Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 27 maja 2025 11:16
  • Data zakończenia: 27 maja 2025 11:45

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaka jest bezwzględna wartość błędu pomiarowego natężenia prądu, jeśli multimetr pokazał wynik 30,0 mA, a dokładność miernika podana przez producenta dla zastosowanego zakresu pomiarowego wynosi
±(1 % + 2) cyfry?

A. ±0,5 mA
B. ±3,2 mA
C. ±0,3 mA
D. ±2,0 mA
Aby obliczyć bezwzględną wartość błędu pomiaru natężenia prądu, musimy wziąć pod uwagę zarówno procentowy błąd pomiaru, jak i błąd wyrażony w cyfrach. Dokładność miernika wynosi ±(1 % + 2) cyfry. Przy wyniku 30,0 mA, obliczamy 1 % z tej wartości: 1 % z 30,0 mA to 0,3 mA. Następnie dodajemy 2 cyfry, które w przypadku pomiaru 30,0 mA oznaczają 0,2 mA. Zatem całkowity błąd pomiaru wynosi: 0,3 mA + 0,2 mA = 0,5 mA. Wartość błędu ±0,5 mA oznacza, że rzeczywista wartość natężenia prądu może wynosić od 29,5 mA do 30,5 mA. Zrozumienie błędów pomiarowych jest kluczowe w praktyce inżynierskiej, szczególnie w zastosowaniach wymagających precyzyjnych pomiarów prądów elektrycznych, takich jak w automatyce czy elektronice. Użycie multimetru z podaną dokładnością pozwala na rzetelne oceny i podejmowanie decyzji opartych na danych pomiarowych.

Pytanie 2

Przygotowując się do wymiany uszkodzonego gniazda siłowego w instalacji elektrycznej, po odłączeniu zasilania w obwodzie tego gniazda, należy przede wszystkim

A. oznaczyć obszar roboczy
B. zabezpieczyć obwód przed przypadkowym włączeniem zasilania
C. rozłożyć dywanik izolacyjny w rejonie pracy
D. poinformować dostawcę energii
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda siłowego. Po wyłączeniu napięcia, aby zapewnić bezpieczeństwo, należy zastosować odpowiednie środki, takie jak umieszczenie blokady na wyłączniku, co uniemożliwi jego przypadkowe włączenie. W przeciwnym razie, nieodpowiednie działanie lub nieuwaga mogą prowadzić do poważnych wypadków, takich jak porażenie prądem. Przykładem dobrych praktyk w branży elektrycznej jest stosowanie tabliczek informacyjnych ostrzegających, że obwód jest wyłączony i nie należy go włączać. Dodatkowo, w przypadku pracy w większych instalacjach, warto stosować procedury lockout/tagout (LOTO), które są standardem w zapobieganiu nieautoryzowanemu włączeniu urządzeń. Te praktyki są zgodne z normami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy.

Pytanie 3

Jakie typy przewodów instaluje się na izolatorach wspornikowych?

A. Szynowe
B. Uzbrojone
C. Kabelkowe
D. Rdzeniowe
Odpowiedź 'szynowe' jest poprawna, ponieważ szyny montowane są na izolatorach wsporczych w systemach elektroenergetycznych. Izolatory wsporcze pełnią kluczową rolę w podtrzymywaniu szyn, zapewniając jednocześnie ich izolację od otoczenia. Szyny są elementami wykorzystywanymi do przesyłania energii elektrycznej na dużą skalę, a ich zastosowanie w instalacjach wysokiego napięcia jest standardem w branży. Przykładem mogą być linie przesyłowe oraz rozdzielnie, gdzie szyny są stosowane do efektownego i bezpiecznego przekazywania prądu. Dobrą praktyką jest również korzystanie z szyn w instalacjach przemysłowych, gdzie ich zastosowanie zwiększa niezawodność oraz zmniejsza opory elektryczne. W instalacjach szynowych należy przestrzegać standardów dotyczących materiałów i konstrukcji, co zapewnia długotrwałość i bezpieczeństwo operacyjne tych systemów.

Pytanie 4

W wyniku uszkodzenia mechanicznego obudowa gniazda wtyczkowego w łazience uległa zniszczeniu. Co w takiej sytuacji powinno się zrobić?

A. uszczelnić pęknięcia za pomocą kleju do tworzywa
B. zdemontować gniazdo i zaślepić puszkę
C. wymienić gniazdo na nowe
D. zakleić gniazdo taśmą izolacyjną
Wymiana gniazda wtyczkowego jest kluczowym krokiem w przypadku uszkodzenia obudowy, ponieważ gwarantuje bezpieczeństwo użytkowników i zapewnia prawidłowe funkcjonowanie instalacji elektrycznej. Uszkodzona obudowa może prowadzić do odsłonięcia przewodów elektrycznych, co zwiększa ryzyko porażenia prądem oraz zwarcia. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-IEC 60364, każda uszkodzona komponenta powinna być wymieniana, aby zapobiec potencjalnym zagrożeniom. Przykładowo, w przypadku gniazd wtyczkowych umieszczonych w łazienkach, gdzie panuje wysoka wilgotność, niezbędne jest korzystanie z gniazd o podwyższonej odporności na wodę i pył, co podkreśla znaczenie stosowania komponentów spełniających odpowiednie normy. Regularne kontrole oraz wymiana uszkodzonych elementów to najlepsza praktyka, która zwiększa bezpieczeństwo i niezawodność domowej instalacji elektrycznej. Przykładem może być sytuacja, w której gniazdo w łazience zostało uszkodzone – jego wymiana powinna być dokonywana przez wykwalifikowanego elektryka, aby zminimalizować ryzyko błędów w montażu.

Pytanie 5

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
B. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
C. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
D. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
Wybrany zestaw narzędzi jest idealny do montażu aparatury oraz wykonywania połączeń elektrycznych w rozdzielnicy mieszkaniowej. Szczypce do cięcia przewodów umożliwiają precyzyjne przycinanie przewodów do żądanej długości, co jest kluczowe dla zapewnienia dobrego połączenia. Przyrząd do ściągania powłoki pozwala na łatwe usunięcie zewnętrznej izolacji z przewodów, dzięki czemu można uzyskać dostęp do żył przewodów. Z kolei przyrząd do ściągania izolacji jest niezbędny do delikatnego usunięcia izolacji z końców przewodów, co jest ważne dla uniknięcia uszkodzeń drutów. Zestaw wkrętaków jest kluczowy przy montażu elementów rozdzielnicy, takich jak złącza, bezpieczniki czy przekaźniki. Wszystkie te narzędzia są zgodne z najlepszymi praktykami w branży elektrycznej, co zapewnia bezpieczeństwo oraz efektywność pracy. Dobrze dobrany zestaw narzędzi znacząco wpływa na jakość i trwałość wykonanej instalacji elektrycznej.

Pytanie 6

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Rozpoznaje przeciążenia
B. Rozpoznaje zwarcia
C. Zatrzymuje łuk elektryczny
D. Napina sprężynę napędu
Wyzwalacz elektromagnetyczny w wyłączniku nadprądowym odgrywa kluczową rolę w systemach zabezpieczeń elektrycznych, szczególnie w detekcji zwarć. Działa na zasadzie natychmiastowego reagowania na nagły wzrost prądu, co jest charakterystyczne dla sytuacji zwarciowych. Gdy prąd przekracza ustaloną wartość progową, wyzwalacz elektromagnetyczny generuje siłę, która otwiera obwód, przerywając tym samym przepływ prądu. To działanie jest niezwykle istotne, ponieważ pozwala na szybkie odcięcie zasilania, co chroni urządzenia i instalacje przed uszkodzeniami spowodowanymi nadmiernym prądem. W praktyce, wyzwalacze elektromagnetyczne są szeroko stosowane w obiektach przemysłowych, budynkach mieszkalnych oraz w instalacjach komercyjnych do zapewnienia bezpieczeństwa. Zgodnie z normami IEC 60947-2, które regulują wyłączniki niskonapięciowe, właściwe działanie wyzwalacza elektromagnetycznego jest kluczowe dla zapewnienia skutecznej ochrony. Warto zauważyć, że stosowanie wyłączników z odpowiednio dobranymi wyzwalaczami, uwzględniając charakterystykę obciążenia, jest najlepszą praktyką w branży elektrycznej.

Pytanie 7

Jaką z wymienionych czynności należy wykonać podczas inspekcji działającego transformatora?

A. Weryfikacja poziomu oleju w olejowskazie konserwatora
B. Serwis styków oraz połączeń śrubowych
C. Czyszczenie izolatorów
D. Obsługa przełącznika zaczepów
Sprawdzenie poziomu oleju w olejowskazie konserwatora jest kluczowym elementem oględzin pracującego transformatora, ponieważ poziom oleju wpływa na prawidłowe działanie urządzenia. Olej w transformatorze pełni kilka istotnych funkcji, takich jak izolacja elektryczna oraz chłodzenie. W trakcie eksploatacji transformatorów, obniżony poziom oleju może prowadzić do przegrzewania się rdzenia oraz uzwojeń, co w konsekwencji może skutkować uszkodzeniem sprzętu. Zgodnie z normami i dobrymi praktykami branżowymi, regularne sprawdzanie poziomu oleju powinno być przeprowadzane w określonych odstępach czasowych lub przed rozpoczęciem eksploatacji. Przykładem może być stosowanie olejowskazów, które umożliwiają wizualną kontrolę poziomu oleju bez konieczności demontażu urządzenia. Warto również pamiętać o konieczności monitorowania jakości oleju oraz okresowym jego badaniu, co pozwala na wczesne wykrycie ewentualnych zanieczyszczeń czy degradacji, a tym samym na podjęcie działań prewencyjnych.

Pytanie 8

W celu zabezpieczenia przed bezpośrednim kontaktem (ochrona podstawowa) w instalacjach elektrycznych w gospodarstwach domowych wykorzystuje się

A. połączenia wyrównawcze
B. izolowanie miejsca pracy
C. izolowanie części czynnych
D. urządzenia II klasy ochronności
Zastosowanie połączeń wyrównawczych, izolowanie miejsca pracy czy używanie urządzeń II klasy ochronności nie jest najlepszym rozwiązaniem, jeśli chodzi o ochronę przed dotykiem bezpośrednim w domowych instalacjach elektrycznych. Połączenia wyrównawcze są fajne, bo zmniejszają różnice potencjałów, ale nie chronią przed kontaktem z częściami czynnymi. Izolowanie stanowiska to raczej coś dla pracy przy urządzeniach elektrycznych w fabrykach niż w domach. A urządzenia II klasy ochronności, chociaż są ważne, to działają w zupełnie innych warunkach. W domach trzeba przede wszystkim dobrze izolować wszystkie elementy, które mogą być na wyciągnięcie ręki. Dlatego tak istotne jest, żeby projektować instalacje według najlepszych praktyk i norm, jak PN-IEC 61140, które podkreślają, jak ważne jest, by skutecznie chronić się przed kontaktem z elektrycznością.

Pytanie 9

Minimalna akceptowalna wartość rezystancji izolacji dla przewodów instalacji przeznaczonej na napięcie znamionowe nieprzekraczające 500 V, w tym FELV, wynosi

A. 2,0 MΩ
B. 1,0 MΩ
C. 1,5 MΩ
D. 0,5 MΩ
Wybór wartości 1,5 MΩ, 0,5 MΩ lub 2,0 MΩ jako minimalnej rezystancji izolacji dla instalacji elektrycznych do 500 V jest wynikiem nieporozumień dotyczących standardów bezpieczeństwa i wymagań technicznych. Wartość 1,5 MΩ może wydawać się odpowiednia w kontekście innych zastosowań, jednak nie spełnia podstawowych norm dla instalacji na napięcie do 500 V, które wyraźnie określają minimalną wartość na poziomie 1,0 MΩ. Z kolei wartość 0,5 MΩ jest całkowicie niewystarczająca i stwarza poważne ryzyko dla bezpieczeństwa, ponieważ nie zapewnia odpowiedniej ochrony przed przebiciem i porażeniem prądem. Natomiast 2,0 MΩ, choć wydaje się być odpowiednio wysoka, nie jest zakładanym minimum, co może prowadzić do nadmiernych kosztów w kontekście wymogów projektowych, gdzie nie zawsze jest konieczne stosowanie tak wysokiej wartości. W praktyce rzeczywiste wymagania powinny być dostosowane do specyfiki instalacji oraz jej przeznaczenia, jednak zawsze z poszanowaniem ustalonych norm i standardów. Błędem jest zatem myślenie, że wartości wyższe niż wymagane są zawsze korzystne; kluczowe jest przestrzeganie ściśle określonych norm, które zostały opracowane w celu ochrony bezpieczeństwa ludzi i mienia.

Pytanie 10

Który przewód jest oznaczony literami PE?

A. Ochronno-neutralny
B. Ochronny
C. Fazowy
D. Neutralny
Odpowiedzi inne niż "Ochronny" są niepoprawne z kilku powodów. Przewód fazowy, będący źródłem energii elektrycznej, nie ma funkcji ochronnych i nie może być używany do zapewnienia bezpieczeństwa użytkowników. Mylenie przewodu fazowego z przewodem ochronnym często prowadzi do zagrożeń związanych z porażeniem prądem. Z kolei przewód ochronno-neutralny, oznaczany jako PEN, łączy funkcje przewodu neutralnego i ochronnego, co w niektórych systemach może być praktykowane, jednak w nowoczesnych instalacjach elektrycznych, zgodnych z aktualnymi normami, stosowanie odrębnych przewodów PE i N jest zalecane dla większego bezpieczeństwa. Przewód neutralny, który ma za zadanie zamykać obwód, nie powinien być w żadnym wypadku używany do celów ochronnych, ponieważ może wprowadzać niebezpieczne napięcia, co stwarza ryzyko dla urządzeń oraz użytkowników. Kluczowym błędem myślowym jest założenie, że przewód neutralny może pełnić rolę ochronną, co jest sprzeczne z zasadami bezpieczeństwa w instalacjach elektrycznych. Dla ochrony użytkowników oraz urządzeń, niezbędne jest stosowanie dedykowanego przewodu ochronnego, co zapewnia bezpieczeństwo w przypadku awarii.

Pytanie 11

Jakim oznaczeniem charakteryzuje się przewód jednożyłowy z żyłą wykonaną z aluminium, w izolacji z PVC, o przekroju 2,5 mm2, przeznaczony na napięcie znamionowe izolacji 500 V?

A. ALY 500 V 2,5 mm2
B. YLY 500 V 2,5 mm2
C. ADY 500 V 2,5 mm2
D. YDY 500 V 2,5 mm2
No, niestety, nie wszystkie inne odpowiedzi są poprawne. Odpowiedź ALY 500 V 2,5 mm2 ma poważny błąd, bo 'L' sugeruje, że przewód wykonany jest z miedzi, a nie z aluminium. W przypadku YDY 500 V 2,5 mm2, 'Y' mówi, że to przewód jednożyłowy, ale 'D' jest tu problematyczne, bo powinno dotyczyć PVC przy żyłach aluminiowych. Co do YLY 500 V 2,5 mm2, to znowu 'L' sugeruje miedź, co jest sprzeczne z informacjami w pytaniu. Często ludzie popełniają błąd, ignorując materiał żyły, co może prowadzić do różnych problemów w instalacji. Mylimy symbole różnych typów przewodów, co może później skutkować ich niewłaściwym doborem i zwiększa ryzyko awarii. W inżynierii elektrycznej, ogarnięcie tych oznaczeń jest mega ważne, żeby wszystko działało bezpiecznie i sprawnie.

Pytanie 12

Narzędzie przedstawione na ilustracji przeznaczone jest

Ilustracja do pytania
A. do zaciskania końcówek oczkowych.
B. do docinania przewodów.
C. do ściągania izolacji z żył przewodów.
D. do zaciskania końcówek tulejkowych.
Podane odpowiedzi sugerują różne funkcje narzędzia, które nie są zgodne z jego rzeczywistym przeznaczeniem. Zaciskanie końcówek tulejkowych czy oczkowych wymaga użycia innych narzędzi, takich jak szczypce zaciskowe, które mają zupełnie inną budowę i mechanizm działania. Narzędzia te są projektowane tak, aby zapewnić odpowiednie ciśnienie na końcówki, co jest kluczowe dla prawidłowego połączenia elektrycznego. Z kolei ściąganie izolacji z żył przewodów różni się od prostego cięcia przewodów, które powinno być realizowane narzędziami takimi jak nożyce do przewodów, które są dedykowane do tego celu. Typowe błędy myślowe w tym kontekście mogą wynikać z nieznajomości specyfikacji technicznych narzędzi czy mylenia ich funkcji. Zrozumienie różnicy między tymi narzędziami oraz ich zastosowaniem w praktyce jest kluczowe dla właściwego wykonania prac elektrycznych oraz zapewnienia bezpieczeństwa w instalacjach. Każde z tych narzędzi ma swoją unikalną rolę i stosowanie niewłaściwego narzędzia może prowadzić do uszkodzeń oraz zagrożeń dla bezpieczeństwa.

Pytanie 13

Do jakiej kategorii zaliczają się kable współosiowe?

A. Oponowych
B. Grzewczych
C. Telekomunikacyjnych
D. Kabelkowych
Wybór niewłaściwych grup przewodów elektrycznych, takich jak grzewcze, kabelkowe czy oponowe, wskazuje na nieporozumienie dotyczące funkcji i zastosowania tych technologii. Przewody grzewcze są projektowane do zastosowań związanych z ogrzewaniem, gdzie ich główną rolą jest generowanie ciepła, na przykład w systemach ogrzewania podłogowego lub w instalacjach do rozmrażania. Przewody kabelkowe, z kolei, są używane w różnych zastosowaniach, ale nie w kontekście przesyłania sygnałów telekomunikacyjnych. Przewody oponowe, które są stosowane głównie w komunikacji i transporcie, również nie mają zastosowania w telekomunikacji. W kontekście przewodów współosiowych, ich charakterystyka elektromagnetyczna oraz struktura sprawiają, że są one odpowiednie do przesyłania sygnałów w systemach telekomunikacyjnych. Przykładowo, ich użycie w sieciach szerokopasmowych umożliwia efektywną transmisję danych z dużą prędkością, co jest kluczowe w dzisiejszym świecie cyfrowym. Ignorowanie tych specyfikacji prowadzi do błędnych wniosków na temat możliwości zastosowania różnych typów przewodów w telekomunikacji, co może skutkować nieefektywnymi instalacjami oraz problemami z jakością sygnału.

Pytanie 14

Jaki z podanych warunków powinien być zrealizowany podczas instalacji elektrycznej prowadzonej na tynku na zewnątrz budynku mieszkalnego?

A. Użycie transformatora separacyjnego do zasilania
B. Zamontowanie osłon, które chronią przewody przed promieniowaniem słonecznym
C. Zastosowanie wyłączników różnicowoprądowych o dużej czułości
D. Montaż ochronników przepięciowych w głównej rozdzielnicy
Zamontowanie osłon zabezpieczających przewody przed działaniem promieni słonecznych jest kluczowym wymogiem przy instalacji elektrycznej w warunkach zewnętrznych. Ekspozycja na promieniowanie UV może prowadzić do degradacji materiałów izolacyjnych, co zwiększa ryzyko zwarć i awarii. Osłony chronią przewody przed niekorzystnymi warunkami atmosferycznymi, co jest szczególnie istotne w kontekście bezpieczeństwa użytkowania. Przykładem skutecznych osłon są rurki ochronne z PVC, które nie tylko izolują przewody, ale również chronią je przed mechanicznymi uszkodzeniami. Zgodnie z normą PN-IEC 60364, instalacje elektryczne muszą być projektowane w taki sposób, aby minimalizować ryzyko uszkodzeń, a stosowanie osłon to jedna z podstawowych zasad. Dodatkowo, regulacje branżowe podkreślają, że w przypadku instalacji na tynku, stosowanie takich zabezpieczeń jest nie tylko zalecane, ale wręcz wymagane, aby zapewnić długotrwałą i bezpieczną eksploatację systemu elektrycznego.

Pytanie 15

Jaką proporcję strumienia świetlnego kieruje się w dół w oprawie oświetleniowej klasy V?

A. 90 ÷ 100%
B. 0 ÷ 10%
C. 40 ÷ 60%
D. 60 ÷ 90%
Odpowiedź 0 ÷ 10% jest prawidłowa, ponieważ oprawy oświetleniowe V klasy charakteryzują się bardzo niskim poziomem strumienia świetlnego, który jest kierowany w dół. Klasa ta jest przeznaczona do aplikacji, gdzie istotne jest, aby minimalizować oświetlenie w kierunku podłogi, co ma zastosowanie w wielu miejscach, takich jak korytarze, schody czy przestrzenie publiczne, gdzie wysoka intensywność światła w dół może być niepożądana. Przykładem zastosowania są oprawy LED w przestrzeniach biurowych, które mają za zadanie tworzyć strefy z odpowiednim rozproszeniem światła, a nie silnym, bezpośrednim oświetleniem. W praktyce zastosowanie tej klasy opraw pozwala na oszczędność energii oraz zmniejszenie olśnienia, co jest zgodne z normami energetycznymi i ekologicznymi, takimi jak dyrektywy UE dotyczące efektywności energetycznej. Wiedza na temat rozkładu strumienia świetlnego w zależności od klasy oprawy jest kluczowa dla projektantów oświetlenia, którzy mają na celu optymalizację warunków świetlnych w różnych typach przestrzeni.

Pytanie 16

Która z wymienionych czynności zaliczana jest do prac konserwacyjnych w przypadku oprawy oświetleniowej przedstawionej na rysunku?

Ilustracja do pytania
A. Wymiana złączki.
B. Czyszczenie obudowy i styków.
C. Wymiana oprawki.
D. Wykonanie pomiarów natężenia oświetlenia.
Czyszczenie obudowy i styków jest kluczowym elementem konserwacji opraw oświetleniowych. Regularne usuwanie kurzu, brudu oraz osadów poprawia nie tylko estetykę, ale przede wszystkim funkcjonalność urządzenia. Zabrudzenia na obudowie mogą prowadzić do przegrzewania się oprawy, co skraca jej żywotność i zwiększa ryzyko awarii. Czyszczenie styków zapewnia dobry kontakt elektryczny, co jest niezbędne do prawidłowego działania źródeł światła. W kontekście standardów branżowych, takich jak normy dotyczące bezpieczeństwa elektrycznego oraz efektywności energetycznej, regularna konserwacja opraw oświetleniowych jest wymagana do utrzymania ich w dobrym stanie technicznym. Przykładowo, w obiektach przemysłowych czy biurowych, gdzie oświetlenie ma kluczowe znaczenie dla bezpieczeństwa i wydajności pracy, regularne czyszczenie oraz konserwacja opraw są niezbędne do spełnienia norm BHP i ergonomii. Właściwe praktyki konserwacyjne przyczyniają się także do zmniejszenia kosztów eksploatacji poprzez ograniczenie konieczności przeprowadzania napraw oraz wymiany uszkodzonych elementów.

Pytanie 17

Jakiego koloru jest wskaźnik wkładki topikowej o nominalnym natężeniu prądu wynoszącym 6 A?

A. niebieski
B. szary
C. zielony
D. żółty
Wybór niewłaściwego koloru wkładki topikowej może prowadzić do poważnych problemów w instalacjach elektrycznych. Odpowiedzi wskazujące na niebieski, szary, czy żółty kolor są nieprawidłowe, co wynika z nieznajomości standardów dotyczących oznaczeń wkładek topikowych. Niebieski kolor najczęściej kojarzony jest z wkładkami o prądzie znamionowym 10 A, co czyni go niewłaściwym dla wartości 6 A. Kolor szary z reguły odnosi się do wkładek o większym prądzie, a żółty często oznacza wkładki o wartości 16 A. Tego typu błędy wskazują na nieprawidłowe postrzeganie systemu kolorów, co może być efektem braku znajomości norm IEC 60127 oraz ogólnych zasad doboru elementów zabezpieczających w instalacjach elektrycznych. Właściwe oznaczenia kolorystyczne mają kluczowe znaczenie dla bezpieczeństwa, ponieważ niewłaściwie dobrana wkładka może nie zadziałać w przypadku przeciążenia, co prowadzi do ryzyka uszkodzenia urządzeń lub pożaru. Dlatego tak ważne jest, aby zapoznać się z obowiązującymi standardami i praktykami, aby uniknąć takich typowych błędów myślowych, które mogą mieć poważne konsekwencje w rzeczywistych warunkach operacyjnych.

Pytanie 18

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Zmiana rodzaju zastosowanych przewodów
B. Instalacja dodatkowego gniazda elektrycznego
C. Modernizacja rozdzielnicy instalacji elektrycznej
D. Wymiana uszkodzonych źródeł światła
Nie każda rzecz związana z instalacją elektryczną to prace konserwacyjne. Na przykład zmiana przewodów, mimo że ważna, to zazwyczaj jest modernizacja albo rozbudowa, a nie tylko konserwacja. Powinno się dobierać przewody według norm, jak PN-IEC 60364, które mówią o bezpieczeństwie i wydajności. A modernizacja rozdzielnicy to już w ogóle wykracza poza standardowe konserwacje, bo może oznaczać dodawanie nowych obwodów czy zmienianie konfiguracji. Takie rzeczy potrzebują zezwoleń i lepiej, żeby zajmował się tym kto ma odpowiednie kwalifikacje. Instalacja dodatkowego gniazda również wymaga przemyślenia, czasem projektu i zgód, a to już nie jest tylko prosta konserwacja. To wszystko pokazuje, że konserwacja w instalacjach elektrycznych powinna się skupić głównie na przywracaniu funkcji i bezpieczeństwa, a nie na jakichś modyfikacjach czy rozbudowach.

Pytanie 19

Elementem końcowym sieci zasilającej, a także punktem początkowym instalacji elektrycznej budynku jest

A. wewnętrzna linia zasilająca
B. przyłącze
C. rozdzielnica główna
D. złącze
Wybór odpowiedzi związanej z wewnętrzną linią zasilającą, złączem lub rozdzielnicą główną wskazuje na pewne nieporozumienia dotyczące struktury sieci elektroenergetycznej. Wewnętrzna linia zasilająca odnosi się do instalacji, która rozprowadza energię wewnątrz budynku, ale nie jest jej początkiem ani końcowym elementem zewnętrznej sieci zasilającej. Jej działanie jest uzależnione od prawidłowego funkcjonowania przyłącza, które dostarcza energię do budynku. Złącze natomiast jest punktem, w którym energia elektryczna z sieci zewnętrznej łączy się z instalacją budynku, ale nie stanowi ono końca sieci zasilającej. Rozdzielnica główna, mimo że kluczowa w zarządzaniu dystrybucją energii wewnątrz budynku, również nie jest początkiem instalacji elektrycznej, lecz raczej punktem rozdzielającym energię na poszczególne obwody. Typowym błędem myślowym jest utożsamianie tych elementów z przyłączem, co może prowadzić do nieporozumień w projektowaniu oraz wykonawstwie instalacji elektrycznych. Aby uniknąć takich błędów, warto zaznajomić się z pełną strukturą instalacji, co przyczynia się do poprawnej analizy i realizacji projektów elektrycznych.

Pytanie 20

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
B. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
C. pomiar rezystancji uziemienia
D. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
Ocena dostępu do urządzeń, sprawdzenie oznaczenia obwodów i zabezpieczeń oraz sprawdzenie poprawności oznaczenia przewodów neutralnych i ochronnych to istotne elementy oględzin instalacji elektrycznej, które powinny być wykonywane regularnie. Ocena dostępu do urządzeń jest kluczowa, ponieważ zapewnia, że personel może wygodnie i bezpiecznie pracować z instalacją, a także szybko reagować w przypadku awarii. Sprawdzanie oznaczenia obwodów i zabezpieczeń oraz przewodów neutralnych i ochronnych pozwala na identyfikację potencjalnych problemów oraz zrozumienie struktury instalacji, co jest niezbędne do skutecznego zarządzania nią. Problemy takie jak niewłaściwe oznaczenie mogą prowadzić do poważnych zagrożeń, w tym do niebezpieczeństwa porażenia prądem lub uszkodzenia sprzętu. Powszechnym błędem jest mylenie tych elementów z pomiarem rezystancji uziemienia. Wiedza o różnicy między tymi czynnościami jest kluczowa, ponieważ każde z nich ma swoje unikalne cele i metody, a ich pomylenie może prowadzić do niewłaściwych wniosków co do stanu instalacji. Istotne jest, aby każda z tych czynności była przeprowadzana zgodnie z obowiązującymi normami i standardami, co gwarantuje bezpieczeństwo i efektywność systemu elektrycznego.

Pytanie 21

W instalacji elektrycznej wykorzystującej przekaźnik priorytetowy, po osiągnięciu ustawionej w tym przekaźniku wartości natężenia prądu w obwodzie

A. priorytetowym, zostaje wyłączony obwód niepriorytetowy
B. priorytetowym, zostaje wyłączony obwód priorytetowy
C. niepriorytetowym, zostaje wyłączony obwód priorytetowy
D. niepriorytetowym, zostaje wyłączony obwód niepriorytetowy
Odpowiedź dotycząca wyłączenia obwodu niepriorytetowego w przypadku przekroczenia ustawionej wartości natężenia prądu w obwodzie priorytetowym jest poprawna. Przekaźniki priorytetowe są kluczowymi elementami w systemach zarządzania energią, gdzie zapewniają odpowiednie gospodarowanie dostępnymi zasobami elektrycznymi. W praktyce oznacza to, że gdy prąd w obwodzie priorytetowym osiąga niebezpieczny poziom, przekaźnik automatycznie odłącza obwód niepriorytetowy, aby zminimalizować ryzyko przeciążenia oraz uszkodzenia urządzeń. Takie rozwiązanie jest szczególnie istotne w instalacjach przemysłowych, gdzie obciążenie elektryczne może być dynamiczne. Normy, takie jak PN-IEC 60947, określają zasady projektowania i użytkowania takich urządzeń, a ich przestrzeganie zapewnia większe bezpieczeństwo oraz efektywność energetyczną systemów elektrycznych. Dobrą praktyką jest również regularne monitorowanie stanu przekaźników i ich konfiguracji, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 22

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Klasę ochronności przed porażeniem energią elektryczną
B. Minimalny przekrój przewodów podłączonych do zacisków
C. Najwyższą temperaturę otoczenia podczas eksploatacji
D. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody
Symbol IP20 mówi nam o tym, jak dobrze urządzenia elektryczne są chronione przed różnymi rzeczami, jak np. kurz i woda. W praktyce oznacza to, że urządzenie jest ok, jeśli chodzi o duże obiekty (czyli te, które mają więcej niż 12,5 mm), ale niestety nie ma żadnej ochrony przed wodą. To jest ważne, zwłaszcza gdy myślimy o tym, gdzie te urządzenia będą używane. Na przykład gniazdka w biurze – nie jesteśmy tam narażeni na wodę, ale dobrze, że są zbudowane tak, żeby nikt nie mógł łatwo zajrzeć do środka. Fajnie, że istnieją standardy IEC 60529, bo dzięki nim można lepiej dobierać urządzenia do konkretnych miejsc, zwłaszcza tam, gdzie bezpieczeństwo elektryczne to mega ważna sprawa.

Pytanie 23

Wyznacz całkowity względny błąd pomiarowy rezystancji izolacyjnej przewodów, jeśli wskazania miernika wyniosły 200,0 MΩ, a jego niepewność to ± (3% w.w. + 8 cyfr)?

A. 8,3%
B. 6,8%
C. 3,0%
D. 3,4%
Wiele osób może pomylić pojęcie błędu pomiarowego, nie dostrzegając, jak ważne jest zrozumienie różnorodnych źródeł niedokładności. Odpowiedzi 3,0% oraz 6,8% mogą wydawać się kuszące, ponieważ mogą wynikać z niepoprawnych założeń dotyczących obliczenia błędów. W przypadku błędu 3,0%, można błędnie założyć, że tylko błąd procentowy jest istotny, podczas gdy nie uwzględnia się wpływu cyfr, co prowadzi do zaniżenia rzeczywistego błędu. Z kolei odpowiedź 6,8% może sugerować, że błąd wyrażony w cyfrach jest tak samo istotny jak błąd procentowy, co jest mylnym podejściem. W rzeczywistości, aby uzyskać całkowity względny błąd, musimy zrozumieć, że oba te błędy mają różne jednostki i nie można ich po prostu dodać. Dodatkowo, należy pamiętać, że przy pomiarach elektrycznych, takich jak rezystancja, ważne jest, aby znać granice dokładności urządzeń pomiarowych oraz ich wpływ na ostateczne wyniki. Przy pomiarach dużych wartości, jak w tym przypadku 200,0 MΩ, błąd wyrażony w cyfrach jest znacząco mniejszy niż błąd procentowy, co wskazuje na konieczność dokładnej analizy sytuacji. Z takich powodów, pomiar rezystancji izolacji wymaga staranności i przestrzegania norm metrologicznych, aby uzyskać wiarygodne wyniki.

Pytanie 24

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 4 mm2
B. 10 mm2
C. 2,5 mm2
D. 1,5 mm2
Wybór niewłaściwego przekroju przewodu ochronnego, jak 2,5 mm2, 4 mm2 czy 10 mm2, może wydawać się na pierwszy rzut oka uzasadniony, jednak nie odpowiada on wymaganiom przepisów i zasad bezpieczeństwa. Przekrój 2,5 mm2 jest często stosowany dla przewodów zasilających, ale nie jest przewidziany dla przewodów ochronnych w obwodach oświetleniowych. Kluczowym aspektem przy doborze przekroju przewodu ochronnego jest jego funkcja, a nie tylko zdolność do przewodzenia prądu. Głównym celem przewodu ochronnego jest zapewnienie bezpieczeństwa użytkowników poprzez odprowadzenie prądów zwarciowych; zbyt duży przekrój może opóźnić działanie zabezpieczeń, co stwarza ryzyko poważnych wypadków. Przewody o większym przekroju, jak 4 mm2 czy 10 mm2, są nieadekwatne w kontekście ochrony, ponieważ mogą prowadzić do niepoprawnej oceny stanu instalacji, co może skutkować brakiem odpowiednich reakcji w sytuacji awaryjnej. Powszechnym błędem jest również założenie, że im większy przekrój, tym lepsza ochrona. Ważne jest, aby pamiętać, że każdy element instalacji elektrycznej musi być dobrany zgodnie z jego przeznaczeniem oraz obowiązującymi normami, co w tym przypadku jasno określa minimalny przekrój przewodu ochronnego na 1,5 mm2.

Pytanie 25

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
B. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
C. niskonapięciowych liniach elektroenergetycznych.
D. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
Wybór montażu ogranicznika przepięć w rozgałęzieniach instalacji elektrycznej czy w rozdzielnicach nie jest optymalnym rozwiązaniem, gdyż te miejsca są zbyt daleko od rzeczywistych punktów użycia urządzeń, które wymagają ochrony. Oczywiście, ważne jest zabezpieczenie całej instalacji, ale ograniczniki powinny być stosowane tam, gdzie mogą efektywnie działać, czyli blisko urządzeń. Linia elektroenergetyczna niskiego napięcia to również niewłaściwe miejsce dla ograniczników klasy D, ponieważ ich zadaniem jest ochrona konkretnych urządzeń, a nie samej infrastruktury zasilającej. Wprowadzenie ich do gniazd wtyczkowych, puszek w instalacji czy urządzeń bezpośrednio zapewnia ochronę przed przepięciami w momencie ich wystąpienia, co jest kluczowe w kontekście współczesnych instalacji elektrycznych, które często zasilają wrażliwe na zakłócenia elektroniki. Instalowanie ograniczników w złączach i miejscach wprowadzenia instalacji do budynku, szczególnie w obiektach z instalacją piorunochronną, może nie zapewnić wystarczającej ochrony, gdyż wyładowania atmosferyczne mogą zjawiskowo obciążać instalację. Z tego względu przy planowaniu i wykonaniu instalacji elektrycznych kluczowe jest dobre rozumienie zasad działania ograniczników przepięć oraz ich prawidłowe umiejscowienie zgodnie z normami i zaleceniami branżowymi.

Pytanie 26

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Impedancję pętli zwarcia.
B. Rezystancję izolacji.
C. Prąd upływu.
D. Chwilową moc obciążenia.
Rezystancja izolacji jest kluczowym parametrem, który można zmierzyć przy pomocy miernika izolacji, znanego również jako megomierz. Urządzenie to jest wykorzystywane do oceny stanu izolacji elektrycznej w instalacjach i urządzeniach elektrycznych. Pomiar ten jest niezwykle istotny, ponieważ odpowiednia rezystancja izolacji zapewnia bezpieczeństwo użytkowania i zapobiega porażeniom prądem, a także minimalizuje ryzyko awarii. Miernik izolacji generuje wysokie napięcie, które powoduje, że prąd przepływa przez izolację. Na podstawie zmierzonego prądu można obliczyć rezystancję, która jest wyrażana w megaomach (MΩ). W praktyce, normy takie jak PN-EN 61557-2 określają wymagania dotyczące pomiarów rezystancji izolacji. Regularne pomiary rezystancji izolacji są zalecane w ramach działań prewencyjnych, szczególnie w przemyśle, gdzie eksploatacja urządzeń elektrycznych odbywa się w trudnych warunkach. Dbanie o odpowiednie wartości rezystancji izolacyjnej to nie tylko wymóg prawny, ale również dobra praktyka, która przyczynia się do zapewnienia długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 27

Które z parametrów są podane na przedstawionym urządzeniu?

Ilustracja do pytania
A. Napięcie znamionowe i prąd zadziałania.
B. Napięcie znamionowe i prąd znamionowy.
C. Napięcie probiercze i prąd znamionowy.
D. Napięcie probiercze i prąd zadziałania.
Na tym urządzeniu widzimy oznaczenia "230V AC" i "16A 250VAC cosφ=1", co jasno pokazuje jakich mamy do czynienia z parametrami. Napięcie 230V oznacza, że jest ono przystosowane do standardowego zasilania w Europie. Z kolei prąd 16A przy 250V AC pokazuje maksymalny prąd, który urządzenie może bezpiecznie obsłużyć. Zrozumienie tych wartości jest mega ważne, żeby zapewnić bezpieczeństwo i efektywność w pracy urządzeń elektrycznych. W praktyce znajomość tych danych pozwala nam na dobór odpowiednich zabezpieczeń, jak na przykład wyłączniki nadprądowe dopasowane do tych wartości. Dodatkowo, wiedza o współczynniku mocy (cosφ=1) mówi nam, że urządzenie działa w idealnych warunkach, bez strat energii. Spełnianie norm takich jak IEC 60364 jest kluczowe, bo zwiększa bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 28

Średnia wartość napięcia, które zostało zmierzone na wyjściu prostownika jednopołówkowego w stanie nieobciążonym, zasilanego z sinusoidalnego napięcia o wartości skutecznej 10 V, wynosi

A. 6,40 V
B. 7,07 V
C. 10,00 V
D. 4,50 V
Wartości napięcia podawane w odpowiedziach niepoprawnych mogą prowadzić do błędnych wniosków, zwłaszcza w przypadku analizy prostowników. Niektóre z tych wartości mogą wynikać z nieprawidłowego zrozumienia podstawowych koncepcji związanych z prostowaniem napięcia zmiennego. Na przykład, odpowiedź sugerująca 6,40 V mogła być obliczona na podstawie niewłaściwego pomiaru lub założenia dotyczącego średniej z całego cyklu napięcia AC, co nie uwzględnia faktu, że w przypadku prostownika jednopołówkowego napięcie jest prostowane tylko w jednej połówce sinusoidy. Z kolei odpowiedź 7,07 V może wskazywać na mylne zrozumienie wartości szczytowej, a nie średniej, co jest częstym błędem w obliczeniach. Istotne jest, aby rozróżniać między wartością skuteczną, szczytową a średnią, ponieważ każdy z tych terminów ma swoje specyficzne definicje i zastosowanie. Zrozumienie, jak oblicza się te wartości, jest kluczowe w praktycznych zastosowaniach elektrotechnicznych, na przykład w projektowaniu obwodów prostowniczych, gdzie błędne obliczenia mogą prowadzić do nieprawidłowego działania zasilaczy oraz uszkodzenia komponentów. Dlatego tak istotna jest znajomość wzorów oraz zasad rządzących działaniem prostowników, by uniknąć powszechnych pułapek w analizie elektronicznej.

Pytanie 29

Jaką najwyższą wartość powinien mieć wyłącznik silnikowy, chroniący trójfazowy silnik indukcyjny klatkowy o prądzie znamionowym równym 11,1 A, aby zabezpieczyć go przed przeciążeniem przy jednoczesnym zachowaniu możliwości znamionowego obciążenia momentem hamującym?

A. 12,2 A
B. 11,7 A
C. 11,1 A
D. 10,5 A
Ustawienie wyłącznika silnikowego na wartość niższą od znamionowego prądu silnika, jak 10,5 A czy 11,1 A, prowadzi do nieprawidłowego działania całego układu. Tego rodzaju decyzje są często wynikiem błędnego rozumienia zasad działania wyłączników silnikowych i ich roli w systemach zabezpieczeń. Ustawienie na 10,5 A spowoduje, że silnik będzie narażony na częste wyłączenia w momentach przeciążenia, co może prowadzić do nadmiernego zużycia podzespołów, a ostatecznie do awarii. Ponadto, prąd znamionowy 11,1 A nie powinien być wykorzystywany jako maksymalna wartość dla wyłącznika. Zastosowanie tej wartości może zaszkodzić silnikowi, ponieważ nie da mu możliwości pracy w pełnym zakresie obciążenia. Wyłącznik nastawiony na 11,7 A wciąż nie zapewni wystarczającej ochrony, ponieważ jego wartość bliska prądowi znamionowemu nie uwzględnia bezpiecznego marginesu dla chwilowych obciążeń. W praktyce powinno się zawsze przewidywać krótkotrwałe wzrosty prądu, co wiąże się z potrzebą ustawienia wyłącznika na poziomie o 10% wyższym niż prąd znamionowy. Dlatego kluczowe jest zrozumienie, że zabezpieczeń nie można ustawiać na wartościach zbyt niskich, ponieważ prowadzi to do nieefektywnej pracy silnika oraz zwiększa ryzyko jego uszkodzenia.

Pytanie 30

Jaką maksymalną wartość impedancji pętli zwarcia powinien mieć obwód o napięciu 230/400 V, aby wyłącznik instalacyjny nadprądowy C10 mógł skutecznie zapewnić ochronę przed porażeniem?

A. 4,6 Ω
B. 2,3 Ω
C. 7,7 Ω
D. 0,4 Ω
Wiesz co, jeśli chodzi o maksymalną wartość impedancji pętli zwarcia dla obwodu 230/400 V z wyłącznikiem nadprądowym C10, to wynosi ona 2,3 Ω. To wyliczenie oparłem na normie PN-IEC 60364, która w sumie mówi, jakie powinny być zasady dotyczące ochrony elektrycznej. Wyłącznik C10, który działa przy prądzie 10 A, musi zadziałać szybko, kiedy pojawi się zwarcie, a do tego potrzebna jest niska impedancja pętli. W skrócie, żeby zapewnić bezpieczeństwo, trzeba pilnować, żeby ta impedancja nie była wyższa niż 2,3 Ω. Dzięki temu wyłącznik zadziała w krótkim czasie, co daje lepszą ochronę. Jakby impedancja była wyższa, to wyłącznik może działać wolniej, a to już tworzy ryzyko dla ludzi. Dlatego ważne jest, żeby regularnie mierzyć impedancję pętli zwarcia i trzymać to w ryzach.

Pytanie 31

Jaki wyłącznik nadmiarowo-prądowy najlepiej zastosować do zabezpieczenia instalacji elektrycznej z przewidywanym prądem zwarciowym Iz = 150 A?

A. C20
B. D10
C. C16
D. B25
Wybrałeś odpowiedź B25 i to jest całkiem dobra decyzja. Wyłącznik nadmiarowo-prądowy typu B o prądzie znamionowym 25 A sprawdzi się w instalacji, gdzie prąd zwarciowy wynosi 150 A. Z tego co wiem, te wyłączniki są zazwyczaj stosowane w obwodach, gdzie prąd rozruchowy nie jest za duży, jak na przykład w oświetleniu lub gniazdkach. Kiedy mamy do czynienia z większym prądem zwarciowym, musimy dobrze dobrać wyłącznik, tak żeby nie doszło do uszkodzeń instalacji ani do przegrzewania się przewodów. W praktyce wydaje mi się, że wyłącznik B25 będzie odpowiedni i da dobrą ochronę. Warto pamiętać przy projektowaniu elektryki, żeby dobrze policzyć przewidywany prąd zwarciowy i wybrać właściwe wyłączniki, bo to naprawdę ma znaczenie. Zgadzam się, że również trzeba przestrzegać lokalnych przepisów budowlanych oraz elektrycznych, żeby zapewnić bezpieczeństwo.

Pytanie 32

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Oprawkę źródła światła.
B. Wkładkę kalibrową.
C. Gniazdo zapłonnika.
D. Wkładkę topikową bezpiecznika.
Oprawka źródła światła jest kluczowym elementem w instalacjach elektrycznych, umożliwiającym prawidłowe podłączenie i utrzymanie źródła światła, takiego jak żarówka. Jej główną funkcją jest nie tylko mechaniczne wsparcie, ale także zapewnienie odpowiedniej izolacji elektrycznej. Oprawki są projektowane zgodnie z normami, takimi jak PN-EN 60238, które określają wymagania techniczne dla oprawek żarówek. Przykłady zastosowania obejmują różnorodne instalacje oświetleniowe w domach, biurach i zakładach przemysłowych. Warto również zauważyć, że odpowiedni dobór oprawki ma znaczenie dla efektywności energetycznej systemu oświetleniowego, co jest kluczowe w kontekście nowoczesnych standardów zrównoważonego rozwoju. Właściwa instalacja i użytkowanie oprawki przyczyniają się do dłuższej żywotności źródła światła oraz minimalizują ryzyko awarii, co jest istotne w kontekście bezpieczeństwa użytkowników oraz ochrony mienia.

Pytanie 33

Która z poniższych wartości wskazuje na najwyższy poziom precyzji narzędzia pomiarowego?

A. 5
B. 0,1
C. 0,5
D. 1
Wybór odpowiedzi 5, 0,5 lub 1 wskazuje na nieporozumienie w zakresie pojęcia klasy dokładności narzędzi pomiarowych. Klasa dokładności odnosi się do tego, jak precyzyjnie narzędzie może określićmierzoną wartość. Wartość 5 oznacza, że narzędzie pomiarowe ma stosunkowo niską dokładność, co jest nieodpowiednie w sytuacjach wymagających precyzyjnych pomiarów. Odpowiedź 0,5, podobnie jak 1, wskazuje na umiarkowaną dokładność, jednak w obydwu przypadkach nie osiągają one poziomu precyzji, jakim charakteryzuje się wartość 0,1. Typowym błędem myślowym jest mylenie wartości liczbowych z klasą dokładności, co prowadzi do wniosku, że większa liczba byłaby lepsza. W rzeczywistości, im mniejsza wartość, tym wyższa precyzja, co jest fundamentem w metrologii. Takie podejście jest kluczowe w branżach, gdzie dokładność pomiarów wpływa bezpośrednio na jakość produktów i bezpieczeństwo procesów, np. w przemyśle lotniczym czy medycznym. Właściwe zrozumienie klas dokładności narzędzi pomiarowych jest niezbędne, aby uniknąć błędów w pomiarach i zapewnić zgodność z wymaganiami norm jakości. Niezależnie od używanego narzędzia, kluczem do sukcesu jest znajomość jego dokładności oraz umiejętność dopasowania go do specyficznych potrzeb pomiarowych.

Pytanie 34

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Szeregowy prądu stałego
B. Synchroniczny
C. Asynchroniczny klatkowy
D. Obcowzbudny prądu stałego
Silnik synchroniczny charakteryzuje się najbardziej sztywną charakterystyką mechaniczną n = f(M) w zakresie pracy stabilnej, co oznacza, że jego prędkość obrotowa jest ściśle związana z częstotliwością zasilania. W praktyce oznacza to, że silniki synchroniczne są idealnym rozwiązaniem w aplikacjach, gdzie wymagana jest precyzyjna kontrola prędkości oraz stabilność obrotów, na przykład w systemach napędowych w dużych maszynach przemysłowych, turbinach wiatrowych, czy w energetyce odnawialnej. Dzięki swojej konstrukcji, silniki te mogą pracować w warunkach, gdzie inne typy silników, jak np. silniki asynchroniczne, mogą wykazywać większe wahania prędkości. W zastosowaniach, gdzie ważne są parametry jakości energii, silniki synchroniczne mogą też przyczynić się do poprawy współczynnika mocy, co jest zgodne z aktualnymi standardami efektywności energetycznej, jak IEC 60034. Ponadto, zastosowanie technologii takich jak falowniki do sterowania silnikami synchronicznymi umożliwia osiąganie jeszcze większej wydajności i elastyczności w działaniu.

Pytanie 35

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Zmieniając ustawienie dźwigni "ON-OFF"
B. Tworząc zwarcie w obwodzie zabezpieczonym
C. Sprawdzając napięcie oraz prąd wyłącznika
D. Naciskając przycisk "TEST"
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 36

Który typ silnika elektrycznego najczęściej stosuje się w urządzeniach gospodarstwa domowego?

A. Silnik synchroniczny trójfazowy
B. Silnik indukcyjny jednofazowy
C. Silnik krokowy
D. Silnik liniowy
Silniki indukcyjne jednofazowe są najczęściej stosowane w urządzeniach gospodarstwa domowego ze względu na ich prostotę konstrukcji, niezawodność oraz stosunkowo niskie koszty produkcji. Jednofazowe silniki indukcyjne działają w oparciu o zasadę indukcji elektromagnetycznej, gdzie prąd zmienny przepływający przez uzwojenie stojana wytwarza pole magnetyczne, które indukuje prąd w wirniku. To z kolei generuje siłę napędową, która wprawia wirnik w ruch obrotowy. Tego typu silniki są powszechnie stosowane w urządzeniach takich jak pralki, lodówki, wentylatory czy miksery. Ich zaletą jest brak szczotek komutatora, co eliminuje problem iskrzenia i konieczność częstej konserwacji. Dzięki swojej prostocie, silniki te charakteryzują się długą żywotnością i są odporne na przeciążenia. Ponadto są stosunkowo ciche i energooszczędne, co czyni je idealnym wyborem do zastosowań domowych. Standardy przemysłowe i dobre praktyki również preferują użycie jednofazowych silników indukcyjnych w kontekście urządzeń gospodarstwa domowego, podkreślając ich efektywność i trwałość.

Pytanie 37

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. zaciskania końcówek tulejkowych.
B. profilowania żył przewodów.
C. zdejmowania powłoki z przewodu.
D. zaciskania końcówek oczkowych.
Zarówno zdejmowanie powłoki z przewodu, zaciskanie końcówek oczkowych, jak i zaciskanie końcówek tulejkowych wymagają użycia innych rodzajów narzędzi. W przypadku zdejmowania powłoki z przewodu najczęściej stosuje się nożyce lub specjalistyczne narzędzia do ściągania izolacji, które są zaprojektowane tak, aby precyzyjnie usunąć zewnętrzną warstwę bez uszkadzania wrażliwych żył wewnętrznych. Użycie szczypiec okrągłych w tym kontekście jest niewłaściwe, ponieważ ich konstrukcja nie sprzyja precyzyjnemu ściąganiu izolacji. Z kolei zaciskanie końcówek oczkowych i tulejkowych z reguły wymaga użycia odpowiednich szczypiec zaciskowych, które są dedykowane do tego celu. Użycie niewłaściwych narzędzi może prowadzić do nieszczelnych połączeń elektrycznych, co zwiększa ryzyko awarii lub uszkodzeń w instalacji. Powszechnym błędem myślowym jest przekonanie, że jedno narzędzie może zastąpić inne, co wynika z braku świadomości na temat specyfiki i funkcji poszczególnych narzędzi. Dobrze zrozumiane różnice pomiędzy różnymi rodzajami narzędzi oraz ich dedykowanymi zastosowaniami są kluczowe dla zachowania bezpieczeństwa i efektywności w pracach elektrycznych.

Pytanie 38

Które z podanych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtykowe w kuchni powinny być podłączane do oddzielnego obwodu
B. Odbiorniki o dużej mocy powinny być zasilane z osobnych obwodów
C. Gniazda wtykowe w każdym pomieszczeniu powinny pochodzić z wydzielonego obwodu
D. Obwody oświetleniowe należy oddzielić od gniazd wtykowych
Odpowiedź dotycząca zasilania gniazd wtykowych każdego pomieszczenia z osobnego obwodu jest poprawna, ponieważ zgodnie z aktualnymi normami i zaleceniami dotyczącymi instalacji elektrycznych, zapewnia to większe bezpieczeństwo i funkcjonalność. Zasilanie każdego pomieszczenia z osobnego obwodu umożliwia lepsze zarządzanie obciążeniem elektrycznym oraz minimalizuje ryzyko przeciążenia instalacji. Przykładowo, w przypadku awarii jednego z obwodów, pozostałe pomieszczenia mogą nadal być zasilane, co zwiększa komfort użytkowania. Dodatkowo, takie podejście ułatwia lokalizację ewentualnych usterek i ich naprawę, co jest szczególnie ważne w przypadku pomieszczeń takich jak kuchnia czy łazienka, gdzie używa się wielu urządzeń elektrycznych jednocześnie. Warto również zauważyć, że zgodnie z normą PN-IEC 60364, zaleca się stosowanie osobnych obwodów dla urządzeń o dużym poborze mocy, co podkreśla znaczenie wydzielenia obwodów w celu zapewnienia bezpieczeństwa i efektywności instalacji elektrycznej.

Pytanie 39

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Przesunięcie miejsc montażu opraw oświetleniowych
B. Zamiana zużytych urządzeń na nowe
C. Instalacja nowych punktów świetlnych
D. Wymiana uszkodzonych gniazd wtyczkowych
Zmiana miejsc zamontowania opraw oświetleniowych, montaż nowych wypustów oświetleniowych oraz wymiana odbiorników energii elektrycznej na nowe to czynności, które nie należą do prac konserwacyjnych, lecz do prac instalacyjnych i modernizacyjnych. Prace konserwacyjne koncentrują się na utrzymaniu istniejącej instalacji w dobrym stanie, co obejmuje m.in. naprawy, wymianę uszkodzonych elementów czy przeglądy techniczne. Zmiana lokalizacji opraw oświetleniowych czy montaż nowych wypustów wiąże się z modyfikacją struktury instalacji, co wymaga zupełnie innego podejścia i często jest związane z koniecznością uzyskania odpowiednich zezwoleń oraz wykonania projektu technicznego. Podobnie, wymiana odbiorników energii elektrycznej na nowe wiąże się z ich odpowiednim doborem oraz z zapewnieniem, że instalacja elektryczna jest przystosowana do nowych wymagań. Często mylnie przyjmuje się, że każda czynność związana z elektrycznością należy do prac konserwacyjnych, jednakże zgodnie z najlepszymi praktykami branżowymi należy dbać o wyraźne rozgraniczenie tych dwóch rodzajów aktywności, aby zapewnić bezpieczeństwo oraz prawidłowe funkcjonowanie systemów elektrycznych.

Pytanie 40

Przygotowując się do wymiany uszkodzonego gniazda trójfazowego w systemie elektrycznym, po odłączeniu napięcia w obwodzie tego gniazda, należy przede wszystkim

A. poinformować dostawcę energii o zamiarze przeprowadzenia naprawy
B. zabezpieczyć obwód przed niezamierzonym włączeniem napięcia
C. rozłożyć dywanik elektroizolacyjny w obszarze roboczym
D. oznaczyć miejsce pracy
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda trójfazowego, co wynika z podstawowych zasad bezpieczeństwa w pracy z instalacjami elektrycznymi. Po wyłączeniu napięcia, warto zastosować wyłącznik rozłączający lub blokadę, aby uniemożliwić przypadkowe włączenie zasilania. Dobrym przykładem praktycznym jest użycie blokady w systemach, w których dostęp do urządzeń jest wspólny, co minimalizuje ryzyko niebezpiecznych sytuacji. Dodatkowo, zgodnie z normami PN-IEC 60364, należy stosować odpowiednie procedury bezpieczeństwa, w tym oznaczenie obszaru pracy oraz zapewnienie, że osoba pracująca ma odpowiednie kwalifikacje. Takie działania nie tylko chronią pracowników, ale również klientów i innych osób znajdujących się w pobliżu. Warto również pamiętać o stosowaniu odpowiednich środków ochrony osobistej, takich jak rękawice izolacyjne oraz okulary ochronne, aby dodatkowo zminimalizować ryzyko wystąpienia wypadków.