Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 29 maja 2025 23:19
  • Data zakończenia: 29 maja 2025 23:26

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie jest używane do pomiaru rezystancji izolacyjnej przewodu?

A. miernik indukcyjny uziemień
B. megaomomierz
C. omomierz
D. miernik obwodu zwarcia
Megaomomierz to taki specjalny sprzęt, który używamy do sprawdzania, jak dobrze izolowane są przewody i inne części w elektryce. Działa na zasadzie pomiaru rezystancji przy użyciu wysokiego napięcia, dzięki czemu możemy wychwycić uszkodzenia izolacji, które mogą prowadzić do jakichś awarii lub nawet zagrożeń. W praktyce megaomomierz jest bardzo popularny w budownictwie i energetyce do testowania instalacji elektrycznych. Często używa się go też w serwisach, gdzie naprawiają różne urządzenia elektryczne. Są normy, takie jak IEC 60034-1 czy PN-EN 61557-1, które mówią nie tylko o tym, jak mierzyć, ale też o wymaganiach bezpieczeństwa. Dobrze jest na przykład zmierzyć izolację silników elektrycznych przed ich uruchomieniem – to ważne, żeby zapewnić, że będą działały długo i bezpiecznie.

Pytanie 2

Aby zrealizować instalację zasilającą dla urządzeń, które potrzebują do działania napięcia AC 230V, w rurkach podtynkowych w pomieszczeniu, gdzie temperatura osiąga 100 °C, należy zastosować przewody oznaczone symbolem

A. DY 700
B. DYc 750
C. DY 100
D. DYc 150
Odpowiedzi oznaczone jako DYc 150, DY 700 oraz DY 100 nie są odpowiednimi wyborami do warunków opisanych w pytaniu. Przewody DYc 150, mimo że są elastyczne, nie są przystosowane do pracy w wysokich temperaturach, ponieważ ich maksymalna temperatura pracy jest znacznie poniżej 100°C. Wybranie ich do instalacji w takim środowisku może prowadzić do ich uszkodzeń, co wiąże się z ryzykiem awarii elektrycznej. Odpowiedź DY 700 oznacza przewody, które nie są przystosowane do wysokotemperaturowych warunków, co czyni je nieskutecznymi w zastosowaniach, w których temperatura otoczenia przekracza 70°C. Przewody te mają ograniczenia w zakresie wytrzymałości na ciepło, co może skutkować ich degradacją w dłuższej perspektywie. Ostatnia z proponowanych odpowiedzi, DY 100, również nie jest odpowiednia, ponieważ przewody te są zaprojektowane do niskotemperaturowych aplikacji i nie spełniają wymagań dla instalacji w pomieszczeniach o temperaturze 100°C. Wybór niewłaściwych przewodów może prowadzić do poważnych konsekwencji, w tym zwiększonego ryzyka pożaru oraz przerw w zasilaniu. Właściwym podejściem jest zawsze dobór materiałów, które są zgodne z wymogami projektowymi i normami branżowymi, co zapewnia bezpieczeństwo i niezawodność systemu elektrycznego.

Pytanie 3

Z jakiego rodzaju metalu oraz w jakiej formie produkowane są żyły przewodu YDYp 4×1,5 mm2?

A. Z aluminium w formie linki
B. Z miedzi w formie drutu
C. Z miedzi w formie linki
D. Z aluminium w formie drutu
Żyły w przewodzie YDYp 4×1,5 mm² są z miedzi, co jest standardem w branży elektrycznej. Miedź jest super, bo dobrze przewodzi prąd, dlatego właśnie się ją najczęściej wybiera do instalacji elektrycznych. W przypadku YDYp, jego druciana konstrukcja daje sporo elastyczności, co ułatwia robienie instalacji, zwłaszcza tam, gdzie jest ciasno. Te przewody można spotkać w budownictwie, szczególnie przy instalacjach oświetleniowych i systemach zasilających. Zgodnie z normą PN-EN 60228, miedziane przewody mają dokładnie określone parametry, co zapewnia bezpieczeństwo i efektywność. Na przykład, YDYp 4×1,5 mm² świetnie sprawdza się w oświetleniu w domach, gdzie trzeba mieć na uwadze zabezpieczenia przed przeciążeniem i zwarciem.

Pytanie 4

Po zmianie przyłączenia elektrycznego w budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w kierunku przeciwnym niż przed wymianą przyłącza. Co jest przyczyną takiego działania silnika?

A. brak podłączenia jednej fazy
B. brak podłączenia dwóch faz
C. zamiana miejscami dwóch faz
D. zamiana jednej fazy z przewodem neutralnym
Niepodłączenie dwóch faz, niepodłączenie jednej fazy oraz zamiana jednej fazy z przewodem neutralnym to błędne koncepcje wynikające z niepełnego zrozumienia zasad działania silników elektrycznych i trójfazowych układów zasilania. W przypadku niepodłączenia dwóch faz, silnik nie mógłby w ogóle pracować, ponieważ potrzebne są co najmniej trzy fazy do wygenerowania wirującego pola magnetycznego. Silniki asynchroniczne nie mogą działać na zasilaniu jednofazowym, ponieważ nie są w stanie wytworzyć wymaganego momentu obrotowego. Z kolei w sytuacji niepodłączenia jednej fazy, silnik mógłby działać, ale z obniżoną mocą, co również niebywale rzadko prowadziłoby do zmiany kierunku obrotu. Zamiana jednej fazy z przewodem neutralnym jest również niewłaściwym podejściem, ponieważ w takim przypadku silnik nie byłby w stanie uzyskać wystarczającego napięcia do poprawnej pracy, co skutkowałoby jego zatrzymaniem lub uszkodzeniem. Pamiętajmy, że prawidłowe podłączenie faz jest kluczowe nie tylko dla właściwego działania silników, ale także dla bezpieczeństwa całej instalacji elektrycznej. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, obejmują nieznajomość zasad trójfazowego zasilania oraz nieuwzględnianie znaczenia kolejności faz w kontekście pracy silnika. Dlatego istotne jest, aby każdy technik lub elektryk posiadał wiedzę na temat konfiguracji oraz standardów instalacyjnych, aby uniknąć tego typu błędów w praktyce.

Pytanie 5

Warunkiem automatycznego odłączenia zasilania w systemach typu TN jest relacja (UO - napięcie nominalne w V; Ia - wartość prądu w A, zapewniająca natychmiastowe, automatyczne zadziałanie urządzenia ochronnego; Zs - impedancja pętli zwarciowej w Ω)

A. UO < Zs ∙ Ia
B. UO > Zs ∙ 2Ia
C. UO > Zs ∙ Ia
D. UO < Zs ∙ 2Ia
Niewłaściwe odpowiedzi mogą wynikać z niepełnego zrozumienia zasad działania układów zabezpieczeń elektrycznych. W przypadku odpowiedzi, gdzie UO jest mniejsze od Zs ∙ Ia, zakłada się, że napięcie nie jest wystarczające do wyzwolenia ochrony, co jest błędne. W rzeczywistości, aby zapewnić skuteczną reakcję urządzenia ochronnego, napięcie musi przekraczać wartość wynikającą z iloczynu impedancji pętli zwarciowej i prądu zadziałania. Odpowiedzi sugerujące, że UO powinno być mniejsze od tego iloczynu, wskazują na błędne założenia dotyczące warunków pracy zabezpieczeń. Również odpowiedzi, w których UO jest większe od Zs ∙ 2Ia, nie uwzględniają, że wartość prądu zadziałania powinna być odpowiednio dobrana do rzeczywistych warunków obciążeniowych. Należy pamiętać, że w projektowaniu instalacji elektrycznych kluczowe jest zachowanie właściwych relacji między napięciem, prądem i impedancją, co jest regulowane przez normy i standardy branżowe, takie jak PN-IEC 60364 dotyczące instalacji elektrycznych. Brak takiej wiedzy może prowadzić do poważnych konsekwencji, takich jak uszkodzenia urządzeń, a nawet zagrożenie dla życia ludzi. Dlatego ważne jest, aby dobrze rozumieć te relacje i ich praktyczne zastosowanie w projektowaniu i eksploatacji instalacji elektrycznych.

Pytanie 6

Przedstawiona na ilustracji wstawka kalibrowa bezpiecznika przeznaczona jest do instalacji o napięciu znamionowym

Ilustracja do pytania
A. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
B. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
C. co najmniej 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
D. co najmniej 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
Wybrana odpowiedź jest poprawna, ponieważ na ilustracji przedstawiona jest wstawka kalibrowa bezpiecznika z oznaczeniami "63 A" oraz "500 V". Te oznaczenia wskazują, że wstawka jest przeznaczona do instalacji, w których napięcie znamionowe nie może przekraczać 500 V oraz dla wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A. W praktyce, zastosowanie odpowiednich bezpieczników jest kluczowe dla zapewnienia bezpieczeństwa w systemach elektroenergetycznych oraz ochrony przed przeciążeniem i zwarciem. Standardy takie jak PN-EN 60269, które dotyczą bezpieczników, określają wymagania dotyczące ich instalacji oraz właściwości, co pozwala na ich prawidłowe zastosowanie w różnych warunkach. W przypadku stosowania wyższych napięć lub większych prądów, konieczne jest stosowanie innych typów wkładek, co zwiększa ryzyko uszkodzeń i zagrożeń. Dlatego tak ważne jest, aby podczas wyboru zabezpieczeń kierować się wskazaniami producentów oraz normami branżowymi.

Pytanie 7

Co oznacza symbol literowy YKY?

A. kabel z żyłami aluminiowymi w izolacji i powłoce z PVC
B. przewód telekomunikacyjny z żyłami aluminiowymi w izolacji i powłoce z PVC
C. przewód oponowy warsztatowy z żyłami miedzianymi w izolacji z PVC
D. kabel z żyłami miedzianymi w izolacji z PVC
Wybór odpowiedzi dotyczącej kabla o żyłach aluminiowych lub przewodów telekomunikacyjnych jest błędny, ponieważ te typy kabli różnią się w fundamentalny sposób od standardów oznaczonych symbolem YKY. Kable z żyłami aluminiowymi, choć mogą być lżejsze i tańsze niż ich miedziane odpowiedniki, mają znacznie gorszą przewodność elektryczną, co prowadzi do strat energii oraz potencjalnych problemów z niezawodnością w dłuższej perspektywie. Dodatkowo, przewody telekomunikacyjne, które również pojawiają się w alternatywnych odpowiedziach, są przeznaczone do zupełnie innych zastosowań, takich jak przesyłanie danych, co czyni je nieodpowiednimi w kontekście instalacji elektrycznych. Wybór przewodu oponowego warsztatowego również nie jest trafny, gdyż dotyczy on innego rodzaju zastosowań, głównie w warsztatach, gdzie wymagane są wysokie właściwości mechaniczne. W rezultacie, mylenie zastosowań i typów kabli oraz przewodów może prowadzić do nieefektywności i zagrożeń w instalacjach elektrycznych. Kluczowe jest zrozumienie specyfikacji technicznych oraz ich odpowiedniego doboru do konkretnych potrzeb, aby zapewnić bezpieczeństwo i efektywność energetyczną.

Pytanie 8

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω

A. Przerwa w uzwojeniu fazy W
B. Zwarcie międzyzwojowe w fazie V
C. Przerwa w uzwojeniu fazy V
D. Zwarcie międzyzwojowe w fazie W
Przerwa w uzwojeniu fazy V oraz zwarcie międzyzwojowe w fazie W to odpowiedzi, które mogą wydawać się logiczne na pierwszy rzut oka, jednak analiza pomiarów rezystancji wskazuje na błędne interpretacje. Przerwa w uzwojeniu fazy V skutkujełaby znacznie wyższą rezystancją między zaciskami U-V i V-W, co jest sprzeczne z danymi, które pokazują mniejsze wartości rezystancji. Taki błąd myślowy często wynika z niepoprawnego założenia, że wszystkie rezystancje powinny być jednorodne, co w praktyce nie zawsze ma miejsce, zwłaszcza w obliczu uszkodzeń. Natomiast zwarcie międzyzwojowe w fazie W, choć również może wydawać się możliwą przyczyną uszkodzenia, nie znajduje potwierdzenia w pomiarach, które jasno wskazują na asymetrię w rezystancjach, a nie na zjawisko zwarcia w fazie W. W przypadku zwarcia międzyzwojowego, oczekiwalibyśmy, że rezystancja tej fazy będzie znacznie niższa niż w innych fazach, co nie jest zgodne z wynikami. Takie nieporozumienia mogą prowadzić do niewłaściwego diagnozowania problemów w silnikach indukcyjnych, co w efekcie może skutkować dalszymi uszkodzeniami i kosztownymi naprawami. Ważne jest zrozumienie różnicy pomiędzy przerwą w uzwojeniu a zwarciami, oraz umiejętność analizy danych pomiarowych w kontekście ich praktycznego zastosowania.

Pytanie 9

Który element stosowany w instalacjach sterowania oświetleniem przedstawiono na ilustracji?

Ilustracja do pytania
A. Automat zmierzchowy.
B. Czujnik ruchu.
C. Ściemniacz oświetlenia.
D. Przekaźnik bistabilny.
Automat zmierzchowy to urządzenie, które automatycznie zarządza oświetleniem, dostosowując je do zmieniających się warunków świetlnych w otoczeniu. Na ilustracji przedstawiono model AZH-S, który jest typowym przykładem automatu zmierzchowego. Działa on na zasadzie pomiaru natężenia światła, co pozwala na włączenie oświetlenia po zachodzie słońca, a wyłączenie go w ciągu dnia. To rozwiązanie jest szczególnie przydatne w miejscach, gdzie oświetlenie jest potrzebne tylko w nocy, takich jak ogrody, podjazdy czy parkingi. Dzięki zastosowaniu automatu zmierzchowego można znacząco zmniejszyć zużycie energii, co jest zgodne z zasadami zrównoważonego rozwoju i oszczędności energii. W praktyce, urządzenia te są łatwe do zainstalowania i oferują wiele możliwości konfiguracji, co pozwala na ich dostosowanie do indywidualnych potrzeb użytkowników. Warto również zaznaczyć, że automaty zmierzchowe są zgodne z normami EN 60598-2-1, które dotyczą bezpieczeństwa i wydajności oświetlenia.

Pytanie 10

Które z podanych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtykowe w kuchni powinny być podłączane do oddzielnego obwodu
B. Odbiorniki o dużej mocy powinny być zasilane z osobnych obwodów
C. Gniazda wtykowe w każdym pomieszczeniu powinny pochodzić z wydzielonego obwodu
D. Obwody oświetleniowe należy oddzielić od gniazd wtykowych
Odpowiedź dotycząca zasilania gniazd wtykowych każdego pomieszczenia z osobnego obwodu jest poprawna, ponieważ zgodnie z aktualnymi normami i zaleceniami dotyczącymi instalacji elektrycznych, zapewnia to większe bezpieczeństwo i funkcjonalność. Zasilanie każdego pomieszczenia z osobnego obwodu umożliwia lepsze zarządzanie obciążeniem elektrycznym oraz minimalizuje ryzyko przeciążenia instalacji. Przykładowo, w przypadku awarii jednego z obwodów, pozostałe pomieszczenia mogą nadal być zasilane, co zwiększa komfort użytkowania. Dodatkowo, takie podejście ułatwia lokalizację ewentualnych usterek i ich naprawę, co jest szczególnie ważne w przypadku pomieszczeń takich jak kuchnia czy łazienka, gdzie używa się wielu urządzeń elektrycznych jednocześnie. Warto również zauważyć, że zgodnie z normą PN-IEC 60364, zaleca się stosowanie osobnych obwodów dla urządzeń o dużym poborze mocy, co podkreśla znaczenie wydzielenia obwodów w celu zapewnienia bezpieczeństwa i efektywności instalacji elektrycznej.

Pytanie 11

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Wkładkę topikową bezpiecznika.
B. Oprawkę źródła światła.
C. Wkładkę kalibrową.
D. Gniazdo zapłonnika.
Wybierając niepoprawne odpowiedzi, można natknąć się na powszechne nieporozumienia dotyczące funkcji i zastosowań elementów elektrycznych. Gniazdo zapłonnika jest komponentem wykorzystywanym w silnikach spalinowych i systemach zapłonowych, co sprawia, że nie ma związku z oświetleniem. Osoby mogą mylić ten element z oprawką źródła światła, co prowadzi do błędnych wniosków. Wkładka topikowa bezpiecznika ma zupełnie inną rolę - jest używana jako element zabezpieczający obwody elektryczne przed przeciążeniem, co nie ma związku z ich montażem. Użytkownicy mogą nie zdawać sobie sprawy, że wkładka topikowa jest przeznaczona do wyłączania obwodu w momencie, gdy natężenie prądu przekracza określoną wartość, co jest niezbędne dla ochrony urządzeń elektrycznych. Wkładka kalibrowa natomiast odnosi się do technik pomiarowych, co również jest odległe od tematu odpowiednich zastosowań w kontekście źródeł światła. Zrozumienie tych różnic jest kluczowe dla właściwego podejścia do projektowania systemów elektrycznych oraz ich bezpiecznego użytkowania. Często w testach wiedzy technicznej występuje zjawisko, w którym uczestnicy nie potrafią poprawnie zidentyfikować elementów na podstawie ich funkcji, co prowadzi do zamieszania w odpowiedziach. Kluczowe jest zatem przyswojenie podstawowych różnic funkcjonalnych między tymi elementami, aby uniknąć błędów w przyszłych zastosowaniach.

Pytanie 12

Jakim z podanych rodzajów przewodów powinno się zasilić jednofazowy ruchomy odbiornik?

A. LGu 3×1,5 mm2
B. YDY 3×1,5 mm2
C. YDYt 3×1,5 mm2
D. OMYp 3×1,5 mm2
YDYt 3×1,5 mm2, YDY 3×1,5 mm2 oraz LGu 3×1,5 mm2 to inne typy przewodów, które mają różne zastosowania, lecz nie są odpowiednie do zasilania jednofazowego odbiornika ruchomego. Przewód YDYt, będący wersją przewodu YDY z dodatkowym ekranem, przeznaczony jest głównie do instalacji stałych i nie jest przystosowany do dużych ruchów oraz narażeń mechanicznych. Stosowanie go w aplikacjach ruchomych może prowadzić do uszkodzeń mechanicznych, co z czasem może skutkować awarią lub zagrożeniem bezpieczeństwa. Podobnie, przewód YDY, mimo że jest powszechnie używany w instalacjach elektrycznych, nie zapewnia elastyczności wymaganej w przypadku przewodów zasilających mobilne urządzenia. Z kolei przewód LGu, który jest przeznaczony do instalacji wewnętrznych oraz jako przewód sygnałowy, nie spełnia standardów dotyczących zasilania urządzeń, które są narażone na ruch i zmienne warunki pracy. Użycie tych typów przewodów w aplikacjach, które wymagają mobilności, może prowadzić do ich uszkodzenia, a w konsekwencji do problemów z bezpieczeństwem i niezawodnością zasilania. Wybór niewłaściwego typu przewodu w obszarze zasilania ruchomych odbiorników elektrycznych jest typowym błędem, który wynika z braku zrozumienia różnic pomiędzy przewodami przeznaczonymi do instalacji stałych i mobilnych.

Pytanie 13

Na przyrządzie ustawionym na zakres 300 V zmierzono napięcie w sieci, które wynosi 230 V. Do wykonania pomiaru zastosowano miernik analogowy o dokładności w klasie 1,5. Jaki jest błąd bezwzględny uzyskanego pomiaru?

A. ± 4,60 V
B. ± 4,40 V
C. ± 4,50 V
D. ± 4,30 V
Błędy w obliczeniach błędów bezwzględnych pomiaru mogą wynikać z niedokładnego zrozumienia klasy dokładności miernika oraz sposobu jej zastosowania. W przypadku analizowania błędów pomiarowych istotne jest, aby pamiętać, że klasa dokładności odnosi się do całego zakresu pomiarowego, a nie tylko do konkretnego odczytu. Na przykład, niektóre odpowiedzi mogłyby sugerować, że błąd bezwzględny pomiaru wynosi ± 4,30 V lub ± 4,40 V, co jest wynikiem mylenia wartości procentowych z rzeczywistymi pomiarami. Klasa 1,5% oznacza, że błąd ten powinien być obliczany z całkowitego zakresu, a nie bezpośrednio z odczytu. Ponadto, pomijanie kontekstu zastosowania miernika oraz jego ograniczeń prowadzi do nieprawidłowych wniosków, co może być krytyczne w praktycznych zastosowaniach, takich jak instalacje elektryczne. Przykładowo, nieprawidłowe oszacowanie błędu pomiarowego może prowadzić do niewłaściwego doboru komponentów systemu lub nieprawidłowej oceny stanu instalacji, co w konsekwencji może wpłynąć na bezpieczeństwo użytkowników oraz efektywność energetyczną całego systemu. Dlatego tak ważne jest, aby przy obliczaniu błędów pomiarowych zawsze stosować przyjęte normy i metodyki, zapewniając rzetelność wyników.

Pytanie 14

Który z podanych materiałów charakteryzuje się najwyższą właściwą przewodnością elektryczną?

A. Miedź
B. Aluminium
C. Brąz
D. Stal
Miedź to w zasadzie najlepszy wybór, jeśli chodzi o przewodność elektryczną wśród tych materiałów. Ma około 58 MS/m przewodności, a to naprawdę dużo! Dla porównania, aluminium ma tylko około 37 MS/m, więc wiadomo, dlaczego miedź jest tak powszechnie stosowana w elektryce i elektronice. W praktyce wykorzystuje się ją do robienia przewodów i różnych elementów elektronicznych, jak złącza czy obwody drukowane. Dzięki wysokiej przewodności miedzi, straty energii przy przesyle prądu są minimalne, co jest mega ważne w elektroenergetyce. Oprócz tego, miedź jest odporna na korozję i ma sporą wytrzymałość mechaniczną, dlatego sprawdza się w wielu zastosowaniach, od domów po przemysł. W branży, mówi się, że miedź to standardowy materiał do przewodów, więc to tylko potwierdza, jak ważna jest w inżynierii elektrycznej.

Pytanie 15

Jakie są wartości znamionowe prądu oraz liczba biegunów wyłącznika oznaczonego symbolem S194 B3?

A. 19 A i 3 bieguny
B. 9 A i 4 bieguny
C. 3 A i 4 bieguny
D. 4 A i 3 bieguny
Podejmując decyzję o wyborze wyłącznika elektrycznego, kluczowe jest zrozumienie charakterystyki prądowej oraz liczby biegunów, co ma bezpośredni wpływ na bezpieczeństwo i funkcjonalność instalacji. Odpowiedzi wskazujące na prąd znamionowy 19 A, 4 A czy 9 A są błędne, ponieważ sugerują zastosowanie wyłączników do obciążeń, które wykraczają poza specyfikacje podane dla modelu S194 B3. Przykładowo, wyłącznik o prądzie 19 A byłby przeznaczony do bardziej intensywnych zastosowań, typowych dla dużych instalacji przemysłowych, co jest nieadekwatne w kontekście tego modelu. Natomiast prąd 4 A czy 9 A także wskazuje na zastosowania, które mogą być zbyt wysokie dla standardowego wyłącznika trójfazowego w małych instalacjach. Przy ocenie odpowiedzi warto zwrócić uwagę na zasady doboru wyłączników, które powinny być dostosowane do specyficznych potrzeb obwodu elektrycznego. W praktyce wykorzystywanie wyłączników o nieodpowiednich parametrach może prowadzić do ich nieprawidłowego działania, co z kolei zwiększa ryzyko uszkodzenia podłączonych urządzeń oraz może stwarzać zagrożenie pożarowe. Wszelkie decyzje w tym zakresie powinny być podejmowane na podstawie dokładnej analizy parametrów technicznych oraz zgodności z normami, np. normami IEC 60947 dotyczącymi wyłączników.

Pytanie 16

Który łącznik elektryczny ma dwa przyciski oraz trzy terminale?

A. Świecznikowy
B. Schodowy
C. Krzyżowy
D. Dwubiegunowy
Krzyżowy łącznik instalacyjny, mimo iż jest powszechnie stosowany w instalacjach elektrycznych, nie posiada dwóch klawiszy i trzech zacisków, lecz jest używany w połączeniu z innymi łącznikami, aby umożliwić sterowanie oświetleniem z więcej niż dwóch miejsc. W praktyce, krzyżowy łącznik jest wykorzystywany w układach, gdzie już istnieją dwa lub więcej łączników schodowych, co pozwala na bardziej skomplikowane sterowanie oświetleniem, a nie jako samodzielne rozwiązanie. Schodowy łącznik, z drugiej strony, również nie odpowiada opisowi, ponieważ jego funkcją jest kontrolowanie jednego obwodu z dwóch miejsc, ale posiada tylko dwa zaciski. Użytkownicy często mylą ten typ łącznika ze świecznikowym w kontekście aplikacji, co może prowadzić do błędnych decyzji przy projektowaniu instalacji. Dwubiegunowy łącznik jest przeznaczony do kontroli obwodów elektrycznych, które wymagają rozłączania dwóch przewodów fazowych, ale także nie spełnia kryteriów podanych w pytaniu. Typowe błędy myślowe w tym przypadku polegają na utożsamianiu różnych typów łączników z ich funkcjonalnościami, co prowadzi do nieprawidłowych wniosków o ich zastosowaniu w konkretnej sytuacji.

Pytanie 17

Na podstawie danych z tabliczki znamionowej wyłącznika różnicowoprądowego zebrano informacje: IN25 A; IΔN0,030 A; 230 V~; Im 1000 A. Jakie obciążenie prądowe może wytrzymać ten wyłącznik w trybie ciągłym?

A. 1000 A
B. 25 A
C. 0,03 A
D. 230 A
Wyłącznik różnicowoprądowy, na podstawie odczytanej tabliczki znamionowej, ma oznaczone wartości prądów znamionowych, które są kluczowe dla jego zastosowania. Wartość IN (25 A) oznacza maksymalne obciążenie prądowe, które wyłącznik może bezpiecznie obsługiwać w trybie ciągłym. Przyjmując tę wartość jako podstawę, możemy określić, że wyłącznik ten może być używany w instalacjach elektrycznych, gdzie wartość obciążenia nie przekracza 25 A. Przykładowo, w zastosowaniach domowych, takich jak zasilanie urządzeń o mniejszym poborze mocy, np. oświetlenia LED czy małych urządzeń AGD, wyłącznik różnicowoprądowy o takim nominale będzie odpowiedni. Ważne jest również, aby podczas projektowania instalacji elektrycznej uwzględnić przepisy normatywne, takie jak PN-IEC 61008-1, które określają wymagania dla tych urządzeń, co zapewnia wysoką jakość i bezpieczeństwo użytkowania.

Pytanie 18

Powstanie napięcia na obudowie urządzenia AGD zasilanego z sieci TN-S jest rezultatem braku działania

A. rozłącznika
B. wyłącznika nadprądowego
C. wyłącznika różnicowoprądowego
D. odłącznika
Czasem pojawienie się napięcia na obudowie AGD może być mylone z innymi zabezpieczeniami, jak odłączniki czy rozłączniki. Odłącznik fizycznie przerywa obwód, ale nie chroni nas przed prądami upływowymi, które są tu kluczowe. Rozłącznik też rozłącza obwód, ale nie monitoruje różnic w prądzie, więc nie wyłapie potencjalnych problemów. Wyłącznik nadprądowy dba o przeciążenia i zwarcia, ale znów — nie sprawdza prądów, które mogą być niebezpieczne. Często mylimy te urządzenia z RCD, co prowadzi do błędnych wniosków o ich funkcjach. RCD jest jedynym z tych urządzeń, które rzeczywiście chroni przed skutkami prądów upływowych. Warto to zrozumieć, żeby właściwie korzystać z elektryczności i dbać o nasze bezpieczeństwo w domu.

Pytanie 19

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji ukrytej prowadzonej w rurkach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na kilku centymetrach straciła elastyczność oraz zmieniła kolor. Jak należy zrealizować naprawę uszkodzenia?

A. Wymienić wszystkie przewody na nowe o większym przekroju
B. Wymienić uszkodzony przewód na nowy o takim samym przekroju
C. Pomalować uszkodzoną izolację przewodu
D. Założyć gumowy wężyk na uszkodzoną izolację przewodu
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest kluczowym działaniem w zapewnieniu bezpieczeństwa i funkcjonalności instalacji elektrycznej. Uszkodzenie izolacji przewodu, które prowadzi do utraty elastyczności i zmiany koloru, wskazuje na problem, który może prowadzić do porażenia prądem lub zwarcia. Zgodnie z normami IEC oraz Polskimi Normami (PN), przewody elektryczne powinny być zawsze w dobrym stanie technicznym. W praktyce, wymiana uszkodzonego przewodu na nowy o takim samym przekroju zapewnia, że instalacja elektryczna będzie w pełni sprawna i zgodna z wymaganiami dotyczącymi obciążalności prądowej oraz ochrony przed przeciążeniem. Przykładem może być wymiana przewodu w domowej instalacji, gdzie zgodność z przekrojem przewodu zabezpiecza przed zjawiskiem przegrzewania się instalacji oraz potencjalnym uszkodzeniem urządzeń elektrycznych. Stanowisko to jest zgodne z dobrą praktyką inżynieryjną i zapewnia trwałość oraz bezpieczeństwo eksploatacji systemów elektrycznych.

Pytanie 20

Jaki rodzaj wkładki topikowej powinien być użyty do ochrony nadprądowej obwodu jednofazowych gniazd do użytku ogólnego?

A. gG
B. aM
C. aR
D. gL
Wkładka topikowa typu gG jest rekomendowanym rozwiązaniem do zabezpieczenia nadprądowego obwodów jednofazowych gniazd ogólnego przeznaczenia. Charakteryzuje się ona zdolnością do ochrony przed przeciążeniami oraz krótkimi spięciami, a także do działania w obwodach wymagających wysokich zdolności zwarciowych. W praktyce, zastosowanie wkładki gG w instalacjach elektrycznych, takich jak gniazda w domach, biurach czy obiektach użyteczności publicznej, zapewnia skuteczną ochronę przed uszkodzeniami spowodowanymi nadmiernym przepływem prądu. Wkładki te są zgodne z normami IEC 60269 oraz PN-EN 60269, które regulują ich parametry techniczne. Dzięki zastosowaniu wkładek gG, można zminimalizować ryzyko uszkodzenia urządzeń elektrycznych oraz przeciążenia obwodów, co jest kluczowe dla bezpieczeństwa użytkowników oraz sprawności całego systemu elektrycznego.

Pytanie 21

Oprawy oświetleniowe opatrzone symbolem przedstawionym na ilustracji

Ilustracja do pytania
A. wymagają uziemienia obudowy.
B. muszą być zasilane wyłącznie przez transformator separacyjny.
C. muszą być zasilane wyłącznie z sieci PELV.
D. mają wzmocnioną izolację.
Wybór odpowiedzi wskazujących na konieczność zasilania opraw oświetleniowych wyłącznie przez transformator separacyjny lub z sieci PELV oraz wymaganie uziemienia obudowy wynika z niewłaściwego zrozumienia zasad klasyfikacji urządzeń elektrycznych. Oprawy z symbolem podwójnej izolacji nie wymagają separacji zasilania, ponieważ ich konstrukcja zapewnia wystarczający poziom ochrony przed porażeniem prądem. Transformator separacyjny jest stosowany w urządzeniach, które nie mają podwójnej izolacji i wymagają dodatkowego zabezpieczenia, co oznacza, że jego zastosowanie w przypadku opraw z wzmocnioną izolacją jest zbędne. Ponadto, zasada dotycząca uziemienia nie ma zastosowania w przypadku urządzeń klasy II, ponieważ ich konstrukcja nie przewiduje tego typu zabezpieczeń. Zamiana zasilania na system PELV, który bazuje na niskich napięciach, również jest nieadekwatna, ponieważ oprawy z podwójną izolacją są projektowane do pracy w standardowych warunkach zasilania. Takie nieporozumienia mogą prowadzić do niebezpiecznych praktyk montażowych oraz użytkowania, w których bezpieczeństwo użytkowników może być zagrożone. Kluczowe jest zrozumienie, że podwójna izolacja sama w sobie stanowi wystarczający poziom ochrony, eliminując potrzebę stosowania dodatkowych zabezpieczeń, które są dedykowane innym klasom ochronności.

Pytanie 22

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy A
B. Klasy C
C. Klasy D
D. Klasy B
Odpowiedzi wskazujące na klasy B, D oraz A jako odpowiednie dla rozdzielnic mieszkalnych są niepoprawne głównie z powodu różnic w charakterystyce i zastosowaniach tych ograniczników. Klasa B, według normy IEC 61643-11, jest zaprojektowana do ochrony przed bardzo wysokimi przepięciami, które mogą występować w sieciach zasilających, co czyni je bardziej odpowiednimi do zastosowań w instalacjach przemysłowych, gdzie ryzyko wystąpienia takich zdarzeń jest znacznie wyższe. Ograniczniki klasy A z kolei są przeznaczone do ochrony przed bardzo niskimi, ale szybko zmieniającymi się przepięciami, co również nie odpowiada typowym wymaganiom dla mieszkań. Klasa D, zdefiniowana jako ogranicznik przeznaczony do instalacji w obiektach specjalistycznych, takich jak centra danych, również nie jest zalecana do użytku domowego. Sugerowanie tych klas ograniczników dla zastosowań w rozdzielnicach mieszkaniowych może prowadzić do niewłaściwej ochrony i potencjalnych uszkodzeń sprzętu, co jest wynikiem niepełnego zrozumienia standardów ochrony przeciwprzepięciowej oraz różnorodności warunków, w jakich te urządzenia są używane. Kluczowe jest, aby przy wyborze odpowiedniego ogranicznika kierować się wymaganiami specyfikacji technicznych oraz dobrą praktyką inżynieryjną, co pomoże uniknąć kosztownych błędów i zapewni skuteczną ochronę instalacji elektrycznych.

Pytanie 23

W dokumentacji dotyczącej instalacji elektrycznej w wielopiętrowym budynku mieszkalnym wskazano, że konieczne jest użycie ochronników przeciwprzepięciowych klasy C. Gdzie powinny one zostać zamontowane?

A. na linii zasilającej budynek
B. w złączu budynku
C. w rozdzielnicach mieszkaniowych
D. w puszkach instalacyjnych gniazd odbiorczych
Wybór innych lokalizacji dla instalacji ochronników przeciwprzepięciowych klasy C, takich jak linie zasilające budynek, puszki instalacyjne gniazd odbiorczych czy złącza budynku, nie jest odpowiedni z kilku powodów. Linie zasilające są głównie odpowiedzialne za przesył energii, ale nie stanowią one miejsca, gdzie można efektywnie zainstalować ochronniki, które powinny być zlokalizowane tam, gdzie dochodzi do centralnej dystrybucji zasilania. Instalacja ochronników w puszkach instalacyjnych gniazd odbiorczych również nie przynosi oczekiwanych korzyści, ponieważ w przypadku wystąpienia przepięcia, ochrona jest niekompletna i może nie objąć urządzeń podłączonych do innych obwodów. Złącze budynku, mimo że jest istotnym punktem przyłączeniowym, nie zapewnia pełnej ochrony dla wszystkich obwodów zasilających w budynku. Takie podejście prowadzi do fragmentarycznej ochrony, co może skutkować poważnymi uszkodzeniami sprzętu elektronicznego i instalacji elektrycznej. Kluczowym błędem myślowym jest przekonanie, że ochrona może być stosowana w dowolnym miejscu bez uwzględnienia kontekstu, w jakim działają ochronniki przeciwprzepięciowe. Według norm i najlepszych praktyk, ochrona przed przepięciami powinna być centralizowana w odpowiednich punktach, takich jak rozdzielnice, w celu zapewnienia pełnej ochrony całej instalacji elektrycznej.

Pytanie 24

Który przewód oznacza symbol PE?

A. Uziemiający
B. Wyrównawczy
C. Ochronny
D. Ochronno-neutralny
Odpowiedź "Ochronny" jest prawidłowa, ponieważ przewód oznaczony symbolem PE (ang. Protective Earth) jest kluczowym elementem systemów ochrony przed porażeniem elektrycznym. Przewód PE ma za zadanie prowadzenie prądu doziemnego w przypadku awarii urządzenia, co minimalizuje ryzyko porażenia prądem użytkowników. W praktyce, przewód ten jest integralną częścią instalacji elektrycznych w budynkach, a jego właściwe podłączenie do uziemienia jest niezbędne dla zapewnienia bezpieczeństwa. Zgodnie z normami, takimi jak PN-IEC 60364, przewód PE powinien być stosowany w każdym obwodzie elektrycznym, w którym zainstalowane są urządzenia elektryczne. Jego zastosowanie obejmuje zarówno instalacje przemysłowe, jak i domowe, gdzie uziemienie urządzeń, takich jak lodówki czy pralki, jest niezbędne dla ochrony przed skutkami zwarcia. Warto również podkreślić, że stosowanie przewodu PE w instalacjach elektrycznych jest wymagane przez przepisy prawa budowlanego, co dodatkowo podkreśla jego znaczenie w kontekście bezpieczeństwa użytkowników.

Pytanie 25

Przygotowując się do wymiany uszkodzonego gniazda trójfazowego w systemie elektrycznym, po odłączeniu napięcia w obwodzie tego gniazda, należy przede wszystkim

A. zabezpieczyć obwód przed niezamierzonym włączeniem napięcia
B. poinformować dostawcę energii o zamiarze przeprowadzenia naprawy
C. rozłożyć dywanik elektroizolacyjny w obszarze roboczym
D. oznaczyć miejsce pracy
Oznaczenie miejsca pracy, rozłożenie dywanika elektroizolacyjnego w miejscu pracy oraz zgłoszenie dostawcy energii zamiaru naprawy, choć mogą wydawać się sensownymi krokami, nie są wystarczające dla zapewnienia bezpieczeństwa podczas pracy z instalacjami elektrycznymi. Oznaczenie miejsca pracy może zwiększyć świadomość innych pracowników o prowadzonych działaniach, ale nie zabezpiecza aktywnie przed ryzykiem związanym z przypadkowym włączeniem zasilania. Rozłożenie dywanika elektroizolacyjnego jest również ważne, jednak nie zastępuje to konieczności zabezpieczenia obwodu - dywanik może jedynie zmniejszyć ryzyko porażenia prądem, lecz nie eliminuje go całkowicie. Zgłoszenie dostawcy energii o zamiarze naprawy jest dobre w kontekście długookresowym, ale nie zapewnia natychmiastowego bezpieczeństwa w chwili pracy. Kluczowym błędem myślowym tutaj jest przekonanie, że te działania wystarczają do zapewnienia ochrony. Bezpieczeństwo pracy z energią elektryczną wymaga fundamentalnego podejścia, które zakłada, że przede wszystkim musimy upewnić się, że energia nie zostanie przypadkowo przywrócona przed zakończeniem prac. Statystyki pokazują, że wiele wypadków elektrycznych wynika z niedostatecznego zabezpieczenia obwodów, co czyni tę zasadę absolutnie kluczową w praktyce zawodowej. Zgodnie z ogólnymi normami bezpieczeństwa, każde podejście musi być oparte na zasadzie, że bezpieczeństwo jest najważniejsze i powinno być priorytetem w każdej sytuacji związanej z pracą z energią elektryczną.

Pytanie 26

Jaka jest bezwzględna wartość błędu pomiarowego natężenia prądu, jeśli multimetr pokazał wynik 30,0 mA, a dokładność miernika podana przez producenta dla zastosowanego zakresu pomiarowego wynosi
±(1 % + 2) cyfry?

A. ±0,5 mA
B. ±3,2 mA
C. ±2,0 mA
D. ±0,3 mA
Aby obliczyć bezwzględną wartość błędu pomiaru natężenia prądu, musimy wziąć pod uwagę zarówno procentowy błąd pomiaru, jak i błąd wyrażony w cyfrach. Dokładność miernika wynosi ±(1 % + 2) cyfry. Przy wyniku 30,0 mA, obliczamy 1 % z tej wartości: 1 % z 30,0 mA to 0,3 mA. Następnie dodajemy 2 cyfry, które w przypadku pomiaru 30,0 mA oznaczają 0,2 mA. Zatem całkowity błąd pomiaru wynosi: 0,3 mA + 0,2 mA = 0,5 mA. Wartość błędu ±0,5 mA oznacza, że rzeczywista wartość natężenia prądu może wynosić od 29,5 mA do 30,5 mA. Zrozumienie błędów pomiarowych jest kluczowe w praktyce inżynierskiej, szczególnie w zastosowaniach wymagających precyzyjnych pomiarów prądów elektrycznych, takich jak w automatyce czy elektronice. Użycie multimetru z podaną dokładnością pozwala na rzetelne oceny i podejmowanie decyzji opartych na danych pomiarowych.

Pytanie 27

Jakie urządzenia elektryczne są częścią instalacji przyłączeniowej obiektu budowlanego?

A. Transformator słupowy z rozłącznikiem
B. Zabezpieczenia przedlicznikowe oraz licznik energii elektrycznej
C. Zabezpieczenia nadprądowe poszczególnych obwodów
D. Wyłącznik różnicowoprądowy oraz ograniczniki przepięć
Jak wybierzesz złe odpowiedzi na to pytanie, to może być ciut mylące, bo pomyślisz, że wszystkie wymienione urządzenia są częścią przyłącza budowlanego, a tak nie jest. Wyłącznik różnicowoprądowy czy ograniczniki przepięć są ważne w instalacjach elektrycznych, ale nie są częścią samego przyłącza budynku. Ich rola to ochrona użytkowników i sprzętu w środku, a nie w punkcie, gdzie łączymy się z siecią. Wyłączniki różnicowoprądowe działają tak, że wykrywają prądy, które mogą być niebezpieczne, i wtedy odcinają zasilanie, co jest super ważne, ale nie dotyczy samego przyłącza. Z kolei transformator słupowy z rozłącznikiem to element sieci energetycznej, a nie konkretnego budynku. Może być częścią systemu dystrybucji energii, ale nie jest bezpośrednio związany z przyłączem budowlanym, które powinno być skupione na zabezpieczeniach i licznikach. Zabezpieczenia nadprądowe w obwodach są też istotne, ale ich miejsce jest wewnątrz budynku. Powszechnym błędem jest mylenie różnych poziomów instalacji elektrycznej i ich funkcji, co może prowadzić do błędów w projektowaniu i realnych zagrożeń dla bezpieczeństwa użytkowników.

Pytanie 28

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Metalowe lub gumowe
B. Tylko metalowe
C. Z PVC lub gumowe
D. Tylko z PVC
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.

Pytanie 29

Podczas przeprowadzania inspekcji instalacji elektrycznej w budynku mieszkalnym nie jest wymagane sprawdzanie

A. nastaw urządzeń zabezpieczających w instalacji
B. stanu obudów wszystkich elementów instalacji
C. poprawności działania wyłącznika różnicowoprądowego
D. wartości rezystancji izolacji przewodów
Wiesz, przy ocenie bezpieczeństwa instalacji elektrycznej często pojawiają się nieporozumienia co do tego, co trzeba sprawdzać. Więc jeśli myślisz, że stan obudów, wyłączniki różnicowoprądowe czy urządzenia zabezpieczające nie są ważne, to musisz to przemyśleć. Sprawdzanie stanu obudów jest mega istotne, żeby nie zdarzył się przypadkowy kontakt z prądem. Jak wyłączniki różnicowoprądowe nie działają, to może być niebezpiecznie. Regularne weryfikowanie ich działania to polecana praktyka. Do tego ustawienia urządzeń zabezpieczających też są kluczowe, bo jak są źle ustawione, to może to doprowadzić do problemów. Ignorowanie takich rzeczy jest ryzykowne, zresztą to może prowadzić do poważnych sytuacji, jak pożary czy porażenia. Każdy z tych elementów to część systemu ochrony, który ma na celu bezpieczne użytkowanie instalacji elektrycznej. Wiedza na ten temat to podstawa dla każdego, kto zajmuje się elektryką.

Pytanie 30

Jakim przyrządem dokonuje się pomiaru rezystancji izolacyjnej przewodu?

A. Megaomomierz
B. Omomierz
C. Miernik pętli zwarcia
D. Induktorowy miernik uziemień
Megaomomierz jest specjalistycznym urządzeniem zaprojektowanym do pomiaru wysokiej rezystancji izolacji, co czyni go idealnym narzędziem do oceny stanu izolacji przewodów elektrycznych. W przeciwieństwie do zwykłych omomierzy, które mierzą rezystancję w zakresie niskich wartości, megaomomierz generuje napięcia próbne rzędu kilkuset woltów, co pozwala na dokładne określenie jakości izolacji. Przykładowo, podczas testowania instalacji elektrycznych w budynkach, użycie megaomomierza pozwala na wykrycie ewentualnych uszkodzeń izolacji, które mogłyby prowadzić do zwarć lub porażenia prądem. Zastosowanie tego urządzenia jest zgodne z normami IEC 61010 oraz IEC 61557, które definiują wymagania dotyczące bezpieczeństwa i wydajności tego typu pomiarów. Regularne sprawdzanie rezystancji izolacji za pomocą megaomomierza jest kluczowym elementem utrzymania bezpieczeństwa oraz niezawodności instalacji elektrycznych.

Pytanie 31

Jakie elementy nie są kontrolowane podczas oględzin urządzeń napędowych w czasie ich postoju?

A. ustawienia zabezpieczeń i stanu osłon części wirujących
B. stanu pierścieni ślizgowych oraz komutatorów
C. stanu przewodów ochronnych oraz ich połączeń
D. poziomu drgań i skuteczności układu chłodzenia
Odpowiedź dotycząca stanu pierścieni ślizgowych i komutatorów jest właściwa, ponieważ podczas przeprowadzania oględzin urządzeń napędowych w czasie postoju nie jest to element, który zazwyczaj podlega rutynowym kontrolom. Pierścienie ślizgowe i komutatory są kluczowymi komponentami w silnikach prądu stałego oraz w niektórych alternatorach, jednak ich stan ocenia się głównie podczas przeglądów większych, planowanych konserwacji. W codziennych oględzinach, które mają na celu zapewnienie bezpieczeństwa i operacyjności urządzeń, bardziej koncentruje się na aspektach takich jak kontrola przewodów ochronnych, które zapewniają bezpieczeństwo operatorów, poziom drgań, które mogą wskazywać na problemy mechaniczne, oraz działania układu chłodzenia, aby zapobiec przegrzewaniu. Przykładowo, w praktyce inżynieryjnej standardy takie jak ISO 9001 obejmują kontrolę jakości i bezpieczeństwa, kładąc nacisk na utrzymanie systemów w dobrym stanie operacyjnym, co potwierdza, że elementy takie jak osłony części wirujących oraz zabezpieczenia są kluczowe w codziennych kontrolach.

Pytanie 32

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Impedancję pętli zwarcia.
B. Chwilową moc obciążenia.
C. Rezystancję izolacji.
D. Prąd upływu.
Rezystancja izolacji jest kluczowym parametrem, który można zmierzyć przy pomocy miernika izolacji, znanego również jako megomierz. Urządzenie to jest wykorzystywane do oceny stanu izolacji elektrycznej w instalacjach i urządzeniach elektrycznych. Pomiar ten jest niezwykle istotny, ponieważ odpowiednia rezystancja izolacji zapewnia bezpieczeństwo użytkowania i zapobiega porażeniom prądem, a także minimalizuje ryzyko awarii. Miernik izolacji generuje wysokie napięcie, które powoduje, że prąd przepływa przez izolację. Na podstawie zmierzonego prądu można obliczyć rezystancję, która jest wyrażana w megaomach (MΩ). W praktyce, normy takie jak PN-EN 61557-2 określają wymagania dotyczące pomiarów rezystancji izolacji. Regularne pomiary rezystancji izolacji są zalecane w ramach działań prewencyjnych, szczególnie w przemyśle, gdzie eksploatacja urządzeń elektrycznych odbywa się w trudnych warunkach. Dbanie o odpowiednie wartości rezystancji izolacyjnej to nie tylko wymóg prawny, ale również dobra praktyka, która przyczynia się do zapewnienia długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 33

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Asynchroniczny klatkowy
B. Synchroniczny
C. Szeregowy prądu stałego
D. Obcowzbudny prądu stałego
Silnik synchroniczny charakteryzuje się najbardziej sztywną charakterystyką mechaniczną n = f(M) w zakresie pracy stabilnej, co oznacza, że jego prędkość obrotowa jest ściśle związana z częstotliwością zasilania. W praktyce oznacza to, że silniki synchroniczne są idealnym rozwiązaniem w aplikacjach, gdzie wymagana jest precyzyjna kontrola prędkości oraz stabilność obrotów, na przykład w systemach napędowych w dużych maszynach przemysłowych, turbinach wiatrowych, czy w energetyce odnawialnej. Dzięki swojej konstrukcji, silniki te mogą pracować w warunkach, gdzie inne typy silników, jak np. silniki asynchroniczne, mogą wykazywać większe wahania prędkości. W zastosowaniach, gdzie ważne są parametry jakości energii, silniki synchroniczne mogą też przyczynić się do poprawy współczynnika mocy, co jest zgodne z aktualnymi standardami efektywności energetycznej, jak IEC 60034. Ponadto, zastosowanie technologii takich jak falowniki do sterowania silnikami synchronicznymi umożliwia osiąganie jeszcze większej wydajności i elastyczności w działaniu.

Pytanie 34

Aby zmierzyć częstotliwość, należy użyć

A. watomierza
B. częstościomierza
C. waromierza
D. fazomierza
Częstościomierz jest urządzeniem służącym do pomiaru częstotliwości sygnałów elektrycznych, co czyni go najodpowiedniejszym narzędziem do tego celu. Jego działanie polega na zliczaniu liczby cykli sygnału w jednostce czasu, co pozwala na precyzyjne określenie częstotliwości, wyrażonej w hercach (Hz). Częstościomierze są powszechnie wykorzystywane w elektronice, telekomunikacji oraz w badaniach laboratoryjnych. Na przykład, przy pomiarze częstotliwości oscylatorów w układach radiowych, częstościomierz umożliwia dokładne dostrajanie urządzeń do pożądanej częstotliwości pracy. W kontekście standardów branżowych, częstościomierze powinny spełniać normy kalibracji, co zapewnia ich wiarygodność i dokładność w pomiarach. Warto również zauważyć, że nowoczesne częstościomierze oferują dodatkowe funkcje, takie jak analiza harmonik czy pomiar fazy, co zwiększa ich użyteczność w zaawansowanych aplikacjach.

Pytanie 35

Korzystając z zamieszczonego fragmentu instrukcji obsługi multimetru, wyznacz względny błąd pomiaru napięcia, jeżeli woltomierz wskazał 120 V.

Instrukcja obsługi multimetru (fragment)

Uchyb pomiaru:

0,1% w.m. ±0,05% w.z. (podzakresy 100 mV, 1 V)

0,2% w.m. ±0,05% w.z. (podzakresy 10 V, 100 V, 1000 V)

gdzie w.m. oznacza wartość zmierzoną, a w.z. wartość zakresu.

A. 0,07%
B. 6,10%
C. 0,74%
D. 0,62%
Istnieje kilka kluczowych aspektów, które mogą prowadzić do błędnych wniosków przy obliczaniu względnego błędu pomiarowego. Przede wszystkim, jedna z powszechnych pułapek polega na nieprawidłowym dodaniu błędu stałego do błędu procentowego. Różne odpowiedzi wskazujące na niewłaściwe wartości mogą wynikać z nieuwzględnienia rzeczywistej wartości zmierzonej przy obliczeniach. Na przykład, korzystając z nieprawidłowego wzoru lub błędnych wartości, można dojść do mylnej konkluzji, że błąd wynosi 0,07% lub 0,74%, co jest dalekie od rzeczywistości. Kolejnym typowym błędem jest pomijanie kontekstu pomiarów, takich jak tolerancje urządzenia czy jego kalibracja, co prowadzi do nieprawidłowego oszacowania dokładności. Należy również pamiętać, że różne urządzenia pomiarowe mają swoje specyfikacje dotyczące błędów. Na przykład, jeśli nie uwzględnimy pełnych danych dotyczących błędu procentowego, nasza ocena pomiaru może być znacząco zaniżona lub zawyżona. Zrozumienie tych aspektów jest niezwykle istotne w kontekście uzyskiwania rzetelnych wyników pomiarowych i podejmowania właściwych decyzji inżynieryjnych. Bez tych umiejętności, można w łatwy sposób wprowadzić się w błąd, co może mieć poważne konsekwencje w praktycznych zastosowaniach elektrotechnicznych.

Pytanie 36

Zgodnie z PN-IEC 60364-4-41:2000, maksymalny dozwolony czas wyłączenia w systemach typu TN przy napięciu zasilania 230 V wynosi

A. 0,4 s
B. 0,1 s
C. 0,8 s
D. 0,2 s
Maksymalny dopuszczalny czas wyłączenia w układach sieci typu TN przy napięciu zasilania 230 V wynosi 0,4 s, zgodnie z normą PN-IEC 60364-4-41:2000. Czas ten jest kluczowy w kontekście bezpieczeństwa użytkowników i ochrony instalacji elektrycznych. W układzie TN zastosowanie przewodów ochronnych oraz odpowiedniego zabezpieczenia (np. wyłączników nadprądowych i różnicowoprądowych) ma na celu zminimalizowanie ryzyka porażenia prądem. Przykładowo, w przypadku uszkodzenia izolacji, szybkie wyłączenie zasilania ogranicza czas, w którym występuje niebezpieczne napięcie na obudowach urządzeń elektrycznych. Z tego względu, normy te zalecają właśnie ten czas wyłączenia, który pozwala pełni zabezpieczyć użytkownika przed skutkami awarii. W praktyce, odpowiednie dobranie elementów zabezpieczających oraz ich regularne testowanie jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, co czyni tę wiedzę niezbędną dla każdego specjalisty w tej dziedzinie.

Pytanie 37

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Ołówek traserski, poziomnica, przymiar taśmowy
B. Kątownik, ołówek traserski, sznurek traserski
C. Kątownik, młotek, punktak
D. Ołówek traserski, przymiar kreskowy, rysik
Ołówek traserski, poziomnica i przymiar taśmowy to świetny wybór! Te narzędzia naprawdę są niezbędne, gdy chodzi o trasowanie drogi do układania przewodów natynkowych. Ołówek traserski pozwala na dokładne oznaczanie punktów i linii, co jest podstawą do dalszej roboty. Poziomnica zaś to must-have, żeby upewnić się, że wszystko jest równo i w odpowiednich nachyleniach. To ważne, bo estetyka i funkcjonalność idą w parze. Przymiar taśmowy z kolei umożliwia precyzyjne mierzenie, co też jest kluczowe, żeby dobrze rozmieścić przewody na ścianach. W branży mamy różne standardy, jak normy PN-IEC, które podkreślają, jak ważna jest dokładność i planowanie przy instalacjach elektrycznych. Używanie właściwych narzędzi zwiększa wydajność, a także zmniejsza ryzyko błędów, które mogą skończyć się problemami, jak zwarcia czy uszkodzenia sprzętu. Na przykład, korzystając z poziomnicy przy układaniu przewodów, mamy pewność, że będą one prosto, co będzie miało znaczenie przy montażu osprzętu elektrycznego.

Pytanie 38

Jakie oznaczenie, zgodnie z normą zharmonizowaną, odpowiada polskiemu oznaczeniu kabla DY 300/500 V?

A. H03W-F
B. H05V-U
C. H05V-K
D. H03VH-H
Analizując inne oznaczenia przewodów, warto zauważyć, że H03VH-H jest przeznaczone do pracy w warunkach, gdzie przewody są narażone na działanie wysokich temperatur i chemikaliów, jednak ich napięcie robocze wynosi jedynie 300/500 V, co powoduje, że nie spełniają one wymagań dla aplikacji, które wymagają większej odporności na obciążenia elektryczne. Oznaczenie H05V-K, z kolei, odnosi się do przewodów o mniejszej elastyczności, a ich konstrukcja nie jest przystosowana do zastosowań w trudnych warunkach, co ogranicza ich zastosowanie w porównaniu do H05V-U. Ostatnia z rozważanych opcji, H03W-F, również nie jest odpowiednia, ponieważ jest to typ przewodu wykorzystywanego głównie w instalacjach, gdzie odporność na działanie wilgoci lub substancji chemicznych jest priorytetowa. Wybór niewłaściwego oznaczenia często wynika z niepełnej wiedzy na temat specyfikacji technicznych lub mylenia cech przewodów z ich przeznaczeniem. Ważne jest, aby przy doborze przewodów kierować się nie tylko ich oznaczeniem, ale także specyfiką zastosowania, co pozwoli na długoterminową i bezpieczną eksploatację instalacji elektrycznych. Zrozumienie różnic pomiędzy poszczególnymi oznaczeniami jest kluczowe dla osób zajmujących się projektowaniem i wykonawstwem instalacji elektrycznych.

Pytanie 39

Jakiego wyłącznika nadprądowego powinno się zastosować do ochrony obwodu jednofazowego instalacji elektrycznej z napięciem 230 V, który zasila grzejnik oporowy o mocy 1600 W?

A. B10
B. C16
C. C10
D. B16
Wybór wyłączników nadprądowych powinien być oparty na dokładnych obliczeniach prądu roboczego danego obwodu oraz na charakterystyce urządzeń, które są zasilane. Wyłącznik C10, mimo iż ma mniejszy prąd znamionowy niż B16 i C16, nie jest odpowiedni dla obszarów, gdzie występują urządzenia o dużych prądach rozruchowych, jak silniki elektryczne czy grzejniki oporowe, ponieważ może zareagować zbyt szybko na chwilowe skoki prądu. Z kolei wyłącznik B16 jest przeznaczony dla obwodów, które mogą mieć większe obciążenia i prądy do 16 A, co sprowadza się do przekroczenia maksymalnych wartości obciążenia na obwodzie z grzejnikiem 1600 W. Chociaż wyłącznik B16 mógłby teoretycznie zadziałać, w praktyce nie zapewniałby odpowiedniego poziomu zabezpieczenia, co może prowadzić do niebezpiecznych sytuacji. Podobnie, wyłącznik C16 ma zbyt wysoką wartość prądową dla tego konkretnego zastosowania, co czyni go niewłaściwym wyborem, gdyż nie zadziałałby w przypadku przeciążenia, a tym samym nie chroniłby instalacji. Właściwy wybór wyłącznika nadprądowego powinien opierać się na danych technicznych urządzeń oraz na normach bezpieczeństwa, aby zapewnić optymalną ochronę przed skutkami awarii elektrycznych.

Pytanie 40

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B

A. Wyłączników różnicowoprądowych.
B. Styczników.
C. Wyłączników nadprądowych.
D. Transformatorów.
Odpowiedzi o transformatorach i wyłącznikach różnicowoprądowych są nietrafione, bo to zupełnie inne urządzenia z innymi zastosowaniami. Transformatory zmieniają napięcie w obwodach elektrycznych, a nie są montowane na szynie TH 35, więc porównywanie ich do wyłączników nadprądowych nie ma sensu. Co do wyłączników różnicowoprądowych, to one też chronią, ale działają na innej zasadzie - wykrywają różnicę prądów między fazą a przewodem neutralnym, co jest kluczowe, żeby uniknąć porażenia prądem, jak coś się uszkodzi. W praktyce często mylimy różne typy urządzeń, co prowadzi do błędnych wniosków. A styczniki, które też były wspomniane, są do załączania i wyłączania obwodów, ale nie mają funkcji zabezpieczającej jak wyłączniki nadprądowe. Dobrze jest znać różnice między tymi urządzeniami i wiedzieć, kiedy ich używać, bo to ma spore znaczenie dla bezpieczeństwa i efektywności instalacji elektrycznych.