Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 2 czerwca 2025 02:36
  • Data zakończenia: 2 czerwca 2025 02:51

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 300/500 V
B. 100/100 V
C. 450/750 V
D. 300/300 V
Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na poziomie co najmniej 300/500 V, co jest zgodne z obowiązującymi normami IEC 60227 oraz IEC 60502. Tego rodzaju izolacja zapewnia odpowiednią ochronę przed przebiciem i krótko-terminowymi napięciami, które mogą wystąpić w trakcie normalnej eksploatacji instalacji elektrycznej. Przykładowo, w systemach zasilania budynków komercyjnych, gdzie przewody muszą być odporne na różne warunki otoczenia, zastosowanie przewodów o klasie izolacji 300/500 V jest standardem, który zapewnia długotrwałość oraz bezpieczeństwo użytkowników. Warto również zauważyć, że wyższe klasy izolacji, takie jak 450/750 V, są stosowane w bardziej wymagających aplikacjach, jak instalacje przemysłowe, ale w przypadku typowych instalacji niskonapięciowych, klasa 300/500 V jest wystarczająca i zalecana.

Pytanie 2

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. zamiana jednej fazy z przewodem neutralnym
B. brak podłączenia dwóch faz
C. brak podłączenia jednej fazy
D. zamiana dwóch faz miejscami
Zamiana dwóch faz między sobą jest kluczowym zjawiskiem w trójfazowych układach zasilania, które wpływa na kierunek obrotów silników asynchronicznych. W przypadku silników trójfazowych, kierunek ich obrotów można zmieniać poprzez zamianę miejscami dwóch dowolnych faz zasilających. W praktyce, jeśli podłączymy fazy w inny sposób, silnik zacznie obracać się w przeciwną stronę, co można zaobserwować w przypadku hydroforów, które są często używane do pompowania wody w różnych aplikacjach domowych. W takiej sytuacji, ważne jest, aby zwracać uwagę na prawidłowe oznaczenia faz oraz standardy instalacyjne, które powinny być przestrzegane dla zapewnienia prawidłowego działania urządzeń. Przykładem zastosowania tej wiedzy jest również sytuacja, gdy wykonujemy konserwację instalacji elektrycznej, w której zmieniamy przyłącze, co może prowadzić do niezamierzonych skutków, takich jak zmiana kierunku obrotów silnika. Dlatego ważne jest, aby zawsze upewnić się, że połączenia faz są zgodne z dokumentacją oraz zaleceniami producentów urządzeń.

Pytanie 3

Elektryczne połączenie, które umożliwia przesył energii elektrycznej, znajdujące się pomiędzy złączem a systemem odbiorczym w budynku, określane jest mianem

A. wewnętrznej linii zasilającej
B. instalacji wewnętrznej
C. przyłącza napowietrznego
D. przyłącza kablowego
Odpowiedź "wewnętrzna linia zasilająca" jest poprawna, ponieważ odnosi się do połączenia elektrycznego, które służy do dostarczania energii elektrycznej wewnątrz budynków. Tego rodzaju linie zasilające są kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych, zapewniając stabilne i bezpieczne przesyłanie energii do urządzeń i systemów odbiorczych. W praktyce, wewnętrzne linie zasilające są projektowane zgodnie z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące bezpieczeństwa, jakości oraz efektywności energetycznej. Stosowanie odpowiednich materiałów, takich jak przewody miedziane lub aluminiowe oraz odpowiednie zabezpieczenia, takie jak wyłączniki nadprądowe, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W przypadku budynków komercyjnych, takich jak biura czy hale produkcyjne, projektowanie wewnętrznych linii zasilających wymaga szczególnej uwagi na obciążenia energetyczne oraz możliwość przyszłej rozbudowy instalacji.

Pytanie 4

Aby zabezpieczyć silnik indukcyjny trójfazowy w układzie zasilania ze stycznikiem przed przeciążeniem, należy użyć przekaźnika termobimetalowego. Jaki typ przekaźnika powinien być zastosowany?

A. trójtorowy bez styku kontrolnego
B. jednotorowy ze stykiem kontrolnym
C. trójtorowy ze stykiem kontrolnym
D. jednotorowy bez styku kontrolnego
Przekaźnik termobimetalowy trójtorowy ze stykiem sterującym jest idealnym rozwiązaniem do zabezpieczania silników trójfazowych przed przeciążeniem. Dzięki zastosowaniu tego typu przekaźnika możemy monitorować prąd w trzech fazach jednocześnie, co pozwala na szybsze wykrycie nadmiernego obciążenia oraz wyłączenie silnika w przypadku wystąpienia awarii. W praktyce, takie rozwiązanie jest zgodne z normami ochrony silników, jak IEC 60947, które zalecają stosowanie przekaźników termicznych w celu zapewnienia bezpieczeństwa pracy urządzeń elektrycznych. Przykładowo, w przypadku silników o większej mocy lub w aplikacjach wymagających wysokiej niezawodności, takich jak przemysł ciężki, stosowanie trójtorowego przekaźnika termobimetalowego staje się standardem. Dodatkowo, styk sterujący umożliwia integrację z układami automatyki oraz systemami alarmowymi, co zwiększa efektywność i bezpieczeństwo operacji. W rezultacie, wybór przekaźnika trójtorowego ze stykiem sterującym jest nie tylko najlepszą praktyką, ale też wymogiem w wielu zastosowaniach przemysłowych.

Pytanie 5

Którym narzędziem należy wkręcać śrubę przedstawioną na rysunku?

Ilustracja do pytania
A. Kluczem imbusowym.
B. Wkrętakiem z nacięciem Torx.
C. Kluczem nasadowym.
D. Wkrętakiem z nacięciem Phillips.
Klucz imbusowy, nazywany również kluczem sześciokątnym, jest idealnym narzędziem do wkręcania śrub z sześciokątnym wewnętrznym nacięciem, co można zauważyć na przedstawionym na rysunku elemencie. Użycie klucza imbusowego pozwala na efektywne przeniesienie momentu obrotowego, co jest istotne w wielu aplikacjach, zarówno w mechanice, jak i w elektronice. Klucze imbusowe są dostępne w różnych rozmiarach, co umożliwia dopasowanie ich do różnych średnic śrub. Ważne jest również, aby stosować klucz imbusowy w odpowiednim rozmiarze, ponieważ nieodpowiedni klucz może uszkodzić nacięcie śruby, co utrudnia jej dalsze wkręcanie lub wykręcanie. W standardach branżowych klucz imbusowy jest często stosowany w konstrukcjach meblowych oraz w przemyśle motoryzacyjnym, gdzie wymagana jest wysoka precyzja i niezawodność. Dobrze dobrany klucz imbusowy ułatwia konserwację i montaż, a także zmniejsza ryzyko uszkodzenia śrub i komponentów.

Pytanie 6

W lokalu, który jest zasilany napięciem 400 V (3/N/PE 50Hz), zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody (12 kW) - obwód trójfazowy
2. zmywarka do naczyń (3,5 kW) - obwód jednofazowy
3. kuchenka elektryczna (9,5 kW) - obwód trójfazowy
4. pralka automatyczna (4,5 kW) - obwód jednofazowy

Odbiorniki jednofazowe i trójfazowe są zasilane z dwóch różnych obwodów. W celu zabezpieczenia wykorzystano wyłączniki instalacyjne. Jakie wartości prądu znamionowego powinny być zastosowane dla zabezpieczeń obwodu jedno- i trójfazowego?

A. 25 A, 25 A
B. 40 A, 40 A
C. 25 A, 40 A
D. 40 A, 25 A
Wartości prądów znamionowych w niepoprawnych odpowiedziach mogą wprowadzać w błąd, ponieważ nie uwzględniają one rzeczywistych wymagań technicznych związanych z mocą odbiorników. W przypadku, gdy dla obwodu trójfazowego zastosowano by zabezpieczenie o wartości 25 A, to byłoby to niewystarczające dla podgrzewacza wody, który wymaga przynajmniej 17,32 A, co w połączeniu z marginesem bezpieczeństwa powinno skutkować zabezpieczeniem 40 A. Ponadto, zastosowanie zabezpieczenia 25 A dla obwodu jednofazowego zmywarki również jest nieodpowiednie, ponieważ przy mocy 3,5 kW pobór prądu wynosi 15 A, co nie jest wystarczające w kontekście dodatkowych obciążeń, które mogą wystąpić w czasie pracy. Takie podejście ignoruje zasady dotyczące projektowania zabezpieczeń, które zalecają dobieranie wartości zabezpieczeń z uwzględnieniem maksymalnych obciążeń oraz ewentualnych skoków chwilowych poboru prądu. Zbyt niskie wartości zabezpieczeń mogą prowadzić do częstych wyłączeń, co wpłynie na komfort użytkowania oraz w dłuższej perspektywie może uszkodzić urządzenia. Wartości 40 A dla obu obwodów są zgodne z dobrymi praktykami branżowymi oraz uwzględniają zasady ochrony przed przeciążeniem, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 7

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Automat zmierzchowy.
C. Regulator temperatury.
D. Przekaźnik czasowy.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 8

Który z podanych wyłączników różnicowoprądowych powinien być zastosowany jako ochrona przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtykowych instalacji jednofazowej 230 V/50 Hz?

A. P 304 25-30-AC
B. P 344 C-16-30-AC
C. P 312 B-16-30-AC
D. P 302 25-30-AC
Wybierając te wyłączniki różnicowoprądowe P 302 25-30-AC, P 304 25-30-AC i P 344 C-16-30-AC, to tak trochę się pogubiliśmy w ich funkcjach i zastosowaniu. Przykład? Wyłącznik P 302 25-30-AC niby ma ochronę różnicowoprądową, ale w rzeczywistości jest stworzony do innych zastosowań, co może spowodować, że nie zadziała w przypadku przeciążenia lub zwarcia w gniazdach. Podobnie P 304 25-30-AC, który też nie daje pełnej ochrony w standardowych warunkach, co może narazić nasze urządzenia na uszkodzenia i zwiększyć ryzyko porażenia. A P 344 C-16-30-AC, mimo że w niektórych sytuacjach się sprawdzi, nie ma wszystkich potrzebnych funkcji zabezpieczeń, więc nie jest najlepszym wyborem do gniazdek. Wybierając nieodpowiedni wyłącznik, stawiamy użytkowników w niebezpieczeństwie i ryzykujemy całą instalacją elektryczną. Dlatego warto zrozumieć co każdy wyłącznik oferuje i czy pasuje do naszych potrzeb, żeby zapewnić bezpieczeństwo i użytkownikom, i całej instalacji.

Pytanie 9

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. TN-S
B. TN-C
C. IT
D. TT
Odpowiedź 'IT' jest prawidłowa, ponieważ w układzie IT, system neutralny nie jest bezpośrednio uziemiony, co oznacza, że wszystkie części przewodzące, z wyjątkiem punktu neutralnego, są uziemione. Bezpiecznik iskiernikowy, który jest włączony między punkt neutralny transformatora a uziom roboczy, działa jako mechanizm zabezpieczający przed niebezpiecznymi przepięciami i wyładowaniami elektrycznymi. W praktyce, układ IT jest często stosowany w obiektach, gdzie ciągłość zasilania jest kluczowa, takich jak szpitale czy centra danych. Zgodnie z normą IEC 60364, zaleca się stosowanie tego typu systemów w celu minimalizacji ryzyka porażenia prądem elektrycznym, co czyni je bardziej bezpiecznymi w porównaniu do układów z uziemionym punktem neutralnym. Dodatkowo, zastosowanie bezpiecznika iskiernikowego w tym kontekście zapewnia ochronę przed przepięciami, co może być kluczowe dla bezpieczeństwa sprzętu oraz ludzi.

Pytanie 10

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. uszkodzenie przewodu
B. przeciążenie
C. przepięcie
D. upływ prądu
Wciśnięcie przycisku TEST na wyłączniku różnicowoprądowym (RCD) ma na celu symulację upływu prądu, co jest kluczowym elementem działania tego urządzenia. Wyłączniki różnicowoprądowe są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi przez upływ prądu, dlatego ich regularne testowanie jest niezwykle istotne. Kiedy użytkownik naciska przycisk TEST, wewnętrzny mechanizm wyłącznika wytwarza sztuczny upływ prądu, co powinno spowodować natychmiastowe wyłączenie obwodu. To działanie pozwala użytkownikom na weryfikację, czy urządzenie działa prawidłowo i jest w stanie wykryć rzeczywisty upływ prądu. Zgodnie z normami branżowymi, takie testowanie powinno być przeprowadzane co najmniej raz w miesiącu, aby zapewnić bezpieczeństwo instalacji elektrycznej. Przykładowo, w przypadku zużycia izolacji przewodów lub uszkodzeń urządzeń elektrycznych, wyłącznik różnicowoprądowy powinien zareagować, wyłączając zasilanie, co zapobiega potencjalnym wypadkom i uszkodzeniom mienia. Regularne testowanie RCD przyczynia się do wyższej ochrony użytkowników oraz zgodności z przepisami bezpieczeństwa elektrycznego, jak normy PN-EN 61008-1.

Pytanie 11

Jaką rurę instalacyjną przedstawia symbol RKLF 20?

A. Karbowaną o średnicy 20 mm
B. Sztywną o przekroju 20 mm2
C. Karbowaną o przekroju 20 mm2
D. Sztywną o średnicy 20 mm
Wybór odpowiedzi dotyczących 'karbowanej o przekroju 20 mm2' lub 'sztywnej o przekroju 20 mm2' jest błędny z kilku powodów. Przede wszystkim, ważne jest, aby zrozumieć różnicę między przekrojem a średnicą. Przekrój poprzeczny rury wyraża jej powierzchnię w mm2, podczas gdy średnica odnosi się do wymiaru zewnętrznego, który jest wyrażany w milimetrach. Oznaczenie RKLF sugeruje, że chodzi o rurę elastyczną, a nie sztywną, co wyklucza wszystkie odpowiedzi dotyczące rur sztywnych. Rury sztywne, mimo że mogą być stosowane w niektórych instalacjach, nie oferują elastyczności niezbędnej w trudnych warunkach, takich jak zakręty czy zmiany kierunku. W praktyce, rury karbowane są preferowane w instalacjach, które wymagają dostosowania do zmiennych kształtów budynków oraz przestrzeni, co również wpływa na ich zastosowanie w różnych dziedzinach przemysłu. Dodatkowo, nieprawidłowe przypisanie wartości przekroju do rury mogą prowadzić do zastosowań, które nie spełniają standardów bezpieczeństwa. Przykłady obejmują sytuacje, w których zbyt mały przekrój mógłby prowadzić do przegrzewania się instalacji elektrycznej. Aby uniknąć takich błędów, istotne jest, aby specjaliści branżowi posiadali gruntowną wiedzę na temat oznaczeń i właściwości stosowanych materiałów, co jest niezbędne dla zapewnienia wysokiej jakości instalacji oraz zgodności z regulacjami prawnymi.

Pytanie 12

W jakim typie układu sieciowego możemy spotkać przewód PEN?

A. TN-S
B. TT
C. IT
D. TN-C
Odpowiedź TN-C jest prawidłowa, ponieważ w tym układzie sieciowym przewód PEN łączy funkcje przewodu neutralnego (N) i ochronnego (PE). Układ TN-C jest stosowany w wielu instalacjach elektrycznych, w tym w budynkach użyteczności publicznej oraz w przemyśle, gdzie zapewnia zarówno transport energii, jak i ochronę przed porażeniem elektrycznym. Kluczowym aspektem tego układu jest to, że przewód PEN jest wspólny dla wielu odbiorników i umożliwia efektywne prowadzenie instalacji przy ograniczeniu liczby przewodów. Zgodnie z normą PN-EN 60364, przewód PEN musi być odpowiednio zaprojektowany i wykonany, aby zapewnić wysoką niezawodność oraz bezpieczeństwo użytkowników. W praktyce stosowanie przewodu PEN w układzie TN-C jest również korzystne z punktu widzenia kosztów, ponieważ ogranicza ilość potrzebnych przewodów, co przekłada się na mniejsze wydatki materiałowe oraz prostotę instalacji. Na przykład w wielu budynkach mieszkalnych stosuje się układ TN-C, co pozwala na wydajne i bezpieczne zasilanie różnych urządzeń elektrycznych.

Pytanie 13

Jaka jest bezwzględna wartość błędu pomiarowego natężenia prądu, jeśli multimetr pokazał wynik 30,0 mA, a dokładność miernika podana przez producenta dla zastosowanego zakresu pomiarowego wynosi
±(1 % + 2) cyfry?

A. ±2,0 mA
B. ±0,5 mA
C. ±0,3 mA
D. ±3,2 mA
W przypadku błędnych odpowiedzi, zwykle wynikają one z nieprawidłowej interpretacji podanych danych dotyczących dokładności pomiaru. Często mylone są różne składniki błędu. Na przykład, jeżeli obliczamy błąd jako samą wartość procentową, pomijając dodatek 2 cyfry, możemy uzyskać wynik, który nie odzwierciedla rzeczywistego błędu pomiaru. Warto również zauważyć, że pomiar z użyciem multimetru wymaga świadomego podejścia do jego specyfikacji, ponieważ różne urządzenia mogą mieć różne poziomy dokładności w zależności od zastosowanego zakresu pomiarowego. W praktyce, pomiar natężenia prądu powinien być zawsze przeprowadzany z uwzględnieniem całkowitego błędu pomiaru, a nie tylko jego części, co prowadzi do zafałszowania wyników. Dodatkowo, pomiar błędu jako np. ±3,2 mA lub ±2,0 mA zakładałby niewłaściwą interpretację zarówno błędu procentowego, jak i błędu w cyfrach. W inżynierii, gdzie dokładność jest kluczowa, błędne obliczenia mogą prowadzić do poważnych konsekwencji, takich jak uszkodzenia sprzętu lub niewłaściwe decyzje projektowe. Użycie zbyt dużych wartości błędu, które byłyby niemożliwe do zaakceptowania w kontekście standardów branżowych, pokazuje brak zrozumienia dla mechanizmów pomiarowych oraz ich ograniczeń.

Pytanie 14

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Płaskoszczypce
B. Zagniatarka
C. Nóż monterski
D. Szczypce boczne
Nóż monterski jest kluczowym narzędziem przy naprawie przeciętego przewodu, gdyż umożliwia precyzyjne przygotowanie końcówek przewodów do lutowania. W praktyce, przed przystąpieniem do lutowania, należy odpowiednio odizolować końce przewodów, co wymaga użycia ostrego noża monterskiego. Dzięki odpowiedniej technice użycia noża, możemy uniknąć uszkodzenia żył przewodu oraz zapewnić ich czystą powierzchnię lutowniczą. Istotne jest, aby stosować nóż monterski zgodnie z zasadami BHP, co zapobiega urazom. Ponadto, zgodnie z normami branżowymi, każda naprawa powinna być przeprowadzana z użyciem narzędzi zapewniających dokładność oraz bezpieczeństwo. Dlatego nóż monterski powinien być zawsze w dobrym stanie, a jego ostrze powinno być regularnie wymieniane, aby zminimalizować ryzyko uszkodzenia przewodu. Stosowanie noża monterskiego w połączeniu z lutownicą jest zgodne z najlepszymi praktykami w branży elektrycznej oraz elektronicznej.

Pytanie 15

Zgodnie z normą PN-IEC 664-1 dotyczącą klasyfikacji instalacji, minimalna wytrzymałość udarowa urządzeń 230/400 V w I kategorii powinna wynosić

A. 1,5 kV
B. 6,0 kV
C. 2,5 kV
D. 4,0 kV
Wybór wytrzymałości udarowej 2,5 kV, 4,0 kV czy 6,0 kV może wynikać z błędnych założeń co do tego, jakie normy powinny być stosowane w instalacjach elektrycznych. Może się wydawać, że wyższa wytrzymałość oznacza lepszą ochronę przed przepięciami, ale norma PN-IEC 664-1 jasno określa konkretne wartości dla różnych kategorii urządzeń. Jeśli wybierzesz zbyt wysoką wytrzymałość w I kategorii, to tak naprawdę może generować niepotrzebne koszty, które nie przekładają się na większe bezpieczeństwo. Dodatkowo, nadmierne wymagania mogą ograniczać dostępność i wybór sprzętu na rynku, co w efekcie wpływa na innowacyjność. Często też zdarza się, że nie odróżnia się kategorii urządzeń i ich rzeczywistych zastosowań, co jest naprawdę istotne. W praktyce wyższe wartości udarowe są używane w trudniejszych warunkach, jak II kategoria, gdzie ryzyko większych przepięć jest realne. Dlatego ważne, żeby spojrzeć na wymagania dotyczące wytrzymałości udarowej w kontekście konkretnych sytuacji i zagrożeń, żeby podejmować lepsze decyzje projektowe.

Pytanie 16

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Bardzo niskie napięcie ze źródła bezpiecznego
B. Samoczynne wyłączenie zasilania
C. Dodatkowe miejscowe wyrównawcze połączenia ochronne
D. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
Dodatkowe miejscowe wyrównawcze połączenia ochronne stanowią kluczowy element uzupełniającej ochrony przeciwporażeniowej, która ma na celu zminimalizowanie ryzyka porażenia prądem elektrycznym. Tego typu połączenia wykorzystuje się w instalacjach elektrycznych, aby zapewnić wyrównanie potencjałów między różnymi elementami systemu. Przykładem zastosowania jest podłączenie obudowy metalowej urządzeń elektrycznych do instalacji wyrównawczej, co zapobiega gromadzeniu się niebezpiecznych napięć na obudowie. Zgodnie z normami IEC 60364, które regulują zagadnienia związane z instalacjami elektrycznymi w budynkach, zastosowanie dodatkowych miejscowych połączeń ochronnych jest zalecane w obiektach narażonych na zwiększone ryzyko porażenia. W praktyce, takie połączenia mogą być stosowane w miejscach, gdzie występuje możliwość przypadkowego kontaktu z elementami przewodzącymi, jak np. w laboratoriach czy zakładach przemysłowych. Dodatkowe miejsca wyrównawcze są zatem niezbędnym zabezpieczeniem, które wspiera podstawowe metody ochrony, takie jak izolacja czy wyłączniki różnicowoprądowe.

Pytanie 17

Który element rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Lampkę sygnalizacyjną trójfazową.
B. Przekaźnik czasowy.
C. Regulator temperatury.
D. Czujnik zaniku fazy.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, jest kluczowym elementem w każdej rozdzielnicy elektrycznej. Jej główną funkcją jest wizualna sygnalizacja obecności napięcia w trzech fazach instalacji. Dzięki zastosowaniu kilku diod LED lub żarówek, użytkownik może szybko zidentyfikować, czy wszystkie fazy są pod napięciem. To istotne w kontekście zapewnienia stabilności i bezpieczeństwa działania urządzeń trójfazowych, takich jak silniki elektryczne czy maszyny przemysłowe. W przypadku braku napięcia w którejkolwiek z faz, zdradza to problem, który może prowadzić do uszkodzeń sprzętu lub przestojów w produkcji. Dobre praktyki w zakresie instalacji elektrycznych zalecają umieszczanie lamp sygnalizacyjnych w widocznych miejscach, co umożliwia szybkie reagowanie na ewentualne awarie. Ważne jest także, aby lampki były zgodne z normami bezpieczeństwa i odporne na warunki panujące w danym środowisku pracy.

Pytanie 18

Jaką wartość ma prąd obciążenia przewodów fazowych, które zasilają odbiornik trójfazowy, jeśli pobiera on moc 2,2 kW przy napięciu 400 V oraz współczynniku mocy równym 0,82?

A. 3,2 A
B. 2,2 A
C. 3,9 A
D. 6,7 A
Aby obliczyć prąd obciążenia przewodów fazowych zasilających odbiornik trójfazowy, możemy skorzystać z wzoru na moc czynna w układzie trójfazowym: P = √3 * U * I * cos(φ), gdzie P to moc w watach, U to napięcie międzyfazowe w woltach, I to prąd w amperach, a cos(φ) to współczynnik mocy. W naszym przypadku moc wynosi 2,2 kW (czyli 2200 W), napięcie to 400 V, a współczynnik mocy wynosi 0,82. Przekształcamy wzór: I = P / (√3 * U * cos(φ)). Podstawiając wartości, mamy: I = 2200 / (√3 * 400 * 0,82). Po obliczeniach otrzymujemy I ≈ 3,9 A. Wiedza o obliczaniu prądu w obwodach trójfazowych jest niezbędna w praktyce, szczególnie w kontekście projektowania instalacji elektrycznych oraz ich późniejszej eksploatacji. Zrozumienie, jak różne czynniki wpływają na prąd, jest kluczowe dla bezpieczeństwa i efektywności energetycznej. Przykładem praktycznego zastosowania tej wiedzy może być dobór odpowiednich przewodów oraz zabezpieczeń w instalacjach elektrycznych.

Pytanie 19

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
B. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe
C. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
D. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
To, co napisałeś, jest trochę nie tak. Wybór złej sekwencji działań przed pomiarem rezystancji izolacji może prowadzić do różnych kłopotów, zarówno z bezpieczeństwem, jak i z jakością wyników. Na przykład, jeśli nie wymontujesz źródeł światła i nie wyłączysz jednofazowych odbiorników, to narażasz się na ryzyko porażenia prądem. Włączenie ich przed testem może dać złe wyniki i stwarza niebezpieczeństwo dla osoby przeprowadzającej pomiar. To jest sprzeczne z zasadą, że trzeba upewnić się, że wszystko jest odcięte od prądu. Dobrze jest pamiętać, że podłączanie urządzeń bez wcześniejszego ich rozłączenia może wprowadzić niechciane napięcia do obwodu, co grozi uszkodzeniem sprzętu pomiarowego i może wprowadzić zamieszanie w diagnozowaniu stanu izolacji. Często takie pomyłki wynikają z braku wiedzy o odpowiednich zasadach bezpieczeństwa oraz testów elektrycznych, co może prowadzić do błędów w pomiarach, a nawet do zagrożenia dla zdrowia i życia. Dlatego ważne jest, żeby zawsze trzymać się ustalonych norm i dobrych praktyk przed przystąpieniem do jakichkolwiek prac związanych z instalacją elektryczną.

Pytanie 20

Wyłącznik różnicowoprądowy oznaczony jako EFI-4 40/0,03 posiada znamionowy prąd różnicowy

A. 0,03 A oraz napięcie znamionowe 40 V
B. 0,03 mA oraz znamionowy prąd ciągły 40 mA
C. 0,03 mA oraz napięcie znamionowe 40 V
D. 0,03 A oraz znamionowy prąd ciągły 40 A
Wielu użytkowników może pomylić wartości prądów oraz napięcia przy wyborze wyłączników różnicowoprądowych. Na przykład, odpowiedzi sugerujące wartość 0,03 mA są niepoprawne, ponieważ wyłączniki różnicowoprądowe działają na prądzie różnicowym wyrażanym w miliamperach, a ich wartość znamionowa wynosi zazwyczaj od 10 mA do 300 mA. Użycie jednostki mA zamiast A w kontekście prądu różnicowego może prowadzić do nieodpowiednich interpretacji, co w konsekwencji zagraża bezpieczeństwu. Ponadto, mylenie znamionowego prądu z napięciem znamionowym, jak w przypadku odpowiedzi, które wskazują na napięcie 40 V, jest również częstym błędem. Wyłącznik różnicowoprądowy powinien być dobierany w oparciu o parametry prądowe, a nie tylko napięciowe, które są istotne przy projektowaniu instalacji elektrycznych. Odpowiednie zrozumienie parametrów wyłączników oraz ich zastosowania w praktyce jest niezbędne dla zapewnienia maksymalnego poziomu bezpieczeństwa. Właściwy dobór urządzeń ochronnych zgodnie z normami oraz ich regularna kontrola są kluczowe dla działania instalacji elektrycznych i ochrony przed porażeniem prądem elektrycznym. Dlatego istotne jest, aby poświęcić czas na naukę oraz zrozumienie funkcji i zasad działania wyłączników różnicowoprądowych.

Pytanie 21

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. czyszczenia lamp oświetleniowych
B. montażu nowych punktów świetlnych
C. czyszczenia urządzeń w rozdzielniach
D. wymiany gniazd zasilających
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 22

Jakie uszkodzenie mogło wystąpić w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1–L2L2–L3L1–L3L1–PENL2–PENL3–PEN
2,101,051,101,401,300,991,00

A. Przeciążenie jednej z faz.
B. Zwarcie międzyfazowe.
C. Jednofazowe zwarcie doziemne.
D. Zawilgocenie izolacji jednej z faz.
Przeciążenie jednej z faz, mimo że jest to problem, który może wystąpić w instalacjach elektrycznych, nie jest odpowiedzią w tym przypadku. Przeciążenie związane jest z nadmiernym przepływem prądu przez przewody, co prowadzi do ich nagrzewania się. W tej sytuacji jednak, wyniki pomiarów rezystancji izolacji wykazują, że wszystkie fazy mają wartości powyżej 1 MΩ, co wyklucza obecność przeciążenia. Przeciążenie fazy charakteryzuje się innymi objawami, takimi jak wzrost temperatury przewodów czy wyłączanie się zabezpieczeń, co nie jest zgodne z danymi z tabeli. Z kolei zwarcie międzyfazowe również nie znajduje potwierdzenia w wynikach pomiarów, ponieważ wymagałoby niskich rezystancji międzyfazowych, co w tym przypadku nie ma miejsca. Warto pamiętać, że zwarcie międzyfazowe najczęściej prowadzi do natychmiastowego wyłączenia zabezpieczeń, a nieprawidłowe wartości rezystancji nie są jedynym objawem tego zjawiska. Jednofazowe zwarcie doziemne, mimo że może wpływać na rezystancję L3 do PEN, nie byłoby jedynym czynnikiem mającym wpływ na pozostałe fazy, które w tym przypadku wykazywały poprawne wartości. Kluczowe jest, aby podczas analizy wyników pomiarów izolacji brać pod uwagę wszystkie aspekty, a nie jedynie pojedyncze parametry, co pozwala na trafną diagnozę stanu instalacji elektrycznej.

Pytanie 23

W dokumentacji dotyczącej instalacji elektrycznej w łazience podano, że gniazdo zasilające dla pralki powinno być umieszczone poza strefą II. Jaką minimalną odległość od wanny powinno mieć to gniazdo?

A. 1,2 m
B. 0,6 m
C. 1,0 m
D. 0,5 m
Wybór 0,5 m albo 1,0 m jako odpowiedzi na to pytanie może wynikać z pewnych nieporozumień co do stref w łazience i zasad bezpieczeństwa związanych z instalacjami elektrycznymi. Gniazdo musi być przynajmniej 0,6 m od krawędzi wanny, żeby było bezpiecznie. Odpowiedź 0,5 m jest słaba, bo zbliżenie gniazda do strefy II stwarza ryzyko porażenia prądem. Z kolei 1,0 m to też nie ma sensu, bo to za duża odległość, niezgodna z tym, co mówią przepisy. Te strefy są ściśle określone, a odpowiednie odległości mają na celu ograniczenie ryzyka, które może się pojawić w pobliżu wody. Dlatego żeby uniknąć niebezpieczeństwa związanego z nieprawidłowym montażem, ważne jest, żeby przestrzegać norm, takich jak PN-EN 60364, które mówią o zasadach instalacji elektrycznych w budynkach. Nie zapomnij także, że gniazda w łazienkach muszą być odporne na wilgoć i mieć odpowiednią klasę szczelności, bo to też wpływa na bezpieczeństwo. Ignorowanie tych zasad może prowadzić do poważnych problemów zdrowotnych i uszkodzeń sprzętu.

Pytanie 24

Aby prawidłowo wykonać otwór w twardym betonie pod gniazdo sieciowe, konieczne jest użycie wiertarki oraz

A. młotka z przecinakiem
B. otwornicy z segmentami diamentowymi
C. otwornicy z nasypem wolframowym
D. wyrzynarki do głębokich cięć
Używanie otwornicy z nasypem wolframowym do wiercenia w twardym betonie to nie najlepszy pomysł, bo takie narzędzia są bardziej do drewna czy plastiku. W betonie ten nasyp wolframowy szybko się zużywa, co sprawia, że wiercenie staje się mniej efektywne i mniej precyzyjne. Wyrzynarka? To też nie to – jest stworzona do cięcia wzdłuż, a nie do robienia otworów w betonie. Młotek z przecinakiem może wydawać się pomocny, ale nie daje precyzji, która jest ważna, np. przy montażu gniazd sieciowych. Często ludzie mają niewłaściwe wyobrażenie o użyciu narzędzi, co bierze się z braku wiedzy o materiałach budowlanych. Wybór odpowiedniego narzędzia to klucz, żeby wszystko poszło sprawnie i dobrze. Lepiej trzymać się sprawdzonych rozwiązań, które polecają fachowcy.

Pytanie 25

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
B. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych
C. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
D. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów
Zalecenia dotyczące rozdzielenia obwodów oświetleniowych od gniazd wtyczkowych oraz zasilania gniazd wtyczkowych w kuchni z osobnego obwodu są zgodne z obowiązującymi standardami i dobrymi praktykami w zakresie projektowania instalacji elektrycznych. Rozdzielenie obwodów ma kluczowe znaczenie z punktu widzenia bezpieczeństwa; obwody oświetleniowe i gniazdowe powinny być niezależne, aby w przypadku awarii jednego z obwodów, drugi mógł funkcjonować bez zakłóceń. Gniazda w kuchni, ze względu na dużą moc odbiorników, wymagają osobnego zasilania, co jest zgodne z zaleceniami normy PN-IEC 60364-7-701, która wskazuje na ryzyko przeciążenia obwodów, a także potencjalne niebezpieczeństwo porażenia prądem. Zasilanie gniazd wtyczkowych w pojedynczym pomieszczeniu z osobnego obwodu jest błędnym podejściem, gdyż w praktyce prowadzi do nieefektywnego wykorzystania przestrzeni oraz zwiększenia kosztów instalacyjnych. W przypadku standardowych mieszkań, stosuje się obwody ogólne, które obejmują więcej niż jedno pomieszczenie, co umożliwia bardziej elastyczne i ekonomiczne podejście do projektowania instalacji. Typowym błędem w myśleniu o instalacjach elektrycznych jest skupienie się na indywidualnych potrzebach poszczególnych pomieszczeń, zamiast analizowania efektywności całego systemu oraz jego zdolności do zaspokojenia wymagań użytkowników.

Pytanie 26

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Napina sprężynę napędu
B. Zatrzymuje łuk elektryczny
C. Rozpoznaje zwarcia
D. Rozpoznaje przeciążenia
Wyzwalacz elektromagnetyczny w wyłączniku nadprądowym odgrywa kluczową rolę w systemach zabezpieczeń elektrycznych, szczególnie w detekcji zwarć. Działa na zasadzie natychmiastowego reagowania na nagły wzrost prądu, co jest charakterystyczne dla sytuacji zwarciowych. Gdy prąd przekracza ustaloną wartość progową, wyzwalacz elektromagnetyczny generuje siłę, która otwiera obwód, przerywając tym samym przepływ prądu. To działanie jest niezwykle istotne, ponieważ pozwala na szybkie odcięcie zasilania, co chroni urządzenia i instalacje przed uszkodzeniami spowodowanymi nadmiernym prądem. W praktyce, wyzwalacze elektromagnetyczne są szeroko stosowane w obiektach przemysłowych, budynkach mieszkalnych oraz w instalacjach komercyjnych do zapewnienia bezpieczeństwa. Zgodnie z normami IEC 60947-2, które regulują wyłączniki niskonapięciowe, właściwe działanie wyzwalacza elektromagnetycznego jest kluczowe dla zapewnienia skutecznej ochrony. Warto zauważyć, że stosowanie wyłączników z odpowiednio dobranymi wyzwalaczami, uwzględniając charakterystykę obciążenia, jest najlepszą praktyką w branży elektrycznej.

Pytanie 27

Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC posiada znamionowy prąd różnicowy wynoszący

A. 0,03 A oraz napięcie znamionowe 63 V
B. 0,03 A i znamionowy prąd ciągły 63 A
C. 0,03 mA oraz znamionowy prąd ciągły 63 mA
D. 0,03 mA oraz napięcie znamionowe 63 V
Zrozumienie parametrów technicznych wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych. Odpowiedzi zawierające błędne wartości prądu różnicowego, jak 0,03 mA czy 0,03 mA, są mylące, ponieważ prąd różnicowy powinien być podawany w amperach, a nie miliamperach czy mikroamperach. Prąd różnicowy na poziomie 0,03 A odpowiada wartości 30 mA, co jest standardową wartością dla wyłączników stosowanych w budynkach mieszkalnych, a nie 0,03 mA, co wskazywałoby na minimalne zdolności detekcji. Również błędna jest informacja, że wyłącznik ma znamionowe napięcie 63 V. Znamionowe napięcie dla tego typu urządzenia wynosi znacznie więcej, w typowych zastosowaniach wynosi 230 V lub 400 V w instalacjach trójfazowych. Odpowiedzi sugerujące niewłaściwe wartości znamionowego prądu ciągłego, takie jak 63 mA, są kolejnym typowym błędem. Prąd ciągły 63 A jest standardem w przemyśle i instalacjach domowych, zapewniającym wystarczającą moc do zasilania różnych urządzeń elektrycznych. Dlatego ważne jest, aby przy analizie parametrów wyłączników różnicowoprądowych posługiwać się zgodnymi z normami wartościami, aby zapewnić ich prawidłowe działanie oraz maksymalne bezpieczeństwo użytkowników.

Pytanie 28

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. 0
B. II
C. III
D. I
Oprawa oświetleniowa oznaczona symbolem graficznym, przedstawiającym dwa kwadraty, jeden wewnątrz drugiego, wskazuje na klasę ochronności II. Oznaczenie to jest kluczowe w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych, ponieważ klasa ta zapewnia podwójną izolację, co znacznie zwiększa ochronę przed porażeniem prądem elektrycznym. W praktyce oznacza to, że urządzenie nie wymaga uziemienia, co ułatwia jego instalację w miejscach, gdzie zainstalowanie przewodu uziemiającego jest trudne lub niemożliwe. Zastosowanie opraw oświetleniowych klasy II jest powszechne w pomieszczeniach mieszkalnych, biurach oraz w miejscach o podwyższonej wilgotności, jak łazienki, gdzie ryzyko kontaktu z wodą jest wyższe. Warto pamiętać, że stosowanie urządzeń z odpowiednim oznaczeniem klas ochronności jest zgodne z normami bezpieczeństwa, takimi jak IEC 60598, co świadczy o odpowiedzialnym podejściu do instalacji elektrycznych.

Pytanie 29

Korzystając z tabeli obciążalności prądowej przewodów, dobierz przewód o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B20.

Tabela obciążalności prądowej przewodów
Przekrój przewodu mm2Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233

A. YDY 5x1,5 mm2
B. YADY 5x6 mm2
C. YDY 5x2,5 mm2
D. YADY 5x4 mm2
Wybór przewodów jak YADY 5x6 mm2, YDY 5x1,5 mm2 czy YADY 5x4 mm2 nie jest najlepszym pomysłem dla B20. Przewód YADY 5x6 mm2, choć ma dużą średnicę, jest za gruby na to zabezpieczenie, co prowadzi do nieefektywnego użycia materiałów i wyższych kosztów. YDY 5x1,5 mm2, z obciążalnością tylko 16A, to niewystarczająco, co zwiększa ryzyko przeciążenia i uszkodzeń. A YADY 5x4 mm2, nawet jeśli ma podobną obciążalność, to może nie dać wystarczającego marginesu bezpieczeństwa, zwłaszcza przy większym obciążeniu. Często ludzie popełniają błąd, nie myśląc o realnych obciążeniach, które przewody będą musiały wytrzymać, albo nie znają wymogów i norm. Z mojego doświadczenia, każda instalacja powinna być dostosowana do konkretnych warunków, nie tylko obciążeń, ale i innych czynników jak temperatura czy ułożenie. Wdrażanie norm, takich jak PN-IEC 60364, jest mega istotne, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 30

Która z podanych awarii urządzenia II klasy ochronności stanowi ryzyko porażenia prądem?

A. Przerwanie uzwojeń silnika umieszczonego w urządzeniu
B. Zniszczenie przewodu ochronnego PE
C. Uszkodzenie izolacji przewodu zasilającego urządzenie
D. Zwarcie bezpiecznika wewnętrznego urządzenia
Uszkodzenie izolacji przewodu zasilającego urządzenie stanowi poważne zagrożenie porażenia prądem elektrycznym, ponieważ w przypadku uszkodzenia izolacji, napięcie z sieci elektrycznej może dostać się na zewnętrzne elementy urządzenia, co stwarza ryzyko kontaktu z prądem przez użytkownika. Przykładem zastosowania tej wiedzy w praktyce jest konieczność regularnej inspekcji przewodów zasilających i ich izolacji, co jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60204-1, które nakładają obowiązek zapewnienia odpowiednich środków ochrony przed porażeniem prądem. W przypadku stwierdzenia jakichkolwiek uszkodzeń, należy niezwłocznie wymienić uszkodzony przewód. Dodatkowo, stosowanie odpowiednich systemów zabezpieczeń, takich jak wyłączniki różnicowoprądowe, może znacząco obniżyć ryzyko porażenia prądem w przypadku awarii izolacji. Wiedza na temat potencjalnych zagrożeń związanych z uszkodzoną izolacją jest kluczowa dla zapewnienia bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 31

Jakie mogą być przyczyny nadmiernego przegrzewania się wyłącznika nadmiarowo-prądowego podczas długotrwałego zasilania sprawnego odbiornika?

A. Słabo dokręcone złącza wyłącznika
B. Zbyt niski prąd znamionowy wyłącznika
C. Zbyt wysoka moc zasilanego odbiornika
D. Niewłaściwe napięcie zasilania
Nieodpowiednie napięcie zasilające, za mały prąd znamionowy wyłącznika oraz zbyt duża moc zasilanego odbiornika mogą wydawać się logicznymi przyczynami nadmiernego nagrzewania się wyłącznika nadmiarowo-prądowego, jednak nie są one bezpośrednio związane z tym zjawiskiem w kontekście długotrwałego zasilania sprawnego odbiornika. Niewłaściwe napięcie zasilające może prowadzić do problemów z wydajnością urządzeń, jednak niekoniecznie skutkuje to nadmiernym nagrzewaniem się samego wyłącznika. Prąd znamionowy wyłącznika jest zaprojektowany tak, aby tolerować określone wartości prądu, a jego nadmierne obciążenie może rzeczywiście prowadzić do przegrzewania, lecz w przypadku sprawnego odbiornika działającego w granicach norm, nie powinno to być problemem. Z kolei zbyt duża moc zasilanego odbiornika może sprawić, że wyłącznik zareaguje i zadziała, co ochroni obwód, a nie spowoduje jego przegrzania. W praktyce, najczęściej występującym problemem jest właśnie niewłaściwe dokręcenie zacisków, co podkreśla rolę odpowiedniego montażu i konserwacji w zapewnieniu bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 32

Przedstawiony na rysunku przyrząd służy do

Ilustracja do pytania
A. sprawdzania ciągłości połączeń w instalacji.
B. bezdotykowego pomiaru rezystancji przewodów.
C. pomiaru parametrów oświetlenia.
D. lokalizacji przewodów w instalacji elektrycznej.
Detektory przewodów elektrycznych to specjalistyczne narzędzia, które zostały zaprojektowane z myślą o lokalizacji przewodów w instalacjach elektrycznych. W związku z tym, koncepcja ich użycia do sprawdzania ciągłości połączeń może prowadzić do nieporozumień. Sprawdzanie ciągłości wymaga zastosowania innych narzędzi, takich jak multimetru, które mierzą opór elektryczny w obwodach, a nie identyfikują ukrytych przewodów. Również bezdotykowy pomiar rezystancji przewodów nie jest funkcjonalnością detektora przewodów, co jest kluczowe do zrozumienia. Użycie detektora w tym kontekście może prowadzić do fałszywego poczucia bezpieczeństwa, gdyż nie dostarcza informacji o jakości połączeń elektrycznych czy ich stanu technicznego. Poza tym, sugerowanie, że urządzenie to służy do pomiaru parametrów oświetlenia, jest zupełnie mylne, ponieważ detektory przewodów nie są przeznaczone do oceny natężenia lub jakości światła. Kluczowe jest zrozumienie, że każde z tych narzędzi ma swoje ściśle określone zastosowanie i nie powinno być używane zamiennie. Pamiętajmy, że efektywna praca w branży elektrycznej wymaga znajomości odpowiednich narzędzi oraz ich prawidłowego zastosowania, co jest zgodne z obowiązującymi normami bezpieczeństwa i praktykami branżowymi.

Pytanie 33

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Tworząc zwarcie w obwodzie zabezpieczonym
B. Naciskając przycisk "TEST"
C. Sprawdzając napięcie oraz prąd wyłącznika
D. Zmieniając ustawienie dźwigni "ON-OFF"
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 34

Jakie materiały są wykorzystywane do izolacji żył przewodów elektrycznych?

A. Mika i silikon
B. Polwinit i guma
C. Silikon i guma
D. Polwinit i mika
Polwinit, czyli PVC, oraz guma to dwa naprawdę ważne materiały, które używa się do izolacji żył w przewodach elektrycznych. Dają one gwarancję, że wszystko będzie działać bezpiecznie i przez długi czas. Polwinit jest znany ze swojej odporności na różne chemikalia i wysokie temperatury, dlatego często znajdziesz go w kablach niskiego i średniego napięcia. Ma fajne właściwości mechaniczne i elektryczne, na przykład niską przewodność elektryczną, co czyni go super materiałem do izolacji. Guma natomiast jest elastyczna i świetnie sprawdza się tam, gdzie przewody muszą się poruszać lub być zginane. To ważne w sytuacjach, gdzie są narażone na wibracje. Normy IEC 60227 i IEC 60502 pokazują, jak ważne jest korzystanie z odpowiednich materiałów, żeby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych. Polwinitowe i gumowe izolacje są używane w wielu miejscach – od domów po przemysł, a nawet w motoryzacji. Dobrze wiedzieć, że odporność tych materiałów na różne czynniki może naprawdę wpłynąć na bezpieczeństwo całego systemu elektrycznego.

Pytanie 35

Jakiego koloru jest wskaźnik wkładki topikowej o nominalnym natężeniu prądu wynoszącym 6 A?

A. żółty
B. szary
C. niebieski
D. zielony
Wkładki topikowe są kluczowymi elementami w systemach zabezpieczeń elektrycznych, a ich kolorystyka jest ściśle zdefiniowana normami, co pozwala na łatwe identyfikowanie wartości prądowych. W przypadku wkładek o wartości prądu znamionowego 6 A, kolor zielony jest odpowiedni według międzynarodowych standardów, takich jak IEC 60127. Ta norma definiuje kolory wkładek w zależności od ich wartości prądowej, co skutkuje uniknięciem błędów podczas wyboru odpowiednich komponentów. Przykładem zastosowania wkładek topikowych o wartości 6 A z zielonym oznaczeniem jest ich wykorzystanie w układach zasilających urządzenia o niskim poborze mocy, gdzie istotne jest zabezpieczenie przed przeciążeniem. Wiedza na temat właściwego doboru wkładek jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, dlatego warto regularnie konsultować się z dokumentacją techniczną oraz stosować się do obowiązujących norm.

Pytanie 36

Jaką rolę pełni uzwojenie pomocnicze w silniku prądu stałego?

A. Eliminuje niekorzystne zjawiska oddziaływania wirnika
B. Obniża rezystancję obwodu twornika
C. Generuje napięcie remanentu
D. Wytwarza pole magnetyczne wzbudzenia
Wybór tej odpowiedzi, która mówi, że uzwojenie pomocnicze wytwarza napięcie remanentu, jest błędny. Napięcie remanentu to coś, co zostaje w rdzeniu silnika po wyłączeniu zasilania, związane z pamięcią magnetyczną materiałów ferromagnetycznych. Uzwojenie pomocnicze nie ma z tym za wiele wspólnego. Kolejny błąd to stwierdzenie, że uzwojenie pomocnicze zmniejsza rezystancję obwodu twornika. To nie tak działa, bo rezystancja zależy od materiałów i ich kształtu, a uzwojenie pomocnicze bardziej wpływa na pole magnetyczne i stabilność działania. No i ostatni błąd – mówi się, że uzwojenie pomocnicze wytwarza pole magnetyczne wzbudzenia, co jest mylące. To pole jest generowane przez uzwojenie wzbudzenia, nie pomocnicze. Uzwojenie pomocnicze ma na celu poprawę stabilności i eliminację efektów ubocznych, a nie tworzenie podstawowego pola magnetycznego. Te nieporozumienia mogą wynikać z niewłaściwego zrozumienia funkcji różnych elementów silnika oraz ich interakcji, co jest kluczowe, żeby silniki działały tak, jak powinny.

Pytanie 37

W jaki sposób powinno się podłączyć obwód prądowy oraz obwód napięciowy jednofazowego elektronicznego licznika energii elektrycznej do systemu pomiarowego?

A. Prądowy szeregowo, napięciowy równolegle
B. Prądowy równolegle, napięciowy szeregowo
C. Prądowy i napięciowy szeregowo
D. Prądowy i napięciowy równolegle
Zastosowanie różnych konfiguracji połączeń prądowego i napięciowego może prowadzić do nieprawidłowego działania licznika energii elektrycznej. W przypadku podłączenia zarówno obwodu prądowego, jak i napięciowego równolegle, pojawia się ryzyko, że prąd nie przepłynie przez licznik, co uniemożliwi jego prawidłowe zarejestrowanie. Równoległe połączenie obwodu prądowego sprawia, że licznik nie mierzy rzeczywistego przepływu prądu przez obciążenie, co prowadzi do fałszywych odczytów. Analogicznie, podłączenie obwodu napięciowego szeregowo z prądowym również jest nieodpowiednie, ponieważ pomiar napięcia nie będzie reprezentatywny dla napięcia zasilającego odbiornik. Warto zauważyć, że takie pomyłki często wynikają z braku zrozumienia zasad działania liczników energii oraz z nieodpowiedniej analizy schematów połączeń. Dobrze skonfigurowany układ pomiarowy powinien być zgodny z najlepszymi praktykami branżowymi, które zalecają szeregowe połączenie obwodu prądowego oraz równoległe połączenie obwodu napięciowego, co zapewnia dokładne i wiarygodne pomiary energii elektrycznej.

Pytanie 38

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego grzejnika rezystancyjnego o danych znamionowych: Pn = 3 kW, Un = 230 V?

A. aR 16 A
B. gB 20 A
C. gG 16 A
D. aM 20 A
Wkładka topikowa gG 16 A jest odpowiednia dla obwodu jednofazowego grzejnika rezystancyjnego o mocy 3 kW przy napięciu znamionowym 230 V. Obliczając wartość prądu znamionowego, stosujemy wzór: I = P / U, gdzie P to moc, a U to napięcie. W tym przypadku: I = 3000 W / 230 V ≈ 13 A. Wybór wkładki gG 16 A jest uzasadniony, ponieważ jest ona przeznaczona do zabezpieczania obwodów przed przeciążeniem oraz zwarciem, a jej wartość znamionowa (16 A) zapewnia odpowiednią margines dla ewentualnych chwilowych wzrostów prądu, które mogą wystąpić przy rozruchu grzejnika. Zastosowanie wkładek gG w instalacjach domowych jest zgodne z normami IEC 60269, które podkreślają ich właściwości ochronne i dostosowanie do obciążeń rezystancyjnych. W praktyce wkładki gG są często stosowane w systemach zasilania urządzeń grzewczych, co czyni je idealnym wyborem w tym przypadku.

Pytanie 39

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Wkrętakiem
B. Nożem monterskim
C. Neonowym wskaźnikiem napięcia
D. Kluczem płaskim
Wybór wkrętaka jako narzędzia do demontażu i montażu połączeń przewodów w puszce instalacyjnej rozgałęźnej z płytką gwintowaną jest prawidłowy, ponieważ wkrętaki służą do pracy z różnymi typami śrub i wkrętów. W przypadku puszek instalacyjnych, często stosuje się śruby, które mocują przewody lub elementy w puszce. Wkrętak umożliwia precyzyjne i bezpieczne dokręcanie lub odkręcanie śrub, co jest kluczowe dla zapewnienia poprawności połączeń elektrycznych. Przykładem zastosowania wkrętaka może być instalacja gniazdka elektrycznego, gdzie wkrętak służy do montażu zacisków przewodów. Zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, ważne jest, aby wszystkie połączenia były odpowiednio zabezpieczone i mocno trzymane, co można osiągnąć za pomocą właściwego wkrętaka. Warto również zwrócić uwagę na wybór odpowiedniego wkrętaka - płaski lub krzyżakowy, w zależności od rodzaju użytych śrub. Dobrą praktyką jest także stosowanie odpowiednich narzędzi do momentu dokręcania, aby uniknąć uszkodzenia elementów instalacji.

Pytanie 40

W jakim typie układu sieciowego można zrealizować instalację trójfazową za pomocą przewodu trzyżyłowego?

A. TN-S
B. TN-C-S
C. TN-C
D. IT
Wybór układu sieciowego TN-C-S, TN-S lub TN-C do realizacji instalacji trójfazowej przewodem trójżyłowym jest niewłaściwy, co wynika z charakterystyki tych układów. W układzie TN-C, przewody neutralne i ochronne są połączone, co stwarza ryzyko pojawienia się prądów w przewodzie neutralnym, co jest niebezpieczne w przypadku uszkodzeń izolacji. Użycie przewodu trójżyłowego w tym przypadku oznaczałoby, że jedna z żył musi pełnić podwójną rolę, co narusza zasady norm i standardów branżowych. Układ TN-S, w którym przewód neutralny i przewód ochronny są oddzielne, również ogranicza możliwość wykorzystania przewodu trójżyłowego w kontekście trójfazowym. W przypadku braku odpowiedniego uziemienia, ryzyko wystąpienia zwarć doziemnych wzrasta, co zagraża zarówno instalacji, jak i użytkownikom. W układzie TN-C-S, który jest połączeniem TN-C i TN-S, zachowane są podobne problemy, ponieważ również wprowadza konieczność stosowania przewodów, które mogą być narażone na uszkodzenia. Układ IT zapewnia większe bezpieczeństwo, a jego zastosowanie w miejscach, gdzie wymagana jest niezawodność, jest zgodne z najlepszymi praktykami inżynieryjnymi. Kluczowe jest zrozumienie, że wybór odpowiedniego układu sieciowego ma znaczenie nie tylko z perspektywy technicznej, ale również bezpieczeństwa użytkowników i ciągłości działania urządzeń.