Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 19 marca 2025 11:06
  • Data zakończenia: 19 marca 2025 11:23

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby uzyskać wyświetlenie podanych informacji o systemie Linux w terminalu, należy skorzystać z komendy

Linux atom 3.16.0-5-amd64 #1 SMP Debian 3.16.51-3+deb8u1 (2018-01-08) x86_64 GNU/Linux

A. hostname
B. uname -a
C. factor 22
D. uptime
Polecenie uname -a jest używane w systemach Linux i Unix do wyświetlania szczegółowych informacji o systemie operacyjnym. Parametr -a powoduje, że polecenie zwraca kompletny zestaw danych dotyczących systemu, w tym nazwę kernela, nazwę hosta, wersję kernela, datę kompilacji oraz architekturę sprzętową. Takie informacje są kluczowe dla administratorów systemowych i programistów, którzy potrzebują pełnego obrazu środowiska, w którym pracują. Wiedza o wersji kernela czy architekturze sprzętowej może determinować wybór oprogramowania, które będzie działać optymalnie na danym systemie. Ponadto uname -a jest standardowym narzędziem dostępnym w większości dystrybucji Linuxa, co czyni je uniwersalnym rozwiązaniem w diagnostyce systemu. Przykładowo, przy rozwiązywaniu problemów z kompatybilnością oprogramowania, te informacje mogą pomóc w identyfikacji, czy dany problem jest specyficzny dla konkretnej wersji kernela lub architektury. Zrozumienie wyniku tego polecenia jest zatem istotną umiejętnością w kontekście zarządzania i utrzymania systemów Linuxowych.

Pytanie 2

W sieciach bezprzewodowych typu Ad-Hoc IBSS (Independent Basic Service Set) wykorzystywana jest topologia fizyczna

A. siatki
B. pierścienia
C. magistrali
D. gwiazdy
Odpowiedź "siatki" jest poprawna, ponieważ w sieciach bezprzewodowych Ad-Hoc IBSS (Independent Basic Service Set) urządzenia łączą się w sposób, który tworzy elastyczną i zdecentralizowaną strukturę. W tej topologii każdy węzeł (urządzenie) może komunikować się z innymi bez potrzeby centralnego punktu dostępowego. Przykładem może być sytuacja, gdy użytkownicy znajdują się w jednym pomieszczeniu i chcą wymieniać dane bezpośrednio między sobą. Dzięki takiej strukturze, sieć może łatwo się rozszerzać, gdyż nowe urządzenia mogą po prostu dołączyć do istniejącej sieci bez skomplikowanej konfiguracji. W standardzie IEEE 802.11, który definiuje zasady funkcjonowania sieci bezprzewodowych, takie podejście pozwala na zwiększenie efektywności i elastyczności komunikacji, co jest kluczowe w środowiskach, gdzie mobilność i szybkość reakcji mają znaczenie. W praktyce, sieci te znajdują zastosowanie w sytuacjach kryzysowych lub podczas wydarzeń na świeżym powietrzu, gdzie szybkość uruchomienia i zdolność do adaptacji są priorytetami.

Pytanie 3

Na ilustracji zaprezentowano końcówkę wkrętaka typu

Ilustracja do pytania
A. krzyżowy
B. tri-wing
C. torx
D. imbusowy
Grot wkrętaka typu torx charakteryzuje się specyficznym kształtem gwiazdy sześcioramiennej co pozwala na lepsze przenoszenie momentu obrotowego i zmniejsza ryzyko uszkodzenia łba śruby w porównaniu do innych rodzajów końcówek takich jak krzyżowe czy płaskie Torx jest szeroko stosowany w przemyśle motoryzacyjnym i elektronicznym a także w montażu mebli i sprzętu AGD Jego wszechstronność i wytrzymałość wynikają z konstrukcji które redukują nacisk na krawędzie śruby Zapobiega to wyślizgiwaniu się narzędzia i uszkodzeniu powierzchni śruby co jest kluczowe w zastosowaniach gdzie estetyka i dokładność są istotne Standardowe rozmiary torx obejmują szeroką gamę od T1 do T100 co umożliwia ich zastosowanie w różnych komponentach i urządzeniach Dodatkowo torx posiada wersje z otworem bezpieczeństwa co zapobiega użyciu narzędzi nieautoryzowanych w urządzeniach z zabezpieczeniami Wybór torx jako metody mocowania często wynika z jego efektywności oraz bezpieczeństwa użytkowania co jest istotne w kontekście jakości i niezawodności produktów końcowych

Pytanie 4

Do wymiany uszkodzonych kondensatorów w karcie graficznej potrzebne jest

A. wkrętak krzyżowy oraz opaska zaciskowa
B. lutownica z cyną i kalafonią
C. żywica epoksydowa
D. klej cyjanoakrylowy
Wymiana uszkodzonych kondensatorów na karcie graficznej wymaga precyzyjnych narzędzi, a lutownica z cyną i kalafonią jest kluczowym elementem tego procesu. Lutownica dostarcza odpowiednią temperaturę, co jest niezbędne do stopienia cyny, która łączy kondensator z płytą główną karty graficznej. Kalafonia pełni rolę topnika, ułatwiając równomierne pokrycie miedzi lutowiem oraz poprawiając przyczepność, co jest istotne dla długotrwałej niezawodności połączenia. Używając lutownicy, ważne jest, aby pracować w dobrze wentylowanym pomieszczeniu i stosować techniki, które minimalizują ryzyko uszkodzenia innych komponentów, np. poprzez stosowanie podstawki do lutowania, która izoluje ciepło. Obecne standardy w naprawie elektroniki, takie jak IPC-A-610, zalecają również przeprowadzenie testów połączeń po zakończeniu lutowania, aby upewnić się, że nie występują zimne luty lub przerwy w połączeniach. Takie podejście zapewnia nie tylko poprawne działanie karty graficznej, ale również wydłuża jej żywotność.

Pytanie 5

W systemie Windows, aby uruchomić usługę związaną z wydajnością komputera, należy użyć polecenia

A. services.msc
B. compmgmt.msc
C. secpol.msc
D. perfmon.msc
Polecenie perfmon.msc otwiera Monitor wydajności systemu Windows, który jest narzędziem umożliwiającym analizę i monitorowanie różnych parametrów wydajności komputera w czasie rzeczywistym. Dzięki temu użytkownicy mogą obserwować działanie procesora, pamięci, dysków oraz innych zasobów systemowych, co jest kluczowe w diagnozowaniu problemów z wydajnością. Monitor wydajności pozwala także na konfigurację liczników, które rejestrują dane historyczne, co jest szczególnie przydatne w długoterminowych analizach. Aby efektywnie zarządzać zasobami systemowymi, administratorzy mogą ustawiać powiadomienia oraz raporty, co przyczynia się do optymalizacji działania systemu. To narzędzie wspiera również standardy najlepszych praktyk w zakresie zarządzania infrastrukturą IT, umożliwiając administratorom podejmowanie świadomych decyzji na podstawie rzetelnych danych. Warto zaznaczyć, że umiejętność korzystania z Monitor wydajności jest niezbędna dla każdego specjalisty IT, aby skutecznie diagnozować i rozwiązywać problemy związane z wydajnością systemu.

Pytanie 6

W metodzie dostępu do medium CSMA/CD (Carrier Sense Multiple Access with Collision Detection) stacja planująca rozpoczęcie transmisji sprawdza, czy w sieci ma miejsce ruch, a następnie

A. czeka na żeton pozwalający na rozpoczęcie nadawania
B. wysyła prośbę o rozpoczęcie transmisji
C. oczekuje na przydzielenie priorytetu transmisji przez koncentrator
D. po zauważeniu ruchu w sieci czeka, aż medium stanie się dostępne
W metodzie CSMA/CD, kiedy stacja zamierza rozpocząć nadawanie, kluczowym etapem jest nasłuch na obecność sygnału w sieci. Gdy stacja wykryje ruch, musi czekać, aż nośnik będzie wolny. To podejście zapobiega kolizjom, które mogą wystąpić, gdy więcej niż jedna stacja podejmuje próbę nadawania jednocześnie. Czekanie na wolny nośnik jest istotne, ponieważ w przeciwnym razie dane mogą zostać usunięte lub zniekształcone, co wymagałoby ponownego nadawania, prowadząc do obniżenia efektywności sieci. Przykładem zastosowania tej zasady jest tradycyjna sieć Ethernet, gdzie kolizje są sygnalizowane przez specjalny sygnał zwrotny, a stacje muszą ponownie spróbować nadawania po losowym czasie. W praktyce, stosowanie CSMA/CD w sieciach lokalnych jest zgodne z normą IEEE 802.3, która definiuje ramy dla Ethernetu. Przestrzeganie tego wzorca działania jest kluczowe dla utrzymania płynności transmisji danych i minimalizacji opóźnień w komunikacji.

Pytanie 7

Najlepszą metodą ochrony danych przedsiębiorstwa, którego biura znajdują się w różnych, odległych miejscach, jest wdrożenie

A. kopii analogowych
B. backupu w chmurze firmowej
C. kompresji strategicznych danych
D. kopii przyrostowych
Backup w chmurze firmowej stanowi najefektywniejsze zabezpieczenie danych dla firm z wieloma lokalizacjami, ponieważ umożliwia centralne zarządzanie danymi w sposób, który jest jednocześnie bezpieczny i dostępny. Wykorzystując chmurę, firmy mogą automatycznie synchronizować i archiwizować dane w czasie rzeczywistym, co minimalizuje ryzyko ich utraty. Przykładowo, w przypadku awarii lokalnego serwera, dane przechowywane w chmurze są nadal dostępne, co pozwala na szybkie przywrócenie operacyjności firmy. Standardy takie jak ISO/IEC 27001 w zakresie zarządzania bezpieczeństwem informacji podkreślają znaczenie regularnych kopii zapasowych oraz ich przechowywania w zewnętrznych, bezpiecznych lokalizacjach, co czyni backup w chmurze najlepszym rozwiązaniem z punktu widzenia zgodności z regulacjami branżowymi. Dodatkowo, chmura oferuje elastyczność w skalowaniu zasobów, co pozwala firmom na dostosowywanie swoich potrzeb w miarę ich rozwoju, a także na lepsze zarządzanie kosztami związanymi z infrastrukturą IT. W praktyce, wiele organizacji korzysta z rozwiązań takich jak Microsoft Azure, Amazon AWS czy Google Cloud, które zapewniają zaawansowane funkcje bezpieczeństwa oraz dostępności danych.

Pytanie 8

Jakie polecenie w systemie Linux umożliwia wyświetlenie listy zawartości katalogu?

A. rpm
B. pwd
C. cd
D. ls
Polecenie 'ls' jest fundamentalnym narzędziem w systemach Linux i Unix, służącym do wyświetlania zawartości katalogów. Umożliwia użytkownikom szybkie sprawdzenie, jakie pliki i podkatalogi znajdują się w danym katalogu. Domyślnie, polecenie to wyświetla jedynie nazwy plików, ale można je rozszerzyć o różne opcje, takie jak '-l', co zapewnia bardziej szczegółowy widok z dodatkowymi informacjami, takimi jak uprawnienia, właściciel, grupa, rozmiar plików oraz daty modyfikacji. Użycie 'ls -a' pozwala ponadto na wyświetlenie ukrytych plików, które zaczynają się od kropki. Dobre praktyki w administrowaniu systemem Linux obejmują znajomość i stosowanie polecenia 'ls' w codziennej pracy, co umożliwia skuteczne zarządzanie plikami i katalogami. Przykładowe zastosowanie to: 'ls -lh' w celu uzyskania czytelnych rozmiarów plików oraz 'ls -R' do rekurencyjnego przeszukiwania podkatalogów.

Pytanie 9

Jaki typ macierzy dyskowych zapewnia tak zwany mirroring dysków?

A. RAID-3
B. RAID-1
C. RAID-5
D. RAID-0
RAID-1, znany jako mirroring, to technologia macierzy dyskowych, która zapewnia wysoką dostępność danych poprzez duplikację informacji na dwóch lub więcej dyskach. W przypadku jednego z dysków awarii, system może kontynuować pracę, korzystając z kopii zapasowej na drugim dysku, co znacząco podnosi bezpieczeństwo przechowywanych danych. Przykładem zastosowania RAID-1 może być środowisko przedsiębiorcze, gdzie krytyczne dane muszą być dostępne bez przerwy. Dzięki tej technologii, administratorzy mogą minimalizować ryzyko utraty danych oraz zapewnić ciągłość działania systemów informatycznych. Standardowe praktyki zalecają stosowanie RAID-1 w serwerach plików oraz w systemach, gdzie bezpieczeństwo danych jest kluczowe, takich jak bazy danych. Dodatkowo, RAID-1 może być wykorzystywany w połączeniu z innymi poziomami RAID, aby uzyskać dalsze korzyści, jak na przykład RAID-10, który łączy mirroring z podziałem na dyski, oferując jeszcze wyższą wydajność i niezawodność.

Pytanie 10

Aby podłączyć 6 komputerów do sieci przy użyciu światłowodu, potrzebny jest kabel z co najmniej taką ilością włókien:

A. 12
B. 6
C. 24
D. 3
Aby podłączyć 6 komputerów za pomocą światłowodu, konieczne jest posiadanie kabla z co najmniej 12 włóknami. Każdy komputer wymaga jednego włókna na transmisję i jednego na odbiór, co daje łącznie 12 włókien, by umożliwić pełne duplexowe połączenie. W praktyce, w przypadku większych instalacji, często stosuje się więcej włókien, aby zapewnić przyszłą rozbudowę lub dodatkowe połączenia. Standardy branżowe, takie jak IEEE 802.3, sugerują, aby w projektach sieciowych uwzględniać zapasowe włókna na wypadek awarii lub konieczności rozbudowy. Użycie włókien wielomodowych lub jednomodowych również ma znaczenie, w zależności od odległości, jaką sygnał musi pokonać. Na przykład, w przypadku dużych odległości, zastosowanie włókien jednomodowych jest bardziej opłacalne z uwagi na mniejsze straty sygnału. Takie praktyki zwiększają niezawodność i elastyczność sieci, co jest kluczowe w nowoczesnych środowiskach pracy.

Pytanie 11

Jakie polecenie w systemie Windows powinno być użyte do sprawdzania aktywnych połączeń karty sieciowej w komputerze?

A. Ping
B. Ipconfig
C. Netstat
D. Telnet
Polecenie Netstat jest kluczowym narzędziem w systemie Windows do monitorowania i diagnozowania aktywnych połączeń sieciowych. Umożliwia ono wyświetlenie informacji na temat wszystkich aktywnych połączeń TCP/IP oraz UDP, a także statystyk dotyczących interfejsów sieciowych. Przykładowo, używając polecenia 'netstat -an', użytkownik może szybko zobaczyć wszystkie aktywne połączenia oraz ich statusy, co jest niezwykle przydatne w zarządzaniu bezpieczeństwem sieci. Dla administratorów systemów i specjalistów IT, monitorowanie takich połączeń pozwala na identyfikację potencjalnych zagrożeń, jak nieautoryzowane połączenia, czy też analizy wydajności aplikacji sieciowych. Dobrą praktyką jest regularne korzystanie z tego narzędzia w celu weryfikacji stanu sieci oraz wprowadzenia ewentualnych działań naprawczych. Ponadto, zrozumienie wyników generowanych przez polecenie Netstat jest fundamentalne w kontekście zarządzania ruchem sieciowym oraz optymalizacji jego wydajności.

Pytanie 12

Błąd typu STOP w systemie Windows (Blue Screen), który występuje w momencie, gdy system odwołuje się do niepoprawnych danych w pamięci RAM, to

A. UNEXPECTED_KERNEL_MODE_TRAP
B. UNMONTABLE_BOOT_VOLUME
C. NTFS_FILE_SYSTEM
D. PAGE_FAULT_IN_NONPAGE_AREA
Odpowiedź 'PAGE_FAULT_IN_NONPAGE_AREA' jest poprawna, ponieważ odnosi się do sytuacji, w której system operacyjny Windows napotyka problem podczas próby odwołania się do danych, które powinny znajdować się w pamięci operacyjnej, ale ich tam nie ma. Błąd ten jest często spowodowany uszkodzeniem pamięci RAM lub problemami z systemem plików. Niekiedy może to być wynikiem wadliwych sterowników lub niekompatybilnych aplikacji. W praktyce, aby zdiagnozować tego typu problem, administratorzy systemów mogą używać narzędzi diagnostycznych, takich jak Windows Memory Diagnostic, aby sprawdzić pamięć RAM, oraz CHKDSK do analizy i naprawy problemów z systemem plików. Zarządzanie pamięcią i zapewnienie integralności danych w systemie operacyjnym są kluczowymi aspektami wydajności i stabilności systemu, co podkreśla znaczenie monitorowania i konserwacji sprzętu oraz oprogramowania. Dbanie o regularne aktualizacje sterowników i systemu operacyjnego zgodnie z najlepszymi praktykami branżowymi może znacząco zredukować występowanie takich błędów.

Pytanie 13

Do zainstalowania serwera proxy w systemie Linux, konieczne jest zainstalowanie aplikacji

A. Postfix
B. Webmin
C. Squid
D. Samba
Squid to wydajny serwer proxy, który jest powszechnie stosowany w systemach Linux do zarządzania ruchem internetowym. Jest to oprogramowanie typu open source, co oznacza, że jest dostępne za darmo i cieszy się szerokim wsparciem społeczności. Squid umożliwia cache'owanie stron internetowych, co znacząco przyspiesza dostęp do najczęściej odwiedzanych zasobów. Dzięki temu nie tylko oszczędzamy pasmo, ale również zmniejszamy obciążenie serwerów zewnętrznych. Dodatkowo, Squid może pełnić rolę filtra treści, co jest przydatne w środowiskach korporacyjnych i edukacyjnych. Możliwość konfigurowania reguł dostępu i autoryzacji użytkowników sprawia, że Squid jest bardzo elastyczny i dostosowuje się do różnych scenariuszy użycia. Warto również zaznaczyć, że Squid obsługuje protokoły HTTP, HTTPS oraz FTP, co czyni go wszechstronnym narzędziem do zarządzania połączeniami sieciowymi.

Pytanie 14

W komputerowych stacjach roboczych zainstalowane są karty sieciowe Ethernet 10/100/1000 z interfejsem RJ45. Jakie medium transmisyjne powinno być zastosowane do budowy sieci komputerowej, aby osiągnąć maksymalną przepustowość?

A. Kabel UTP kategorii 5e
B. Światłowód wielomodowy
C. Kabel UTP kategorii 5
D. Światłowód jednomodowy
Kabel UTP kategorii 5e jest właściwym wyborem do budowy sieci komputerowej, gdyż oferuje poprawioną wydajność w porównaniu do kategorii 5. Standard ten jest zaprojektowany do obsługi prędkości do 1 Gbit/s na odległości do 100 metrów, co idealnie odpowiada wymaganiom kart sieciowych Ethernet 10/100/1000. W praktyce, kable UTP kategorii 5e zawierają ulepszony system ekranowania, co minimalizuje zakłócenia elektromagnetyczne oraz przesłuchy, co jest kluczowe w gęsto zaludnionych środowiskach biurowych. Warto również zauważyć, że standardy IEEE 802.3ab dla Ethernetu 1000BASE-T wymagają użycia co najmniej kabla kategorii 5e, aby zapewnić pełną funkcjonalność. Dzięki temu, w zastosowaniach takich jak systemy VoIP, transmisja danych oraz multimedia, kabel UTP kategorii 5e dostarcza nie tylko wysoką przepustowość, ale również stabilność i niezawodność połączeń sieciowych.

Pytanie 15

Jaki poziom macierzy RAID umożliwia równoległe zapisywanie danych na wielu dyskach działających jako jedno urządzenie?

A. RAID 2
B. RAID 0
C. RAID 1
D. RAID 3
RAID 0 to poziom macierzy, który łączy wiele dysków twardych w jeden logiczny wolumin, wykorzystując technikę stripingu. Oznacza to, że dane są dzielone na bloki, które są następnie rozdzielane równolegle na dostępne dyski. Taki sposób organizacji danych pozwala na zwiększenie wydajności, ponieważ operacje odczytu i zapisu mogą być wykonywane jednocześnie na kilku dyskach, co znacznie przyspiesza transfer danych. RAID 0 jest szczególnie przydatny w zastosowaniach wymagających dużej przepustowości, na przykład w edytowaniu wideo, grach komputerowych oraz w sytuacjach, w których kluczowa jest szybkość dostępu do danych. Należy jednak pamiętać, że RAID 0 nie oferuje żadnej redundancji: w przypadku awarii jednego z dysków dane przechowywane na wszystkich dyskach są nieodwracalnie utracone. Dlatego w zastosowaniach, gdzie bezpieczeństwo danych jest priorytetem, zaleca się stosowanie RAID-u z możliwością odzyskiwania, jak RAID 1 lub RAID 5.

Pytanie 16

Zgodnie z normą TIA/EIA-568-B.1 kabel UTP 5e z przeplotem powstaje poprzez zamianę lokalizacji w wtyczce 8P8C następujących par żył (odpowiednio według kolorów):

A. biało-pomarańczowy i pomarańczowy z biało-brązowym i brązowym
B. biało-zielony i zielony z biało-brązowym i brązowym
C. biało-pomarańczowy i pomarańczowy z biało-zielonym i zielonym
D. biało-zielony i zielony z biało-niebieskim i niebieskim
Zgodnie z normą TIA/EIA-568-B.1, poprawna zamiana par przewodów w wtyczce 8P8C polega na wymianie miejscami przewodów biało-pomarańczowego i pomarańczowego z przewodami biało-zielonym i zielonym. Taki schemat ułożenia kabli zapewnia odpowiednią separację sygnałów oraz minimalizuje zakłócenia elektromagnetyczne, co jest istotne dla utrzymania wysokiej jakości transmisji danych w sieciach lokalnych. W praktyce, prawidłowe zakończenie kabli UTP 5e z przeplotem jest kluczowe dla uzyskiwania maksymalnej wydajności sieci, zwłaszcza w zastosowaniach wymagających dużej przepustowości, takich jak transmisja wideo w czasie rzeczywistym czy przesył danych w chmurze. Poprawne ułożenie przewodów zgodnie z normami branżowymi przyczynia się do stabilności i niezawodności połączeń, a tym samym do wydajności całej infrastruktury sieciowej. Dzięki temu, instalacje mogą spełniać wymagania dotyczące jakości usług (QoS) oraz minimalizować ryzyko wystąpienia błędów transmisji.

Pytanie 17

W strukturze sieciowej zaleca się umiejscowienie jednego punktu abonenckiego na powierzchni wynoszącej

A. 30m^2
B. 5m^2
C. 20m^2
D. 10m^2
W sieci strukturalnej, umieszczenie jednego punktu abonenckiego na powierzchni 10m² jest zgodne z zaleceniami dotyczącymi efektywności i wydajności sieci. Takie podejście pozwala na optymalne wykorzystanie infrastruktury, zapewniając jednocześnie odpowiednią jakość usług dla użytkowników końcowych. W praktyce, zagęszczenie punktów abonenckich na mniejszej powierzchni, takiej jak 10m², umożliwia szybszy dostęp do szerokopasmowego internetu i lepszą jakość transmisji danych. Warto zauważyć, że standardy branżowe, takie jak te określone przez ITU (Międzynarodową Unię Telekomunikacyjną) oraz lokalne regulacje, rekomendują podobne wartości w kontekście planowania sieci. Przykładowo, w większych miastach, gdzie gęstość zaludnienia jest wysoka, efektywne rozmieszczenie punktów abonenckich na mniejszych powierzchniach jest kluczem do zaspokojenia rosnącego zapotrzebowania na usługi telekomunikacyjne. Warto również wspomnieć, że zmiany w zachowaniach użytkowników, takie jak większe korzystanie z usług strumieniowych, dodatkowo uzasadniają potrzebę takiego rozmieszczenia, aby zminimalizować opóźnienia i zwiększyć przepustowość sieci.

Pytanie 18

Element trwale zainstalowany, w którym znajduje się zakończenie poziomego okablowania strukturalnego abonenta, to

A. gniazdo teleinformatyczne
B. punkt konsolidacyjny
C. gniazdo energetyczne
D. punkt rozdzielczy
Gniazdo teleinformatyczne to element instalacji, który stanowi zakończenie okablowania strukturalnego i umożliwia podłączenie urządzeń telekomunikacyjnych, takich jak komputery, telefony VoIP czy inne urządzenia korzystające z sieci. W kontekście infrastruktury teleinformatycznej, gniazda te są kluczowe, ponieważ pozwalają na efektywne zarządzanie połączeniami oraz zapewniają wysoki poziom niezawodności i jakości sygnału. Zgodnie z normami ISO/IEC 11801, gniazda teleinformatyczne są projektowane z myślą o maksymalnej wydajności, a ich właściwy dobór i montaż mają istotne znaczenie dla funkcjonowania całej sieci. Przykładem może być biuro, w którym gniazda teleinformatyczne umożliwiają pracownikom łatwy dostęp do sieci lokalnej oraz internetu, co w dzisiejszych czasach jest niezbędne do efektywnej pracy. Stosowanie standardów takich jak T568A lub T568B przy okablowaniu umożliwia uniwersalność i kompatybilność systemów, co również podkreśla znaczenie właściwego doboru elementów instalacji.

Pytanie 19

Podczas skanowania reprodukcji obrazu z magazynu, na skanie obrazu ukazały się regularne wzory, zwane morą. Jakiej funkcji skanera należy użyć, aby usunąć te wzory?

A. Korekcji Gamma
B. Skanowania według krzywej tonalnej
C. Rozdzielczości interpolowanej
D. Odrastrowywania
Odpowiedź dotycząca odrastrowywania jest poprawna, ponieważ ta funkcja skanera jest dedykowana eliminacji efektów moiré, które mogą pojawić się podczas skanowania obrazów z rastrami, na przykład z czasopism czy gazet. Mora to niepożądany efekt wizualny, powstający w wyniku interferencji dwóch rastrów, co często zdarza się w druku offsetowym. Funkcja odrastrowywania analizuje wzór rastra w skanowanym obrazie i stosuje algorytmy do zmniejszenia lub całkowitego usunięcia tych wzorów, co prowadzi do uzyskania czystszej i bardziej naturalnej reprodukcji. W praktyce, korzystając z tej funkcji, można uzyskać lepszą jakość obrazu, co jest istotne w przypadku prac graficznych, archiwizacji oraz publikacji. Przykładem zastosowania mogą być skany starych książek lub czasopism, gdzie detale i kolory muszą być wiernie odwzorowane bez zakłóceń. W profesjonalnej obróbce grafiki ważne jest, aby stosować funkcje odrastrowywania, aby zapewnić najwyższą jakość cyfrowych reprodukcji.

Pytanie 20

Jakie oprogramowanie dostarcza najwięcej informacji diagnostycznych na temat procesora CPU?

A. GPU-Z
B. HD Tune
C. HWiNFO
D. Memtest86+
Wybór innych programów diagnostycznych zamiast HWiNFO wskazuje na nieporozumienie dotyczące ich funkcji i możliwości. GPU-Z, na przykład, jest narzędziem skoncentrowanym na monitorowaniu parametrów karty graficznej, a nie procesora. Choć dostarcza cennych informacji o GPU, takich jak prędkość zegara, temperatura i użycie pamięci, nie jest odpowiednie do analizy wydajności CPU. HD Tune to narzędzie głównie do zarządzania dyskami twardymi, które pozwala na monitorowanie ich zdrowia oraz testowanie wydajności, co jest całkowicie niezwiązane z diagnostyką procesora. Memtest86+ to program do testowania pamięci RAM, który nie oferuje żadnych informacji o CPU, co czyni go nietrafnym wyborem w kontekście tego pytania. Wybór niewłaściwego narzędzia do analizy sprzętu może prowadzić do błędnych wniosków i potencjalnych problemów w diagnostyce. Często użytkownicy myślą, że każdy program diagnostyczny ma uniwersalne zastosowanie, co jest mylnym założeniem. Właściwe zrozumienie funkcji i przeznaczenia narzędzi diagnostycznych jest kluczowe dla efektywnej analizy i rozwiązywania problemów z komputerem. Aby uniknąć takich nieporozumień, warto zapoznać się z dokumentacją i możliwościami poszczególnych programów przed ich użyciem w praktyce.

Pytanie 21

Jaką wartość w systemie dziesiętnym ma suma liczb szesnastkowych: 4C + C4?

A. 271
B. 270
C. 272
D. 273
Aby zrozumieć poprawność odpowiedzi 272, musimy najpierw przeliczyć liczby szesnastkowe 4C i C4 na system dziesiętny. Liczba szesnastkowa 4C składa się z dwóch cyfr – 4 i C. W systemie szesnastkowym C odpowiada dziesiętnej wartości 12, więc 4C to 4 * 16^1 + 12 * 16^0 = 64 + 12 = 76 w systemie dziesiętnym. Z kolei C4 to C * 16^1 + 4 * 16^0 = 12 * 16 + 4 = 192 + 4 = 196. Suma tych wartości wynosi 76 + 196 = 272. Takie przeliczenia są kluczowe w programowaniu, zwłaszcza w kontekście programowania niskopoziomowego oraz obliczeń związanych z adresowaniem pamięci, gdzie system szesnastkowy jest powszechnie stosowany. Warto również zauważyć, że znajomość konwersji między systemami liczbowymi jest niezbędna w wielu dziedzinach informatyki, takich jak kryptografia, grafika komputerowa oraz przy tworzeniu oprogramowania operacyjnego, gdzie precyzyjnie zarządzane adresy pamięci są kluczowe. W praktyce, umiejętność konwersji między systemami liczbowymi może być wykorzystana do optymalizacji algorytmów oraz poprawy efektywności kodu.

Pytanie 22

GRUB, LILO oraz NTLDR to:

A. programy do aktualizacji BIOS-u
B. wersje podstawowego interfejsu sieciowego
C. programy rozruchowe
D. oprogramowanie dla dysku sieciowego
GRUB (GRand Unified Bootloader), LILO (LInux LOader) oraz NTLDR (NT Loader) to przykłady programów rozruchowych, które pełnią kluczową rolę w procesie uruchamiania systemów operacyjnych na komputerach. Programy te są odpowiedzialne za inicjowanie i kierowanie procesem ładowania systemu operacyjnego, co jest niezbędne dla prawidłowego funkcjonowania urządzeń. GRUB jest popularnym bootloaderem w systemach Linux, umożliwiającym uruchamianie różnych systemów operacyjnych z jednego menu. LILO, chociaż coraz mniej używany, również jest bootloaderem dla systemów Linux, jednak jego konfiguracja i obsługa są mniej elastyczne w porównaniu z GRUB. NTLDR z kolei jest bootloaderem dla systemów Windows NT i jego następnych wersji, odpowiedzialnym za załadowanie jądra systemu oraz wywołanie menedżera rozruchu. Znajomość tych programów jest istotna, szczególnie w kontekście zarządzania systemami operacyjnymi oraz diagnozowania problemów z uruchamianiem. W praktyce, administratorzy systemów często muszą konfigurować bootloadery, aby dostosować środowisko uruchomieniowe do potrzeb użytkowników oraz zapewnić zgodność z różnymi systemami operacyjnymi.

Pytanie 23

Jaki jest adres IP urządzenia, które pozwala innym komputerom w lokalnej sieci łączyć się z Internetem?

A. DNS
B. WINS
C. proxy
D. bramy (routera)
Adres IP bramy, czyli routera, to coś, co naprawdę ma znaczenie w sieci lokalnej. Dzięki niemu możemy łączyć się z różnymi urządzeniami na zewnątrz, w tym z Internetem. Router działa jak taki pośrednik, który przekazuje dane między naszą lokalną siecią a zewnętrznymi adresami IP. Na przykład, gdy komputer w naszej sieci chce otworzyć stronę internetową, to wysyła pakiety do routera, który dalej przesyła je do odpowiedniego serwera w Internecie, a potem odsyła odpowiedź. Fajnie jest, gdy brama jest ustawiona w taki sposób, by łatwo zarządzać ruchem danych i jednocześnie dbać o bezpieczeństwo, na przykład przez różne zapory sieciowe. W branży często wykorzystuje się standardowe protokoły, takie jak TCP/IP, co sprawia, że komunikacja jest spójna i działa jak należy.

Pytanie 24

Jaki adres IPv6 jest poprawny?

A. 1234:9ABC::123::DEF4
B. 1234.9ABC.123.DEF4
C. 1234-9ABC-123-DEF4
D. 1234:9ABC::123:DEF4
Odpowiedź '1234:9ABC::123:DEF4' jest prawidłowym adresem IPv6, ponieważ spełnia wszystkie wymagania formalne tego standardu. Adres IPv6 składa się z ośmiu grup, z których każda zawiera cztery znaki szesnastkowe, oddzielone dwukropkami. W przypadku użycia podwójnego dwukropka (::), co oznacza zredukowaną sekwencję zer, może on występować tylko raz w adresie, co zostało poprawnie zastosowane w tej odpowiedzi. W tym przypadku podwójny dwukropek zastępuje jedną grupę zer, co jest zgodne z definicją adresacji IPv6. Przykładowe zastosowanie poprawnego adresu IPv6 może obejmować konfigurację sieci lokalnej, gdzie każdy element infrastruktury, taki jak routery czy serwery, będzie miał unikalny adres IPv6. Stosowanie takiej adresacji jest kluczowe w kontekście wyczerpywania się adresów IPv4 oraz rosnących potrzeb na większą przestrzeń adresową w Internecie.

Pytanie 25

Czym jest VOIP?

A. protokół do dynamicznego routingu
B. protokół przeznaczony do przesyłania dźwięku w sieci IP
C. protokół przeznaczony do przesyłania materiałów wideo przez Internet
D. protokół służący do tworzenia połączenia VPN
VOIP, czyli Voice over Internet Protocol, to technologia umożliwiająca przesyłanie głosu za pomocą protokołów internetowych. Dzięki VOIP możliwe jest prowadzenie rozmów telefonicznych przez Internet, co często wiąże się z niższymi kosztami w porównaniu do tradycyjnych linii telefonicznych. Przykłady zastosowania VOIP obejmują usługi takie jak Skype, Zoom, czy Google Meet, które umożliwiają zarówno rozmowy głosowe, jak i wideo. VOIP korzysta z różnych protokołów, takich jak SIP (Session Initiation Protocol) i RTP (Real-time Transport Protocol), które są standardami branżowymi zapewniającymi jakość i niezawodność połączeń. W praktyce, aby zapewnić wysoką jakość usług VOIP, ważne jest posiadanie odpowiednich zasobów sieciowych, takich jak odpowiednia przepustowość łącza oraz niskie opóźnienia, co jest kluczowe dla jakości dźwięku. W miarę jak technologia VOIP staje się coraz bardziej powszechna, jej zastosowanie w biznesie i komunikacji osobistej będzie się jeszcze bardziej rozwijać.

Pytanie 26

W systemie Linux komenda ifconfig odnosi się do

A. określenia karty sieciowej
B. narzędzia, które umożliwia wyświetlenie informacji o interfejsach sieciowych
C. użycia protokołów TCP/IP do oceny stanu zdalnego hosta
D. narzędzia do weryfikacji znanych adresów MAC/IP
Odpowiedź wskazująca, że ifconfig to narzędzie umożliwiające wyświetlenie stanu interfejsów sieciowych jest jak najbardziej prawidłowa. W systemie Linux, ifconfig jest używane do konfigurowania, kontrolowania oraz wyświetlania informacji o interfejsach sieciowych. Dzięki temu narzędziu administratorzy mogą uzyskać szczegółowe dane dotyczące adresów IP, maski podsieci, a także statusu interfejsów (np. czy są one aktywne). Przykładowe użycie to polecenie 'ifconfig eth0', które wyświetli informacje o interfejsie o nazwie eth0. Dodatkowo, ifconfig może być używane do przypisywania adresów IP oraz aktywacji lub dezaktywacji interfejsów. Narzędzie to jest zgodne z najlepszymi praktykami zarządzania siecią i jest standardowym elementem wielu skryptów administracyjnych, co czyni je niezbędnym w codziennej pracy specjalistów IT. Warto również zaznaczyć, że ifconfig jest często zastępowane przez nowsze narzędzia, takie jak 'ip' z pakietu iproute2, które oferują bardziej rozbudowane możliwości konfiguracyjne i diagnostyczne.

Pytanie 27

Jakie złącze, które pozwala na podłączenie monitora, znajduje się na karcie graficznej pokazanej na ilustracji?

Ilustracja do pytania
A. DVI-D (Single Link), DP, HDMI
B. DVI-I, HDMI, S-VIDEO
C. DVI-A, S-VIDEO, DP
D. DVI-D (Dual Link), HDMI, DP
Błędne odpowiedzi często wynikają z tego, że nie do końca rozumiesz, jakie złącza są na karcie graficznej. Na przykład, jeśli wybierzesz DVI-A, to nie jest najlepszy wybór, bo to starszy, analogowy standard, który teraz rzadko się widuje w nowoczesnych kartach. Takie analogowe złącza jak S-VIDEO również są już przestarzałe i nie oferują fajnej jakości obrazu czy funkcji, więc nie są używane w nowych komputerach. Złącze DVI-I, które ma zarówno sygnały cyfrowe, jak i analogowe, może wydawać się uniwersalne, ale też zyskuje coraz mniej popularności, bo wszystko idzie w stronę pełnej cyfryzacji. W dzisiejszych czasach, w profesjonalnych zastosowaniach, złącza takie jak HDMI czy DP dają dużo lepszą jakość obrazu i dodatkowe funkcje jak przesyłanie dźwięku, co jest kluczowe. Często popełniane błędy to myślenie, że starsze technologie będą działać z nowymi systemami, co niestety prowadzi do złych wyborów. Wybierając złącza, warto zwrócić uwagę na aktualne standardy, żeby mieć pewność, że obraz i dźwięk będą na poziomie.

Pytanie 28

Jaki typ plików powinien być stworzony w systemie operacyjnym, aby zautomatyzować najczęściej wykonywane zadania, takie jak kopiowanie, utworzenie pliku lub folderu?

A. Plik konfiguracyjny
B. Plik wsadowy
C. Plik systemowy
D. Plik inicjujący
Pliki wsadowe, czyli takie skrypty, to super narzędzie do ogarniania różnych rzeczy w systemie. Dzięki nim można ustawić sekwencje poleceń, które będą działały same, co bardzo przyspiesza robotę i zmniejsza ryzyko, że coś spaprasz. Na przykład, można użyć ich do automatycznego robienia kopii zapasowych plików. Skrypt potrafi w jednym kroku przenieść dane z jednego folderu do drugiego, co naprawdę oszczędza czas i eliminuje nudne ręczne zarządzanie danymi. W branży sporo osób korzysta z plików wsadowych w Windows (np. .bat) czy w Unix/Linux (skrypty shell), bo to naprawdę efektywne do zarządzania różnymi zadaniami. A jakby co, to te skrypty można łatwo przerabiać i dostosowywać, więc świetnie sprawdzają się w różnych warunkach.

Pytanie 29

Aby monitorować stan dysków twardych w serwerach, komputerach osobistych i laptopach, można użyć programu

A. Packet Tracer
B. Acronis Drive Monitor
C. Super Pi
D. PRTG Network Monitor
Acronis Drive Monitor to zaawansowane narzędzie dedykowane do monitorowania stanu dysków twardych, które pozwala na bieżące śledzenie ich kondycji. Program ten wykorzystuje technologię SMART (Self-Monitoring, Analysis and Reporting Technology), co umożliwia identyfikację potencjalnych problemów z dyskami jeszcze przed ich wystąpieniem. Dzięki Acronis Drive Monitor użytkownicy mogą otrzymywać powiadomienia o krytycznych sytuacjach, takich jak spadek wydajności czy zbliżające się awarie. Przykładowo, jeśli program zidentyfikuje wzrost błędów odczytu, może zalecić wykonanie kopii zapasowej danych. W praktyce, stosowanie tego narzędzia w środowisku serwerowym czy w komputerach stacjonarnych pozwala na szybką reakcję i minimalizację ryzyka utraty danych. W kontekście dobrych praktyk w zarządzaniu infrastrukturą IT, regularne monitorowanie stanu dysków twardych jest kluczowym elementem strategii zarządzania ryzykiem oraz zapewniania ciągłości działania systemów informatycznych. Warto również zauważyć, że Acronis Drive Monitor jest częścią szerszego ekosystemu rozwiązań Acronis, które obsługują zarządzanie danymi i ochronę przed ich utratą.

Pytanie 30

Który z poniższych adresów IP należy do grupy C?

A. 198.26.152.10
B. 125.12.15.138
C. 190.15.30.201
D. 129.175.11.15
Adresy IP 125.12.15.138, 129.175.11.15 oraz 190.15.30.201 nie należą do klasy C, co może być mylące bez zrozumienia struktury adresowania IP. Klasyfikacja adresów IP opiera się na pierwszym oktecie adresu, który wskazuje, do której klasy należy dany adres. Adresy w klasie A mają pierwszy oktet w przedziale 1-126, a ich przeznaczeniem są bardzo duże sieci. Adresy klasy B mają pierwszy oktet w przedziale 128-191, co oznacza, że są używane w średniej wielkości sieciach. Natomiast adresy klasy C, jak już wcześniej wspomniano, mają pierwszy oktet w przedziale 192-223. Adres 125.12.15.138 mieści się w klasie A, co oznacza, że jest przeznaczony do dużych sieci, a jego zastosowanie jest bardziej skomplikowane, bliskie zarządzania globalnym zasobami. Z kolei adres 129.175.11.15 również należałby do klasy B, co wskazuje na inny typ organizacji oraz inne podejście do zarządzania podsieciami. Podobnie, adres 190.15.30.201 to adres klasy B, a nie C, co może prowadzić do niepoprawnej konfiguracji sieci. Typowe błędy w analizie adresów IP polegają na nieuwzględnieniu całej struktury oktetów i ich wpływu na routing oraz zarządzanie. Dobrą praktyką jest znajomość nie tylko klas adresów, ale także ich zastosowania w kontekście potrzeb Twojej organizacji i jej rozwoju.

Pytanie 31

Jaki błąd w okablowaniu można dostrzec na ekranie testera, który pokazuje mapę połączeń żył kabla typu "skrętka"?

Ilustracja do pytania
A. Pary skrzyżowane
B. Rozwarcie
C. Pary odwrócone
D. Zwarcie
Zwarcie w okablowaniu sieciowym występuje gdy dwie żyły które nie powinny być połączone mają kontakt elektryczny powodując przepływ prądu tam gdzie nie jest to pożądane. Choć zwarcie jest poważnym błędem który może prowadzić do uszkodzenia sprzętu w tym scenariuszu nie jest odpowiednim opisem problemu przedstawionego na wyświetlaczu. Pary odwrócone to sytuacja gdzie końce jednej pary są zamienione co powoduje problemy z transmisją sygnału z powodu błędnego mapowania skrętek. Tester kabli może wykazać odwrócone pary jako błędne przypisanie pinów ale nie jako brak połączenia. Pary skrzyżowane odnoszą się do sytuacji w której pary są zamienione na jednym końcu kabla co często ma miejsce w przypadku kabli typu crossover używanych do bezpośredniego łączenia urządzeń tego samego typu. Skrzyżowanie par jest celowym zabiegiem w przypadku specyficznych konfiguracji sieciowych i nie powinno być traktowane jako błąd w kontekście standardowego połączenia sieciowego zgodnie z normą T568A/B. W tym przypadku przedstawiony problem wskazuje na rozwarcie gdzie sygnał nie może być przesłany z powodu brakującego ciągłości obwodu co jest charakterystycznie ilustrowane przez przerwane połączenia w mapie połączeń testera. Takie błędy są często wynikiem niepoprawnego zaciskania wtyków RJ-45 lub uszkodzenia fizycznego kabla co należy uwzględnić podczas konserwacji i instalacji sieci. By uniknąć tego rodzaju problemów należy stosować się do wytycznych zawartych w normach takich jak TIA/EIA-568 które określają sposób poprawnego zakończenia i testowania kabli sieciowych aby zapewnić ich pełną funkcjonalność i niezawodność w środowiskach produkcyjnych.

Pytanie 32

Jaką normę stosuje się w przypadku okablowania strukturalnego w sieciach komputerowych?

A. TIA/EIA-568-B
B. ISO/IEC 8859-2
C. PN-EN ISO 9001:2009
D. PN-EN 12464-1:2004
Norma TIA/EIA-568-B jest kluczowym standardem dotyczącym okablowania strukturalnego w sieciach komputerowych. Została opracowana przez Telecommunication Industry Association oraz Electronic Industries Alliance i definiuje wymagania dotyczące instalacji, testowania oraz wydajności systemów okablowania. Standard ten określa m.in. klasy okablowania, zalecane rodzaje kabli (np. kable miedziane i światłowodowe) oraz specyfikacje dotyczące złączy i gniazd. Przykładem zastosowania tej normy może być budowa nowego biura, w którym planuje się instalację sieci komputerowej. Zastosowanie TIA/EIA-568-B zapewnia, że sieć będzie spełniała określone standardy jakości i wydajności, co przekłada się na niezawodność przesyłania danych oraz zminimalizowanie problemów związanych z zakłóceniami elektromagnetycznymi. Norma ta jest również często przywoływana w kontekście certyfikacji instalacji okablowania, co potwierdza jej znaczenie w branży IT oraz telekomunikacyjnej.

Pytanie 33

Jaką minimalną liczbę bitów potrzebujemy w systemie binarnym, aby zapisać liczbę heksadecymalną 110 (h)?

A. 3 bity
B. 9 bitów
C. 16 bitów
D. 4 bity
Aby zrozumieć, dlaczego do zapisania liczby heksadecymalnej 110 (h) potrzebne są 9 bity w systemie binarnym, należy najpierw przekształcić tę liczbę do postaci binarnej. Liczba heksadecymalna 110 (h) odpowiada wartości dziesiętnej 256. W systemie binarnym, liczby są zapisywane jako ciągi zer i jedynek, a każda cyfra binarna (bit) reprezentuje potęgę liczby 2. Aby obliczyć, ile bitów jest potrzebnych do zapisania liczby 256, musimy znaleźć najmniejszą potęgę liczby 2, która jest większa lub równa 256. Potęgi liczby 2 są: 1 (2^0), 2 (2^1), 4 (2^2), 8 (2^3), 16 (2^4), 32 (2^5), 64 (2^6), 128 (2^7), 256 (2^8). Widzimy, że 256 to 2^8, co oznacza, że potrzebujemy 9 bitów, aby uzyskać zakres od 0 do 255. Zatem mamy 9 możliwych kombinacji bitów do przedstawienia wszystkich wartości od 0 do 512. W praktyce, w kontekście komunikacji i przechowywania danych, znajomość konwersji między systemami liczbowymi jest kluczowa dla inżynierów oraz programistów i ma zastosowanie w wielu dziedzinach, takich jak projektowanie układów scalonych, programowanie oraz w analizie danych.

Pytanie 34

Na ilustracji zaprezentowano zrzut ekranu z wykonanej analizy

Ilustracja do pytania
A. czas przepełniania buforu systemowego
B. czas dostępu do dysku HDD
C. czas dostępu do nośnika optycznego
D. czas oczekiwania pamięci
Czas, jaki procesor czeka na dostęp do danych w pamięci RAM, to naprawdę ważna sprawa w komputerach. Chodzi o to, że im krótszy ten czas, tym lepiej dla wydajności systemu. Jak pamięć działa wolniej, to może to stworzyć wąskie gardło podczas przetwarzania danych. W inżynierii systemów można to poprawić, stosując różne technologie, jak na przykład dual-channel czy quad-channel, które pomagają zwiększyć przepustowość. Jeśli spojrzymy na przykład na moduły pamięci jak DDR4 czy DDR5, to mają one niższe opóźnienia i większą przepustowość niż starsze wersje. A żeby wszystko działało jak trzeba, warto też pamiętać o aktualizowaniu BIOS-u i sterowników, bo to może pomóc w lepszym zarządzaniu pamięcią. W praktyce, w sytuacjach takich jak serwery czy aplikacje, które potrzebują dużej mocy obliczeniowej, krótszy czas oczekiwania na dane z pamięci to naprawdę klucz do lepszego działania systemu.

Pytanie 35

Zakres adresów IPv4 od 224.0.0.0 do 239.255.255.255 jest przeznaczony do jakiego rodzaju transmisji?

A. broadcast
B. unicast
C. multicast
D. anycast
Adresy IPv4 w zakresie od 224.0.0.0 do 239.255.255.255 są zarezerwowane dla transmisji multicast, co oznacza, że dane są wysyłane do grupy odbiorców jednocześnie. W przeciwieństwie do transmisji unicast, gdzie dane są kierowane do jednego konkretnego odbiorcy, multicast pozwala na efektywne przesyłanie informacji do wielu urządzeń w sieci, co jest szczególnie przydatne w aplikacjach takich jak strumieniowanie wideo, konferencje internetowe oraz dystrybucja aktualizacji oprogramowania. Multicast działa na zasadzie tworzenia grup adresowych, które są subskrybowane przez zainteresowane hosty, co minimalizuje obciążenie sieci. Standardem dla multicastu w sieciach IP jest protokół IGMP (Internet Group Management Protocol), który zarządza członkostwem w tych grupach. Dobrą praktyką jest stosowanie multicastu w scenariuszach, gdzie potrzebna jest efektywna dystrybucja treści do wielu użytkowników bez konieczności nadmiernego obciążania pasma, co jest kluczowe w nowoczesnych rozwiązaniach telekomunikacyjnych i multimedialnych.

Pytanie 36

Jakim interfejsem można osiągnąć przesył danych o maksymalnej przepustowości 6Gb/s?

A. SATA 3
B. USB 2.0
C. USB 3.0
D. SATA 2
Interfejs SATA 3, znany również jako SATA 6 Gb/s, jest standardowym interfejsem do przesyłania danych pomiędzy komputerami a dyskami twardymi oraz innymi urządzeniami pamięci masowej. Jego maksymalna przepustowość wynosi 6 Gb/s, co oznacza, że może efektywnie przenosić dane z prędkością sięgającą 600 MB/s. W praktyce oznacza to, że SATA 3 jest idealnym rozwiązaniem dla nowoczesnych dysków SSD oraz dysków HDD, które wymagają szybkiego przesyłania danych, szczególnie w zastosowaniach takich jak gaming, edycja wideo czy obróbka grafiki. Ponadto, dzięki wstecznej kompatybilności, SATA 3 może być używany z urządzeniami starszych standardów, co pozwala na łatwe aktualizacje systemów bez konieczności wymiany całej infrastruktury. Standard ten jest szeroko stosowany w branży, a jego wdrożenie uznawane jest za najlepszą praktykę w kontekście zwiększania wydajności systemów komputerowych.

Pytanie 37

Liczba FAFC w systemie heksadecymalnym odpowiada wartości liczbowej

A. 64256(10)
B. 1111101011111100 (2)
C. 175376 (8)
D. 1111101011011101 (2)
Odpowiedzi niepoprawne wynikają z błędnego rozumienia konwersji między systemami liczbowymi. W przypadku pierwszej z błędnych odpowiedzi, 64256(10), konwersja z systemu heksadecymalnego na dziesiętny jest niepoprawna, ponieważ liczba FAFC w systemie heksadecymalnym to 64268 w systemie dziesiętnym, a nie 64256. Druga odpowiedź, 175376(8), wskazuje na system ósemkowy, co wprowadza jeszcze większe zamieszanie. Heksadecymalna liczba FAFC nie ma swojej reprezentacji w systemie ósemkowym, ponieważ systemy te są oparte na różnych podstawach. Z kolei liczby podane w systemie binarnym (1111101011011101 i 1111101011111100) również mogą wprowadzać w błąd. Chociaż jedna z nich jest bliska, to nie jest poprawna reprezentacja liczby FAFC. Głównym błędem w tych odpowiedziach jest nieuwzględnienie, jak różne systemy liczbowe konwertują się nawzajem. Często mylący jest również proces przeliczania między systemami, gdzie zapomnienie o odpowiednich podstawach (szesnastkowej, dziesiętnej, ósemkowej czy binarnej) prowadzi do niepoprawnych wniosków. Zrozumienie tych koncepcji jest kluczowe, aby uniknąć podobnych pomyłek w przyszłości.

Pytanie 38

Komputer dysponuje adresem IP 192.168.0.1, a jego maska podsieci wynosi 255.255.255.0. Który adres stanowi adres rozgłoszeniowy dla podsieci, do której ten komputer przynależy?

A. 192.168.0.31
B. 192.168.0.127
C. 192.168.0.63
D. 192.168.0.255
Adres 192.168.0.255 to adres rozgłoszeniowy dla sieci, do której należy komputer z adresem 192.168.0.1 i maską 255.255.255.0. Tak naprawdę, przy tej masce, pierwsze trzy oktety (192.168.0) wskazują na sieć, a ostatni (czyli ten czwarty) służy do adresowania urządzeń w tej sieci. Warto pamiętać, że adres rozgłoszeniowy to ten ostatni adres w danej podsieci, co w tym przypadku to właśnie 192.168.0.255. Ta funkcjonalność jest mega ważna, bo pozwala na wysłanie pakietów do wszystkich urządzeń w sieci naraz. W praktyce, rozgłoszenia są wykorzystywane w takich protokołach jak ARP czy DHCP, co pozwala na automatyczne przydzielanie adresów IP. Moim zdaniem, zrozumienie tego, jak działają adresy rozgłoszeniowe, ma znaczenie dla każdego, kto chce ogarnąć sprawy związane z sieciami komputerowymi. Właściwe użycie tych adresów naprawdę wpływa na to, jak dobrze działa sieć.

Pytanie 39

Użytkownicy z grupy Pracownicy nie mają możliwości drukowania dokumentów za pomocą serwera wydruku w systemie Windows Server. Posiadają oni jedynie uprawnienia do „Zarządzania dokumentami”. Jakie kroki należy podjąć, aby naprawić ten problem?

A. Grupie Administratorzy trzeba odebrać uprawnienia „Drukuj”
B. Grupie Pracownicy powinno się usunąć uprawnienia „Zarządzanie dokumentami”
C. Grupie Pracownicy należy przydzielić uprawnienia „Drukuj”
D. Grupie Administratorzy należy anulować uprawnienia „Zarządzanie drukarkami”
Aby użytkownicy z grupy Pracownicy mogli drukować dokumenty przy użyciu serwera wydruku w systemie Windows Server, konieczne jest nadanie im odpowiednich uprawnień. Uprawnienia "Drukuj" są kluczowe, ponieważ pozwalają na realizację zadań związanych z drukowaniem, podczas gdy uprawnienia "Zarządzanie dokumentami" pozwalają jedynie na podstawowe operacje takie jak zatrzymywanie, wznawianie i usuwanie zadań drukowania, ale nie umożliwiają samego drukowania. Standardy branżowe wskazują, że zarządzanie uprawnieniami powinno być precyzyjnie dostosowane do ról i obowiązków użytkowników, aby zapewnić zarówno bezpieczeństwo, jak i funkcjonalność. W tym przypadku, po przypisaniu uprawnień "Drukuj", użytkownicy będą mogli korzystać z drukarki w pełni, co jest zgodne z najlepszymi praktykami zarządzania zasobami w sieci. Na przykład w środowisku korporacyjnym, gdzie różne zespoły mają różne potrzeby, precyzyjne zarządzanie uprawnieniami jest kluczowe dla wydajności i bezpieczeństwa operacji.

Pytanie 40

Farad to jednostka

A. rezystancji
B. pojemności elektrycznej
C. mocy
D. natężenia prądu
Farad (F) jest podstawową jednostką pojemności elektrycznej w układzie SI. Oznacza zdolność kondensatora do gromadzenia ładunku elektrycznego. Przykładowo, kondensator o pojemności 1 farada zgromadzi 1 kulomb ładunku przy napięciu 1 wolt. Pojemność ma kluczowe znaczenie w różnych zastosowaniach, takich jak obwody elektroniczne, gdzie kondensatory są wykorzystywane do wygładzania napięcia, filtracji sygnałów, a także do przechowywania energii. W praktyce, aplikacje takie jak zasilacze impulsowe, audiofilskie systemy dźwiękowe, a nawet układy elektromagnetyczne wymagają precyzyjnego doboru kondensatorów o odpowiedniej pojemności. Warto również zauważyć, że w praktyce inżynierskiej stosowane są różne jednostki pojemności, a farad jest używany w kontekście dużych wartości; dla mniejszych zastosowań często używa się mikrofaradów (µF) oraz nanofaradów (nF).