Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 14 maja 2025 10:09
  • Data zakończenia: 14 maja 2025 10:20

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jak określa się poziom sygnału w gniazdku abonenckim telewizji naziemnej?

A. dBmW
B. dBmA
C. dBµV
D. dBµΩ
Poprawna odpowiedź to dBµV, co oznacza decybele mikrovoltów. Jest to jednostka miary, która pozwala na określenie poziomu sygnału w systemach telekomunikacyjnych, w tym w telewizji naziemnej. Wartość poziomu sygnału w dBµV jest kluczowa dla oceny jakości odbioru sygnału telewizyjnego, gdyż zbyt niski poziom może prowadzić do zakłóceń w odbiorze, a w rezultacie do utraty jakości obrazu i dźwięku. Z przeprowadzonych badań wynika, że optymalny poziom sygnału w gniazdku abonenckim powinien wynosić od 60 do 80 dBµV, co zapewnia stabilny odbiór sygnału bez zakłóceń. W praktyce, technicy często korzystają z mierników sygnału, które umożliwiają precyzyjne określenie poziomu sygnału w dBµV, co jest niezbędne podczas instalacji i konserwacji systemów antenowych. Zgodnie z normami branżowymi, monitorowanie poziomu sygnału w tej jednostce jest standardem w projektowaniu i eksploatacji infrastruktury telewizyjnej.

Pytanie 7

Jakie środki należy wykorzystać do ugaszenia ubrania palącego się na ciele?

A. gaśnicę proszkową
B. koc gaśniczy
C. gaśnicę pianową
D. gaśnicę śniegową
Koc gaśniczy jest najskuteczniejszym środkiem do gaszenia płonącego ubrania na ciele człowieka, ponieważ działa na zasadzie odcięcia dopływu tlenu do ognia, co szybko prowadzi do jego stłumienia. Koc gaśniczy, wykonany z materiałów odpornych na wysoką temperaturę, jest łatwy w użyciu i może być szybko rozłożony przez świadków zdarzenia. W przypadku pożaru odzieży koc gaśniczy powinien być zarzucony na płonącą osobę, co pozwoli na zminimalizowanie kontaktu z powietrzem. Dodatkowo, użycie koca gaśniczego pozwala na uniknięcie poparzeń, które mogą wystąpić podczas stosowania innych metod. Standardy BHP oraz procedury reagowania w sytuacjach awaryjnych w wielu krajach zalecają korzystanie z koca gaśniczego jako skutecznej metody w przypadku pożaru odzieży. Warto również pamiętać, że koc gaśniczy powinien być przechowywany w łatwo dostępnym miejscu, aby w razie nagłego wypadku mógł być szybko użyty, co może uratować życie. Praktyczne zastosowanie koca gaśniczego powinno być częścią każdego szkolenia z zakresu pierwszej pomocy oraz ppoż.

Pytanie 8

W tabeli przedstawiono fragment danych technicznych bezprzewodowego czujnika temperatury. Określ, który z czynników może wpływać na niewłaściwą pracę czujnika.

DANE TECHNICZNE
Pasmo częstotliwości pracy868,0 MHz ÷ 868,6 MHz
Zasięg komunikacji radiowej (w terenie otwartym)do 500 m
Zasilaniebateria litowa CR123A 3 V
Czas pracy na bateriiokoło 3 lata
Pobór prądu w stanie gotowości50 μA
Maksymalny pobór prądu16 mA
Dokładność pomiaru temperatury±2%
Zakres temperatur pracy-10 °C...+55 °C
Maksymalna wilgotność93±3%
Wymiary obudowy24 x 110 x 27 mm
Waga56 g

A. Napięcie zasilania czujnika 2,9 V.
B. Odbiornik słuchawek bezprzewodowych 433 MHz.
C. Zakres zmian temperatury 15°C÷30°C.
D. Obce źródło fal radiowych 868 MHz.
Obce źródło fal radiowych 868 MHz jest kluczowym czynnikiem, który może wpływać na niewłaściwą pracę czujnika temperatury. Czujniki bezprzewodowe komunikują się za pomocą fal radiowych, a ich prawidłowe działanie zależy od braku zakłóceń w paśmie częstotliwości, na którym operują. W przypadku tego czujnika, który działa na częstotliwości 868 MHz, każde zewnętrzne źródło fal radiowych w tym samym zakresie może prowadzić do interferencji. Przykładem zastosowania tego czujnika może być monitorowanie temperatury w różnych środowiskach, np. w inteligentnych domach lub w przemyśle. W takich zastosowaniach istotne jest, aby czujniki były odporne na zakłócenia, co można osiągnąć poprzez zastosowanie technologii komunikacji, takich jak LoRa czy Zigbee. Standardy te przewidują odpowiednie protokoły, które minimalizują ryzyko zakłóceń ze strony innych urządzeń. W związku z tym, projektując systemy monitorowania, warto zwracać uwagę na dobór odpowiednich częstotliwości oraz na obecność potencjalnych źródeł zakłóceń, co pozwoli na zapewnienie stabilności i dokładności pomiarów.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Oznaczenie YLY 3×6 mm2 odnosi się do przewodu

A. 3-żyłowego, z żyłami miedzianymi w izolacji polwinitowej oraz powłoce polwinitowej
B. 6-żyłowego, z żyłami aluminiowymi w izolacji polietylenowej oraz powłoce polietylenowej
C. 3-żyłowego, z żyłami aluminiowymi w izolacji polwinitowej oraz powłoce polwinitowej
D. 6-żyłowego, z żyłami miedzianymi w izolacji polietylenowej oraz powłoce polietylenowej
Odpowiedź wskazująca na przewód 3-żyłowy, o żyłach miedzianych w izolacji polwinitowej i powłoce polwinitowej, jest poprawna, ponieważ oznaczenie YLY 3×6 mm² jednoznacznie wskazuje na cechy techniczne tego przewodu. Przewody te są powszechnie stosowane w instalacjach elektrycznych i charakteryzują się dobrą elastycznością oraz odpornością na czynniki mechaniczne. Użycie miedzi jako materiału przewodzącego zapewnia doskonałe właściwości przewodzenia prądu, co jest istotne w kontekście wydajności energetycznej instalacji. Izolacja polwinitowa zapewnia odpowiednią odporność na temperaturę oraz chemikalia, co czyni ten typ przewodu idealnym do zastosowań zarówno wewnętrznych, jak i zewnętrznych, gdzie może być narażony na niekorzystne warunki atmosferyczne. Dodatkowo, zgodnie z normami IEC 60228 oraz PN-HD 60364, zastosowanie przewodów miedzianych w instalacjach elektrycznych znacznie podnosi bezpieczeństwo operacyjne oraz efektywność systemów energetycznych. W praktyce, przewody YLY 3×6 mm² są często stosowane w domowych instalacjach oświetleniowych oraz do zasilania urządzeń elektrycznych o średnim poborze mocy.

Pytanie 12

Na którym zakresie pomiarowym należy wykonywać precyzyjny pomiar napięcia po stronie wtórnej transformatora, którego parametry podano w tabeli?

Napięcie pierwotne230 V
Napięcie wtórne12 V
Prąd uzwojenia wtórnego2 A
Moc25 VA

A. 200 V DC
B. 20 V DC
C. 200 V AC
D. 20 V AC
Odpowiedź 20 V AC jest prawidłowa, ponieważ odpowiada charakterystyce napięcia wtórnego transformatora, które wynosi 12 V. W kontekście pomiarów elektrycznych, ważne jest, aby stosować przyrządy pomiarowe w odpowiednim zakresie, co zapewnia dokładność oraz bezpieczeństwo pomiarów. Dla napięcia zmiennego (AC) o wartości 12 V, najbliższy standardowy zakres pomiarowy, który nie przekracza wartości nominalnej, to 20 V AC. Praktyczne zastosowanie tego pomiaru odnosi się do wielu sytuacji w inżynierii elektrycznej, w których musimy monitorować napięcia w obwodach zasilających urządzenia elektroniczne. Stosowanie odpowiedniej skali pomiarowej nie tylko minimalizuje ryzyko uszkodzenia sprzętu, ale także pozwala na uzyskanie precyzyjnych wyników, które są kluczowe dla diagnostyki oraz serwisu urządzeń. Zgodnie z normami IEC oraz krajowymi przepisami, pomiar napięć powinien odbywać się w bezpiecznych i przewidywalnych warunkach. W związku z tym, dobór odpowiedniego zakresu pomiarowego jest fundamentalnym krokiem w zapewnieniu wysokiej jakości pracy z urządzeniami elektrycznymi.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

W jakim celu nosi się opaskę antyelektrostatyczną na ręku podczas wymiany podzespołów lub układów scalonych w nowoczesnych urządzeniach elektronicznych?

A. Aby chronić montera przed porażeniem prądem elektrycznym z zasilenia urządzenia elektronicznego
B. Aby chronić układy scalone TTL przed niekorzystnym wpływem ładunków elektrostatycznych nagromadzonych na ciele montera
C. Aby chronić układy scalone CMOS przed szkodliwym działaniem ładunków elektrostatycznych gromadzących się na ciele montera
D. Aby zabezpieczyć montera przed szkodliwym działaniem ładunków elektrostatycznych nagromadzonych w urządzeniu
Opaska antyelektrostatyczna na rękę jest kluczowym elementem zabezpieczającym podczas pracy z delikatnymi komponentami elektronicznymi, szczególnie z układami scalonymi CMOS. Układy te są szczególnie wrażliwe na ładunki elektrostatyczne, które mogą powodować uszkodzenia, a nawet zniszczenie elementów. Opaska działa na zasadzie uziemienia ciała montera, co pozwala na rozproszenie nagromadzonych ładunków elektrostatycznych, eliminując ryzyko ich przekazania na wrażliwe komponenty. Przykładem praktycznego zastosowania opaski może być wymiana pamięci RAM czy procesora w komputerze stacjonarnym. W takich sytuacjach, nie tylko zapobiega się uszkodzeniu pojedynczych układów, ale także zwiększa się ogólną niezawodność urządzenia. Zgodnie z normami IPC (Institute for Interconnecting and Packaging Electronics), stosowanie opasek antyelektrostatycznych jest standardową procedurą w procesach montażu i serwisowania elektroniki, co dodatkowo podkreśla ich znaczenie w branży.

Pytanie 16

Którego koloru nie powinien mieć przewód fazowy w instalacji zasilającej sprzęt elektroniczny?

A. Czarnego
B. Szarego
C. Brązowego
D. Niebieskiego
Przewód fazowy w instalacji zasilającej urządzenia elektroniczne powinien być oznaczony kolorem innym niż niebieski, ponieważ ten kolor jest zarezerwowany dla przewodu neutralnego zgodnie z normą PN-IEC 60446. W praktyce oznacza to, że przewód fazowy, który może przenosić napięcie, powinien być czarny, brązowy lub szary, co pozwala na jednoznaczną identyfikację przewodów w instalacji oraz na uniknięcie pomyłek podczas prac serwisowych i montażowych. Przykładowo, podczas wykonywania instalacji elektrycznej w budynku mieszkalnym, technicy muszą upewnić się, że stosują właściwe kolory przewodów, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z przepisami. Ponadto, odpowiednie oznaczenie przewodów jest kluczowe w przypadku diagnostyki i konserwacji instalacji, co może zapobiec wypadkom związanym z niewłaściwym podłączeniem przewodów. Wiedza na temat kolorów przewodów jest niezbędna dla elektryków, instalatorów i każdej osoby zajmującej się pracami związanymi z instalacjami elektrycznymi.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Oznaczenie wiązki przewodów na schemacie elektrycznym 2xYDY3xl,5 mm2 sugeruje, że w skład tej wiązki wchodzą

A. trzy przewody dwużyłowe o średnicy 1,5 mm2
B. trzy przewody trzyżyłowe o średnicy 1,5 mm2
C. dwa przewody trzyżyłowe o średnicy 1,5 mm2
D. dwa przewody dwużyłowe o średnicy 1,5 mm2
Odpowiedź, że w wiązce przewodów 2xYDY3x1,5 mm2 znajdują się dwa przewody trzyżyłowe o średnicy 1,5 mm2, jest poprawna z kilku powodów. Oznaczenie '2x' wskazuje na to, że mamy do czynienia z dwiema wiązkami przewodów, z kolei 'YDY' to typ przewodników, który często stosuje się w instalacjach elektrycznych. Liczba '3' przed 'x' oznacza, że każdy z tych przewodów jest trzyżyłowy, co wskazuje na obecność trzech żył w każdym przewodzie, np. fazy, neutralnego i ochronnego. Przewody o średnicy 1,5 mm2 są powszechnie stosowane w instalacjach elektrycznych do zasilania urządzeń o mniejszym poborze mocy, co czyni je odpowiednimi do zastosowań domowych oraz w budownictwie. Przykładem zastosowania tych przewodów mogą być instalacje oświetleniowe lub zasilające gniazda wtykowe. Warto pamiętać, że odpowiednie oznaczenie przewodów i ich właściwe użycie jest kluczowe dla zapewnienia bezpieczeństwa i właściwej funkcjonalności instalacji elektrycznych, co jest zgodne z normami PN-IEC 60364.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Aby ocenić sprawność kabla krosowego, należy zastosować

A. wobulatora, gdy kabel jest odłączony od wszystkich urządzeń
B. testera kabli sieciowych, gdy kabel jest odłączony od wszystkich urządzeń
C. testera kabli sieciowych, gdy kabel jest podłączony do sieci komputerowej
D. wobulatora, gdy kabel jest podłączony do sieci komputerowej
Prawidłowa odpowiedź dotyczy zastosowania testera kabli sieciowych w celu sprawdzenia sprawności kabla krosowego. Tester kabli sieciowych jest urządzeniem, które pozwala na diagnostykę i pomiar właściwości kabli, w tym identyfikację błędów przewodzenia, testowanie ciągłości oraz sprawdzanie poprawności pinout'u. W przypadku testowania kabla odłączonego od urządzeń, tester pozwala na uzyskanie jednoznacznych wyników, eliminując wpływ innych elementów sieci, które mogą wprowadzać zakłócenia lub błędy w pomiarze. Przykładowo, podczas testowania kabla krosowego w środowisku biurowym, ważne jest, aby upewnić się, że kabel nie jest podłączony do żadnych urządzeń końcowych takich jak komputery czy przełączniki, ponieważ mogłoby to spowodować błędne odczyty. Zgodnie z normami TIA/EIA-568, które dotyczą okablowania sieciowego, przeprowadzanie testów w odpowiednich warunkach jest kluczowe dla zapewnienia niezawodności i wydajności infrastruktury sieciowej. Dlatego testowanie kabla w odłączeniu od sieci jest najlepszą praktyką w diagnostyce kabli.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jednym z komponentów urządzenia elektronicznego jest rezystor o wartości rezystancji 1 kΩ i mocy 1 W. Jeśli brakuje elementu o tych parametrach, można go zastąpić rezystorem

A. o niższej rezystancji i tej samej mocy
B. o identycznej rezystancji i wyższej mocy
C. o wyższej rezystancji i tej samej mocy
D. o identycznej rezystancji i niższej mocy
Wybór rezystora o mniejszej rezystancji i tej samej mocy jest nieprawidłowy, ponieważ zmiana rezystancji w obwodzie wprowadza inne parametry do działania układu. Zmniejszenie rezystancji spowoduje wzrost prądu zgodnie z prawem Ohma, co może prowadzić do przeciążenia pozostałych elementów obwodu, a także spalić nowy rezystor, jeśli nie jest on odpowiednio dobrany do wymagań. Wybór rezystora o takiej samej rezystancji, ale mniejszej mocy, również jest błędny, ponieważ rezystor o mniejszej mocy nie będzie w stanie pracować w warunkach, które byłyby akceptowane dla oryginalnego elementu. Może to prowadzić do przegrzania i uszkodzenia rezystora. Wybór rezystora o większej rezystancji i tej samej mocy jest także niewłaściwy, gdyż zwiększenie rezystancji zmieni całkowity prąd w obwodzie, co z kolei wpłynie na działanie pozostałych komponentów. Takie podejście często wynika z niepełnego zrozumienia zasad działania obwodów elektrycznych oraz mechanizmów odpowiedzialnych za prąd i napięcie. Dlatego ważne jest, aby przy wyborze komponentów zawsze kierować się nie tylko ich rezystancją, ale także mocą, aby zapewnić pełną kompatybilność w obwodzie.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Aby zrealizować nierozłączne połączenie włókien światłowodowych, jakie urządzenie jest niezbędne?

A. spawarka.
B. klamry.
C. lutownica.
D. zgrzewarka.
Spawarka jest kluczowym narzędziem używanym do wykonania nierozłącznych połączeń włókien światłowodowych. Proces spawania polega na precyzyjnym połączeniu końcówek włókien za pomocą wysokotemperaturowego łuku elektrycznego, co pozwala na uzyskanie minimalnych strat sygnału i maksymalnej integralności optycznej. Użycie spawarki zapewnia, że włókna są idealnie wyrównane i połączone, co jest niezbędne dla zachowania jakości transmisji danych. Przykłady zastosowania spawarki obejmują instalacje sieci telekomunikacyjnych, systemy CCTV oraz wszelkie inne aplikacje, gdzie niezawodność i jakość połączeń są kluczowe. Zgodnie z normami IEC 61300-3-34, które definiują metody testowania i oceny połączeń włókien, należy stosować techniki spawania w celu osiągnięcia wysokiej wydajności systemu. Dobrze przeprowadzony proces spawania nie tylko eliminuje błąd w transmisji sygnału, ale także zwiększa odporność na czynniki zewnętrzne, co jest niezbędne w trudnych warunkach eksploatacyjnych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Technologia umożliwiająca bezprzewodową komunikację na krótkim zasięgu pomiędzy różnymi urządzeniami elektronicznymi to

A. BLUETOOTH
B. GPRS
C. WiMAX
D. FIREWIRE
Bluetooth to technologia bezprzewodowa, która umożliwia komunikację na krótkie odległości pomiędzy różnymi urządzeniami elektronicznymi, takimi jak telefony, głośniki, słuchawki, a także komputery i urządzenia IoT. Działa w paśmie częstotliwości 2.4 GHz i jest skonstruowana w taki sposób, aby minimalizować zakłócenia z innych urządzeń. Standard Bluetooth został zaprojektowany z myślą o energooszczędności, co pozwala na długotrwałe użytkowanie urządzeń przenośnych. Przykłady zastosowania Bluetooth obejmują bezprzewodowe przesyłanie danych, podłączanie zestawów słuchawkowych do telefonów, a także synchronizację urządzeń, takich jak smartfony z komputerami. Warto również zaznaczyć, że Bluetooth implementuje mechanizmy zabezpieczeń, takie jak szyfrowanie, co czyni go bezpiecznym rozwiązaniem do przesyłania poufnych informacji. Standard Bluetooth przeszedł wiele ewolucji, a jego najnowsze wersje oferują większą przepustowość oraz zasięg, co czyni go jeszcze bardziej wszechstronnym rozwiązaniem w dziedzinie komunikacji bezprzewodowej.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Co należy zrobić, gdy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski?

A. zwiększyć napięcie zasilania elektrozaczepu.
B. dostosować poziom głośności w unifonie.
C. zwiększyć poziom głośności w panelu.
D. regulować napięcie w kasecie rozmownej.
Podwyższenie poziomu głośności w panelu, a nie w unifonie, nie rozwiązuje problemu pisków, ponieważ to unifon jest bezpośrednim źródłem dźwięku. Zwiększenie głośności na panelu może jedynie intensyfikować problem, zamiast go eliminować. W praktyce, niezrozumienie, że unifon powinien mieć własną regulację głośności, prowadzi do błędnych wniosków. Podobnie, wyregulowanie napięcia w kasecie rozmownej nie jest odpowiednią metodą na rozwiązanie problemu z dźwiękiem. Kasa rozmowna pełni rolę zasilającą i sterującą, a nie audio, więc zmiana napięcia w tym miejscu nie wpłynie na jakość dźwięku. Co więcej, podwyższenie napięcia zasilania elektrozaczepu nie ma związku z problemami audio w unifonie. Elektrozaczep odpowiada za otwieranie drzwi, a nie za przekazywanie dźwięku. Typowym błędem w takich sytuacjach jest mylenie funkcji poszczególnych elementów systemu domofonowego, co prowadzi do nieefektywnych rozwiązań. Zrozumienie, że każdy komponent pełni swoją unikalną funkcję, jest kluczowe dla prawidłowej obsługi systemów audio-wideo, a także działania całego systemu domofonowego.

Pytanie 35

Jakość sygnału z anten satelitarnych mocno uzależniona jest od warunków pogodowych, co prowadzi do tzw. efektu pikselizacji lub utraty obrazu. W przypadku anten o jakiej średnicy to zjawisko jest najbardziej zauważalne?

A. 100 cm
B. 60 cm
C. 85 cm
D. 110 cm
Wybór większych średnic anten, takich jak 100 cm, 110 cm czy nawet 85 cm, w kontekście zjawiska pikselizacji, może być mylący. Wiele osób sądzi, że większa średnica anteny automatycznie przekłada się na lepszą jakość sygnału, co nie jest do końca prawdą. W rzeczywistości, podczas trudnych warunków atmosferycznych, większe anteny mogą być bardziej odporne na zjawiska odbicia i zaniku sygnału, jednak nie eliminują problemów, które występują przy odbiorze sygnałów z mniejszych anten. Dlatego zjawisko pikselizacji jest najbardziej widoczne w antenach o średnicy 60 cm, ponieważ ich mniejsza powierzchnia zbiorcza sygnału sprawia, że są bardziej podatne na utratę jakości sygnału. Co więcej, większe anteny mogą być użyteczne w warunkach, gdzie sygnał jest silniejszy, ale w przypadku trudnych warunków atmosferycznych, jak intensywne opady deszczu, ich zalety są ograniczone. Dlatego istotne jest, aby dobrać odpowiednią antenę do specyficznych warunków lokalizacyjnych oraz atmosferycznych, a nie tylko kierować się wielkością jej średnicy. Użytkownicy powinni również być świadomi, że jakość sygnału może być poprawiana przez inne czynniki, jak jakość instalacji, stosowane kable oraz dodatkowe urządzenia wzmacniające sygnał, co jest szczególnie istotne w przypadku większych anten, które mogą wymagać bardziej skomplikowanej instalacji.

Pytanie 36

Uszkodzony przewód koncentryczny w systemie monitoringu można zastąpić stosując połączenie

A. kablem antenowym o impedancji 300 Ω
B. linką miedzianą o dużej średnicy
C. skrętką komputerową i symetryzatorem
D. skrętką komputerową z transformatorami pasywnymi
Zastosowanie kabla antenowego o impedancji 300 Ω w systemie dozorowym jest nieodpowiednie, ponieważ przewody te zostały zaprojektowane głównie do aplikacji radiowych i telewizyjnych, gdzie impedancja 300 Ω jest standardem. W systemach dozorowych najczęściej stosuje się przewody koncentryczne z impedancją 75 Ω, co oznacza, że użycie przewodu antenowego w tym kontekście prowadziłoby do znacznych strat sygnału i degradacji jakości obrazu. Alternatywnie, propozycja użycia skrętki komputerowej bez transformatorów pasywnych również jest błędna. Skrętka komputerowa sama w sobie nie jest wystarczająca do przesyłania sygnału wideo bez odpowiedniej konwersji, co może skutkować zakłóceniami i zniekształceniami sygnału. Takie podejście jest rezultatem nieprawidłowego zrozumienia zależności między typami kabli a ich zastosowaniami. Linka miedziana o dużej średnicy również nie jest właściwym rozwiązaniem, ponieważ nie odpowiada standardom przesyłu sygnałów w systemach dozorowych. Właściwe dobieranie materiałów w takich systemach wymaga głębszej wiedzy na temat impedancji, charakterystyk sygnału oraz norm branżowych, a ignorowanie tych aspektów prowadzi do błędnych wniosków i, w konsekwencji, do awarii systemu.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Aby połączyć segmenty sieci LAN za pomocą kabla Ethernet w jedną większą sieć, należy wykorzystać

A. switch.
B. bramkę.
C. router.
D. modem.
Wybór routera jako urządzenia do łączenia segmentów sieci LAN jest błędny, ponieważ routery pełnią inną rolę w architekturze sieci. Router jest odpowiedzialny za kierowanie pakietami danych między różnymi sieciami, a nie za zarządzanie komunikacją wewnątrz jednego segmentu. Działa on na trzeciej warstwie modelu OSI i wykorzystuje adresy IP do podejmowania decyzji dotyczących trasowania. Korzystanie z routera do łączenia urządzeń w sieci LAN wprowadza dodatkową złożoność i opóźnienia, które są niepotrzebne w takim kontekście. Modem z kolei jest urządzeniem stosowanym do łączenia lokalnej sieci z internetem, konwertując sygnały cyfrowe na analogowe i odwrotnie. Nie służy on do wewnętrznego zarządzania komunikacją pomiędzy urządzeniami w sieci LAN, co czyni go niewłaściwym wyborem w tym przypadku. Bramki, będące mostem między różnymi protokołami, również nie są odpowiednie do łączenia segmentów LAN, ponieważ ich podstawowym zadaniem jest konwersja protokołów. Tego rodzaju błędne podejścia wynikają często z pomylenia ról poszczególnych urządzeń sieciowych oraz braku zrozumienia, jak działają różne warstwy modelu OSI. Ważne jest, aby rozróżniać te urządzenia i ich funkcje, aby efektywnie zarządzać siecią i zapewnić odpowiednią wydajność oraz bezpieczeństwo.

Pytanie 39

Przyczyną chwilowego znikania obrazu (zamrożenia) podczas odbioru sygnału z satelity mogą być

A. awarie układu synchronizacji
B. nieprawidłowości w synchronizacji
C. uszkodzenia systemu odchylania
D. warunki atmosferyczne
Warunki atmosferyczne są jednym z najważniejszych czynników wpływających na jakość sygnału satelitarnego. W szczególności opady deszczu, śniegu oraz intensywne chmury mogą powodować osłabienie sygnału, co może prowadzić do czasowego zaniku obrazu. Zjawisko to jest znane jako „attenuacja”, czyli osłabienie sygnału, które zwiększa się przy zwiększonej wilgotności powietrza lub podczas wystąpienia burz. W praktyce, techniki takie jak stosowanie większych anten satelitarnych, które mogą lepiej odbierać sygnał w trudnych warunkach, są powszechnie przyjęte w branży. Zgodnie z dobrymi praktykami, zaleca się również monitorowanie prognoz pogody i dostosowywanie systemów do zmieniających się warunków. Użytkownicy powinni być świadomi, że podczas intensywnych opadów lub burz mogą wystąpić czasowe zakłócenia w odbiorze, a zrozumienie tego zjawiska może pomóc w lepszym planowaniu korzystania z technologii satelitarnych.

Pytanie 40

Aby przeprowadzić konserwację systemu alarmowego, należy

A. zmierzyć omomierzem jakość połączeń kabli, sprawdzić stan izolacji przewodów induktorem
B. wyczyścić wnętrze obudowy z centralą, ocenić jakość styku sabotażowego centrali, zabrać akumulator do ładowania
C. zobaczyć reakcję czujników na ruch, sprawdzić datę wyświetlaną na manipulatorze, ocenić napięcie akumulatora
D. przywrócić centralę do ustawień fabrycznych, ponownie zainstalować oprogramowanie centrali alarmowej
Dokładne sprawdzenie reakcji czujek na ruch, daty wyświetlanej na manipulatorze oraz napięcia akumulatora jest kluczowe w procesie konserwacji systemu alarmowego. Czujki ruchu są podstawowym elementem zabezpieczeń, a ich regularne testowanie pozwala upewnić się, że działają zgodnie z normami i są w pełni funkcjonalne. Przykładowo, w przypadku, gdy czujki nie reagują na ruch, może to prowadzić do fałszywego poczucia bezpieczeństwa oraz zwiększonego ryzyka włamania. Sprawdzanie daty na manipulatorze jest istotne, gdyż wiele systemów alarmowych ma przypisane terminy do aktualizacji oprogramowania czy wymiany baterii, co pomaga w utrzymaniu ich efektywności. Napięcie akumulatora również jest czynnikiem krytycznym, ponieważ niewłaściwy poziom napięcia może skutkować awarią systemu w sytuacji braku zasilania. Standardy branżowe, takie jak EN 50131, podkreślają znaczenie regularnych przeglądów i konserwacji, co jest kluczowe dla zapewnienia bezpieczeństwa obiektów. Wiedza na temat tych procedur pozwala nie tylko na poprawne funkcjonowanie systemu, ale także na zwiększenie jego żywotności oraz niezawodności.