Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 14 stycznia 2025 08:05
  • Data zakończenia: 14 stycznia 2025 08:20

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Co oznacza funkcja ARW w radiowych odbiornikach?

A. odbiór komunikatów drogowych
B. odbiór tekstowych komunikatów
C. wybieranie oraz wyszukiwanie rodzaju programu
D. automatyczną regulację wzmocnienia
Odpowiedzi, które wskazują na inne funkcje odbiorników radiowych, takie jak odbiór komunikatów tekstowych czy wybieranie rodzajów programów, są nieprawidłowe, ponieważ nie odnoszą się do podstawowej funkcji automatycznej regulacji wzmocnienia. Odbiór komunikatów tekstowych dotyczy technologii, które używają dodatkowych systemów transmisji, takich jak RDS, który pozwala na przesyłanie informacji o programie, ale nie ma to bezpośredniego związku z regulacją wzmocnienia sygnału. Również wybieranie rodzaju programu odnosi się do możliwości nawigacji po dostępnych stacjach radiowych i ich programach, co jest funkcją zawartą w systemach zarządzania odbiornikiem, ale nie ma to związku z adaptacją wzmocnienia sygnału. Ponadto, odbiór komunikatów drogowych to specyficzna funkcja, która jest funkcjonalnością rozszerzoną, a nie kluczowym elementem odbiorników. Błędem myślowym jest mylenie tych funkcji z ARW, ponieważ każda z wymienionych odpowiedzi dotyczy różnych aspektów działania radia, a nie podstawowej funkcji automatycznej regulacji wzmocnienia. W rzeczywistości, zrozumienie różnicy między tymi funkcjami jest kluczowe dla prawidłowego korzystania z odbiorników radiowych oraz ich efektywnej konfiguracji. W praktyce, funkcje te pełnią różne role i powinny być analizowane w kontekście ich specyficznych zastosowań, co podkreśla znaczenie znajomości technologii wykorzystywanych w nowoczesnych systemach audio.

Pytanie 2

Multiswitche umożliwiają

A. stworzenie systemu antenowego z dowolną ilością gniazd do odbioru.
B. wybór programów telewizyjnych do odbioru.
C. zmianę kąta azymutu anteny.
D. sterowanie wszystkimi torami satelitarnymi.
Wybór innych odpowiedzi prowadzi do nieporozumień związanych z funkcjonalnością multiswitchy oraz ich rolą w systemach telewizyjnych. Na przykład regulacja wszystkich torów satelitarnych nie jest możliwa za pomocą multiswitchy, ponieważ te urządzenia służą głównie do dystrybucji sygnału, a nie jego regulacji. Regulacja odbywa się na poziomie LNB (Low Noise Block), które jest odpowiedzialne za odbiór sygnału z satelity. To właśnie LNB decyduje o tym, które częstotliwości są odbierane i przesyłane do multiswitcha. Ustawienie kąta azymutu anteny również nie jest funkcją multiswitcha. Proces ten należy wykonać na etapie instalacji anteny, aby zapewnić optymalny odbiór sygnału. Właściwe ustawienie azymutu oraz elewacji jest kluczowe dla uzyskania pełnego potencjału systemu satelitarnego. Wreszcie, wybór odbieranych programów telewizyjnych nie jest funkcją multiswitcha, lecz dekodera, który interpretuje sygnał i umożliwia dostęp do określonych kanałów. Błędne przekonania dotyczące tych funkcji mogą prowadzić do nieefektywnego projektowania systemów, które nie spełniają oczekiwań użytkowników.

Pytanie 3

Zaciskarka do złącz RJ-45 jest stosowana podczas instalacji

A. dysku HDD
B. routera przewodowego
C. karty graficznej
D. pamięci RAM
Zaciskarka wtyków RJ-45 jest kluczowym narzędziem w procesie montażu sieci komputerowych, szczególnie przy instalacji routerów przewodowych. Wtyki RJ-45 są używane do podłączenia kabli sieciowych, co jest niezbędne do zapewnienia komunikacji między urządzeniami w sieci lokalnej. Proces zaciskania wtyków polega na odpowiednim umieszczeniu przewodów w wtyku i użyciu zaciskarki do trwałego połączenia ich z metalowymi stykami wtyku. Przykładem praktycznego zastosowania może być tworzenie kabli do połączeń między routerem a komputerami, co pozwala na szybki i stabilny transfer danych. W branży stosuje się różne standardy, takie jak T568A i T568B, które określają sposób układania przewodów w wtyku. Znajomość tych standardów jest kluczowa dla osiągnięcia optymalnej wydajności i zgodności z normami sieciowymi, co jest zgodne z najlepszymi praktykami w instalacjach sieciowych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jaką rolę odgrywa konwerter w zestawie odbiorczym telewizji satelitarnej?

A. Nadaje sygnały z satelity
B. Odbiera programy telewizyjne
C. Przekazuje informacje pomiędzy satelitami
D. Pośredniczy w przesyłaniu sygnałów z satelity do odbiornika
Konwerter w odbiorczym zestawie telewizji satelitarnej pełni kluczową rolę w procesie odbioru sygnałów telewizyjnych. Jego podstawową funkcją jest pośrednictwo w przekazie sygnałów z satelity do odbiornika. W praktyce konwerter znajduje się na końcu anteny parabolicznej, która skupia sygnały z satelity. Sygnały te są zazwyczaj przesyłane w zakresie częstotliwości Ku lub C, a konwerter ma za zadanie przetworzyć je na niższe częstotliwości, które są bardziej odpowiednie do przesyłania przez kabel do odbiornika. Dzięki temu możliwe jest uzyskanie wysokiej jakości obrazu i dźwięku. Warto również zauważyć, że konwertery mogą mieć różne właściwości, takie jak podwójne wyjścia, co pozwala na jednoczesne korzystanie z dwóch tunerów. Zastosowanie konwertera jest zgodne z normami branżowymi, które określają standardy jakości sygnału oraz efektywności jego przetwarzania.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Przewody zasilające łączące antenę z odbiornikiem określa się mianem

A. dipolami
B. dyrektorami
C. symetryzatorami
D. fiderami
Odpowiedź 'fiderami' jest właściwa, bo fider to po prostu linia zasilająca między anteną a odbiornikiem, która odpowiada za przesył energii radiowej. W systemach komunikacji RF fidery są mega ważne, bo ich jakość wpływa na to, jak dobrze będziemy odbierać sygnał. Na przykład, w telekomunikacji czy radiokomunikacji najczęściej używa się fiderów o impedancji 50 lub 75 ohm, co jest zgodne z tym, co obowiązuje w branży. Dobre praktyki mówią, żeby wybierać fidery o niskich stratach, żeby jak najmniej sygnału tracić, bo to jest istotne, kiedy antena jest daleko od odbiornika. No i nie zapominajmy o odbiciach, które mogą wystąpić, gdy impedancja nie jest dopasowana – to pokazuje, jak ważne jest, żeby fider był odpowiednio dobrany. Dobrym przykładem są instalacje telewizyjne, gdzie jakość sygnału telewizyjnego jest mocno związana z tym, jaki fider używamy. Zrozumienie tego tematu jest kluczowe, jak chcemy zbudować skuteczne systemy antenowe.

Pytanie 9

Zerowanie omomierza to proces polegający na

A. dostosowaniu rezystancji bocznika
B. ustawieniu "0 Ohm" przy rozwartych zaciskach pomiarowych
C. do wyboru odpowiedniego zakresu do przewidywanej wartości pomiarowej
D. ustawieniu "0 Ohm" przy zwartych zaciskach pomiarowych
Wybór innych odpowiedzi jest wynikiem nieporozumienia dotyczącego zasady działania omomierzy oraz ich kalibracji. Dobór zakresu pomiaru do przewidywanej wartości pomiaru nie ma nic wspólnego z zerowaniem. Zakres odnosi się do zakresu wartości, które omomierz może zmierzyć, a nie do kalibracji samego urządzenia. Niezrozumienie tego faktu może prowadzić do błędów w pomiarach, zwłaszcza w sytuacjach, gdy użytkownik nie jest pewien, jakie wartości powinien się spodziewać. Ustawienie '0 Ohm' przy rozwartych zaciskach również jest błędne, ponieważ w takim przypadku nie ma zamkniętego obwodu i omomierz nie ma możliwości zarejestrowania rezystancji. Warto zauważyć, że brak zrozumienia procesu kalibracji omomierza może prowadzić do jego niewłaściwego użycia, co w konsekwencji może wpłynąć na jakość i wiarygodność przeprowadzanych pomiarów. Dopasowanie rezystancji bocznika również nie jest związane z zerowaniem omomierza, ponieważ bocznik służy do pomiaru prądu, a nie do kalibracji omomierza. W sytuacjach, gdy użytkownik nie jest świadomy podstawowych zasad kalibracji, istnieje ryzyko, że pomiary rezystancji będą zafałszowane, co może prowadzić do niepoprawnych diagnoz i decyzji w zakresie napraw i konserwacji urządzeń elektrycznych.

Pytanie 10

Ile żył jest potrzebnych do podłączenia unifonu, jeśli bramofon działa w systemie domofonowym 4+N?

A. 4
B. 10
C. 8
D. 5
Poprawna odpowiedź to 5 żył, ponieważ w systemie domofonowym 4+N unifon wymaga czterech przewodów do przesyłania sygnału audio oraz zasilania, a dodatkowy przewód, zwany N (neutralnym), jest niezbędny dla prawidłowego funkcjonowania systemu. Zastosowanie takiego układu przewodów umożliwia nie tylko komunikację z bramofonem, ale także zapewnia zasilanie i możliwość sterowania zamkiem elektromechanicznym. W systemach domofonowych zgodnych z tą specyfikacją, ważne jest, aby przewody były odpowiednio dobrane do długości instalacji oraz obciążenia, co zapewnia stabilność i niezawodność działania. Dobrą praktyką jest również stosowanie przewodów o odpowiednim przekroju, co zabezpiecza przed spadkami napięcia. W przypadku większych instalacji, rekomenduje się również użycie zasilacza o odpowiedniej mocy, aby zapewnić właściwą funkcjonalność wszystkich urządzeń w systemie. Takie podejście do instalacji pozwala na długotrwałe i bezawaryjne użytkowanie systemu domofonowego.

Pytanie 11

Który z komponentów elektronicznych wymaga właściwej polaryzacji podczas instalacji na płytce drukowanej?

A. Bezpiecznik topikowy
B. Kondensator ceramiczny
C. Stabilizator scalony
D. Rezystor węglowy
Stabilizator scalony to element elektroniczny, który wymaga zachowania odpowiedniej polaryzacji podczas montażu na płytce obwodu drukowanego. Stabilizatory scalone są projektowane do pracy z określoną polaryzacją napięcia zasilającego, co oznacza, że ich piny zasilające mają przypisane konkretne funkcje, takie jak wejście, wyjście oraz masa. Niewłaściwe podłączenie stabilizatora może prowadzić do jego uszkodzenia lub niewłaściwego działania. Przykładem zastosowania stabilizatora scalonego jest zasilanie układów logicznych, gdzie stabilne napięcie jest kluczowe dla prawidłowego działania. W praktyce, dla zapewnienia poprawnej polaryzacji, projektanci obwodów umieszczają na płytkach oznaczenia, które wskazują, jak należy podłączyć ten element, a także stosują odpowiednie procedury testowania po montażu. Standardy branżowe, takie jak IPC-A-610, podkreślają znaczenie odpowiedniego montażu komponentów elektronicznych, w tym przestrzegania zasad dotyczących polaryzacji, co jest kluczowe dla niezawodności i trwałości finalnych produktów elektronicznych.

Pytanie 12

Co należy zrobić, gdy pracownik, który został odizolowany od źródła prądu, jest nieprzytomny, ale zachowuje prawidłowy oddech oraz funkcje serca?

A. przystępuje się do natychmiastowego zewnętrznego masażu serca
B. należy udrożnić jego górne drogi oddechowe
C. układa się go na plecach i unosi nogi
D. układa się go w ustalonej pozycji bocznej i obserwuje
W przypadku osoby nieprzytomnej, ale z zachowanym oddechem i pracą serca, kluczowe jest zapewnienie drożności dróg oddechowych oraz monitorowanie stanu pacjenta. Ułożenie w pozycji bocznej ustalonej (PBU) ma na celu zapobieganie ewentualnemu zadławieniu się w przypadku wymiotów oraz ułatwienie swobodnego przepływu powietrza. Pozycja ta jest rekomendowana przez wiele organizacji zajmujących się pierwszą pomocą, w tym przez Europejską Radę Resuscytacji (ERC). PBU pozwala również na łatwiejsze obserwowanie pacjenta, co jest istotne w kontekście szybkiego reagowania na ewentualne zmiany w jego stanie zdrowia. Ułożenie w tej pozycji powinno być wykonywane ostrożnie, aby uniknąć urazów kręgosłupa, szczególnie w przypadku potencjalnych urazów spowodowanych wypadkami elektrycznymi. Dlatego istotne jest, aby każdy, kto udziela pierwszej pomocy, był świadomy tej procedury oraz znał jej zastosowanie w praktyce.

Pytanie 13

Którego rodzaju kabel dotyczy termin STP?

A. Koncentrycznego
B. Skrętki ekranowanej
C. Światłowodowego
D. Skrętki nieekranowanej
Oznaczenie STP odnosi się do skrętki ekranowanej (Shielded Twisted Pair), która jest rodzajem kabla wykorzystywanego w sieciach komputerowych do przesyłania danych. Skrętki ekranowane są wyposażone w dodatkową warstwę ekranu, która chroni sygnały przed zakłóceniami elektromagnetycznymi pochodzącymi z otoczenia, co czyni je bardziej odpornymi na różnego rodzaju interferencje. STP znajduje zastosowanie w sytuacjach, gdzie istnieje duże ryzyko zakłóceń, na przykład w środowiskach przemysłowych lub blisko urządzeń elektrycznych. Przykładowe zastosowania obejmują sieci lokalne (LAN) w biurach czy zakładach produkcyjnych, gdzie stabilność sygnału jest kluczowa. Standardy takie jak TIA/EIA-568 określają wymagania dotyczące jakości kabli STP, co pozwala na osiągnięcie najwyższej wydajności transmisji danych. Wiedza na temat różnych typów kabli oraz ich zastosowania jest istotna, aby móc odpowiednio dobrać rozwiązania do konkretnych potrzeb sieciowych.

Pytanie 14

W urządzeniu elektronicznym narażonym na drgania może dojść do

A. spadku efektywności zasilacza
B. zmniejszenia pojemności kondensatorów
C. uszkodzenia obwodów drukowanych
D. utraty danych w pamięci wewnętrznej
Uszkodzenie obwodów drukowanych w urządzeniach elektronicznych narażonych na wibracje jest rzeczywiście problemem technicznym, który może prowadzić do poważnych awarii sprzętowych. Wibracje mechaniczne mogą wpływać na integralność fizyczną ścieżek prowadzących sygnały w obwodach drukowanych, co w konsekwencji prowadzi do przerwania połączeń lub zwarć. Przykładem mogą być urządzenia stosowane w przemyśle motoryzacyjnym, gdzie komponenty elektroniczne są wystawione na stałe drgania podczas jazdy. Standardy takie jak IPC-A-600 dotyczące akceptacji obwodów drukowanych podkreślają znaczenie projektowania z myślą o takich warunkach, oferując wytyczne dotyczące materiałów i technik montażu, aby zminimalizować ryzyko uszkodzeń. Wysokiej jakości projektowanie obwodów, stosowanie odpowiednich technologii lutowania oraz użycie materiałów odpornych na wibracje są kluczowe w zapewnieniu trwałości urządzeń. Dodatkowo, testy w warunkach ekstremalnych, takie jak testy wibracyjne zgodne z normą MIL-STD-810, mogą pomóc w ocenie odporności urządzeń na drgania, zapewniając ich niezawodność w trudnych warunkach operacyjnych.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Zgodnie z dyrektywą 2002/95/EC Parlamentu Europejskiego z dnia 27 stycznia 2003, w sprzęcie ogólnego przeznaczenia (z wyjątkiem wybranych urządzeń techniki komputerowej oraz systemów telekomunikacyjnych) zabrania się stosowania w stopach lutowniczych

A. ołowiu
B. cyny
C. kalafonii
D. pasty lutowniczej
Zgodnie z dyrektywą 2002/95/EC, znaną jako dyrektywa RoHS (Restriction of Hazardous Substances), stosowanie ołowiu w sprzęcie powszechnego użytku jest zabronione ze względu na jego potencjalnie szkodliwy wpływ na zdrowie ludzi i środowisko. Ołów jest substancją toksyczną, która może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia układu nerwowego, szczególnie u dzieci. Dlatego dyrektywa RoHS ma na celu ograniczenie obecności niebezpiecznych substancji w produktach elektronicznych. Przykładowo, w produkcji lutowia stosuje się alternatywne materiały, takie jak lutowie bezołowiowe, które może zawierać cynę, srebro i miedź, aby spełniać wymagania środowiskowe i zdrowotne. Warto również zauważyć, że zgodność z dyrektywą RoHS jest kluczowym elementem procesów certyfikacji produktów elektronicznych, co przekłada się na ich akceptację na rynkach europejskich.

Pytanie 19

Uszkodzony przewód koncentryczny w systemie monitoringu można zastąpić stosując połączenie

A. kablem antenowym o impedancji 300 Ω
B. skrętką komputerową i symetryzatorem
C. skrętką komputerową z transformatorami pasywnymi
D. linką miedzianą o dużej średnicy
Skrętka komputerowa z transformatorami pasywnymi jest odpowiednim rozwiązaniem do zastąpienia uszkodzonego przewodu koncentrycznego w systemie dozorowym, ponieważ pozwala na przesył sygnału w sposób, który minimalizuje straty i zakłócenia. Dzięki zastosowaniu transformatorów pasywnych, sygnał z kamery lub innego źródła jest konwertowany na sygnał różnicowy, co zwiększa odporność na zakłócenia elektromagnetyczne. Przykładem takiego zastosowania jest integracja systemów CCTV z istniejącą infrastrukturą sieciową, gdzie wykorzystuje się skrętkę do przesyłania sygnału wideo na dużą odległość. W praktyce, stosując skrętkę komputerową, należy przestrzegać norm określonych w standardzie TIA/EIA-568, które określają wymagania dla okablowania strukturalnego. Użycie skrętki z transformatorami pasywnymi wpisuje się zatem w dobre praktyki branżowe, zapewniając nie tylko wydajność, ale i elastyczność w instalacji.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Kąty odpowiedzialne za określenie kierunku ustawienia anteny satelitarnej to

A. elewacji, konwertera, azymutu
B. elewacji, konwertera, transpondera
C. azymutu, elewacji, transpondera
D. azymutu, konwertera, transpondera
Kierunek ustawienia anteny satelitarnej jest kluczowym elementem w procesie odbioru sygnału. Właściwe ustawienie anteny zależy od trzech głównych kątów: elewacji, azymutu oraz kąta konwertera. Kąt elewacji określa, pod jakim kątem antena powinna być skierowana w górę, co jest kluczowe dla odbioru sygnałów z satelitów znajdujących się na odpowiedniej wysokości nad horyzontem. Natomiast kąt azymutu definiuje, w którym kierunku, w poziomie, antena powinna być skierowana, aby była skierowana bezpośrednio w stronę satelity. Kąt konwertera, z kolei, odnosi się do ustawienia konwertera LNB znajdującego się na końcu anteny, co jest niezbędne do efektywnego odbioru i konwersji sygnału. Użycie tych trzech kątów pozwala na precyzyjne ustawienie anteny, co skutkuje poprawą jakości sygnału oraz stabilnością połączenia. W praktyce, aby ustawić antenę, można skorzystać z narzędzi takich jak mierniki sygnału satelitarnego, które pomagają w dokładnym pomiarze i dostrojeniu anteny. Zgodnie z dobrą praktyką, podczas instalacji anteny warto również zwrócić uwagę na lokalne przeszkody, które mogą wpływać na jakość sygnału.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Programowanie mikrokontrolera bez konieczności jego wylutowania z obwodu jest realizowane za pomocą metody

A. RS 485
B. ISP
C. USB
D. RS 238
Wybór innych technik, takich jak RS 238, USB czy RS 485, wskazuje na nieporozumienie dotyczące metod programowania mikrokontrolerów. RS 238 jest standardem komunikacji szeregowej, który nie jest przeznaczony do programowania, lecz do wymiany danych między urządzeniami. Jest to rozwiązanie o ograniczonej prędkości i nieefektywne w kontekście programowania mikrokontrolerów, które wymagają precyzyjnych i szybkich metod dostępu do pamięci. USB, z drugiej strony, to uniwersalny interfejs, który może być używany do wielu celów, ale nie jest to bezpośrednia technika programowania w systemie. Wiele mikrokontrolerów wykorzystuje USB do komunikacji z komputerem, ale nie do programowania, gdyż wymaga dodatkowego sprzętu i protokołów. RS 485 to z kolei standard komunikacji, który jest używany do transmisji danych na długich dystansach i w trudnych warunkach, jednak również nie jest powiązany z programowaniem mikrokontrolerów. Wybór tych metod może prowadzić do błędnych wniosków, gdyż sugerują one, że programowanie mikrokontrolera można zrealizować za pomocą standardowych protokołów komunikacyjnych, co w rzeczywistości wymaga zastosowania specjalnych technik, takich jak właśnie ISP, dedykowanych do tego celu. Zrozumienie różnicy między programowaniem a komunikacją jest kluczowe dla efektywnego projektowania systemów elektronicznych.

Pytanie 27

Przyrząd, który pozwala na pomiar wartości międzyszczytowej szumów na wyjściu wzmacniacza, to

A. miernik zniekształceń
B. woltomierz cyfrowy
C. analyzer widma
D. oscyloskop jednokanałowy
Woltomierz cyfrowy, mimo że jest narzędziem użytecznym w pomiarach napięcia, nie jest odpowiedni do analizy międzyszczytowych wartości szumów na wyjściu wzmacniacza. Woltomierz mierzy średnią wartość napięcia AC, co nie dostarcza wystarczających informacji na temat charakterystyki sygnału szumowego. W praktyce, na przykład w aplikacjach audio, bardzo ważne jest śledzenie nie tylko wartości RMS, ale także kształtu przebiegu, co woltomierz nie jest w stanie zaoferować. Miernik zniekształceń również ma swoje ograniczenia, ponieważ jest zaprojektowany głównie do oceny jakości sygnału, a nie do bezpośredniego pomiaru szumów. Chociaż może dostarczać informacji o zniekształceniach, nie jest w stanie precyzyjnie zidentyfikować wartości szumów na wyjściu wzmacniacza. Przyrząd taki, jak analizator widma, może być przydatny do oceny szumów, jednak jego zastosowanie wymaga bardziej zaawansowanej analizy częstotliwościowej, co nie jest konieczne w przypadku prostego pomiaru międzyszczytowego. W rzeczywistości, wiele osób popełnia błąd, myląc różne funkcje przyrządów pomiarowych, co prowadzi do niewłaściwych wyników i wniosków. Aby skutecznie mierzyć szumy, niezbędne jest korzystanie z oscyloskopu, który dostarcza kompletnych informacji o zachowaniu sygnału.

Pytanie 28

Instrukcja CLR P1.7 wskazuje na

A. wymazanie komórki o adresie 1.7
B. wczytanie komórki znajdującej się pod adresem 1.7
C. zerowanie linii 7 w porcie P1
D. konfigurację linii 7 w porcie P1
Rozkaz CLR P1.7 oznacza zerowanie linii 7 w porcie P1, co jest kluczowe w kontekście programowania mikrokontrolerów, szczególnie w architekturze MCS-51. W systemach mikroprocesorowych porty I/O, takie jak P1, są używane do komunikacji z zewnętrznymi urządzeniami. Komenda CLR, czyli 'Clear', jest stosowana do ustawienia konkretnego bitu w rejestrze portu na stan niski (0). Zerowanie linii 7 w porcie P1 może mieć istotne znaczenie w aplikacjach, gdzie ta linia steruje zewnętrznym urządzeniem, takim jak dioda LED, przekaźnik czy inny element elektroniczny. Przykładowo, aby wyłączyć diodę LED podłączoną do linii 7, należy wykonać tę komendę, co rezultuje w uzyskaniu pożądanego efektu w aplikacji. Zrozumienie działania portów I/O oraz umiejętność manipulowania stanami bitów w rejestrach jest fundamentem w inżynierii oprogramowania dla systemów wbudowanych, co jest zgodne z zasadami najlepszych praktyk w branży.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jakie urządzenie należy zastosować do gaszenia pożarów w miejscach, gdzie działają urządzenia elektryczne?

A. gaśnicy proszkowej
B. koca azbestowego
C. gaśnicy pianowej
D. hydronetki wodnej
Gaśnica proszkowa jest najlepszym środkiem gaśniczym do zwalczania pożarów w pomieszczeniach, w których znajdują się urządzenia elektryczne. Działa na zasadzie rozpraszania proszku gaśniczego, który skutecznie tłumi ogień, jednocześnie nie przewodząc prądu. To sprawia, że można jej używać w sytuacjach, gdzie niebezpieczeństwo porażenia prądem jest realne, co jest kluczowe w przypadku pożarów wywołanych przez urządzenia elektryczne. Zgodnie z normami, takimi jak PN-EN 2, gaśnice proszkowe klasy B i C są zalecane do gaszenia pożarów, które mogą pojawić się w pomieszczeniach biurowych czy warsztatach. Dodatkowym atutem jest ich wszechstronność, ponieważ mogą być stosowane do gaszenia pożarów cieczy łatwopalnych, gazów oraz urządzeń elektrycznych do napięcia 1000V. W praktyce, wybór gaśnicy proszkowej przyczynia się do szybkiego i skutecznego opanowania sytuacji, co może uratować życie oraz mienie. Warto również podkreślić, że regularne szkolenia dotyczące obsługi gaśnic i procedur bezpieczeństwa powinny być częścią każdej organizacji, aby zapewnić gotowość na ewentualne sytuacje awaryjne.

Pytanie 31

Jakie urządzenia pomiarowe powinno się zastosować do pomiaru częstotliwości z wykorzystaniem krzywych Lissajous?

A. Watomierz i amperomierz
B. Omomierz oraz amperomierz
C. Woltomierz oraz oscyloskop
D. Generator i oscyloskop
Odpowiedź 'Generator i oscyloskop' jest prawidłowa, ponieważ do pomiaru częstotliwości za pomocą krzywych Lissajous niezbędne jest generowanie sygnałów oraz ich wizualizacja. Generator sygnałowy pozwala na wytworzenie dwóch różnych sygnałów, których częstotliwości można zmieniać. Oscyloskop z kolei umożliwia obserwację tych sygnałów w czasie rzeczywistym, na ekranie uzyskując charakterystyczny obraz krzywych Lissajous. Zmieniając częstotliwości sygnałów wytwarzanych przez generator, można zaobserwować, jak kształt krzywej na oscyloskopie zmienia się w zależności od stosunku częstotliwości obu sygnałów. Przykładowo, dla sygnałów o częstotliwości 1:2 otrzymamy elipsę, co może być użyteczne w praktyce do analizy stanów dynamicznych w obwodach elektronicznych. Stosowanie tych przyrządów jest standardem w laboratoriach elektroniki, co potwierdzają wytyczne dotyczące pomiarów elektronicznych.

Pytanie 32

Przy włączaniu wzmacniacza akustycznego konieczne jest ustawienie wartości

A. częstotliwości sygnału wejściowego na możliwie najwyższą
B. częstotliwości sygnału wejściowego na możliwie najniższą
C. amplitudy sygnału wejściowego na możliwie najwyższą
D. amplitudy sygnału wejściowego na możliwie najniższą
Ustawienie amplitudy sygnału wejściowego na możliwie najmniejszą wartość podczas uruchamiania wzmacniacza akustycznego jest kluczowe dla zapewnienia bezpieczeństwa nie tylko samego urządzenia, ale także podłączonych do niego głośników. Wzmacniacze akustyczne mogą być bardzo wrażliwe na nadmierne poziomy sygnału, co może prowadzić do przesterowania, a w konsekwencji do uszkodzeń komponentów, takich jak tranzystory czy końcówki mocy. Ustawienie niskiej amplitudy sygnału umożliwia bezpieczne wprowadzenie sygnału do wzmacniacza, dzięki czemu użytkownik może stopniowo dostosować poziom wzmocnienia do pożądanych wartości, unikając nagłych skoków głośności. Przykładowo, w profesjonalnym środowisku audio, przed rozpoczęciem występu, technicy dźwięku zawsze wprowadzają sygnał na minimalnym poziomie, aby zminimalizować ryzyko nieprzyjemnych zaskoczeń akustycznych. Dobrą praktyką jest również monitorowanie poziomów sygnału za pomocą wskaźników LED lub mierników poziomu, co pozwala na dostosowanie parametrów w czasie rzeczywistym.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

W przypadku wykorzystania w instalacji sieci komputerowej: panelu krosowego kategorii 7, przewodu S/FTP kategorii 6 oraz gniazd abonenckich kategorii 5e, cała instalacja sieciowa będzie

A. kategorii 3
B. kategorii 6
C. kategorii 5e
D. kategorii 7
Odpowiedź o kategorii 5e jest poprawna, ponieważ w instalacjach sieciowych zastosowane komponenty definiują maksymalną kategorię, jaka może być osiągnięta w danej sieci. W tym przykładzie użyto panelu krosowego kategorii 7, który jest urządzeniem pozwalającym na organizację i zarządzanie połączeniami, jednak jego wydajność nie może przewyższać najniższej kategorii w instalacji - w tym przypadku gniazd abonenckich kategorii 5e. Przewody S/FTP kategorii 6 również wspierają wyższe prędkości transferu, ale ich zastosowanie w instalacji z gniazdami 5e obniża całkowitą kategorię do 5e, co oznacza maksymalną prędkość przesyłu danych do 1 Gb/s. Ważne jest, aby przy planowaniu sieci komputerowej stosować komponenty zgodne z wybraną kategorią, tak aby zapewnić optymalną wydajność i uniknąć problemów z kompatybilnością, co jest zgodne z normami ANSI/TIA-568.

Pytanie 35

Jakie oznaczenie skrócone odnosi się do zakresu fal radiowych o częstotliwości mieszczącej się pomiędzy 30 MHz a 300 MHz, w którym swoje audycje nadają stacje radiowe wykorzystujące modulację FM?

A. LF
B. VHF
C. MF
D. UHF
W odpowiedziach, które nie wyszły, widać, że nieco pomyliłeś się z klasyfikacją fal radiowych. LF to skrót od Low Frequency, czyli niskie częstotliwości, i obejmuje zakres od 30 kHz do 300 kHz, co jakby nie pasuje do podanego pytania. Z kolei MF, czyli Medium Frequency, ma zakres od 300 kHz do 3 MHz, co również nie jest tym, czego szukaliśmy. A UHF, oznaczający Ultra High Frequency, to już od 300 MHz do 3 GHz, co głównie używa się w telekomunikacji i telewizji. Często ludzie myślą, że te terminy się pokrywają, ale w praktyce jest inaczej. Każde pasmo ma swoje specyficzne zastosowania, co jest istotne dla inżynierów dźwięku czy ludzi zajmujących się radiem. Dlatego warto zrozumieć te różnice, bo to naprawdę przydaje się w pracy z systemami komunikacji.

Pytanie 36

Element pasywny w sieciach telekomunikacyjnych oraz komputerowych, który posiada gniazda po stronie zewnętrznej oraz styki do montażu kabla od wewnątrz, określamy mianem

A. kanału kablowego
B. skréty
C. złączki
D. panelu krosowniczego
Panel krosowniczy to kluczowy pasywny element w infrastrukturze sieciowej, który pełni rolę centralnego punktu połączeń dla różnych segmentów sieci. Zewnętrzna strona panelu wyposażona jest w gniazda, które umożliwiają podłączenie kabli, natomiast wewnętrzna strona zawiera styki, do których przypina się przewody. Dzięki temu, panel krosowniczy umożliwia łatwe i elastyczne zarządzanie połączeniami w sieci, co jest niezwykle istotne w przypadku rozbudowy lub modyfikacji systemu. W praktyce, korzysta się z paneli krosowniczych w serwerowniach oraz w szafach rackowych, gdzie porządkowanie i organizacja kabli jest kluczowa dla efektywności operacyjnej. Zgodnie z normami TIA/EIA-568, zaleca się stosowanie paneli krosowniczych do zarządzania kablami z kategorii 5e, 6, a także wyższych, co zapewnia odpowiednią jakość połączeń oraz minimalizuje interferencje elektromagnetyczne. Dodatkowo, panele te pozwalają na zastosowanie technik takich jak „plug-and-play”, co znacząco ułatwia prace serwisowe i konserwacyjne.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Firma zajmująca się konserwacją oraz serwisowaniem instalacji domofonowych nalicza administratorowi budynku rocznie sumę 1 800 zł. Jaką kwotą miesięcznie trzeba obciążyć każdego z 30 mieszkańców?

A. 3 zł
B. 15 zł
C. 10 zł
D. 5 zł
Aby wyliczyć, jaką kwotą miesięcznie należy obciążyć każdego z 30 lokatorów, najpierw należy obliczyć roczny koszt konserwacji i serwisowania instalacji domofonowej, który wynosi 1800 zł. Następnie dzielimy ten koszt przez liczbę miesięcy w roku, czyli 12, co daje nam 150 zł miesięcznie na całą wspólnotę. Aby określić kwotę przypadającą na jednego lokatora, dzielimy miesięczny koszt za całą budowę przez liczbę lokatorów: 150 zł / 30 lokatorów = 5 zł na lokatora. Jest to przykład zastosowania podstawowych zasad rachunkowości w kontekście zarządzania nieruchomościami. Obliczenia tego typu są niezbędne w zarządzaniu wspólnotami mieszkaniowymi oraz w określaniu kosztów eksploatacji, co jest zgodne z dobrymi praktykami branżowymi. Przykłady takich obliczeń można znaleźć w dokumentacji finansowej wspólnot oraz projektach budżetowych, gdzie precyzja w planowaniu wydatków ma kluczowe znaczenie dla prawidłowego funkcjonowania całej wspólnoty.

Pytanie 40

Utrzymanie w pełni funkcjonalnych elektronicznych systemów zabezpieczeń powinno być realizowane w okresach określonych normami technicznymi, a jeżeli nie zostały one ustalone - nie rzadziej niż co:

A. rok
B. trzy miesiące
C. sześć miesięcy
D. miesiąc
Wybór okresów konserwacji krótszych lub dłuższych niż sześć miesięcy może prowadzić do poważnych konsekwencji. Na przykład, konserwacja raz w roku może wydawać się wystarczająca, jednak w praktyce okres ten może być zbyt długi, co zwiększa ryzyko awarii systemu zabezpieczeń. Systemy te są narażone na różnorodne czynniki, takie jak zmiany temperatury, wilgotności czy zanieczyszczenia, które mogą wpływać na ich działanie. Z kolei konserwacja co miesiąc może generować niepotrzebne koszty i obciążenie dla personelu, a także prowadzić do nieefektywności w zarządzaniu systemami, gdyż niektóre zadania konserwacyjne mogą być wykonywane rzadziej. Ponadto, podejście oparte na zbyt częstych lub zbyt rzadkich przeglądach często wynika z błędnego rozumienia dynamiki działania systemów zabezpieczeń i ich wymagań. Warto pamiętać, że efektywna konserwacja powinna być dostosowana do specyfiki danego systemu, jego lokalizacji oraz charakterystyki użytkowania. Ustalając właściwe interwały konserwacyjne, należy kierować się nie tylko ogólnymi zaleceniami, ale także analizą ryzyka, co zapewnia zgodność z najlepszymi praktykami w branży. Niewłaściwe podejście do konserwacji może prowadzić do awarii systemu w kluczowych momentach, przez co bezpieczeństwo obiektów i ich użytkowników może być poważnie zagrożone.