie jednostek objętości; na przykład, jeżeli ktoś obliczał masę KMnO4 dla 500 cm³, ale nie przeliczył tej wartości na dm³, może to prowadzić do znaczących pomyłek. Warto pamiętać, że 500 cm³ to 0,5 dm³, co jest kluczowe dla poprawności obliczeń. Dodatkowo, nieprawidłowy wybór jednostek stężenia, jak np. użycie stężenia masowego zamiast molowego, może wprowadzić w błąd. Innym typowym błędem jest pominięcie mocy molowej, co prowadzi do przeszacowania lub niedoszacowania wymaganej masy substancji. W kontekście przygotowywania roztworów, zgodność z normami oraz dobrymi praktykami laboratoryjnymi jest kluczowa. Na przykład, nieodpowiednia masa może wpłynąć na wyniki analizy, co w konsekwencji prowadzi do błędnych wniosków. Dlatego zawsze zaleca się staranność i dokładność w obliczeniach oraz stosowanie odpowiednich jednostek. To nie tylko zwiększa precyzję, ale i pozwala uniknąć kosztownych pomyłek w dalszych etapach badań chemicznych.

Pytanie 20

Ile gramów chlorku baru powinno się rozpuścić w wodzie, aby uzyskać 200 cm3 roztworu o stężeniu 10% i gęstości 1,203 g/cm3?

A. 18,40 g
B. 24,06 g
C. 26,04 g
D. 20,00 g
Aby obliczyć masę chlorku baru potrzebną do przygotowania 200 cm3 roztworu o stężeniu 10% i gęstości 1,203 g/cm3, należy skorzystać z wzoru na stężenie masowe. Stężenie masowe (C) definiuje się jako masa substancji (m) dzielona przez objętość roztworu (V) pomnożoną przez 100%. W tym przypadku C = 10%, V = 200 cm3. Zatem: m = C * V / 100 = 10 * (200) / 100 = 20 g. Jednakże, aby obliczyć masę rzeczywistą roztworu, musimy uwzględnić jego gęstość. Gęstość (d) roztworu wynosi 1,203 g/cm3, co oznacza, że masa roztworu wyniesie: masa roztworu = objętość * gęstość = 200 cm3 * 1,203 g/cm3 = 240,6 g. Teraz, skoro mamy 20 g chlorku baru, to masa pozostałej części roztworu (czyli wody) wyniesie 240,6 g - 20 g = 220,6 g. W końcu należy złożyć obliczenia: 20 g chlorku baru stanowi 10% całości, co jest zgodne z założeniem stężenia. Ostatecznie, aby uzyskać roztwór o pożądanym stężeniu, konieczne jest rozpuszczenie 24,06 g chlorku baru, co odpowiada odpowiedzi nr 4.

Pytanie 21

Ile gramów cukru trzeba dodać do 200 gramów wody o temperaturze 20°C, aby uzyskać roztwór nasycony?

A. 100 g
B. 400 g
C. 200 g
D. 50 g
Odpowiedzi 200 g, 100 g i 50 g są błędne, ponieważ opierają się na nieporozumieniu związanym z pojęciem nasycenia roztworu. W praktyce, mniej niż 400 g cukru w 200 g wody nie wystarczy do osiągnięcia stanu nasycenia. W przypadku 200 g cukru, można uznać, że roztwór byłby raczej rozcieńczony, co z kolei prowadzi do błędnych wniosków o możliwościach rozpuszczania substancji. Podobnie, 100 g cukru to niewielka ilość w porównaniu do potencjalnej rozpuszczalności, co również nie zaspokoiłoby wymogów nasycenia. Odpowiedź z 50 g jest jeszcze bardziej myląca, ponieważ sugeruje, że można uzyskać roztwór nasycony przy tak niskiej ilości cukru, co jest biologicznie i chemicznie nieuzasadnione. Typowy błąd myślowy polega na porównywaniu rozpuszczalności różnych substancji bez zrozumienia ich właściwości fizykochemicznych. Roztwory nasycone mają swoje zastosowanie w wielu dziedzinach, a ich prawidłowe przygotowanie i zrozumienie jest kluczowe dla osiągnięcia oczekiwanych rezultatów w laboratoriach badawczych oraz w przemyśle chemicznym.

Pytanie 22

Aby przyspieszyć reakcję, należy zwiększyć stężenie substratów

A. zwiększyć, a temperaturę zmniejszyć
B. zmniejszyć, a temperaturę obniżyć
C. zwiększyć, a temperaturę podnieść
D. zmniejszyć, a temperaturę podnieść
W odpowiedziach, gdzie sugerujesz zmniejszenie stężenia substratów lub obniżenie temperatury, nie bierzesz pod uwagę podstawowych zasad chemii. Zmniejszając stężenie, zmniejszasz liczbę cząsteczek do reakcji, co mocno obniża szanse na zderzenie. W zasadzie, im wyższe stężenie reagentów, tym lepsza szybkość reakcji, według prawa zachowania masy. Obniżenie temperatury też działa na niekorzyść, bo zmniejsza energię kinetyczną cząsteczek, co spowalnia reakcje. To szczególnie widać w reakcjach enzymatycznych, gdzie enzymy najlepiej działają w określonych temperaturach. Nieodpowiednie zarządzanie temperaturą i stężeniem może wyjść nam bokiem w przemyśle, bo zwiększa koszty produkcji i wpływa na jakość końcowego produktu. W sumie, rozumienie optymalizacji warunków reakcji to kluczowa sprawa w projektowaniu tych reakcji chemicznych.

Pytanie 23

Zaleca się schładzanie próbek wody transportowanych do laboratorium do temperatury

A. 12±1°C
B. 9±1°C
C. 5±3°C
D. 16±2°C
Odpowiedź 5±3°C jest prawidłowa, ponieważ zgodnie z normami, takimi jak ISO 5667, próbki wody powinny być transportowane w temperaturze, która minimalizuje zmiany ich właściwości chemicznych oraz biologicznych. Obniżenie temperatury próbek do przedziału 2°C – 8°C (5±3°C) pozwala na spowolnienie procesów metabolismu mikroorganizmów oraz chemicznych reakcji, co jest kluczowe dla zachowania autentyczności analizowanych próbek. Przykładowo, w przypadku analizy składu chemicznego wody pitnej, zbyt wysoka temperatura transportu może prowadzić do degradacji związków organicznych lub wzrostu liczby mikroorganizmów, co skutkuje błędnymi wynikami. Dobre praktyki laboratoryjne zalecają także stosowanie odpowiednich kontenerów oraz lodu lub żeli chłodzących w celu utrzymania właściwej temperatury, co jest istotne w kontekście zgodności z wymaganiami prawnymi oraz normami badań środowiskowych.

Pytanie 24

Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu, należy odważyć

MNaOH = 40g / mol

A. 2,50 g stałego NaOH.
B. 25,0 g stałego NaOH.
C. 2,00 g stałego NaOH.
D. 0,05 g stałego NaOH.
Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu (NaOH), konieczne jest zrozumienie podstawowych zasad obliczania masy substancji chemicznych. W przypadku NaOH, jego masa molowa wynosi 40 g/mol. Przygotowując roztwór o stężeniu 0,2 mola w 250 cm3, obliczamy ilość moli, co daje nam 0,05 mola NaOH (0,2 mol/l * 0,25 l). Następnie, aby obliczyć potrzebną masę, stosujemy wzór: masa = liczba moli * masa molowa. Czyli, 0,05 mola * 40 g/mol = 2 g NaOH. W praktyce, takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma dużą wagę. Używając tej wiedzy, można z sukcesem przygotowywać różnorodne roztwory, co jest istotne w wielu dziedzinach nauki i przemysłu, takich jak chemia analityczna, synergia materiałów czy wytwarzanie farmaceutyków. Zrozumienie tych podstawowych zasad pozwoli na bardziej efektywne i bezpieczne przeprowadzanie eksperymentów chemicznych.

Pytanie 25

Na podstawie zmierzonej temperatury topnienia można określić związek organiczny oraz ustalić jego

A. reaktywność
B. czystość
C. rozpuszczalność
D. palność
Temperatura topnienia jest istotnym wskaźnikiem czystości substancji chemicznych, szczególnie związków organicznych. Czystość substancji można ocenić na podstawie jej temperatury topnienia, ponieważ czyste substancje mają ściśle określoną temperaturę topnienia, podczas gdy obecność zanieczyszczeń obniża, a czasem także podwyższa tę temperaturę. Przykładem jest analiza kwasu benzoesowego, który ma temperaturę topnienia wynoszącą 122 °C. Jeśli podczas pomiaru odkryjemy, że temperatura topnienia wynosi 120 °C, może to sugerować obecność zanieczyszczeń. W praktyce, metody takie jak montaż termometru w naczyniu z próbką oraz kontrola tempa podgrzewania są stosowane, aby uzyskać dokładny wynik. W laboratoriach chemicznych stosuje się również standardy takie jak ASTM E2875, które precyzują metody pomiaru temperatury topnienia. Dzięki tym praktykom, możliwe jest nie tylko potwierdzenie czystości próbki, ale również ocena jakości związków organicznych, co jest kluczowe w chemii analitycznej, farmaceutycznej i przemysłowej.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Na rysunku przedstawiono wagę

Ilustracja do pytania
A. automatyczną.
B. mikroanalityczną.
C. hydrostatyczną.
D. precyzyjną.
Odpowiedzi na pytania dotyczące wag laboratoryjnych mogą prowadzić do nieporozumień, szczególnie w kontekście różnych typów wag. Wagi hydrostatyczne, choć użyteczne w specjalistycznych zastosowaniach, działają na innej zasadzie i są stosowane głównie do pomiaru gęstości cieczy. Wykorzystują one zjawisko wyporu, co jest kluczowe w zastosowaniach takich jak pomiar gęstości substancji. Z kolei wagi automatyczne, które automatyzują proces ważenia, nie są tożsame z wagami precyzyjnymi, mimo że mogą również oferować wysoką dokładność. Wagi mikroanalityczne, chociaż również precyzyjne, są przeznaczone do bardziej specyficznych zadań, takich jak ważenie bardzo małych ilości substancji (zazwyczaj poniżej 1 mg) i różnią się konstrukcją oraz funkcjami od wag precyzyjnych. Wybór odpowiedniego typu wagi zależy od specyfiki zadań, które mają być realizowane w laboratorium, a zrozumienie tych różnic jest kluczowe dla osiągnięcia wiarygodnych wyników. Typowe błędy myślowe, takie jak utożsamianie wag z różnymi funkcjami bez uwzględnienia ich zastosowań, mogą prowadzić do nieprawidłowych wniosków i wyborów w kontekście technologii laboratoryjnej.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Aby pobrać dokładnie 20 cm3 próbkę wody do przeprowadzenia analiz, należy zastosować

A. cylinder miarowy o pojemności 25 cm3
B. pipetę jednomiarową o pojemności 10 cm3
C. pipetę wielomiarową o pojemności 25 cm3
D. pipetę jednomiarową o pojemności 20 cm3
Wybór cylindra miarowego o pojemności 25 cm3 do pobrania 20 cm3 próbki wody jest nieoptymalny, ponieważ chociaż cylinder pozwala na pomiar objętości, to jego stosowanie wiąże się z większym ryzykiem błędów pomiarowych. Cylindry miarowe, ze względu na swoją konstrukcję, są mniej precyzyjne niż pipety, co może prowadzić do nieprawidłowych wyników w analizach. W przypadku pipet, szczególnie jednomiarowych, objętość jest precyzyjnie ustalona, co jest kluczowe w laboratoriach chemicznych, gdzie nawet niewielkie odchylenia mogą wpływać na interpretację wyników. Wybór pipety wielomiarowej o pojemności 25 cm3 również nie jest korzystny, ponieważ pomiar 20 cm3 wiąże się z koniecznością precyzyjnego odczytu, co jest trudniejsze w przypadku pipet wielomiarowych. Pipety jednomiarowe oferują jednoznaczny pomiar, a ich użycie jest zgodne z najlepszymi praktykami analitycznymi. Pipeta jednomiarowa o pojemności 10 cm3 prowadziłaby do konieczności dwóch pomiarów, co zwiększa ryzyko błędów i wprowadza dodatkowe źródło niepewności w wynikach. Zatem, wybór narzędzia do pomiaru powinien być oparty na wymaganej precyzji i objętości próbki, co podkreśla znaczenie znajomości zasad doboru odpowiednich narzędzi w laboratoriach chemicznych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Proces nitrowania najczęściej realizuje się, stosując organiczny substrat

A. stężonym kwasem azotowym(V)
B. mieszaniną kwasów azotowego(V) oraz solnego
C. mieszaniną kwasów azotowego(V) oraz siarkowego(VI)
D. rozcieńczonym kwasem azotowym(V)
Reakcja nitrowania to proces chemiczny, w którym do organicznych substratów wprowadza się grupy nitrowe (-NO2). Najczęściej stosowaną metodą tego procesu jest użycie mieszaniny kwasów azotowego(V) i siarkowego(VI). Kwas azotowy(V) jest źródłem grupy nitrowej, natomiast kwas siarkowy(VI) działa jako czynnik osuszający, wspomagając reaktywność kwasu azotowego. W praktyce nitrowanie jest kluczowym etapem w syntezie wielu związków organicznych, takich jak barwniki, leki oraz środki wybuchowe. Na przykład, proces ten jest stosowany w produkcji nitrobenzenu, który jest istotnym prekursorem w syntezie chemikaliów przemysłowych. Dzięki dobrze kontrolowanym warunkom reakcji, można uzyskać wysokie wydajności oraz selektywność w nitrowaniu, co jest zgodne z dobrymi praktykami w chemii organicznej. Odpowiednia kontrola temperatury i stężenia reagentów jest niezbędna, aby uniknąć niepożądanych reakcji ubocznych, co jest kluczowe w przemyśle chemicznym.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Reakcja miedzi metalicznej z stężonym kwasem azotowym(V) prowadzi do powstania azotanu(V) miedzi(II) oraz jakiego związku?

A. tlenek azotu(II) oraz wodór
B. tlenek azotu(II) oraz woda
C. tlenek azotu(V) oraz wodór
D. tlenek azotu(IV) oraz woda
Reakcje chemiczne, które prowadzą do powstania produktów takich jak tlenek azotu(II) lub tlenek azotu(V), są mylące, ponieważ nie odpowiadają rzeczywistym procesom zachodzącym w reakcji miedzi z kwasem azotowym. Tlenek azotu(II) (NO) jest produktem ubocznym reakcji redukcji, co jest nieprawidłowe w kontekście tej reakcji, ponieważ metale, takie jak miedź, wchodzą w reakcję z silniejszymi utleniaczami, co skutkuje powstawaniem tlenków o wyższych wartościach utlenienia. Podobnie, tlenek azotu(V) (N2O5) nie może być produktem reakcji, ponieważ wymaga innej reakcji chemicznej, w której występują inne materiały wyjściowe. Nieprawidłowe odpowiedzi często wynikają z mylenia różnych tlenków azotu oraz ich stanów utlenienia, co jest typowym błędem w nauce chemii. Kluczowe jest zrozumienie, że w reakcji kwasu azotowego z metalem powstają głównie tlenki o niższym stanie utlenienia, co jest zgodne z zasadami reakcji redoks. Dodatkowo, błędne odpowiedzi mogą prowadzić do nieporozumień w praktycznych zastosowaniach chemicznych, zwłaszcza w kontekście syntez organicznych oraz reakcji ekologicznych, co podkreśla znaczenie posiadania solidnej wiedzy na temat chemii nieorganicznej oraz jej mechanizmów.

Pytanie 34

Aby uzyskać wodorotlenek wapnia, odważono 30 g węglanu wapnia, który następnie wyprażono. Powstały tlenek wapnia dodano do 100 cm3 wody, a otrzymany osad wysuszono i zważono, uzyskując 18,5 g wodorotlenku wapnia. Jaką wydajność miała ta reakcja?

Ca – 40 g/mol; O – 16 g/mol; C – 12 g/mol; H – 1 g/mol

A. 83%
B. 75%
C. 93%
D. 80%
Wydajność reakcji to kluczowy parametr, który często mylony jest z innymi pojęciami, takimi jak sprawność czy konwersja. Wybór błędnych odpowiedzi może wynikać z niezrozumienia właściwego sposobu obliczania wydajności, co prowadzi do chaosu w analizie wyników reakcji chemicznych. Na przykład, wiele osób może pomylić teoretyczną masę produktu z masą rzeczywiście uzyskaną. Obliczając wydajność, istotne jest posługiwanie się poprawnymi jednostkami i jednostkowym podejściem do obliczeń. Do obliczenia wydajności należy wyjść od teorii reakcji, w której określamy możliwą masę produktu, a następnie porównujemy ją z masą rzeczywistą. Może się zdarzyć, że wyliczenia prowadzą do wartości 75%, 80% czy nawet 93%, co jest wynikiem pomyłek w obliczeniach lub niewłaściwego rozumienia masy molowej użytych reagentów. Istotnym błędem jest również pominięcie wpływu czynników zewnętrznych, takich jak temperatura czy ciśnienie, które mogą wpływać na wydajność reakcji. W praktyce, dokładność w obliczeniach oraz znajomość teorii reakcji chemicznych są kluczowe dla osiągnięcia jak najwyższej wydajności procesów chemicznych, co jest szczególnie ważne w przemyśle oraz laboratoriach badawczych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jaką substancję wskaźnikową należy zastosować do ustalenia miana roztworu wodorotlenku sodu w reakcji z kwasem solnym, według przedstawionej procedury, która polega na odmierzeniu 25 cm3 roztworu HCl o stężeniu 0,20 mol/dm3 do kolby stożkowej, dodaniu 50 cm3 wody destylowanej, 2 kropli wskaźnika oraz miareczkowaniu roztworem NaOH do momentu zmiany koloru z czerwonego na żółty?

A. skrobi
B. chromianu(VI) potasu
C. oranżu metylowego
D. fenoloftaleiny
Fenoloftaleina jest wskaźnikiem, którego zmiana koloru zachodzi w wyższym zakresie pH, co czyni ją nieodpowiednią do miareczkowania kwasu solnego w obecności wodorotlenku sodu. Fenoloftaleina zmienia barwę z bezbarwnej na różową w zakresie pH 8,2 – 10,0, co oznacza, że nie jest w stanie sygnalizować punktu końcowego reakcja kwasu z zasadą, ponieważ reakcja neutralizacji między HCl a NaOH kończy się w znacznie niższym pH. Wybierając wskaźnik, istotne jest, aby zrozumieć zarówno chemiczne właściwości substancji, jak i zakres pH, w którym zachodzą reakcje. Błędem jest również wybór chromianu(VI) potasu jako wskaźnika – substancja ta nie jest wskaźnikiem pH, a raczej reagentem stosowanym w innych reakcjach chemicznych, co może prowadzić do mylnych wniosków, jeśli chodzi o jego zastosowanie w kontekście miareczkowania. Stosowanie skrobi jako wskaźnika także mija się z celem, ponieważ skrobia reaguje z jodkiem, co nie ma związku z miareczkowaniem kwasów i zasad. Te błędne odpowiedzi odzwierciedlają typowe nieporozumienia dotyczące podstawowych zasad analizy chemicznej, gdzie odpowiedni dobór wskaźników jest kluczowy dla uzyskania precyzyjnych wyników.

Pytanie 37

Jakim kolorem zazwyczaj oznacza się przewody w instalacji gazowej w laboratorium?

A. niebieskim
B. szarym
C. żółtym
D. zielonym
Przewody instalacji gazowej w laboratoriach oznaczone są kolorem żółtym, co jest zgodne z ogólnymi zasadami i normami dotyczącymi oznakowania instalacji gazowych. Kolor żółty symbolizuje substancje niebezpieczne, w tym gazy palne oraz toksyczne, co jest kluczowe dla bezpieczeństwa pracy w laboratoriach. Oznakowanie to ma na celu szybką identyfikację potencjalnych zagrożeń oraz minimalizację ryzyka w przypadku awarii. Przykładem zastosowania tej zasady jest sytuacja, w której technik laboratoryjny musi szybko zlokalizować przewody gazowe, aby przeprowadzić konserwację lub w przypadku awarii. Zgodnie z normami branżowymi (np. PN-EN ISO 7010), oznakowanie instalacji gazowych powinno być wyraźne i czytelne, a także regularnie kontrolowane, aby zapewnić jego aktualność i stan techniczny. Należy także pamiętać, że przestrzeganie zasad dotyczących oznakowania przewodów gazowych nie tylko zwiększa bezpieczeństwo, ale także ułatwia pracownikom szybkie podejmowanie decyzji w sytuacjach kryzysowych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Aby przeprowadzić analizę jakościową, próbkę mosiądzu należy roztworzyć w stężonym kwasie

A. chlorowodorowym
B. bromowodorowym
C. azotowym(V)
D. siarkowym(VI)
Stosowanie kwasu siarkowego(VI) do roztwarzania mosiądzu nie jest optymalnym rozwiązaniem, ponieważ mimo że kwas siarkowy jest silnym kwasem, nie jest efektywny w przypadku stopów miedzi, takich jak mosiądz. Kwas siarkowy reaguje z miedzią, ale proces ten jest wolniejszy i mniej skuteczny w porównaniu do kwasu azotowego. Użycie kwasu chlorowodorowego może również prowadzić do niepełnych reakcji, ponieważ nie jest on wystarczająco silnym utleniaczem, a jego stosowanie w kontekście metali nieżelaznych, takich jak miedź, może prowadzić do ich nierozpuszczenia. Kwas bromowodorowy, mimo że jest kwasem, również nie wykazuje właściwości utleniających, które są kluczowe w procesie analizy jakościowej. W przypadku błędnego wyboru kwasu, można napotkać problemy związane z niepełnym rozpuszczeniem próbki, co prowadzi do błędnych wyników analizy. Typowym błędem jest założenie, że każdy silny kwas może zastąpić inny w reakcjach chemicznych, co jest mylne. Efektywność rozpuszczania stopów metalowych wymaga zastosowania odpowiednich reakcji chemicznych, które nie tylko rozpuszczają próbki, ale również prowadzą do ich pełnej analizy składu chemicznego. W rezultacie, niewłaściwy wybór kwasu może skutkować nieprawidłowymi wynikami, co w praktyce laboratoryjnej jest nieakceptowalne i może prowadzić do dalszych problemów związanych z jakością i bezpieczeństwem produktów końcowych.

Pytanie 40

Związki chromu(VI) oddziałują negatywnie na środowisko, ponieważ

A. prowadzą do zakwaszenia wód
B. powodują nadmierny wzrost roślinności w zbiornikach wodnych
C. stanowią główną przyczynę korozji urządzeń technicznych w wodzie
D. wykazują toksyczne działanie na organizmy żywe
Wydaje się, że odpowiedzi odnoszące się do nadmiernego zarastania zbiorników wodnych oraz zakwaszenia wody nie uwzględniają bezpośredniego wpływu chromu(VI) na ekosystemy. Nadmierne zarastanie zazwyczaj wynika z eutrofizacji, spowodowanej nadmiarem substancji odżywczych, takich jak azotany i fosforany, a nie ze związku chromu. Z kolei zakwaszenie wody jest zazwyczaj efektem emisji dwutlenku siarki oraz tlenków azotu do atmosfery, co prowadzi do opadów kwasowych, a nie jest bezpośrednio związane z chromem(VI). Ponadto, korozja wodnych urządzeń technicznych, mimo że może być wpływana przez różne substancje chemiczne, nie jest głównym problemem związanym z obecnością chromu(VI). To podejście nie uwzględnia, że głównym zagrożeniem związanym z chromem(VI) są jego właściwości toksyczne, a nie wpływ na właściwości fizyczne wody. W związku z tym, pomijanie kluczowych aspektów toksyczności chromu(VI) w kontekście zagrożeń dla organizmów żywych prowadzi do nieprecyzyjnych wniosków. Właściwe zrozumienie tych procesów jest kluczowe, szczególnie w kontekście ochrony środowiska oraz zdrowia publicznego, ponieważ ignorowanie toksyczności tych substancji może prowadzić do poważnych konsekwencji zdrowotnych oraz ekologicznych.