Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 21 maja 2025 21:49
  • Data zakończenia: 21 maja 2025 21:55

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby zmierzyć temperaturę, należy podłączyć do wejścia sterownika PLC

A. czujnik rezystancyjny
B. czujnik indukcyjny
C. przekaźnik elektromagnetyczny
D. prądnicę tachometryczną
Czujnik rezystancyjny, znany również jako czujnik RTD (Resistance Temperature Detector), jest najczęściej wykorzystywany do pomiaru temperatury w systemach automatyki. Jego działanie opiera się na zasadzie zmiany oporu elektrycznego materiału w zależności od temperatury. W praktyce, czujniki te oferują wysoką precyzję oraz stabilność pomiaru, co czyni je odpowiednimi do zastosowań w przemyśle chemicznym, petrochemicznym oraz w systemach HVAC. Dodatkowo, czujniki rezystancyjne mogą być stosowane w szerokim zakresie temperatur, co sprawia, że są uniwersalne i elastyczne w zastosowaniach. W kontekście połączenia z PLC, czujnik rezystancyjny może być podłączony bezpośrednio do wejścia analogowego sterownika, umożliwiając dokładny odczyt temperatury oraz kontrolę procesów. Warto również dodać, że dla zapewnienia dokładnych pomiarów, stosuje się standardy takie jak IEC 60751, które określają charakterystyki czujników RTD.

Pytanie 2

Jakie środki ochrony osobistej, oprócz kasku ochronnego, powinien założyć pracownik wykonujący konserwację wyłączonego z eksploatacji urządzenia mechatronicznego w hali produkcyjnej?

A. Okulary ochronne
B. Odzież ochronna
C. Rękawice ochronne
D. Buty ochronne
Podczas pracy w hali produkcyjnej, gdzie konserwacja urządzenia mechatronicznego jest przeprowadzana, wybór odpowiednich środków ochrony indywidualnej jest kluczowy dla zapewnienia bezpieczeństwa pracowników. Chociaż odzież ochronna, okulary ochronne i buty ochronne są istotnymi elementami ochrony, to ich rolę w kontekście konserwacji często się bagatelizuje. Odzież ochronna, mimo że chroni przed zabrudzeniami i drobnymi urazami, nie zapewnia takiego poziomu ochrony dłoni, jak rękawice ochronne. Często można spotkać nieprawidłowe przekonanie, że odzież wystarczająco chroni przed kontaktami z ostrymi elementami lub substancjami chemicznymi. Ponadto, okulary ochronne, które mają na celu zabezpieczenie oczu przed odpryskami, nie chronią innych części ciała, takich jak ręce, które są narażone na bezpośrednie uszkodzenia. Buty ochronne, choć są niezbędne dla ochrony stóp przed ciężkimi przedmiotami czy upadkami, nie zmieniają faktu, że to rękawice są najbardziej krytycznym elementem ochrony podczas wykonywania precyzyjnych operacji wymagających dużej zręczności i bliskiego kontaktu z urządzeniem. W rzeczywistości, brak odpowiednich rękawic może prowadzić do poważnych urazów, co podkreśla znaczenie ich użycia w każdym przypadku, gdzie ryzyko uszkodzenia dłoni jest obecne. Dlatego ważne jest, aby nie lekceważyć znaczenia rękawic ochronnych i zrozumieć, że są one nie tylko dodatkiem do stroju roboczego, ale kluczowym elementem systemu zabezpieczeń w środowisku przemysłowym.

Pytanie 3

Ciecze hydrauliczne, które przekazują energię, lecz nie oferują ochrony przed korozją ani smarowania, to ciecze klasy

A. HG
B. HL
C. HR
D. HH
Ciecze hydrauliczne typu HL, HG i HR mocno różnią się od HH i mogą wprowadzać w błąd, jeśli chodzi o zastosowanie. Ciecze HL mają dodatki, które chronią przed korozją i smarują, więc są lepsze tam, gdzie trzeba dbać o elementy przed zużyciem. Gdy są stosowane w warunkach wysokiego ciśnienia i temperatury, ich smarujące właściwości mogą bardzo wpłynąć na żywotność hydrauliki. Jeśli chodzi o ciecze HG, to one są stworzone z myślą o ryzykownych środowiskach, jak przemysł petrochemiczny, gdzie istnieje większe zagrożenie pożarem. Z kolei ciecze HR, też chroniące przed korozją, sprawdzają się w bardziej skomplikowanych układach hydraulicznych, gdzie obciążenia są większe i warunki pracy trudniejsze. Często mylimy się przy wyborze cieczy hydraulicznych, bo nie rozumiemy ich specyficznych potrzeb, dlatego warto znać klasyfikacje i właściwości płynów, żeby dopasować je do wymagań, a takie normy jak ISO 11158 są tu bardzo pomocne.

Pytanie 4

Falownik to urządzenie przetwarzające moc, które konwertuje prąd

A. stały na prąd zmienny o regulowanej częstotliwości
B. zmienny o regulowanej częstotliwości na prąd zmienny 50 Hz
C. zmienny o częstotliwości 50 Hz na prąd stały
D. trój fazowy na prąd jednofazowy
Wszystkie podane niepoprawne odpowiedzi zawierają nieporozumienia dotyczące funkcji falownika. Falownik nie przekształca prądu zmiennego o częstotliwości 50 Hz na prąd stały, ponieważ jego podstawowym zadaniem jest konwersja prądu stałego na prąd zmienny. Wskazanie, że falownik zamienia prąd trójfazowy na jednofazowy, również jest błędne, ponieważ falownik nie zmienia liczby faz, a raczej generuje prąd zmienny z dostępnego prądu stałego. Co więcej, sugestia, że falownik przekształca zmienny prąd o regulowanej częstotliwości na prąd zmienny 50 Hz, jest myląca – falownik działa w odwrotnym kierunku, regulując częstotliwość wyjściowego prądu zmiennego. Zrozumienie funkcji falownika wymaga znajomości jego roli w kontekście systemów zasilania oraz zastosowań w automatyzacji. Dodatkowo, często popełnianym błędem jest mylenie różnych rodzajów przetworników, takich jak prostowniki, które zamieniają prąd zmienny na stały. W praktyce, aby uniknąć takich nieporozumień, ważne jest zapoznanie się z właściwościami technicznymi falowników oraz ich zastosowaniem w różnych sektorach przemysłowych, co pozwala na skuteczniejsze projektowanie i wdrażanie systemów zasilania.

Pytanie 5

W trakcie inspekcji efektywności systemu sterującego urządzeń transportujących elementy aluminiowe, w środowisku produkcyjnym o podwyższonym poziomie hałasu powinno się używać

A. kasku ochronnego
B. ochronników słuchu
C. okularów ochronnych
D. rękawic dielektrycznych
Ochronniki słuchu są kluczowym elementem ochrony osobistej w środowisku pracy, gdzie poziom hałasu przekracza dopuszczalne normy. W przypadku kontroli sprawności układu sterowania urządzenia transportującego kształtki aluminiowe, które mogą generować wysokie poziomy hałasu, zastosowanie ochronników słuchu jest niezbędne dla minimalizacji ryzyka uszkodzenia słuchu. Zgodnie z normami takimi jak PN-N-01307:2013, każdy pracownik narażony na hałas o poziomie przekraczającym 85 dB powinien stosować odpowiednie środki ochrony. Ochronniki słuchu mogą występować w różnych formach, takich jak nauszniki lub wkładki douszne, dostosowane do specyfiki pracy. W praktyce, ich stosowanie nie tylko chroni zdrowie pracownika, ale również zwiększa komfort pracy, umożliwiając lepszą koncentrację na wykonywanych zadaniach. Dbanie o zdrowie pracowników poprzez stosowanie wymaganych środków ochrony osobistej jest nie tylko kwestią zgodności z przepisami, ale także wpływa na ogólną wydajność i morale w zespole.

Pytanie 6

Który z wymienionych zaworów hydraulicznych powinien być zainstalowany w układzie, aby prędkość obrotowa silnika hydraulicznego pozostawała stała, niezależnie od zmian wartości momentu obciążenia na wale?

A. Rozdzielacz suwakowy
B. Regulator przepływu
C. Zawór dławiąco-zwrotny
D. Zawór przelewowy
Regulator przepływu jest kluczowym elementem w układach hydraulicznych, który umożliwia utrzymanie stałej prędkości obrotowej silnika hydraulicznego, niezależnie od zmian momentu obciążenia na wale. Działa on poprzez automatyczne dostosowanie przepływu cieczy hydraulicznej, co pozwala na zachowanie stabilności pracy urządzenia. Przykładem zastosowania regulatorów przepływu są maszyny budowlane, gdzie zmienne obciążenia są powszechne. W takich aplikacjach, regulator przepływu zapewnia, że silnik hydrauliczny działa w optymalnym zakresie prędkości, co prowadzi do efektywnego zużycia energii i minimalizacji zużycia komponentów. Stosowanie regulatorów przepływu jest zgodne z najlepszymi praktykami w inżynierii hydraulicznej, ponieważ pozwala na zwiększenie wydajności układów oraz przedłużenie żywotności systemów hydraulicznych poprzez eliminację ryzyka przeciążeń. Dodatkowo, w kontekście norm ISO dotyczących systemów hydraulicznych, regulacja przepływu jest uznawana za niezbędny element, który przyczynia się do bezpieczeństwa i funkcjonalności układów hydraulicznych.

Pytanie 7

Jakie jest medium robocze w systemie hydraulicznym?

A. olej pod ciśnieniem
B. energia elektryczna
C. woda pod ciśnieniem
D. powietrze sprężone
Prąd elektryczny jako medium robocze w układzie hydraulicznym jest koncepcją mylną, ponieważ nie pełni on roli nośnika energii w tym kontekście. Układy hydrauliczne opierają się na mechanice płynów, a prąd elektryczny jest związany z obwodami elektrycznymi. W rzeczywistości w układach hydraulicznych energia jest przekazywana przez ciecz, co wskazuje na fundamentalną różnicę między hydrauliką a elektrycznością. Sprężone powietrze również nie jest medium hydraulicznym; jest to medium pneumatyczne, które działa na zasadzie ciśnienia powietrza, a nie cieczy. Pneumatyka znajduje zastosowanie w systemach, gdzie wymagana jest szybka i lekka akcja, ale nie jest w stanie przenosić tak dużych sił jak hydraulika. Woda pod ciśnieniem, choć może być stosowana w niektórych aplikacjach (np. w systemach gaśniczych), nie jest typowym medium roboczym w hydraulice przemysłowej, gdzie preferowane są oleje z uwagi na ich lepsze właściwości smarne i stabilność temperaturową. Typowym błędem jest mylenie dwóch różnych systemów - hydrauliki i pneumatyki - co prowadzi do niewłaściwego doboru mediów roboczych oraz potencjalnych awarii systemów. Należy pamiętać, że wybór medium roboczego ma kluczowe znaczenie dla efektywności i bezpieczeństwa działania układów mechanicznych.

Pytanie 8

Obniżenie temperatury czynnika w sprężarkach skutkuje

A. osadzaniem zanieczyszczeń na dnie zbiornika
B. skraplaniem pary wodnej oraz osuszaniem powietrza
C. wzrostem ciśnienia sprężonego powietrza
D. powiększaniem objętości sprężonego powietrza
Wzrost ciśnienia sprężonego powietrza po schłodzeniu czynnika jest zjawiskiem fizycznym wynikającym z zastosowania zasady gazów doskonałych, która mówi, że przy stałej objętości gazu, jego ciśnienie rośnie wraz ze spadkiem temperatury. W praktyce, schładzanie czynnika roboczego w sprężarkach służy nie tylko do podniesienia efektywności procesu sprężania, ale również do dehydratacji powietrza, co jest kluczowe w aplikacjach przemysłowych. Zastosowanie systemów chłodzenia w sprężarkach przyczynia się do redukcji kondensacji pary wodnej, co zapobiega korozji i osadzaniu się zanieczyszczeń w układzie pneumatycznym. Udoskonalone systemy, takie jak sprężarki o wyższej wydajności czy chłodnice powietrza, przyczyniają się do zwiększenia efektywności energetycznej, co jest zgodne z najlepszymi praktykami w branży. W efekcie, poprawa ciśnienia sprężonego powietrza poprzez schładzanie czynnika roboczego jest kluczowym elementem dla uzyskania wysokiej jakości sprężonego powietrza.

Pytanie 9

Olej hydrauliczny klasy HL to olej

A. mineralny bez dodatków uszlachetniających
B. mineralny posiadający właściwości antykorozyjne
C. o polepszonych parametrach lepkości i temperatury
D. syntetyczny
Wybór innej opcji, która nie pasuje do rzeczywistych właściwości oleju hydraulicznego HL, może prowadzić do nieporozumień. Oleje z polepszonymi właściwościami, mimo że są przydatne, nie są HL, bo HL skupia się na ochronie przed korozją. Warto zauważyć, że oleje mineralne bez dodatków ochronnych to kiepski wybór w wielu przypadkach, gdzie ważna jest odporność na rdza. Oleje syntetyczne, chociaż mają swoje zalety, jak lepsza stabilność, nie zastąpią olejów mineralnych HL. Takie mylne wnioski mogą prowadzić do sytuacji, gdzie użycie niewłaściwego oleju skutkuje szybszym zużyciem sprzętu i awariami, więc ważne, żeby wybierać oleje zgodne z zaleceniami producentów. Te błędy wynikają z tego, że ludzie często nie rozumieją różnic między tymi olejami, a to jest kluczowe dla dobrego działania hydrauliki.

Pytanie 10

Jakie urządzenie pomiarowe wykorzystuje się do określania podciśnienia?

A. Wakuometr
B. Pirometr
C. Dynamometr
D. Wariometr
Wakuometr to urządzenie pomiarowe, które służy do pomiaru podciśnienia, czyli ciśnienia mniejszego niż ciśnienie atmosferyczne. Wakuometry są kluczowe w wielu branżach, takich jak przemysł chemiczny, farmaceutyczny czy spożywczy, gdzie kontrola ciśnienia odgrywa fundamentalną rolę w procesach technologicznych. Na przykład, w systemach próżniowych stosowanych do pakowania żywności, wakuometry pomagają monitorować poziom podciśnienia, co jest niezbędne dla zapewnienia odpowiedniej jakości i trwałości produktów. W kontekście medycyny, wakuometr może być używany do pomiaru ciśnienia w systemach laboratoryjnych, gdzie precyzyjna kontrola ciśnienia jest niezbędna do uzyskania wiarygodnych wyników. Praktyczna znajomość wakuometrów i ich zasad działania jest również istotna w kontekście bezpieczeństwa, ponieważ niewłaściwe pomiary podciśnienia mogą prowadzić do poważnych awarii technicznych. Zgodność z normami takimi jak ISO 9001, które podkreślają znaczenie precyzyjnych pomiarów w procesach produkcyjnych, jest kluczowa dla zapewnienia wysokiej jakości i niezawodności urządzeń pomiarowych.

Pytanie 11

Wydatki na materiały potrzebne do stworzenia urządzenia elektronicznego wynoszą 1 000 zł. Koszty realizacji wynoszą 100% wartości materiałów. Zarówno materiały, jak i wykonanie podlegają 22% stawce VAT. Jaka jest całkowita suma kosztów związanych z urządzeniem?

A. 1 220 zł
B. 2 200 zł
C. 1 440 zł
D. 2 440 zł
Aby obliczyć całkowity koszt urządzenia elektronicznego, należy uwzględnić zarówno koszt materiałów, jak i koszt wykonania, a także podatek VAT. Koszt materiałów wynosi 1 000 zł. Koszt wykonania, który wynosi 100% ceny materiałów, również jest równy 1 000 zł. W związku z tym całkowity koszt przed naliczeniem VAT wynosi 1 000 zł (materiały) + 1 000 zł (wykonanie) = 2 000 zł. Następnie należy obliczyć podatek VAT, który wynosi 22% z kwoty 2 000 zł. Obliczenie podatku wygląda następująco: 2 000 zł * 0,22 = 440 zł. Zatem całkowity koszt urządzenia, uwzględniając podatek VAT, wynosi 2 000 zł + 440 zł = 2 440 zł. Przykładem zastosowania tej wiedzy w praktyce może być wycena projektów w branży elektroniki, gdzie znajomość kosztów i podatków jest niezbędna do efektywnego zarządzania budżetem.

Pytanie 12

Jakie czynności nie są wykonywane w trakcie dopasowywania komponentów podczas montażu systemów mechatronicznych?

A. Rozwiercanie
B. Docieranie
C. Spawanie
D. Skrobanie
Ważne jest, aby zrozumieć, że procesy takie jak skrobanie, rozwiercanie i docieranie są istotnymi operacjami w zakresie dopasowywania elementów w montażu urządzeń mechatronicznych. Skrobanie jest techniką, która polega na ręcznym lub mechanicznym usuwaniu materiału z powierzchni elementów w celu uzyskania precyzyjnego dopasowania. Często stosowane jest w przypadku, gdy tolerancje montażowe są krytyczne, a standardowe procesy obróbcze nie zapewniają wymaganej dokładności. Rozwiercanie z kolei polega na powiększaniu średnicy otworów, co również umożliwia lepsze dopasowanie elementów, zwłaszcza w przypadku osadzania tulei czy łożysk. Docieranie to proces, który ma na celu wygładzenie powierzchni i osiągnięcie wysokiej precyzji wymiarowej, co jest szczególnie istotne w kontekście współpracy ruchomych elementów w maszynach. Nieprawidłowe zrozumienie tych procesów może prowadzić do błędnych wniosków. Na przykład, można błędnie założyć, że spawanie, jako proces łączenia, także wpływa na dopasowanie, jednak w rzeczywistości jest to operacja, która skutkuje zmianą stanu materiałów i ich lokalizacją, co może wprowadzać błędy w precyzyjnym montażu. Wiedza o tym, jakie operacje są wykorzystywane do dopasowywania w mechatronice, jest kluczowa dla projektowania niezawodnych i funkcjonalnych systemów.

Pytanie 13

Której z podanych metod nie wykorzystuje się do trwałego łączenia elementów wykonanych z plastiku?

A. Zaginania
B. Zgrzewania
C. Spawania
D. Klejenia
Zaginanie to proces, który polega na deformacji materiału pod wpływem siły mechanicznej, co prowadzi do zmiany jego kształtu. W przypadku tworzyw sztucznych, zaginanie nie jest techniką umożliwiającą trwałe połączenie elementów, ponieważ nie łączy dwóch odrębnych części w jeden element. Zamiast tego, zginanie zmienia kształt jednego elementu, co może być użyteczne w projektowaniu, ale nie umożliwia wykonania trwałego połączenia. Techniki, które rzeczywiście służą do trwałego łączenia, to spawanie, klejenie i zgrzewanie. Spawanie wykorzystuje wysoką temperaturę do stopienia materiałów, co pozwala na ich złączenie, natomiast klejenie polega na zastosowaniu odpowiednich substancji, które wiążą ze sobą różne elementy. Zgrzewanie, podobnie jak spawanie, wykorzystuje ciepło do fuzji materiałów. Przykładem aplikacji zaginania mogą być procesy formowania elementów do zastosowań estetycznych lub funkcjonalnych w przemyśle, gdzie zmiana kształtu jest istotna, ale nie prowadzi do trwałego połączenia z innym elementem.

Pytanie 14

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Dodaje napięcia
B. Izoluje galwanicznie sygnały
C. Wytwarza sygnały sinusoidalne
D. Zwiększa prąd
Transoptor, czyli optoizolator, jest naprawdę ważnym elementem w elektronice. Jego główną rolą jest zapewnienie izolacji galwanicznej pomiędzy różnymi częściami układu. Działa to w ten sposób, że dzięki zjawisku fotonowemu możemy przesyłać sygnały elektryczne bez potrzeby bezpośredniego połączenia. To znaczy, że wrażliwe części obwodu są chronione przed wysokimi napięciami i zakłóceniami, co jest mega przydatne. Widzę, że transoptory są powszechnie stosowane w automatyce – świetnie izolują sygnały sterujące od obwodów zasilających. Dodatkowo w interfejsach komunikacyjnych zapewniają bezpieczeństwo przesyłanym danym. Korzystanie z transoptorów to naprawdę dobra praktyka w inżynierii, bo zmniejsza ryzyko uszkodzeń przez różnice potencjałów, zwiększając tym samym niezawodność systemu. Warto także dodać, że potrafią pracować w różnych częstotliwościach, co sprawia, że są dosyć uniwersalne w nowoczesnych układach elektronicznych.

Pytanie 15

Maksymalne napięcie na analogowym wejściu kontrolera PLC wynosi 10 V DC, a rozdzielczość tego wejścia, wynosząca około 40 mV, zapewnia zastosowanie kontrolera PLC z przetwornikiem A/C.

A. 8-bitowym
B. 16-bitowym
C. 64-bitowym
D. 32-bitowym
Wybór odpowiedzi 16-bitowej, 32-bitowej czy 64-bitowej jest błędny w kontekście określonej rozdzielczości 40 mV. Te formaty oferują znacznie większą liczbę poziomów rozdzielczości, co prowadzi do nieadekwatnych wyników w tym przypadku. Przykładowo, 16-bitowy przetwornik A/C generuje 65,536 poziomów (2^16), co w przypadku 10 V daje krok napięcia równy około 0,15 mV. Tak mała rozdzielczość jest niepraktyczna, gdy wymagana rozdzielczość wynosi 40 mV. Podobnie, 32-bitowe i 64-bitowe przetworniki oferują jeszcze wyższą precyzję, która w tym kontekście jest zbyteczna. Wybierając zbyt wysoką rozdzielczość, można napotkać problemy związane z przetwarzaniem danych i ich interpretacją, co w praktyce może obniżyć efektywność systemu. Często użytkownicy mylnie zakładają, że wyższa rozdzielczość jest zawsze lepsza, co prowadzi do nieefektywnego wykorzystania zasobów. Dobór odpowiedniego przetwornika A/C powinien być dostosowany do specyficznych wymagań aplikacji, biorąc pod uwagę zarówno wymagania dotyczące rozdzielczości, jak i szybkości pomiaru. W rzeczywistości, dla wielu zastosowań przemysłowych, 8-bitowy przetwornik A/C zapewnia wystarczającą dokładność, co potwierdzają standardy branżowe oraz praktyki inżynieryjne.

Pytanie 16

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Buty z izolującą podeszwą
B. Opaskę uziemiającą
C. Ochronne okulary
D. Fartuch ochronny z bawełny
Opaska uziemiająca to kluczowy element ochrony indywidualnej, szczególnie podczas pracy z wrażliwymi komponentami elektronicznymi, takimi jak tranzystory CMOS. Te elementy są szczególnie podatne na uszkodzenia spowodowane wyładowaniami elektrostatycznymi (ESD). Uziemienie pozwala na odprowadzenie ładunków elektrycznych, które mogłyby uszkodzić delikatne układy. W praktyce, noszenie opaski uziemiającej jest standardowym wymogiem w branży elektroniki, aby zapewnić, że operatorzy nie wprowadzą niepożądanych ładunków podczas manipulacji elementami. Przykładowo, w laboratoriach i zakładach produkcyjnych, gdzie pracuje się z urządzeniami wrażliwymi na ESD, stosowanie tych opasek jest obligatoryjne i często wymaga ich podłączenia do odpowiednich gniazd uziemiających. Warto również dodać, że zgodność z normami, takimi jak ANSI/ESD S20.20, podkreśla znaczenie stosowania środków ochrony ESD, w tym opasek uziemiających, w celu minimalizacji ryzyka uszkodzeń. Dzięki temu można znacznie zwiększyć niezawodność i żywotność urządzeń elektronicznych.

Pytanie 17

W instalacjach niskonapięciowych (systemach TN) jako elementy zabezpieczające mogą być wykorzystywane

A. dławiki blokujące
B. wyłączniki montażowe
C. izolatory długiej osi
D. wyłączniki różnicowoprądowe
Wyłączniki różnicowoprądowe, znane także jako RCD (Residual Current Devices), odgrywają kluczową rolę w systemach niskiego napięcia, zwłaszcza w układach TN. Ich głównym zadaniem jest ochrona ludzi przed porażeniem prądem elektrycznym oraz zapobieganie pożarom, które mogą być spowodowane upływem prądu do ziemi. Działają na zasadzie wykrywania różnicy prądów między przewodami fazowymi a neutralnym. W przypadku wykrycia takiej różnicy, wyłącznik natychmiast odłącza zasilanie, co może uratować życie w sytuacji zagrożenia. W praktyce, wyłączniki różnicowoprądowe są stosowane w domach, biurach i obiektach przemysłowych, gdzie istnieje ryzyko kontaktu z wodą lub innymi czynnikami, które mogą zwiększyć ryzyko porażenia prądem. Standardy takie jak PN-EN 61008 i PN-EN 61009 określają wymagania dotyczące tych urządzeń, co sprawia, że ich stosowanie jest nie tylko zalecane, ale często obowiązkowe w nowych instalacjach elektrycznych. Ponadto, regularne testowanie wyłączników różnicowoprądowych jest niezbędne dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 18

Podczas funkcjonowania urządzenia mechatronicznego zaobserwowano wyższy poziom hałasu (głośne, rytmiczne dźwięki) spowodowany przez łożysko toczne. Jakie działanie będzie odpowiednie w celu naprawy urządzenia?

A. zredukowanie luzów łożyska
B. wymiana osłony łożyska
C. wymiana całego łożyska
D. usunięcie nadmiaru smaru w łożysku
Jak na to patrzę, wymiana całego łożyska to naprawdę najlepsze wyjście, gdy słychać jakieś dziwne odgłosy z urządzenia mechatronicznego. Zwykle hałas bierze się ze zużycia łożyska, co zwiększa luzy i obniża jakość materiałów. Wymieniając łożysko, nie tylko pozbywasz się hałasu, ale też przywracasz sprzęt do pełnej sprawności. Ważne, żeby dobrze dobrać łożysko, myślę, że trzeba zwrócić uwagę na jego typ, wymiary i materiał, z którego jest zrobione. No i wymiana musi być zgodna z tym, co mówi producent – wtedy urządzenie będzie dłużej działać bezproblemowo. Przykładowo, w obrabiarkach to kluczowe, bo jakość pracy łożysk ma duży wpływ na jakość obrabianych elementów. Regularne przeglądy łożysk i odpowiednie smarowanie też są ważne, bo wydłużają ich żywotność.

Pytanie 19

Która z wymienionych właściwości komponentów systemów automatyki, stosowanych w liniach produkcyjnych, ma kluczowe znaczenie przy projektowaniu linii do konfekcjonowania rozcieńczalników do farb i lakierów?

A. Efektywność
B. Iskrobezpieczeństwo
C. Niezawodność
D. Bezobsługowość
Wydajność, niezawodność i bezobsługowość to istotne cechy w projektowaniu układów automatyki, ale ich znaczenie w kontekście konfekcjonowania łatwopalnych substancji chemicznych, jakimi są rozcieńczalniki do farb i lakierów, nie może przeważać nad kwestią iskrobezpieczeństwa. Wydajność może przyciągać uwagę jako znaczący wskaźnik efektywności produkcji, jednak w kontekście substancji niebezpiecznych, zbyt duża wydajność może prowadzić do zminimalizowania zabezpieczeń, co stwarza ryzyko. Niezawodność jest istotna dla zapewnienia ciągłości i stabilności produkcji, lecz w przypadku wystąpienia awarii w systemie bez odpowiednich zabezpieczeń przeciwiskrowych, skutki mogą być katastrofalne. Bezobsługowość, mimo że zwiększa wygodę użytkowania i zmniejsza konieczność interwencji ze strony operatorów, może prowadzić do sytuacji, w których nie podejmuje się wystarczających działań kontrolnych dla zapobiegania zagrożeniom. Najistotniejsze w tym przypadku jest zapewnienie podstawowego bezpieczeństwa, które nie jest możliwe bez uwzględnienia normiskrobezpieczeństwa, co powinno być priorytetem w każdym projekcie związanym z automatyzacją procesów przemysłowych w strefach ryzyka. Pomijając zagadnienia iskrobezpieczeństwa, projektant naraża nie tylko zdrowie pracowników, ale również generuje potencjalne straty finansowe związane z przerwami w produkcji oraz odpowiedzialnością prawną.

Pytanie 20

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik AC skutkuje

A. zwiększeniem prędkości obrotowej
B. zmniejszeniem prędkości obrotowej
C. wzrostem reaktancji uzwojeń
D. spadkiem reaktancji uzwojeń
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik prądu przemiennego prowadzi do wzrostu prędkości obrotowej silnika. Jest to związane z zasadą działania silników asynchronicznych, gdzie prędkość obrotowa silnika jest bezpośrednio proporcjonalna do częstotliwości zasilania. Przykładowo, w silniku trójfazowym pracującym w trybie asynchronicznym, prędkość nominalna (n) jest obliczana według wzoru n = (120 * f) / p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. W praktyce, regulacja częstotliwości za pomocą falownika pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymogów procesu technologicznego, co jest kluczowe w aplikacjach takich jak napędy wentylatorów, pomp, czy transportu taśmowego. Dobre praktyki w inżynierii automatyki sugerują, że należy starannie dobierać parametry falownika i silnika, aby zapewnić ich efektywność i niezawodność w dłuższym okresie użytkowania.

Pytanie 21

Osoba pracująca na linii produkcyjnej blach, która prowadzi proces odlewania taśmy cynkowo-tytanowej, powinna poza obuwiem, rękawicami i kaskiem roboczym posiadać odzież

A. bawełnianą w formie kombinezonu
B. termoaktywną
C. roboczą standardową
D. roboczą trudnopalną
Odpowiedź "robocze trudnopalne" jest poprawna, ponieważ w procesach związanych z odlewaniem metali, takich jak cynkowo-tytanowa taśma, istnieje wysokie ryzyko wystąpienia pożaru oraz poparzeń. Ubrania robocze trudnopalne są zaprojektowane z myślą o ochronie przed wysokimi temperaturami i płomieniami, co jest szczególnie istotne w środowiskach przemysłowych, gdzie pracownicy mogą być narażeni na kontakt z gorącymi materiałami czy odpryskami. Takie odzież jest wykonana z materiałów, które nie tylko opóźniają zapłon, ale także ograniczają rozwój ognia, co daje pracownikom cenny czas na ewakuację w przypadku zagrożenia. Przykładem może być odzież wykonana z tkanin takich jak Nomex czy Kevlar, które są powszechnie stosowane w przemyśle. Ponadto, stosowanie odzieży roboczej trudnopalnej jest zgodne z normami BHP oraz standardami branżowymi, które wymagają odpowiednich środków ochrony osobistej w środowisku pracy. Dlatego ważne jest, aby operatorzy linii produkcyjnej byli odpowiednio zabezpieczeni, by zminimalizować ryzyko wypadków związanych z ogniem.

Pytanie 22

Po programowym aktywowaniu czterech wyjść tranzystorowych w sterowniku PLC, które sterują cewkami elektrozaworów, stwierdzono, że nie wszystkie działają poprawnie. Pomiar napięcia UBE (między bazą a emiterem) tranzystorów na poszczególnych wyjściach wykazał następujące wartości: UBE1 = 1 V, UBE2 = 3 V, UBE3 = 0,7 V, UBE4 = 5 V. Wyniki pomiarów sugerują uszkodzenie

A. wyłącznie tranzystora na wyjściu 4
B. wyłącznie tranzystora na wyjściu 3
C. tranzystorów na wyjściach 2 i 4
D. tranzystorów na wyjściach 1 i 3
Zauważyłeś, że odpowiedź wskazuje na problemy z tranzystorami na wyjściach 2 i 4, co jest całkiem słuszne. Jak spojrzysz na pomiary napięcia UBE, to na wyjściu 4 wynosi ono 5 V. To oznacza, że tranzystor działa na pełnych obrotach, a dla typowych tranzystorów krzemowych powinno być w okolicach 0,7 V. Z kolei, na wyjściu 2 mamy 3 V, co jest zbyt dużo – to znaczy, że coś tu nie gra i tranzystor nie pracuje tak, jak powinien. Jak się takie rzeczy zdarzają, to mogą być problemy z działaniem podłączonych cewków, a to może być kłopotliwe. W przypadku sterowników PLC wszystko musi działać jak w zegarku, żeby system był ok. W sytuacjach awaryjnych, lepiej też regularnie robić testy i konserwację, by wyłapać takie usterki na czas. No i nie zaszkodzi znać standardy, jak IEC 61131, bo mogą pomóc unikać tego typu problemów w przyszłości.

Pytanie 23

Jakim urządzeniem można zmierzyć siłę nacisku tłoka w siłowniku hydraulicznym?

A. termistorem
B. hallotronem
C. pirometrem
D. tensometrem
Tensometr to urządzenie pomiarowe, które wykorzystuje zjawisko zmiany oporu elektrycznego w wyniku odkształcenia materiału. W kontekście siłowników hydraulicznych, tensometry mogą być używane do precyzyjnego pomiaru siły nacisku tłoka, ponieważ siła ta powoduje odkształcenie elementu pomiarowego, co bezpośrednio wpływa na zmianę jego oporu. Dzięki temu, tensometry pozwalają na uzyskanie dokładnych i wiarygodnych wyników pomiarów, które są kluczowe w wielu zastosowaniach inżynieryjnych, takich jak automatyka przemysłowa, systemy hydrauliczne oraz testowanie materiałów. Przykładem zastosowania tensometrów w praktyce może być monitorowanie siły nacisku w maszynach do formowania, gdzie precyzyjna kontrola siły jest niezbędna do zapewnienia jakości produkcji. W branży inżynieryjnej stosuje się różne normy, takie jak ISO 376, które dotyczą metod pomiarowych przy użyciu tensometrów, co podkreśla ich znaczenie oraz zastosowanie w profesjonalnych pomiarach.

Pytanie 24

Jakie medium powinno być użyte do łączenia systemów komunikacyjnych w obiekcie przemysłowym, gdzie występują znaczące zakłócenia elektromagnetyczne?

A. Kabel UTP
B. Sygnał radiowy
C. Światłowód
D. Kabel telefoniczny
Światłowód to najskuteczniejsze medium wykorzystywane do komunikacji w środowiskach, gdzie występują silne zakłócenia elektromagnetyczne. Jego konstrukcja oparta na szkle lub tworzywie sztucznym pozwala na przesyłanie sygnałów świetlnych, co eliminuje problemy związane z zakłóceniami elektromagnetycznymi, które mogą wpływać na inne media transmisyjne, takie jak kable miedziane. W praktyce, zastosowanie światłowodów w halach przemysłowych, w pobliżu dużych maszyn czy urządzeń generujących pole elektromagnetyczne, zapewnia stabilną i niezawodną komunikację. Przykładem może być wdrożenie infrastruktury światłowodowej w fabrykach produkcyjnych, gdzie precyzyjna i szybka wymiana danych pomiędzy różnymi sekcjami jest kluczowa dla efektywności procesów produkcyjnych. Światłowody są także zgodne z wieloma normami, takimi jak ISO/IEC 11801, które definiują standardy kablowe i zapewniają wysoką jakość sygnału oraz bezpieczeństwo w instalacjach telekomunikacyjnych. Dodatkowo, światłowody są odporne na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym rozwiązaniem w trudnych warunkach przemysłowych.

Pytanie 25

Element oznaczony symbolem BC 107 to tranzystor?

A. germanowy mocy
B. krzemowy w.cz.
C. krzemowy m.cz.
D. germanowy impulsowy
Odpowiedź 'krzemowy m.cz.' jest poprawna, ponieważ tranzystor BC 107 to tranzystor bipolarny wykonany z krzemu, który jest powszechnie stosowany w aplikacjach analogowych, zwłaszcza w obwodach wzmacniaczy niskosygnałowych. Krzem charakteryzuje się lepszymi właściwościami elektrycznymi w porównaniu do germanowych odpowiedników, co czyni go bardziej odpowiednim dla większości zastosowań. Tranzystor BC 107 ma maksymalne napięcie kolektor-emiter wynoszące 45V oraz maksymalny prąd kolektora do 100mA, co czyni go odpowiednim do niskonapięciowych zastosowań. Jego zastosowania obejmują wzmacniacze, przełączniki oraz zastosowania w układach cyfrowych. W kontekście praktycznym, użytkownicy powinni pamiętać, że dobór odpowiedniego tranzystora do aplikacji ma kluczowe znaczenie dla efektywności i niezawodności układu elektronicznego. Dlatego zawsze warto zapoznać się ze specyfikacjami technicznymi danego elementu przed jego zastosowaniem w projekcie.

Pytanie 26

Licznik impulsów rewersyjnych to urządzenie

A. które zajmuje się dodawaniem impulsów
B. które wykonuje dodawanie i odejmowanie impulsów
C. które dokonuje odejmowania impulsów
D. które zapisuje w pamięci określoną liczbę impulsów
Rewersyjny licznik impulsów to urządzenie, które ma zdolność zarówno dodawania, jak i odejmowania impulsów. W praktycznych zastosowaniach, takie liczniki znajdują zastosowanie w dokładnych systemach pomiarowych, gdzie istotne jest monitorowanie zmieniającej się wartości. Na przykład, w automatyce przemysłowej, rewersyjne liczniki impulsów mogą być używane do zliczania liczby jednostek produkcji, a także do korygowania błędów, które mogłyby wystąpić w wyniku problemów z maszyną, takich jak przesunięcia w liczniku. Takie liczniki są zgodne z normami IEEE i innymi standardami, które podkreślają znaczenie elastyczności w systemach automatyki. W przypadku błędnego zliczenia, możliwość odejmowania impulsów pozwala na precyzyjne dostosowanie do rzeczywistej produkcji, co z kolei wpływa na efektywność i jakość procesów produkcyjnych. Ważne jest, aby inżynierowie dobrze rozumieli działanie tych układów, aby skutecznie wdrażać je w praktyce.

Pytanie 27

Jakiego rodzaju materiału należy użyć do produkcji narzędzi do mechanicznej obróbki skrawaniem, takich jak frezy?

A. Mosiądz
B. Brąz
C. Stal szybkotnącą
D. Żeliwo szare
Stal szybkotnąca, znana również jako stal HSS (high-speed steel), jest materiałem o wysokiej twardości i odporności na ścieranie, co czyni ją idealnym wyborem do produkcji narzędzi skrawających takich jak frezy. Jej zdolność do zachowania wysokiej wydajności przy dużych prędkościach obróbczych sprawia, że jest powszechnie stosowana w przemyśle metalowym. Przykładowo, narzędzia wykonane z stali szybkotnącej mogą pracować w temperaturach przekraczających 600°C, co znacznie zwiększa ich efektywność w mechanicznej obróbce metali. Ponadto, stal HSS posiada doskonałe właściwości cieplne, co umożliwia jej użycie w formach skrawających, które są narażone na intensywne warunki pracy. Dzięki tym właściwościom, stal szybkotnąca jest zgodna z normami ISO oraz innymi standardami jakości, co czyni ją najlepszym wyborem do produkcji narzędzi skrawających.

Pytanie 28

W barach są skalowane

A. manometry
B. wiskozymetry
C. przepływomierze
D. prędkościomierze
Manometry to urządzenia pomiarowe, które służą do określania ciśnienia w różnych systemach. W kontekście barów, manometry są szczególnie ważne w kontrolowaniu ciśnienia gazów i cieczy, co jest kluczowe w wielu procesach przemysłowych oraz w instalacjach hydraulicznych i pneumatycznych. Przykładowo, w przemyśle gazowym manometry umożliwiają monitorowanie ciśnienia w zbiornikach, co jest niezbędne dla zapewnienia bezpieczeństwa i efektywności systemu. W praktyce, manometry są również używane w medycynie, na przykład do pomiaru ciśnienia krwi, co ilustruje ich wszechstronność. Standardy branżowe, takie jak ISO 5171, określają parametry, które manometry muszą spełniać, aby zapewnić wiarygodność i dokładność pomiarów. Ponadto, manometry różnią się rodzajem zastosowanego medium, mogą być stosowane w warunkach wysokotemperaturowych lub w środowiskach agresywnych chemicznie, co dodatkowo podkreśla ich znaczenie w szerokiej gamie aplikacji.

Pytanie 29

Który z wymienionych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Stal wysokowęglowa
B. Stal niskowęglowa
C. Żeliwo białe
D. Żeliwo szare
Stal niskowęglowa jest materiałem, który jest powszechnie stosowany w konstrukcjach spawanych, ponieważ charakteryzuje się dobrą spawalnością oraz wystarczającą wytrzymałością, co czyni ją idealnym wyborem do różnorodnych zastosowań inżynieryjnych. Zawartość węgla w stali niskowęglowej nie przekracza 0,3%, co zapewnia jej dużą plastyczność i łatwość w obróbce. Materiały te są często stosowane w budowie konstrukcji stalowych, takich jak wieże, mosty oraz różne elementy przemysłowe. Dodatkowo, stal niskowęglowa może być poddawana różnym procesom, takim jak hartowanie czy odpuszczanie, co pozwala dostosować jej właściwości do specyficznych wymagań projektu. W praktyce, zgodnie z normą EN 10025, stal niskowęglowa łączy w sobie zdolności do spawania z dobrą odpornością na zmęczenie, co czyni ją niezastąpionym materiałem w inżynierii konstrukcyjnej i mechanice. Przykłady zastosowań obejmują budowę ram samochodowych, elementów maszyn oraz innych konstrukcji narażonych na dynamiczne obciążenia.

Pytanie 30

Poziom przezroczystej, nieprzewodzącej cieczy w zbiorniku można zmierzyć za pomocą czujnika

A. refleksyjnego
B. indukcyjnego
C. piezoelektrycznego
D. ultradźwiękowego
Czujniki ultradźwiękowe to naprawdę fajne narzędzia do mierzenia poziomu cieczy, zwłaszcza w sytuacjach, gdy mamy do czynienia z przezroczystymi i nieprzewodzącymi rzeczami. Działają na takiej zasadzie, że wysyłają fale ultradźwiękowe, które zbijają się od powierzchni cieczy i wracają do czujnika. Dzięki temu, że możemy zmierzyć czas, jaki potrzebuje sygnał na powrót, możemy dokładnie określić, jak wysoki jest poziom cieczy. Na przykład, wykorzystuje się je w zbiornikach z wodą pitną czy różnymi cieczyami w przemyśle. Warto też zauważyć, że standardy jak ISO 9001 mówią o precyzyjnych pomiarach w produkcji, a te czujniki właśnie to potrafią. Mają też kilka zalet w porównaniu do innych technologii, jak brak kontaktu z cieczą, co zmniejsza ryzyko zanieczyszczenia czy korozji, a ponadto mogą działać w trudnych warunkach, co jest na pewno plusem.

Pytanie 31

W jaki sposób można zmienić kierunek obrotów wału w trójfazowym silniku indukcyjnym?

A. podłączyć przewód neutralny
B. zamienić miejscami dwa dowolne fazowe przewody zasilające
C. zwiększyć obciążenie
D. obniżyć częstotliwość zasilania
Żeby zmienić kierunek wirowania wału w silniku indukcyjnym trójfazowym, wystarczy zamienić ze sobą dwa przewody zasilające. To takie proste! Chodzi o to, żeby zmienić kolejność, w jakiej napięcie działa na uzwojenia silnika. W silnikach trójfazowych, wirujące pole magnetyczne jest tworzone przez zasilanie fazowe, a jego kierunek jest zależny od tego, w jakiej kolejności te fazy są podłączone. Jak zamienisz te przewody, to zmienia się sekwencja faz, a to prowadzi do tego, że kierunek wirowania się odwraca. W praktyce to jest często wykorzystywane i jeżeli robisz to na zgodnych zasadach bezpieczeństwa, nie ma ryzyka, że coś się zepsuje. W wielu branżach przemysłowych, gdzie używa się silników trójfazowych, umiejętność zmiany kierunku wirowania jest ważna, żeby maszyny działały prawidłowo, na przykład przy transporcie materiałów czy w produkcji. Zmiana kierunku wirowania sprawia też, że silnik lepiej dopasowuje się do zmieniających się warunków, co jest super istotne w efektywnym zarządzaniu energią.

Pytanie 32

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Najwyższa prędkość ruchu dla poszczególnych osi.
B. Gramatura wtrysku.
C. Liczba wrzecion.
D. Dokładność pozycjonowania.
Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to kluczowe parametry, które w znacznym stopniu wpływają na wydajność i jakość obróbki w frezarkach numerycznych. Liczba wrzecion odnosi się do ilości narzędzi, które mogą być zainstalowane w danej maszynie jednocześnie, co pozwala na realizację różnych operacji jednocześnie, zmniejszając czas przestoju i zwiększając wydajność produkcji. Powtarzalność pozycjonowania jest miarą precyzji, z jaką maszyna może powtórzyć te same ruchy, co jest kluczowe w kontekście produkcji części o ścisłych tolerancjach. Im wyższa powtarzalność, tym mniejsze ryzyko błędów produkcyjnych i mniejsze straty materiałowe. Z kolei maksymalna prędkość ruchu dla poszczególnych osi jest istotna dla ogólnego czasu cyklu obróbczej, co jest niezwykle ważne w kontekście konkurencyjności na rynku. Wybierając frezarkę numeryczną, inżynierowie muszą brać pod uwagę te parametry, aby dostosować wybór maszyny do specyficznych potrzeb produkcyjnych. Błędne rozumienie, że gramatura wtrysku jest istotna dla frezarek, może prowadzić do pominięcia kluczowych aspektów przy wyborze odpowiedniego sprzętu, co w konsekwencji może skutkować nieefektywnością produkcji oraz wyższymi kosztami operacyjnymi.

Pytanie 33

Jakie urządzenie umożliwia pomiar temperatury łopat sprężarki o ruchu obrotowym?

A. manometru
B. tensometru
C. pirometru
D. termistora
Pirometr to urządzenie, które służy do bezkontaktowego pomiaru temperatury obiektów, co sprawia, że jest szczególnie przydatne w przypadku wirujących łopat sprężarek przepływowych. Wirujące elementy w sprężarkach osiągają wysokie prędkości oraz temperatury, co utrudnia zastosowanie tradycyjnych czujników temperatury, które wymagają fizycznego kontaktu z mierzonym obiektem. Pirometry działają na zasadzie detekcji promieniowania podczerwonego emitowanego przez obiekt, co pozwala na skuteczne mierzenie temperatury z zachowaniem bezpieczeństwa i dokładności. W zastosowaniach przemysłowych pirometry są szeroko stosowane w monitorowaniu procesów technologicznych, gdzie istotne jest ciągłe kontrolowanie temperatury, na przykład w turbinach gazowych czy silnikach odrzutowych. Dobre praktyki w zakresie pomiarów temperatury wskazują na konieczność kalibracji pirometrów oraz uwzględnienia warunków otoczenia, takich jak obecność dymu czy pary, które mogą wpływać na dokładność odczytów. Użycie pirometru w tym kontekście jest zgodne z normami branżowymi dotyczącymi monitorowania procesów i zapewnienia efektywności energetycznej maszyn.

Pytanie 34

Jakie napięcie wyjściowe dostarcza przetwornik ciśnienia, jeśli jego zakres napięcia wynosi od 0 V do 10 V dla ciśnienia w przedziale 0 kPa ... 600 kPa, a ciśnienie wynosi 450 kPa, przy założeniu liniowej charakterystyki przetwornika?

A. 3,0 V
B. 4,5 V
C. 7,5 V
D. 10,0 V
Odpowiedź 7,5 V jest prawidłowa, ponieważ przetwornik ciśnienia ma liniową charakterystykę wyjścia w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa. Aby obliczyć napięcie wyjściowe dla ciśnienia 450 kPa, należy zastosować proporcję. Wzór na obliczenie napięcia wyjściowego (V_out) w zależności od ciśnienia (P) jest następujący: V_out = (P / 600 kPa) * 10 V. Podstawiając wartość ciśnienia 450 kPa, otrzymujemy V_out = (450 / 600) * 10 V = 7,5 V. Tego typu przetworniki są powszechnie stosowane w systemach automatyki przemysłowej, gdzie ważne jest monitorowanie ciśnienia, na przykład w układach hydraulicznych czy pneumatycznych. W praktyce, wiedza ta jest niezbędna do prawidłowej konfiguracji systemów pomiarowych i zapewnienia ich właściwego działania. Przestrzeganie standardów branżowych, takich jak ISO 9001, podkreśla znaczenie precyzyjnych pomiarów ciśnienia w celu zapewnienia jakości i bezpieczeństwa procesów przemysłowych.

Pytanie 35

Która metoda regulacji prędkości obrotowej silnika obcowzbudnego prądu stałego umożliwi efektywną regulację w szerokim zakresie od 0 do nn?

A. Rezystancją w obwodzie twornika
B. Napięciem przyłożonym do obwodu wzbudzenia
C. Rezystancją w obwodzie wzbudzenia
D. Napięciem przyłożonym do obwodu twornika
Napięcie przyłożone do obwodu twornika silnika obcowzbudnego prądu stałego jest kluczowym parametrem wpływającym na prędkość obrotową silnika. Zwiększenie napięcia powoduje wzrost prędkości obrotowej, podczas gdy obniżenie napięcia prowadzi do jej zmniejszenia. Taka regulacja jest szczególnie efektywna, gdyż pozwala na uzyskanie szerokiego zakresu prędkości od 0 do nn bez istotnych strat mocy oraz przy zachowaniu wysokiej sprawności energetycznej. W praktyce, ta metoda jest stosowana w aplikacjach takich jak napędy wózków widłowych czy w systemach automatyki, gdzie precyzyjne sterowanie prędkością jest kluczowe. Ponadto, zgodnie z zasadami dobrych praktyk w inżynierii, ta metoda regulacji jest preferowana ze względu na prostotę obsługi i łatwość implementacji w obwodach elektronicznych. Warto zaznaczyć, że stosowanie odpowiednich układów elektronicznych, jak np. falowniki DC, może znacznie ułatwić to zadanie, oferując dodatkowe funkcje, takie jak zabezpieczenia przed przeciążeniami.

Pytanie 36

Jakie środki ochrony osobistej powinien używać pracownik obsługujący tokarkę precyzyjną?

A. Czapkę z daszkiem
B. Maskę osłaniającą twarz
C. Rękawice i nauszniki ochronne
D. Okulary ochronne
Okulary ochronne są kluczowym środkiem ochrony indywidualnej dla pracowników obsługujących tokarki precyzyjne. Ich zastosowanie ma na celu zabezpieczenie oczu przed odłamkami, pyłem oraz innymi niebezpiecznymi substancjami, które mogą powstawać podczas obróbki materiałów. Standardy BHP w przemyśle zalecają noszenie okularów ochronnych z odpowiednimi filtrami, które chronią przed szkodliwym promieniowaniem oraz zapewniają odpowiednią widoczność. Przykładowo, podczas frezowania lub toczenia metalu, mogą występować odpryski, które stanowią bezpośrednie zagrożenie dla wzroku. Dobre praktyki wskazują, że okulary powinny być przystosowane do specyficznych warunków pracy, a ich wybór powinien być zgodny z normami PN-EN 166 oraz PN-EN 170. Ponadto, pracownicy powinni być przeszkoleni w zakresie korzystania z tych środków ochrony, aby maksymalizować ich skuteczność.

Pytanie 37

W zakładzie produkcyjnym ustalono, że ciśnienie względne powietrza w zbiorniku wynosi +3 bary. Co oznacza, że nadciśnienie pNAD oraz ciśnienie absolutne (bezwzględne) pABS mają wartości:

A. pNAD = 3 bar, pABS = 4 bar
B. pNAD = 3 bar, pABS = 3 bar
C. pNAD = 1 bar, pABS = 2 bar
D. pNAD = 2 bar, pABS = 1 bar
Odpowiedź jest prawidłowa, ponieważ ciśnienie względne powietrza w zbiorniku wynoszące +3 bary oznacza, że wartość nadciśnienia (pNAD) wynosi 3 bary. Ciśnienie absolutne (pABS) oblicza się jako sumę ciśnienia atmosferycznego i ciśnienia względnego. W standardowych warunkach na poziomie morza ciśnienie atmosferyczne wynosi około 1 bara. Dlatego pABS = pNAD + pATM = 3 bary + 1 bar = 4 bary. Wiedza ta jest kluczowa w różnych zastosowaniach inżynieryjnych, takich jak projektowanie układów pneumatycznych i hydraulicznych, gdzie zachowanie ciśnienia jest kluczowe dla efektywności i bezpieczeństwa urządzeń. Przykładowo, w systemach pneumatycznych nadciśnienie jest wykorzystywane do napędu siłowników, a znajomość prawidłowych wartości ciśnień pozwala na optymalne ich zaprojektowanie zgodnie z normami ASME oraz ISO, co zapewnia ich prawidłowe funkcjonowanie i bezpieczeństwo użytkowania.

Pytanie 38

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. pięciodrogowy dwupołożeniowy (5/2)
B. pięciodrogowy trójpołożeniowy (5/3)
C. trójdrogowy dwupołożeniowy (3/2)
D. trójdrogowy trójpołożeniowy (3/3)
Zawór pięciodrogowy trójpołożeniowy (5/3) to właściwy wybór, bo pozwala na pełną kontrolę nad ruchem tłoczyska w siłowniku pneumatycznym. Można go zatrzymać w dowolnej pozycji, co jest super ważne w różnych zastosowaniach. Ten zawór ma pięć portów i trzy położenia robocze, co oznacza, że możemy zasilać siłownik z jednej strony (położenie 1), z drugiej (położenie 2) lub zatrzymać go w neutralnej pozycji (położenie 3). Dzięki temu wszystko działa precyzyjnie, co jest kluczowe np. w automatyce produkcyjnej czy robotyce. Używanie takich standardowych komponentów, jak zawory 5/3, to naprawdę dobry pomysł, bo zapewniają one niezawodność i łatwość w podłączeniu do innych części systemu. Przykładem mogą być linie montażowe, gdzie dokładne pozycjonowanie elementów jest mega istotne dla efektywności.

Pytanie 39

W celu oceny stanu technicznego przycisku S1 wykonano pomiary rezystancji, których wyniki przedstawiono w tabeli. Na ich podstawie można stwierdzić, że przycisk S1 posiada zestyk

Nazwa elementuWartość rezystancji zestyków [Ω]
Przed przyciśnięciemPo przyciśnięciu
Przycisk S10,22

A. sprawny NO.
B. niesprawny NC.
C. sprawny NC.
D. niesprawny NO.
Przycisk S1, który oceniłeś jako sprawny NC, działa tak, że w spoczynku obwód jest zamknięty. To się zgadza z tym, jak powinien działać. Jeśli rezystancja wynosi 0,22 Ω przed naciśnięciem, to znaczy, że wszystko jest ok, bo obwód faktycznie jest zamknięty – to jest bardzo ważne dla zestyków NC. Kiedy naciśniesz przycisk, rezystancja skacze do ∞ Ω, co oznacza otwarcie obwodu, i to też jest typowe dla NO. Przyciski NC używa się w różnych sytuacjach, na przykład w automatyce przemysłowej, gdzie potrzebujesz, żeby maszyny się zatrzymywały w razie awarii. Dobrze jest wiedzieć, że w systemach awaryjnego zatrzymywania przyciski te w normalnych warunkach są zamknięte dla bezpieczeństwa, a w nagłych sytuacjach otwierają się, co chroni przed zagrożeniem. Wiedza o tym, jak działają przyciski NC, jest naprawdę istotna, nie tylko dla bezpieczeństwa, ale także w kontekście norm, które obowiązują w branży inżynieryjnej. To wszystko ma ogromne znaczenie w codziennej pracy.

Pytanie 40

Jakie urządzenie służy do pomiaru prędkości obrotowej wirnika silnika?

A. tensometr.
B. prądnica tachometryczna.
C. resolver.
D. galwanometr.
Prądnica tachometryczna jest urządzeniem stosowanym do pomiaru prędkości obrotowej wirnika silnika, które działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej wału. Jest to szczególnie przydatne w aplikacjach, gdzie precyzyjny pomiar prędkości jest kluczowy, takich jak w silnikach elektrycznych, systemach automatyki czy pojazdach. Prądnice tachometryczne są często wykorzystywane w systemach regulacji, gdzie dokładne informacje o prędkości obrotowej są niezbędne do uzyskania stabilności i efektywności działania układu. W praktyce, prądnice te znajdują zastosowanie w napędach, robotyce oraz w różnych maszynach przemysłowych. Dobrą praktyką jest regularne kalibrowanie prądnic tachometrycznych, aby zapewnić ich dokładność oraz niezawodność. Znajomość działania prądnic tachometrycznych oraz ich zastosowań pozwala inżynierom na efektywniejsze projektowanie systemów automatyki i zwiększa efektywność produkcji.