Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 czerwca 2025 14:47
  • Data zakończenia: 7 czerwca 2025 14:48

Egzamin niezdany

Wynik: 1/40 punktów (2,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który element powinien zostać wymieniony w podnośniku hydraulicznym, jeśli tłoczysko siłownika unosi się, a następnie samoistnie opada?

A. Tłokowy pierścień uszczelniający
B. Filtr oleju
C. Zawór bezpieczeństwa
D. Sprężynę zaworu zwrotnego
Tłokowy pierścień uszczelniający odgrywa kluczową rolę w działaniu podnośnika hydraulicznego, ponieważ zapewnia uszczelnienie między tłokiem a cylindrem, co zapobiega niepożądanym wyciekom oleju hydraulicznego. Gdy tłokowy pierścień jest zużyty lub uszkodzony, może to prowadzić do spadku ciśnienia w systemie, co z kolei powoduje, że podnoszona masa opada po pewnym czasie. W praktyce, regularna kontrola stanu pierścieni uszczelniających jest niezbędna w ramach konserwacji podnośników hydraulicznych, co jest zgodne z zaleceniami branżowymi dotyczącymi serwisowania sprzętu hydraulicznego. Zastosowanie wysokiej jakości materiałów w produkcji tych pierścieni oraz ich poprawna instalacja mają kluczowe znaczenie dla długotrwałej i efektywnej pracy podnośnika. W przypadku zauważenia problemów z opadaniem podnoszonego ciężaru, wymiana tłokowego pierścienia uszczelniającego powinna być jednym z pierwszych kroków diagnostycznych, aby przywrócić prawidłowe funkcjonowanie systemu hydraulicznego.

Pytanie 2

Co koniecznie trzeba skonfigurować w urządzeniu, aby mogło funkcjonować w sieci Ethernet?

A. Z szybkość przesyłania danych
B. Niepowtarzalny adres IP
C. Adres serwera DNS
D. Bity stopu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby urządzenie mogło pracować w sieci Ethernet, konieczne jest przypisanie mu niepowtarzalnego adresu IP. Adres IP jest unikalnym identyfikatorem, który umożliwia komunikację pomiędzy urządzeniami w sieci. W kontekście protokołu TCP/IP, który jest fundamentem komunikacji w sieciach Ethernet, każdy host musi posiadać swój własny adres IP, aby móc wysyłać i odbierać dane. Przykładowo, w małej sieci lokalnej (LAN) adresy IP mogą być przydzielane dynamicznie przez serwer DHCP, ale każde urządzenie musi być w stanie zostać zidentyfikowane przez unikalny adres. W praktyce, ustawiając adres IP, administratorzy sieci muszą również upewnić się, że nie koliduje on z innymi adresami w sieci, co jest kluczowe dla prawidłowego funkcjonowania i unikania konfliktów. Warto również pamiętać, że adres IP może być w wersji IPv4 lub IPv6, a ich odpowiedni wybór jest istotny w kontekście rozwoju i przyszłości sieci. Dobre praktyki obejmują przydzielanie adresów z odpowiednich pul adresowych oraz dokumentowanie przydzielonych adresów, aby zminimalizować ryzyko błędów.

Pytanie 3

Jaką funkcję pełnią diody Zenera w elektronice?

A. Stabilizują napięcie
B. Modulują częstotliwość
C. Prostują napięcie
D. Ograniczają prąd

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Diody Zenera pełnią kluczową rolę w stabilizacji napięcia w układach elektronicznych. Działają w trybie odwrotnym, co oznacza, że kiedy napięcie na diodzie przekracza jej wartość Zenera, zaczyna ona przewodzić prąd w kierunku przeciwnym. Dzięki temu, dioda Zenera pozwala na utrzymanie stabilnego napięcia, nawet przy dużych zmianach w obciążeniu lub napięciu zasilającym. Jest to szczególnie istotne w aplikacjach, gdzie precyzyjne napięcie zasilania jest kluczowe, na przykład w układach z mikroprocesorami, które wymagają stabilnego zasilania dla poprawnego działania. W praktyce, diody Zenera często stosuje się w zasilaczach liniowych oraz jako komponenty w filtrach, gdzie stabilizacja napięcia jest niezbędna. W branżowych standardach, takich jak IEC 60747, diody Zenera są klasyfikowane jako elementy ochronne, co podkreśla ich znaczenie w zapewnieniu niezawodności układów elektronicznych. Dobra praktyka inżynieryjna zaleca zastosowanie diod Zenera o odpowiednich parametrach, aby zapewnić ich skuteczność w stabilizacji napięcia w określonym przedziale temperatury i obciążenia.

Pytanie 4

Ile urządzeń sieciowych można maksymalnie podłączyć do sterownika, wykorzystując jeden dodatkowy moduł CSM 1277 o parametrach podanych w tabeli?

WłaściwościCSM 1277 switch
Typ interfejsuEthernet / Profinet
Ilość interfejsów4 x RJ45
Szybkość transmisji danych10/100 Mbit/s
Typ switchaniezarządzalny
Zasilanie24 V DC
Max. długość kabla bez wzmacniacza100 m
Straty mocy1,6 W
Stopień ochronyIP 20

A. 1 urządzenie.
B. 2 urządzenia.
C. 3 urządzenia.
D. 4 urządzenia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje, że maksymalnie można podłączyć 3 urządzenia sieciowe do sterownika za pomocą dodatkowego modułu CSM 1277. Moduł ten wyposażony jest w 4 interfejsy RJ45, z których jeden jest przeznaczony do połączenia z sterownikiem. To oznacza, że pozostają 3 wolne interfejsy, które mogą być wykorzystane do podłączenia dodatkowych urządzeń. W praktyce, takie podejście umożliwia rozbudowę systemu w sieciach przemysłowych, gdzie często zachodzi potrzeba podłączenia różnych urządzeń, jak czujniki, kamery czy komputerowe systemy kontroli. Wiedza na temat liczby dostępnych interfejsów jest kluczowa w projektowaniu architektury sieci, co pozwala na optymalne wykorzystanie zasobów i zwiększenie efektywności działania systemu. W kontekście branżowym, takie rozwiązania muszą być zgodne z normami, jak na przykład IEC 61158, które regulują komunikację w systemach automatyki. Dlatego też, prawidłowe zrozumienie parametrów technicznych urządzeń jest niezbędne do ich efektywnego wdrażania.

Pytanie 5

Analogowy czujnik ultradźwiękowy umożliwia bezdotykowy pomiar odległości przeszkody od samego czujnika. Zjawisko, które jest tu wykorzystywane, polega na tym, że fala o wysokiej częstotliwości, napotykając przeszkodę, ulega

A. odbiciu
B. rozproszeniu
C. pochłonięciu
D. wzmocnieniu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ultradźwiękowy czujnik analogowy działa na fajnej zasadzie odbicia fal dźwiękowych, które są praktycznie niesłyszalne dla nas, ale doskonale sprawdzają się w pomiarze odległości. Kiedy czujnik wysyła impuls ultradźwiękowy w stronę jakiejś przeszkody, to ta fala odbija się od niej i wraca. Mierzymy czas, jaki upływa od momentu wysłania sygnału do powrotu i na tej podstawie obliczamy, jak daleko jest ta przeszkoda. Tego typu czujniki wykorzystujemy w różnych dziedzinach, na przykład w robotyce, automatyce czy w systemach parkowania. Dobrym przykładem może być monitorowanie poziomu cieczy w zbiornikach – czujnik świetnie określa poziom wody, mierząc czas, który falę zajmuje na pokonanie drogi tam i z powrotem. W motoryzacji też są popularne, bo pomagają kierowcom parkować, informując ich o odległości do przeszkód. Ogólnie, użycie ultradźwiękowych czujników jest zgodne z normami jakości i bezpieczeństwa, jak na przykład ISO 9001, co gwarantuje, że są one naprawdę niezawodne.

Pytanie 6

Czujnik, który działa na zasadzie generowania różnicy potencjałów w kontakcie z przewodnikami wykonanymi z różnych metali, to

A. element termoelektryczny
B. pirometr
C. termistor
D. element bimetaliczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Element termoelektryczny działa na zasadzie powstawania kontaktowej różnicy potencjałów, co jest efektem Seebecka. Zjawisko to występuje, gdy dwa różne metale są ze sobą połączone i występuje różnica temperatur, co skutkuje generowaniem napięcia. To napięcie można wykorzystać do pomiaru temperatury lub generacji energii elektrycznej. Na przykład, termoelektryczne czujniki temperatury, takie jak termopary, są szeroko stosowane w przemyśle do monitorowania procesów oraz w urządzeniach pomiarowych, gdzie wymagana jest wysoka precyzja. Dodatkowo, elementy termoelektryczne są wykorzystywane do chłodzenia w aplikacjach, które wymagają efektywnego usuwania ciepła, w tym w elektronice, gdzie nadmiar ciepła może wpływać na wydajność i żywotność komponentów. Zastosowanie tych urządzeń jest zgodne z normami przemysłowymi, co potwierdza ich niezawodność i efektywność.

Pytanie 7

Jaki aparat elektryczny jest wykorzystywany do ochrony silnika indukcyjnego przed przeciążeniem?

A. Wyłącznik różnicowoprądowy
B. Przekaźnik termobimetalowy
C. Wyłącznik nadmiarowy
D. Stycznik elektromagnetyczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekaźnik termobimetalowy jest urządzeniem, które działa na zasadzie różnicy temperatur pomiędzy dwoma metalami o różnych współczynnikach rozszerzalności. Jego głównym zastosowaniem jest ochrona silników indukcyjnych przed przeciążeniem i przegrzaniem. W momencie, gdy prąd płynący przez silnik przekracza ustaloną wartość, przekaźnik odcina zasilanie, co zapobiega uszkodzeniu silnika. Przekaźniki termobimetalowe są często stosowane w obwodach napędowych, gdzie silniki są narażone na zmienne warunki pracy. Dobrą praktyką jest ich instalacja w połączeniu z wyłącznikami automatycznymi, co zapewnia dodatkową ochronę. Zgodnie z normami IEC 60947-4-1, przekaźniki te muszą spełniać określone wymagania zabezpieczeń przeciążeniowych, co czyni je wiarygodnym rozwiązaniem w aplikacjach przemysłowych.

Pytanie 8

Montaż realizowany według zasady całkowitej zamienności polega na

A. montażu elementów składowych wykonanych z dużą precyzją, czyli o bardzo małych tolerancjach wymiarowych
B. tym, że wymagana precyzja wymiaru montażowego osiągana jest przez dopasowanie jednego z elementów składowych poprzez obróbkę jej powierzchni w trakcie montażu
C. tym, że pewien odsetek elementów składowych ma wyższe tolerancje wymiarowe, co obniża koszty produkcji części
D. podziale obrobionych komponentów tworzących zespół według ich rzeczywistych wymiarów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Montaż zgodny z zasadą całkowitej zamienności oznacza, że wszystkie części składowe danego zespołu są produkowane z bardzo wąskimi tolerancjami wymiarowymi. Dzięki temu, każda z części może być wymieniana bez konieczności dodatkowej obróbki. Taki sposób produkcji jest kluczowy w branżach, gdzie precyzja i niezawodność są priorytetem, na przykład w przemyśle lotniczym czy motoryzacyjnym. W praktyce oznacza to, że przy wymianie części, takich jak elementy silnika czy układu napędowego, nie zachodzi potrzeba ich dopasowywania ani regulacji, co znacznie przyspiesza czas montażu. Standardy, takie jak ISO 286 dotyczące tolerancji wymiarowych oraz norma AS9100 w przemyśle lotniczym, podkreślają znaczenie tego podejścia, ponieważ mają one na celu zapewnienie wysokiej jakości oraz bezpieczeństwa produktów. Dostosowanie procesu produkcji do zasady całkowitej zamienności pozwala również na obniżenie kosztów, ponieważ zmniejsza się ryzyko błędów montażowych oraz reklamacji związanych z niewłaściwym działaniem części.

Pytanie 9

Wartość sygnału binarnego (11100111)2 na wyjściu ośmiobitowego przetwornika A/C w urządzeniu mechatronicznym odpowiada liczbie dziesiętnej

A. (230)10
B. (231)10
C. (254)10
D. (255)10

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sygnał binarny (11100111)2 odpowiada liczbie dziesiętnej (231)10 ze względu na konwersję z systemu binarnego na dziesiętny. Aby to przeliczyć, możemy rozłożyć wartość binarną na poszczególne bity: 1*27 + 1*26 + 1*25 + 0*24 + 0*23 + 1*22 + 1*21 + 1*20, co daje 128 + 64 + 32 + 0 + 0 + 4 + 2 + 1 = 231. Tego typu przetwarzanie sygnałów jest kluczowe w systemach mechatronicznych, gdzie przetworniki analogowo-cyfrowe (A/C) umożliwiają digitalizację sygnałów w celu dalszej obróbki. Przykład zastosowania to systemy pomiarowe, gdzie wartości analogowe, takie jak napięcie, są przetwarzane na formę cyfrową umożliwiającą ich analizę przez procesory. Zrozumienie konwersji binarnej jest fundamentalne dla inżynierów zajmujących się automatyką oraz elektroniką, a znajomość tych procesów przyczynia się do poprawnej konstrukcji oraz interpretacji danych w systemach przetwarzania informacji.

Pytanie 10

Ile oleju, zgodnie z przedstawionymi w tabeli wskazaniami producenta, należy przygotować do całkowitej wymiany zużytego oleju w pompie IF1 400?

Typ pompyIlość oleju w silniku
l
Ilość oleju w komorze olejowej
l
Całkowita ilość
oleju w pompie
l
IF1 100; 150; 2000,40-0,40
IF1 50; 75; 100; 150; 2000,40-0,40
IF2 3000,900,121,02
IF1 300; 4001,700,121,82
IF2 4001,700,121,82
IF1 5501,700,121,82
IF2 5501,700,121,82
IF1 7502,000,122,12
IF1 10002,000,122,12
IF1 1500; 20005,000,185,18

A. 0,90 l
B. 0,40 l
C. 1,70 l
D. 1,82 l

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,82 l jest prawidłowa, ponieważ dokładnie odpowiada całkowitej ilości oleju potrzebnej do wymiany w pompie IF1 400. Aby obliczyć tę wartość, należy zsumować ilości oleju wymagane w silniku oraz w komorze olejowej, które są przedstawione w tabeli producenta. W praktyce, zapewnienie odpowiedniej ilości oleju jest kluczowe dla prawidłowego funkcjonowania urządzenia, gdyż niedobór oleju może prowadzić do przegrzewania się pompy i jej szybszego zużycia. W branży inżynieryjnej i mechanicznej, przestrzeganie zaleceń producentów dotyczących wymiany oleju i jego ilości jest uznawane za standardową praktykę, która wpływa na niezawodność oraz efektywność działania maszyn. Dobór właściwego oleju i jego ilości ma również znaczenie dla utrzymania optymalnych parametrów pracy, co w efekcie przekłada się na dłuższą żywotność urządzenia oraz oszczędności w kosztach eksploatacji.

Pytanie 11

Aby sprawdzić stan bezpieczników, znaleźć niedokręcone złącza oraz zidentyfikować przegrzane elementy instalacji bez konieczności wyłączania zasilania, należy wykorzystać

A. miernik uniwersalny
B. miernik parametrów instalacji
C. kamerę termowizyjną
D. miernik RLC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kamera termowizyjna jest specjalistycznym narzędziem, które pozwala na bezdotykowe monitorowanie temperatury obiektów w instalacjach elektrycznych. Dzięki wykrywaniu różnic temperatur, możliwe jest szybkie zlokalizowanie przegrzanych elementów, takich jak zwarcia, przeciążenia czy niedokręcone złącza, co może prowadzić do potencjalnych awarii. W praktyce, technicy często używają kamer termograficznych do regularnych przeglądów instalacji, co umożliwia wczesne wykrywanie problemów zanim dojdzie do uszkodzenia sprzętu czy pożaru. W branży energetycznej oraz budowlanej, zgodnie z normą NFPA 70E, regularne inspekcje termograficzne są kluczowe dla zapewnienia bezpieczeństwa i efektywności systemów elektrycznych. Zastosowanie kamery termograficznej jest zatem zgodne z najlepszymi praktykami konserwacyjnymi, a także przyczynia się do zmniejszenia kosztów eksploatacyjnych poprzez minimalizację ryzyka awarii.

Pytanie 12

Maksymalne napięcie na analogowym wejściu kontrolera PLC wynosi 10 V DC, a rozdzielczość tego wejścia, wynosząca około 40 mV, zapewnia zastosowanie kontrolera PLC z przetwornikiem A/C.

A. 64-bitowym
B. 8-bitowym
C. 32-bitowym
D. 16-bitowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 8-bitowa jest właściwa, ponieważ przy maksymalnym napięciu wejściowym wynoszącym 10 V oraz rozdzielczości na poziomie 40 mV można obliczyć liczbę dostępnych poziomów pomiarowych dla wejścia analogowego. Wejście 8-bitowe może reprezentować 256 wartości (2^8), co pozwala na podział napięcia 10 V na 256 poziomów. Dlatego pojedynczy krok napięcia wynosi 10 V / 256 = około 39,06 mV. Taka wartość jest bardzo bliska podanej rozdzielczości 40 mV, co czyni tę odpowiedź poprawną. W praktycznych zastosowaniach systemów automatyki, 8-bitowe przetworniki A/C są często wystarczające do monitorowania podstawowych parametrów, takich jak temperatura czy ciśnienie. Pomimo postępu technologicznego, wiele starszych systemów nadal wykorzystuje przetworniki 8-bitowe, co czyni je ważnym elementem w analizie i modernizacji istniejących instalacji. Warto również zauważyć, że zgodnie z normami branżowymi, takich jak IEC 61131, stosowanie prostych rozwiązań w kontrolerach PLC jest często preferowane ze względu na ich niezawodność i łatwość w integracji.

Pytanie 13

Ile jednostek napędowych użyto w manipulatorze, którego diagram pokazano na rysunku?

A. 6 jednostek napędowych
B. 4 jednostki napędowe
C. 5 jednostek napędowych
D. 3 jednostki napędowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na pięć napędów w manipulatorze jest prawidłowa, ponieważ wiele nowoczesnych manipulatorów wykorzystuje zaawansowane systemy napędowe, które pozwalają na precyzyjne sterowanie ruchem. W przypadku pięciu napędów, każdy z nich może odpowiadać za różne osie ruchu, co zapewnia większą elastyczność i dokładność podczas wykonywania zadań. Na przykład, w robotyce przemysłowej, manipulatory z pięcioma napędami są w stanie wykonać bardziej skomplikowane operacje, takie jak montaż, pakowanie czy manipulowanie delikatnymi przedmiotami. W praktyce, stosowanie pięciu napędów pozwala na uzyskanie większej liczby stopni swobody, co jest kluczowe w wielu aplikacjach. Dobre praktyki w projektowaniu manipulatorów sugerują również, że większa liczba napędów może poprawić zdolności adaptacyjne robota, umożliwiając mu lepsze dostosowanie się do zmiennych warunków pracy. Ponadto, zgodnie z normami ISO 10218 dotyczącymi bezpieczeństwa robotów przemysłowych, odpowiednia liczba napędów może wpłynąć na poprawę stabilności i bezpieczeństwa operacji, co jest kluczowe w środowisku przemysłowym.

Pytanie 14

W skład systemu do przygotowania sprężonego powietrza nie wchodzi

A. smarownica
B. filtr powietrza
C. reduktor ciśnienia
D. sprężarka

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprężarka jest kluczowym elementem systemu sprężonego powietrza, odpowiedzialnym za podnoszenie ciśnienia powietrza poprzez kompresję. Jej głównym zadaniem jest wytwarzanie sprężonego powietrza, które jest następnie wykorzystywane w różnych procesach przemysłowych, takich jak zasilanie narzędzi pneumatycznych, transport materiałów czy systemy chłodzenia. W praktyce, sprężarki mogą mieć różne typy, w tym sprężarki tłokowe, śrubowe i membranowe, każdy z nich dostosowany do specyficznych zastosowań. Standardy branżowe, takie jak ISO 8573, definiują wymagania dotyczące jakości sprężonego powietrza, co podkreśla znaczenie sprężarki w zapewnieniu czystości i efektywności systemu. W odpowiedzi na potrzeby przemysłowe, sprężarki są często integrowane z dodatkowymi komponentami, takimi jak filtry, reduktory ciśnienia i smarownice, które wspomagają utrzymanie odpowiednich parametrów pracy systemu, jednak same w sobie nie należą do zespołu przygotowania sprężonego powietrza.

Pytanie 15

Jakie narzędzia powinno się zastosować do montażu przewlekanego komponentów elektronicznych na płytce PCB?

A. Lutownica na gorące powietrze z dyszą w kształcie 7x7
B. Lutownica z końcówką 'minifala'
C. Rozlutownica
D. Stacja lutownicza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stacja lutownicza to narzędzie, które zapewnia precyzyjne i stabilne warunki pracy, co jest kluczowe podczas lutowania przewlekanego elementów elektronicznych na płytkach drukowanych. Dzięki regulowanej temperaturze i możliwości dostosowania przepływu powietrza, stacja lutownicza umożliwia skuteczne lutowanie, minimalizując ryzyko przegrzewania komponentów. Na przykład, w przypadku lutowania małych elementów, takich jak kondensatory czy oporniki, stacja lutownicza pozwala na dokładne ustawienie temperatury, co jest niezbędne do uzyskania mocnych połączeń bez uszkodzenia wrażliwych elementów. Dobre praktyki branżowe sugerują użycie stacji z technologią podgrzewania, co umożliwia równomierne rozgrzanie obszaru lutowanego, co jest szczególnie przydatne w przypadku złożonych układów. Stacje lutownicze są także wyposażone w różnorodne końcówki, co zwiększa ich wszechstronność i umożliwia pracę z różnymi rodzajami elementów elektronicznych. W kontekście standardów IPC (Institute of Printed Circuits), stosowanie stacji lutowniczych w procesie montażu jest zalecane, ponieważ pozwala na osiągnięcie wyższej jakości połączeń lutowanych oraz dłuższej żywotności urządzeń elektronicznych.

Pytanie 16

Wartość natężenia oświetlenia podczas wykonywania precyzyjnych zadań powinna wynosić

A. 300 lx
B. 100 lx
C. 800 lx
D. 600 lx

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Natężenie oświetlenia na poziomie 800 lx jest zalecane w miejscach, gdzie wykonywane są precyzyjne prace, takich jak laboratoria, warsztaty czy strefy montażowe. Tego rodzaju oświetlenie zapewnia wystarczającą ilość światła, co jest kluczowe dla dokładności i jakości wykonania zadań. Zbyt niskie natężenie oświetlenia może prowadzić do zmęczenia wzroku, obniżenia wydajności i zwiększonego ryzyka błędów. Przykład zastosowania tej zasady można zaobserwować w branży elektronicznej, gdzie montaż drobnych komponentów wymaga wyjątkowej precyzji. Zgodnie z normami takimi jak PN-EN 12464-1, specyfikującymi wymagania dotyczące oświetlenia miejsc pracy, natężenie oświetlenia na poziomie 800 lx jest odpowiednie dla miejsc wymagających koncentracji oraz dokładności. Należy również pamiętać o równomiernym rozkładzie światła, co jest równie istotne dla eliminacji cieni, które mogą utrudniać widoczność detali. Wysokiej jakości oświetlenie to klucz do efektywności i bezpieczeństwa w miejscu pracy.

Pytanie 17

Wskaź prawidłową sekwencję montażu składników w systemie przygotowania sprężonego powietrza?

A. Reduktor, smarownica, filtr powietrza
B. Reduktor, filtr powietrza, smarownica
C. Smarownica, filtr powietrza, reduktor
D. Filtr powietrza, reduktor, smarownica

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Filtr powietrza, reduktor, smarownica to prawidłowa kolejność montażu elementów składowych w zespole przygotowania sprężonego powietrza. Rozpoczynamy od filtra powietrza, który jest kluczowy w procesie oczyszczania powietrza z zanieczyszczeń, takich jak pyły, woda i oleje, aby zapewnić wysoką jakość sprężonego powietrza. Następnie, po filtracji, powietrze trafia do reduktora ciśnienia, który obniża ciśnienie powietrza do pożądanego poziomu, co jest niezbędne do dalszej obróbki i właściwego działania urządzeń pneumatycznych. Ostatnim elementem jest smarownica, która dostarcza odpowiednią ilość oleju do sprężonego powietrza, co zmniejsza tarcie w narzędziach pneumatycznych i wydłuża ich żywotność. Takie podejście jest zgodne z najlepszymi praktykami w branży pneumatycznej, co pozwala na osiągnięcie optymalnej efektywności i bezpieczeństwa w operacjach z wykorzystaniem sprężonego powietrza.

Pytanie 18

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. zwiększenia prędkości obrotowej
B. wzrostu rezystancji uzwojeń
C. zmniejszenia prędkości obrotowej
D. spadku rezystancji uzwojeń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 19

Siłownik hydrauliczny o powierzchni tłoka A = 20 cm2 musi wygenerować siłę F = 30 kN. Jakie powinno być ciśnienie oleju?

A. 1 500 bar
B. 15 bar
C. 150 bar
D. 15 000 bar

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 150 bar jest prawidłowa z uwagi na zastosowanie wzoru na obliczenie ciśnienia w siłowniku hydraulicznym. Ciśnienie (p) oblicza się według wzoru p = F / A, gdzie F to siła wywierana przez siłownik, a A to powierzchnia czynna tłoka. W tym przypadku F wynosi 30 kN, co jest równoznaczne z 30 000 N, a A wynosi 20 cm², co należy przeliczyć na m² (20 cm² = 0,002 m²). Podstawiając wartości do wzoru: p = 30 000 N / 0,002 m² = 15 000 000 Pa, co daje 150 bar (1 bar = 100 000 Pa). W praktyce, w hydraulice przemysłowej, utrzymywanie właściwego ciśnienia ma kluczowe znaczenie dla efektywności działania układów, co wpływa na bezpieczeństwo oraz niezawodność maszyn. Technologie hydrauliczne są powszechnie stosowane w budownictwie, przemyśle motoryzacyjnym i lotniczym, gdzie precyzyjne sterowanie siłą i ruchem jest niezbędne.

Pytanie 20

Jakie urządzenia służą do pomiaru wartości przyśpieszenia drgań elektrycznego silnika napędowego pompy hydraulicznej, działającego w systemie mechatronicznym?

A. akcelerometry
B. tensometry
C. rotametry
D. galwanometry

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Akcelerometry są urządzeniami pomiarowymi, które służą do pomiaru przyspieszeń oraz drgań w różnych systemach mechanicznych, w tym w elektrycznych silnikach napędowych, jak w przypadku pomp hydraulicznych. Ich działanie polega na rejestrowaniu przyspieszeń w różnych osiach, co pozwala na dokładne monitorowanie stanu technicznego urządzenia. Przykładowo, w przemyśle motoryzacyjnym akcelerometry są powszechnie wykorzystywane do analizy drgań pojazdów, co przyczynia się do poprawy komfortu jazdy oraz bezpieczeństwa. W kontekście układów mechatronicznych, akcelerometry mogą być zintegrowane z systemami kontroli, umożliwiając automatyczne dostosowywanie parametrów pracy maszyny w odpowiedzi na zmieniające się warunki. Zgodnie z normami ISO 5349, które dotyczą pomiaru drgań, akcelerometry stanowią standardowy sposób na zapewnienie precyzyjnych pomiarów, co skutkuje efektywniejszym zarządzaniem procesami przemysłowymi oraz minimalizowaniem ryzyka uszkodzeń sprzętu.

Pytanie 21

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w wykonaniu elementu mechanicznego?

A. Graniczne
B. Nominalne
C. Jednostronne
D. Rzeczywiste

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Graniczne' jest prawidłowa, ponieważ wymiary graniczne definiują dopuszczalne zakresy odchyleń od wymiarów nominalnych, które są kluczowe w inżynierii mechanicznej. Wymiary te określają maksymalne i minimalne wartości, w ramach których element mechaniczny może być wykonany, aby zapewnić jego funkcjonalność i interoperacyjność z innymi komponentami. Przykładowo, w produkcji wałów, wymiary graniczne pozwalają na określenie, jak blisko rzeczywiste wymiary mogą być do wartości nominalnych, a jednocześnie nie wpłyną na działanie maszyny. W praktyce, normy takie jak ISO 286 określają zasady tolerancji wymiarowych, co jest niezbędne do zapewnienia odpowiedniej jakości i wymienności części. Wiedza na temat wymiarów granicznych jest kluczowa, ponieważ niewłaściwe ich zdefiniowanie może prowadzić do wadliwego działania całego układu mechanicznego lub nawet do jego awarii. Dlatego inżynierowie muszą dokładnie analizować te parametry podczas projektowania i produkcji.

Pytanie 22

Czujnik indukcyjny zbliżeniowy

A. informuje o kontakcie z zewnętrznym przedmiotem
B. reaguje, gdy do sensora zbliżają się obiekty metalowe
C. informuje o odległości od zbliżającego się obiektu
D. reaguje, gdy do sensora zbliżają się obiekty nieprzezroczyste

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Indukcyjny sensor zbliżeniowy jest urządzeniem, które reaguje na obecność metalowych obiektów w swoim polu detekcji. Działa na zasadzie generowania pola elektromagnetycznego, które zmienia się w obecności metalu. Kiedy metalowy obiekt zbliża się do sensora, jego pole zmienia właściwości, co powoduje, że sensor uruchamia sygnał wyjściowy. Tego typu czujniki są często wykorzystywane w automatyce przemysłowej, na przykład do wykrywania pozycji narzędzi w maszynach, kontroli obecności elementów w liniach produkcyjnych, a także w systemach bezpieczeństwa, gdzie mają za zadanie monitorować dostęp do zamkniętych przestrzeni. Dzięki ich odporności na zewnętrzne warunki, takie jak zanieczyszczenia czy wilgoć, są to jedne z najczęściej stosowanych sensorów w trudnych warunkach przemysłowych. Ponadto, zgodnie z normami IEC 60947-5-2, czujniki indukcyjne powinny być odpowiednio zainstalowane, by zapewnić ich niezawodną pracę oraz bezpieczeństwo operacyjne.

Pytanie 23

W pomiarze deformacji konstrukcji nośnych najczęściej wykorzystuje się czujniki, które działają na zasadzie

A. zmiany rezystancji
B. efektu piezoelektrycznego
C. zmiany indukcyjności własnej
D. zmiany pojemności elektrycznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujniki oparte na zmianie rezystancji, znane jako tensometry, są kluczowe w pomiarze odkształceń konstrukcji nośnych. Ich działanie opiera się na zasadzie zmiany rezystancji elektrycznej materiału pod wpływem odkształcenia mechanicznego. Kiedy materiał jest rozciągany lub ściskany, jego długość oraz przekrój poprzeczny ulegają zmianie, co bezpośrednio wpływa na jego rezystancję. Tensometry są powszechnie stosowane w inżynierii budowlanej, zwłaszcza przy monitorowaniu mostów, wieżowców oraz innych obiektów narażonych na duże obciążenia. Dzięki ich użyciu inżynierowie mogą ocenić stan techniczny konstrukcji i przewidzieć potencjalne zagrożenia. Standardy branżowe, takie jak ISO 376, definiują wymagania dotyczące precyzyjnych pomiarów odkształceń, co czyni tensometry niezastąpionym narzędziem w nowoczesnym monitorowaniu strukturalnym. Umożliwiają one również przeprowadzanie analiz statycznych i dynamicznych, co jest kluczowe w projektowaniu bezpiecznych i trwałych obiektów budowlanych.

Pytanie 24

Rysunek przedstawia symbol graficzny bramki

Ilustracja do pytania
A. NAND
B. NOR
C. Ex-NOR
D. Ex-OR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny przedstawia bramkę Ex-OR (Exclusive OR), która jest kluczowym elementem w projektowaniu układów cyfrowych. Działa na zasadzie, że na wyjściu generuje stan wysoki (1) tylko wtedy, gdy na wejściach są różne stany – jednocześnie 1 i 0. To odróżnia ją od standardowej bramki OR, która daje wynik wysoki, gdy przynajmniej jedno z wejść ma stan wysoki. W praktyce, bramki Ex-OR są wykorzystywane w takich zastosowaniach jak sumatory w obliczeniach arytmetycznych, a także w układach logicznych, które wymagają porównywania stanów. Przykładem może być kontrola błędów w transmisji danych, gdzie bramka Ex-OR jest używana do generowania bitów parzystości. W kontekście standardów, stosowanie bramek Ex-OR jest zgodne z praktykami projektowania układów cyfrowych, które kładą nacisk na efektywność i minimalizację błędów. Zrozumienie działania tej bramki jest fundamentem dla dalszych zagadnień związanych z układami cyfrowymi i logiką.

Pytanie 25

W zakładzie produkcyjnym ustalono, że ciśnienie względne powietrza w zbiorniku wynosi +3 bary. Co oznacza, że nadciśnienie pNAD oraz ciśnienie absolutne (bezwzględne) pABS mają wartości:

A. pNAD = 3 bar, pABS = 4 bar
B. pNAD = 1 bar, pABS = 2 bar
C. pNAD = 3 bar, pABS = 3 bar
D. pNAD = 2 bar, pABS = 1 bar

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ ciśnienie względne powietrza w zbiorniku wynoszące +3 bary oznacza, że wartość nadciśnienia (pNAD) wynosi 3 bary. Ciśnienie absolutne (pABS) oblicza się jako sumę ciśnienia atmosferycznego i ciśnienia względnego. W standardowych warunkach na poziomie morza ciśnienie atmosferyczne wynosi około 1 bara. Dlatego pABS = pNAD + pATM = 3 bary + 1 bar = 4 bary. Wiedza ta jest kluczowa w różnych zastosowaniach inżynieryjnych, takich jak projektowanie układów pneumatycznych i hydraulicznych, gdzie zachowanie ciśnienia jest kluczowe dla efektywności i bezpieczeństwa urządzeń. Przykładowo, w systemach pneumatycznych nadciśnienie jest wykorzystywane do napędu siłowników, a znajomość prawidłowych wartości ciśnień pozwala na optymalne ich zaprojektowanie zgodnie z normami ASME oraz ISO, co zapewnia ich prawidłowe funkcjonowanie i bezpieczeństwo użytkowania.

Pytanie 26

Jakie jest zastosowanie transoptora?

A. sygnalizacji transmisji
B. galwanicznego połączenia obwodów
C. zamiany impulsów elektrycznych na promieniowanie świetlne
D. galwanicznej izolacji obwodów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Transoptor, znany również jako optoizolator, jest urządzeniem elektronicznym, które służy do galwanicznej izolacji obwodów. Jego podstawową funkcją jest zapewnienie separacji elektrycznej pomiędzy dwoma obwodami, co eliminuje ryzyko przeniesienia zakłóceń, przepięć oraz różnic potencjałów między nimi. Przykładem zastosowania transoptora jest w układach sterowania, gdzie sygnał z jednostki sterującej (np. mikroprocesora) jest izolowany od obwodu mocy, co jest kluczowe dla zabezpieczenia delikatnych komponentów. Transoptory znajdują szerokie zastosowanie w systemach automatyki przemysłowej, gdzie są używane do interfejsowania czujników z systemami sterującymi, a także w telekomunikacji, gdzie pozwalają na przesyłanie sygnałów bezpośrednio między różnymi poziomami potencjału. Stosowanie transoptorów jest zgodne z najlepszymi praktykami w inżynierii elektronicznej, które kładą duży nacisk na bezpieczeństwo oraz niezawodność układów elektronicznych, zwłaszcza w środowiskach przemysłowych.

Pytanie 27

Aby usunąć stycznik zamontowany na szynie, należy wykonać działania w poniższej kolejności:

A. odłączyć napięcie, zwolnić zatrzask i zdjąć stycznik z szyny, odkręcić przewody
B. odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie
C. zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody
D. odłączyć napięcie, odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź odłącz napięcie, odkręć przewody, zwolnij zatrzask i zdejmij stycznik z szyny jest prawidłowa, ponieważ przestrzega podstawowych zasad bezpieczeństwa oraz dobrych praktyk w zakresie pracy z urządzeniami elektrycznymi. Przede wszystkim, odłączenie napięcia jest kluczowym krokiem, który ma na celu zabezpieczenie operatora przed porażeniem elektrycznym. Gdy napięcie jest odłączone, można bezpiecznie manipulować urządzeniami. Następnie, odkręcenie przewodów powinno nastąpić przed zwolnieniem zatrzasku, aby uniknąć nieprzewidzianych sytuacji, takich jak przypadkowe zwarcie podczas demontażu. Po odłączeniu przewodów możliwe jest bezpieczne zwolnienie zatrzasku i zdjęcie stycznika z szyny. Taki sposób postępowania jest zgodny z normami BHP oraz zaleceniami producentów urządzeń, co zapewnia skuteczne i bezpieczne wykonanie demontażu. Przykłady zastosowania tej procedury można znaleźć w praktyce w obiektach przemysłowych, gdzie regularnie przeprowadza się konserwację i serwisowanie osprzętu elektrycznego.

Pytanie 28

Jaką czynność należy zrealizować w pierwszej kolejności, instalując oprogramowanie do programowania sterowników PLC?

A. Usunąć poprzednią wersję oprogramowania, które ma być zainstalowane
B. Zaktualizować system operacyjny komputera, na którym zainstalowane będzie oprogramowanie
C. Zweryfikować minimalne wymagania, które musi spełniać komputer, na którym oprogramowanie będzie instalowane
D. Przenieść z nośnika instalacyjnego wersję instalacyjną oprogramowania na dysk twardy komputera

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie minimalnych wymagań systemowych przed instalacją oprogramowania do programowania sterowników PLC jest kluczowym krokiem, który zapewnia prawidłowe działanie aplikacji. Minimalne wymagania mogą obejmować parametry takie jak procesor, pamięć RAM, dostępna przestrzeń na dysku oraz wersję systemu operacyjnego. Ignorowanie tych wymagań może prowadzić do problemów z wydajnością, a nawet do niemożności uruchomienia oprogramowania. Na przykład, jeśli oprogramowanie wymaga 4 GB RAM, a komputer ma tylko 2 GB, może to spowodować znaczące opóźnienia lub awarie. W branży automatyki standardem jest zawsze upewnienie się, że sprzęt spełnia wymagania, co pozwala na efektywne wykorzystanie oprogramowania. Dodatkowo, niektóre z oprogramowań mogą mieć specyficzne wymagania dotyczące kart graficznych lub złączy, co również warto zweryfikować przed instalacją. Taka praktyka nie tylko minimalizuje ryzyko problemów technicznych, ale również optymalizuje czas potrzebny na konfigurację i uruchomienie systemu.

Pytanie 29

Rezystancja którego z podanych czujników zmniejsza się w miarę wzrostu temperatury?

A. Termistora PTC
B. Termopary K
C. Termistora NTC
D. Termopary J

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Termistory NTC (Negative Temperature Coefficient) to elementy, których rezystancja maleje w miarę wzrostu temperatury. Działa to na zasadzie, że wzrost temperatury powoduje zwiększenie energii kinetycznej nośników ładunku, co prowadzi do większej przewodności elektrycznej. Przykłady zastosowania termistorów NTC obejmują czujniki temperatury w termostatach oraz systemy monitorowania temperatury w elektronice. Są one szczególnie popularne w aplikacjach wymagających precyzyjnego pomiaru temperatury oraz w obwodach zabezpieczających, gdzie mogą ograniczać prąd w przypadku przegrzania. Dobre praktyki branżowe zalecają stosowanie termistorów NTC w systemach, gdzie wymagana jest szybka reakcja na zmiany temperatury, co czyni je idealnym rozwiązaniem dla automatyki przemysłowej i systemów HVAC. Termistory NTC są również zgodne z wieloma standardami dotyczącymi pomiaru temperatury, co podnosi ich wiarygodność jako czujników.

Pytanie 30

Co należy uczynić w przypadku rany z krwotokiem tętniczym?

A. przemyć ranę wodą utlenioną i oczekiwać na pomoc medyczną
B. położyć poszkodowanego w pozycji bocznej ustalonej i czekać na pomoc medyczną
C. założyć opaskę uciskową powyżej miejsca urazu
D. nałożyć opatrunek z jałowej gazy bezpośrednio na ranę

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Założenie opaski uciskowej powyżej rany jest kluczowym działaniem w przypadku krwotoku tętniczego. Krwotok tętniczy charakteryzuje się intensywnym krwawieniem, które może prowadzić do szybkiej utraty krwi i wstrząsu hipowolemicznego. Opaska uciskowa działa poprzez wywieranie stałego ucisku na naczynia krwionośne, co ogranicza przepływ krwi do miejsca rany, a tym samym zmniejsza utratę krwi. Ważne jest, aby opaskę założyć powyżej rany, aby skutecznie zablokować krwawienie. Należy również pamiętać, że opaska uciskowa powinna być stosowana tylko w sytuacjach, gdy inne metody, takie jak bezpośredni ucisk na ranę, nie przynoszą efektu. W praktyce, opaskę należy założyć jak najszybciej, a następnie jak najszybciej wezwać pomoc medyczną. W przypadku urazów kończyn, opaska powinna być umieszczona jak najwyżej, aby odpowiednio ograniczyć przepływ krwi. Zachowanie tej procedury jest zgodne z wytycznymi Europejskiej Rady Resuscytacji oraz innymi standardami w zakresie pierwszej pomocy.

Pytanie 31

Jakie są kolejne kroki w przygotowaniu sprężonego powietrza do systemu pneumatycznego?

A. osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie, nasycenie mgłą olejową
B. obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza, nasycenie mgłą olejową
C. nasycenie mgłą olejową (jeśli jest to potrzebne), osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie
D. nasycenie mgłą olejową, obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Twoja odpowiedź dotycząca osuszania i filtrowania powietrza, redukcji ciśnienia i nasycenia mgłą olejową jest jak najbardziej na miejscu. To ważne etapy, które pozwalają na przygotowanie sprężonego powietrza, które będzie dobrze działać w systemach pneumatycznych. Osuchanie i filtrowanie powietrza są kluczowe, żeby pozbyć się wszelkich zanieczyszczeń, bo woda, olej czy jakieś drobinki mogą zepsuć sprzęt i sprawić, że cała maszyna przestanie działać, a to już nie jest przyjemne. Po osuszeniu powietrze musi być odpowiednio nasycone olejem, żeby elementy ruchome się nie zacierały, co znacznie wydłuża ich żywotność. Dobrym przykładem jest produkcja, gdzie jakość sprężonego powietrza naprawdę może zmienić efektywność pracy.

Pytanie 32

Produkcja sprężonego powietrza w systemach pneumatycznych obejmuje przynajmniej jego

A. sprężanie, filtrowanie i smarowanie
B. sprężanie, osuszanie i filtrowanie
C. osuszanie, filtrowanie i smarowanie
D. sprężanie, osuszanie i smarowanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "sprężaniu, osuszaniu i filtrowaniu" jest super, bo te trzy procesy są naprawdę kluczowe, żeby przygotować dobre sprężone powietrze w układach pneumatycznych. Sprężanie to zwiększenie ciśnienia powietrza, dzięki czemu można je przechowywać i wykorzystywać w różnych maszynach. Potem mamy osuszanie, które jest mega ważne, bo wilgoć w powietrzu może zaszkodzić sprzętom, a tego przecież nie chcemy. Osuszacze, jak te chłodnicze i adsorpcyjne, pomagają pozbyć się pary wodnej. Filtrowanie to kolejny krok, który pozwala wyeliminować zanieczyszczenia, które mogą zaszkodzić elementom układów. Właściwe filtry, na przykład zgodne z normą ISO 8573, dbają o to, żeby powietrze było czyste, co jest istotne dla trwałej i pewnej pracy tych systemów. Przykładowo, w przemyśle motoryzacyjnym jakość sprężonego powietrza jest kluczowa podczas montażu i obróbki.

Pytanie 33

Który z poniższych czujników jest elementem serwomechanizmu sterującego ruchem ramienia robota?

A. Mostek tensometryczny
B. Pirometr
C. Enkoder
D. Przepływomierz powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Enkoder jest elementem pomiarowym, który odgrywa kluczową rolę w systemach serwomechanizmów, szczególnie w aplikacjach związanych z robotyką. Jego główną funkcją jest precyzyjne określanie pozycji oraz prędkości obrotowej silnika, co jest niezbędne do dokładnego sterowania ruchem ramion robota. Enkodery mogą być optyczne, magnetyczne lub mechaniczne, każdy rodzaj ma swoje zastosowania w zależności od wymagań projektu. W praktyce, enkoder zastosowany w ramieniu robota pozwala na precyzyjne pozycjonowanie, co jest szczególnie istotne w zadaniach wymagających wysokiej dokładności, takich jak montaż komponentów elektronicznych czy operacje chirurgiczne. W kontekście standardów branżowych, stosowanie enkoderów w robotach przemysłowych jest zgodne z normami ISO 10218, które określają wymagania dotyczące bezpieczeństwa robotów. To sprawia, że enkodery są nie tylko niezawodne, ale także kluczowe dla zapewnienia jakości i bezpieczeństwa w automatyzacji procesów przemysłowych.

Pytanie 34

Jakie urządzenie powinno być wykorzystane do weryfikacji szczelności instalacji pneumatycznej?

A. Ultradźwiękowy wykrywacz nieszczelności
B. Detektor gazów
C. Detektor z lampą UV
D. Optyczny detektor nieszczelności

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ultradźwiękowy wykrywacz nieszczelności jest narzędziem szczególnie efektywnym w diagnozowaniu wycieków w instalacjach pneumatycznych. Działa na zasadzie analizy dźwięku, który generowany jest przez przepływ powietrza przez nieszczelności. W porównaniu do innych metod, wykrywacze ultradźwiękowe mają tę przewagę, że mogą wykrywać nieszczelności w trudnodostępnych miejscach, gdzie inne urządzenia mogą nie być w stanie zidentyfikować problemu. Przykładami ich zastosowania są inspekcje w zakładach produkcyjnych, gdzie utrzymanie ciśnienia w instalacjach pneumatycznych jest kluczowe dla efektywności operacyjnej. W branży przemysłowej standardy, takie jak ISO 50001, podkreślają znaczenie monitorowania i optymalizacji systemów pneumatycznych w celu zmniejszenia strat energii, co czyni ultradźwiękowe wykrywacze nieszczelności narzędziem zgodnym z najlepszymi praktykami w tym zakresie. Dodatkowo, użycie tego typu detektora pozwala na wczesne wykrycie problemów, co może prowadzić do znacznych oszczędności kosztów związanych z utrzymaniem i naprawą uszkodzeń.

Pytanie 35

Nie można zrealizować regulacji prędkości obrotowej silników indukcyjnych poprzez zmianę

A. kolejności faz
B. wartości częstotliwości napięcia zasilającego
C. liczby par biegunów
D. wartości skutecznej napięcia zasilania stojana

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kolejność faz w silnikach indukcyjnych nie wpływa na prędkość obrotową, a jedynie na kierunek obrotów. Dostosowanie prędkości obrotowej silnika indukcyjnego można osiągnąć poprzez zmianę częstotliwości napięcia zasilającego, co jest zgodne z zasadą, że prędkość obrotowa silnika jest proporcjonalna do częstotliwości napięcia. Również zmianę liczby par biegunów, co wymaga zmiany konstrukcji silnika. Przykłady zastosowania tej wiedzy obejmują systemy napędowe, gdzie kontrola prędkości jest kluczowa, takie jak pompy czy wentylatory, gdzie za pomocą falowników przekształca się częstotliwość zasilania. Standardy jak IEC 60034-1 regulują takie aspekty, zapewniając wydajność i bezpieczeństwo operacyjne. Zrozumienie, że kolejność faz nie wpływa na prędkość, jest kluczowe w prawidłowym projektowaniu i eksploatacji systemów elektrycznych.

Pytanie 36

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w realizacji elementu mechanicznego?

A. Graniczne
B. Jednostronne
C. Rzeczywiste
D. Nominalne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Graniczne" jest poprawna, ponieważ wymiary graniczne definiują maksymalne i minimalne wartości dopuszczalne dla wymiarów elementów mechanicznych. W praktyce inżynieryjnej, wymiary graniczne są kluczowe w procesie projektowania, produkcji oraz kontroli jakości, ponieważ określają, w jakim zakresie wymiaru elementu można tolerować błędy wykonania. W projektowaniu przyjmuje się nominalny wymiar, natomiast granice wymiarowe wyznaczają zakres, w którym element może być produkowany, co jest istotne dla zapewnienia odpowiednich właściwości funkcjonalnych oraz interoperacyjności z innymi komponentami. Na przykład, w przemyśle motoryzacyjnym, wymiary graniczne są istotne dla zapewnienia, że wszystkie części pasują ze sobą w pojazdach, co ma wpływ na bezpieczeństwo oraz wydajność. W praktyce, stosowanie norm takich jak ISO 286, które definiują systemy wymiarów granicznych, jest kluczowe dla efektywności procesów produkcyjnych oraz redukcji kosztów związanych z błędami wykonawczymi.

Pytanie 37

Jaki rodzaj czujnika nadaje się do pomiaru poziomu bez kontaktu?

A. Czujnik hydrostatyczny
B. Czujnik pływakowy
C. Czujnik ultradźwiękowy
D. Czujnik pojemnościowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujniki ultradźwiękowe są szeroko stosowane do bezkontaktowego pomiaru poziomu cieczy i innych substancji w zbiornikach. Działają na zasadzie emisji fal ultradźwiękowych, które odbijają się od powierzchni cieczy i wracają do czujnika. Przykładem zastosowania czujników ultradźwiękowych może być monitorowanie poziomu wody w zbiornikach wodnych, systemach nawadniających czy w procesach przemysłowych, gdzie kontakt z medium mógłby prowadzić do zanieczyszczenia lub uszkodzenia sprzętu. W odróżnieniu od czujników pływakowych, które wymagają fizycznego kontaktu z cieczą, czujniki ultradźwiękowe eliminują ryzyko zanieczyszczenia i są mniej podatne na awarie mechaniczne. Standardy takie jak ISO 9001 podkreślają znaczenie stosowania technologii zapewniających bezpieczeństwo i efektywność procesów, co czyni czujniki ultradźwiękowe idealnym rozwiązaniem w wielu aplikacjach.

Pytanie 38

Za pomocą multimetru cyfrowego zmierzono spadek napięcia na podwójnym złączu półprzewodnikowym Si. Odczyt multimetru wynosi około

A. 0,3 V
B. 0 V
C. 0,6 V
D. 1,4 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W przypadku pomiaru spadku napięcia na podwójnym złączu półprzewodnikowym wykonanym z krzemu, wartość około 1,4 V jest typowa dla złącza p-n w stanie przewodzenia. Złącze to zachowuje się jak dioda, która wymaga określonego spadku napięcia, aby rozpocząć przewodzenie prądu. Dla diod krzemowych, wartość ta jest zazwyczaj w przedziale od 0,6 V do 0,7 V dla pierwszego złącza, a dla drugiego złącza, zwłaszcza w przypadku podwójnego złącza, wartość ta podwaja się, co daje około 1,4 V. To zjawisko jest wykorzystywane w praktycznych zastosowaniach elektroniki, takich jak prostowniki i układy regulacji napięcia. Przy pomiarze multimetrem cyfrowym ważne jest, aby upewnić się, że miernik jest ustawiony na odpowiedni zakres pomiarowy, co pozwoli na dokładne odczyty. W przypadku pomiarów diodowych, zaleca się również zwrócenie uwagi na polaryzację diody, aby uniknąć błędnych wyników. Przykładowo, w zastosowaniach takich jak zasilacze impulsowe, umiejętność prawidłowego pomiaru spadku napięcia na połączeniach półprzewodnikowych jest kluczowym elementem diagnostyki i naprawy.

Pytanie 39

Jakim przyrządem mierzy się czas trwania skoku siłownika elektrycznego?

A. miliwoltomierzem
B. stoperem
C. czujnikiem zegarowym
D. mikrometrem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czas wykonania skoku siłownika elektrycznego mierzy się za pomocą stopera, ponieważ jest to narzędzie umożliwiające dokładne i precyzyjne określenie czasu trwania określonego zdarzenia. W przypadku siłowników elektrycznych, które są często wykorzystywane w automatyce i robotyce, czas reakcji oraz czas skoku mają kluczowe znaczenie dla efektywności pracy całego systemu. Stoper pozwala na mierzenie czasu z wysoką dokładnością, co jest niezbędne w procesach, gdzie synchronizacja ruchów jest istotna. W praktyce, w laboratoriach oraz w zakładach produkcyjnych, zastosowanie stopera w badaniach wydajności siłowników elektrycznych pozwala na optymalizację pracy maszyn oraz zwiększenie ich niezawodności. Takie pomiary mogą być również wykorzystywane do analizy wpływu różnych parametrów, takich jak obciążenie, napięcie zasilania czy rodzaj zastosowanej mechaniki, na czas odpowiedzi siłownika. Dzięki temu można wprowadzać usprawnienia oraz dostosowywać parametry pracy do specyficznych wymagań procesów technologicznych.

Pytanie 40

Aby uzyskać precyzyjny pomiar natężenia prądu elektrycznego w systemach mechatronicznych, należy zastosować amperomierz

A. z jak najmniejszą rezystancją wewnętrzną
B. z rezystancją wewnętrzną równą rezystancji obciążenia
C. z jak największą rezystancją wewnętrzną
D. z rezystancją wewnętrzną o dowolnej wielkości, ponieważ nie wpływa ona na rezultaty pomiaru

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca użycia amperomierza z jak najmniejszą rezystancją wewnętrzną jest poprawna, ponieważ niska rezystancja wewnętrzna minimalizuje wpływ przyrządu pomiarowego na układ elektryczny, w którym dokonujemy pomiaru natężenia prądu. Gdy amperomierz ma dużą rezystancję wewnętrzną, wprowadza znaczące zmiany w obwodzie, co prowadzi do zniekształcenia wyników pomiarów. W praktyce oznacza to, że amperomierze stosowane w aplikacjach mechatronicznych, takich jak pomiary w systemach automatyki przemysłowej czy robotyce, powinny być projektowane tak, aby miały jak najmniejszy wpływ na mierzony obwód. Standardy branżowe, takie jak IEC 61010, podkreślają znaczenie odpowiednich parametrów technicznych przyrządów pomiarowych, aby zapewnić ich dokładność i wiarygodność. Przykładowo, w zastosowaniach, gdzie precyzyjne pomiary są kluczowe, jak w diagnostyce sprzętu czy pomiarach laboratoryjnych, wybór amperomierza o niskiej rezystancji wewnętrznej staje się kluczowy dla uzyskania rzetelnych wyników. Dodatkowo, w sytuacjach gdzie prąd jest zmienny, a nie stały, zastosowanie odpowiedniego amperomierza pozwala na dokładne monitorowanie parametrów pracy urządzeń elektrycznych.