Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 9 czerwca 2025 16:00
  • Data zakończenia: 9 czerwca 2025 16:11

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podstawową rolą monitora, który jest częścią oprogramowania antywirusowego, jest

A. nadzór nad aktualnymi działaniami komputera w trakcie uruchamiania oraz pracy programów
B. cykliczne skanowanie plików przechowywanych na dysku twardym komputera
C. ochrona poczty elektronicznej przed niechcianymi wiadomościami
D. zapewnienie bezpieczeństwa systemu operacyjnego przed atakami z sieci komputerowej
Monitor w oprogramowaniu antywirusowym to naprawdę ważny element. Jego główną rolą jest pilnowanie, co się dzieje na komputerze podczas pracy różnych aplikacji. Jak to działa? Oprogramowanie antywirusowe śledzi wszystko na bieżąco, dzięki czemu szybko łapie jakieś podejrzane zagrożenia, jak wirusy czy inne złośliwe programy, które mogłyby włożyć nos w twoje sprawy. Na przykład, kiedy ściągasz plik z Internetu, monitor działa od razu, sprawdzając ten plik w czasie rzeczywistym. Jeżeli zauważy coś podejrzanego, potrafi go szybko zablokować lub wrzucić do kwarantanny. To naprawdę dobra praktyka w bezpieczeństwie komputerowym! Regularne aktualizacje baz wirusów oraz ciągłe pilnowanie ruchu w sieci są super istotne, żeby skutecznie chronić system. Szybka reakcja na zagrożenia to klucz do trzymania swoich danych w bezpieczeństwie.

Pytanie 2

Aplikacja systemowa Linux, której celem jest kontrolowanie ruchu sieciowego zarówno przychodzącego, jak i wychodzącego z określonego urządzenia, to

A. ifconfig
B. iptables
C. chkconfig
D. mtr
Iptables to narzędzie w systemach Linux, które służy do zarządzania regułami filtrowania ruchu sieciowego. Umożliwia administratorom definiowanie, które pakiety danych mają być akceptowane, a które odrzucane, co jest kluczowe dla zapewnienia bezpieczeństwa i kontroli nad ruchem sieciowym. Iptables działa na poziomie jądra systemu, co pozwala na efektywne przetwarzanie pakietów przed dotarciem do aplikacji. Przykładowo, można użyć iptables do zablokowania dostępu do określonych portów, co uniemożliwi nieautoryzowanym użytkownikom komunikację z serwerem. W praktyce, dobra konfiguracja iptables jest podstawą zabezpieczeń systemów Linux i zgodności z normami bezpieczeństwa, takimi jak ISO 27001. Należy pamiętać, że iptables obsługuje różne tabele i łańcuchy, co pozwala na zaawansowane manipulacje ruchem, takie jak NAT (Network Address Translation) czy filtracja w zależności od stanu połączenia.

Pytanie 3

Administrator zauważył wzmożony ruch w sieci lokalnej i podejrzewa incydent bezpieczeństwa. Które narzędzie może pomóc w identyfikacji tego problemu?

A. Aplikacja McAfee
B. Komenda ipconfig
C. Program Wireshark
D. Komenda tracert
Program Wireshark to zaawansowane narzędzie do analizy ruchu sieciowego, które umożliwia szczegółowe monitorowanie i diagnostykę problemów w sieci lokalnej. Jego główną zaletą jest możliwość przechwytywania pakietów danych przesyłanych przez sieć, co pozwala administratorom na dokładną analizę protokołów oraz identyfikację nieprawidłowości, takich jak nadmierny ruch. Wireshark pozwala na filtrowanie ruchu według różnych kryteriów, co umożliwia skupienie się na podejrzanych aktywnościach. Przykładowo, można zidentyfikować nieautoryzowane połączenia lub anomalie w komunikacji. Dzięki wizualizacji danych, administratorzy mogą szybko dostrzegać wzorce ruchu, które mogą wskazywać na włamanie. W branży IT, korzystanie z narzędzi takich jak Wireshark jest zgodne z dobrymi praktykami w zakresie zarządzania bezpieczeństwem sieci, umożliwiając proaktywne wykrywanie zagrożeń oraz usprawnianie działania sieci.

Pytanie 4

Który standard technologii bezprzewodowej pozwala na osiągnięcie przepustowości większej niż 54 Mbps?

A. IEEE 802.11g
B. IEEE 802.11b
C. IEEE 802.11a
D. IEEE 802.11n
Standard IEEE 802.11n, wprowadzony w 2009 roku, pozwala na osiąganie znacznie wyższych prędkości transmisji danych, przekraczających 54 Mbps. Główne cechy tego standardu to zastosowanie technologii MIMO (Multiple Input Multiple Output), która umożliwia równoległe przesyłanie danych przez wiele anten. Dzięki temu, IEEE 802.11n może osiągać przepustowości sięgające 600 Mbps w idealnych warunkach. W praktyce standard ten jest szeroko stosowany w domowych sieciach Wi-Fi, biurach oraz miejscach publicznych, gdzie zróżnicowane urządzenia wymagają stabilnego i szybkiego dostępu do Internetu. Dodatkowo, 802.11n obsługuje szerokość kanału do 40 MHz, co również zwiększa wydajność sieci. Implementacja tego standardu w urządzeniach, takich jak routery, karty sieciowe oraz punkty dostępowe, zgodnie z najlepszymi praktykami branżowymi, zapewnia nie tylko wyższą prędkość, ale również lepszą stabilność połączenia, co jest kluczowe w dobie rosnącej liczby urządzeń mobilnych korzystających z sieci bezprzewodowych.

Pytanie 5

Jakie jest IP sieci, w której funkcjonuje host o adresie 192.168.176.125/26?

A. 192.168.176.128
B. 192.168.176.64
C. 192.168.176.192
D. 192.168.176.0
Rozważając inne odpowiedzi, warto zauważyć, że adres 192.168.176.0 odnosi się do pierwszej podsieci, jednak nie jest to poprawna odpowiedź w kontekście pytania, ponieważ dotyczy adresu sieci, a nie konkretnej podsieci, w której znajduje się host. W przypadku adresu 192.168.176.128, jest on również nieprawidłowy, ponieważ znajduje się poza zakresem podsieci 192.168.176.0/26. Adres ten jest częścią kolejnej podsieci, co prowadzi do błędnych wniosków o przynależności hosta do tej sieci. Adres 192.168.176.192 również nie jest poprawny, ponieważ znajduje się w dalszej podsieci, co wskazuje na brak zrozumienia zasady podziału adresów w sieciach IP. Często spotykanym błędem jest nieprawidłowe określenie, która podsieć jest używana, co prowadzi do niepoprawnego przypisania adresów IP. W kontekście standardów adresacji IP, zrozumienie maski podsieci oraz zakresu adresów jest kluczowe dla efektywnego projektowania i zarządzania sieciami lokalnymi. Warto pamiętać, że w przypadku CIDR, adresy podsieci są zdefiniowane przez pierwsze bity maski, co powinno być uwzględnione przy określaniu przynależności adresów IP do określonych podsieci.

Pytanie 6

Urządzenie sieciowe typu most (ang. Bridge) działa w:

A. jest urządzeniem klasy store and forward
B. osiemnej warstwie modelu OSI
C. pierwszej warstwie modelu OSI
D. nie ocenia ramki pod względem adresu MAC
Praca w zerowej warstwie modelu OSI odnosi się do warstwy fizycznej, która zajmuje się przesyłaniem bitów przez medium transmisyjne. Mosty, jako urządzenia warstwy łącza danych, operują na ramkach, które zawierają adresy MAC, co oznacza, że nie mogą funkcjonować na poziomie zerowym. Przypisywanie mostów do ósmej warstwy modelu OSI jest błędne, ponieważ model OSI definiuje jedynie siedem warstw, a wszelkie odniesienia do ósmej warstwy byłyby niepoprawne z punktu widzenia standardów sieciowych. Warto również zauważyć, że mosty w rzeczywistości analizują ramki pod kątem adresów MAC, co jest kluczowym elementem ich funkcjonalności. To umożliwia im podejmowanie decyzji o przesyłaniu danych do odpowiednich segmentów sieci, w zależności od ich adresacji. Ignorowanie analizy adresów MAC w kontekście pracy mostów prowadzi do nieporozumień co do ich roli w architekturze sieci. Typowym błędem jest mylenie mostów z urządzeniami, które nie analizują danych na poziomie warstwy łącza, co może prowadzić do nieefektywnego zarządzania ruchem i spadku wydajności sieci. Zrozumienie prawidłowych funkcji mostów jest kluczowe dla skutecznego projektowania i zarządzania nowoczesnymi sieciami.

Pytanie 7

Instalator jest w stanie zamontować 5 gniazd w ciągu jednej godziny. Ile wyniesie całkowity koszt materiałów i instalacji 20 natynkowych gniazd sieciowych, jeśli cena jednego gniazda to 5,00 zł, a stawka za roboczogodzinę instalatora wynosi 30,00 zł?

A. 220,00 zł
B. 350,00 zł
C. 130,00 zł
D. 700,00 zł
Poprawna odpowiedź to 220,00 zł, co można obliczyć, biorąc pod uwagę koszty materiałów oraz robocizny. Koszt samego materiału na 20 gniazd wynosi 20 gniazd x 5,00 zł/gniazdo = 100,00 zł. Instalator montuje 5 gniazd w ciągu godziny, więc na zamontowanie 20 gniazd potrzebuje 20 gniazd ÷ 5 gniazd/godzinę = 4 godziny. Koszt robocizny wynosi 4 godziny x 30,00 zł/godzinę = 120,00 zł. Sumując te dwa koszty: 100,00 zł (materiały) + 120,00 zł (robocizna) = 220,00 zł. Takie podejście do obliczeń jest zgodne z najlepszymi praktykami w branży, które zalecają zawsze dokładne oszacowanie zarówno kosztów materiałów, jak i pracy. Dobrą praktyką jest również uwzględnianie ewentualnych kosztów dodatkowych, takich jak transport czy opłaty za materiały, co może mieć miejsce w rzeczywistych projektach.

Pytanie 8

W systemie Windows narzędzie do zarządzania skryptami wiersza poleceń, które pozwala na przeglądanie lub zmianę konfiguracji sieciowej komputera, który jest włączony, to

A. ipconfig
B. nslookup
C. netsh
D. netstat
Wybór 'ipconfig' jest dość częstym błędem. To narzędzie, co prawda, pokazuje, jakie mamy aktualne ustawienia IP, ale nie da się nimi zarządzać, co może być mylące. Ludzie często myślą, że skoro widzą konfigurację, to mogą ją modyfikować, ale to nie tak działa. Z drugiej strony, 'netstat' to narzędzie do monitorowania połączeń, które jest fajne do diagnostyki, ale też niczego nie zmieni. I jeszcze 'nslookup' – to służy głównie do sprawdzania nazw domen, ale też nie ma opcji modyfikacji. Ważne, żeby zrozumieć, do czego służą te narzędzia, bo jak się pomyli, to można narobić sobie kłopotów i to może być frustrujące. Przy wyborze narzędzi trzeba brać pod uwagę ich funkcje, bo to podstawa w administrowaniu systemami.

Pytanie 9

Jaki jest adres rozgłoszeniowy dla sieci 172.30.0.0/16?

A. 172.255.255.255
B. 172.0.255.255
C. 172.30.255.255
D. 172.30.0.255
Adres rozgłoszeniowy dla sieci 172.30.0.0/16 jest 172.30.255.255, co wynika z zasad obliczania adresów IP w sieciach klasy C. W przypadku notacji CIDR /16 oznacza to, że pierwsze 16 bitów identyfikuje sieć, a pozostałe 16 bitów mogą być użyte do adresowania urządzeń w tej sieci, co daje maksymalnie 65,536 adresów (od 172.30.0.0 do 172.30.255.255). Adres rozgłoszeniowy jest ostatnim adresem w tej przestrzeni adresowej i jest używany do wysyłania pakietów do wszystkich hostów w danej sieci. W praktyce, rozgłoszenia są często wykorzystywane w protokołach takich jak DHCP (Dynamic Host Configuration Protocol) czy ARP (Address Resolution Protocol), gdzie urządzenia muszą komunikować się z wieloma innymi urządzeniami w danej sieci lokalnej. Zrozumienie tego konceptu jest kluczowe dla projektowania i implementacji efektywnych rozwiązań sieciowych, zgodnych z najlepszymi praktykami branżowymi oraz standardami sieciowymi.

Pytanie 10

Standardowa sekwencja przetwarzania zasad grupowych w systemie Windows jest następująca:

A. lokalny komputer – lokacja – domena – jednostka organizacyjna
B. lokacja – domena – jednostka organizacyjna – lokalny komputer
C. domena – lokacja – jednostka organizacyjna – lokalny komputer
D. jednostka organizacyjna – domena – lokacja – lokalny komputer
Wszystkie inne przedstawione odpowiedzi nie uwzględniają właściwej hierarchii przetwarzania zasad grupy w systemie Windows, co może prowadzić do poważnych konsekwencji w zarządzaniu politykami bezpieczeństwa i konfiguracją. Niepoprawne odpowiedzi sugerują, że zasady grupy są przetwarzane w odwrotnej kolejności lub w sposób, który nie odzwierciedla rzeczywistości funkcjonowania systemu. Przykładowo, sugerowanie, że domena lub jednostka organizacyjna mają pierwszeństwo nad zasadami lokalnymi jest fundamentalnym błędem, ponieważ użytkownicy mogą skonfigurować lokalne zasady, które są specyficzne dla danego urządzenia, co powinno być zawsze priorytetem. Taki błąd myślowy prowadzi do sytuacji, w której lokalne wymagania bezpieczeństwa mogą zostać zignorowane na rzecz zasady, która nie jest już zgodna z aktualnymi potrzebami użytkownika. Inny typowy błąd dotyczy mylenia lokacji z jednostkami organizacyjnymi, co może skutkować nieprawidłową aplikacją zasad w sieciach złożonych z wielu lokalizacji. Te nieporozumienia mogą prowadzić do nieefektywnego zarządzania zasobami IT, zwiększając ryzyko wystąpienia incydentów bezpieczeństwa i złożoności w zarządzaniu systemami. Właściwe zrozumienie hierarchii i kolejności przetwarzania zasad grupy jest kluczowe dla skutecznego administrowania infrastrukturą IT oraz zapewnienia zgodności z politykami organizacji.

Pytanie 11

Przy projektowaniu sieci przewodowej, która ma maksymalną prędkość transmisji wynoszącą 1 Gb/s, a maksymalna długość między punktami sieci nie przekracza 100 m, jakie medium transmisyjne powinno być zastosowane?

A. kabel koncentryczny o średnicy ¼ cala
B. fale radiowe o częstotliwości 5 GHz
C. kabel UTP kategorii 5e
D. fale radiowe o częstotliwości 2,4 GHz
Kabel UTP kategorii 5e jest idealnym medium transmisyjnym do budowy sieci przewodowej o maksymalnej szybkości transmisji 1 Gb/s i odległości do 100 m. UTP (Unshielded Twisted Pair) to rodzaj kabla, który składa się z par skręconych przewodów, co znacząco zmniejsza zakłócenia elektromagnetyczne i pozwala na osiąganie wysokich prędkości transmisji. Standard ten zapewnia przepustowość do 100 MHz, co umożliwia przesyłanie danych z prędkościami sięgającymi 1 Gb/s w odległości do 100 m, zgodnie z normą IEEE 802.3ab dla Ethernetu. Przykładem zastosowania mogą być biura, gdzie sieci komputerowe muszą być niezawodne i wydajne, co czyni kabel UTP 5e odpowiednim wyborem. Warto również zwrócić uwagę, że kabel ten jest powszechnie stosowany w standardzie Ethernet, co czyni go dobrze udokumentowanym i łatwo dostępnym rozwiązaniem w branży IT.

Pytanie 12

Kabel skręcany o czterech parach, w którym każdy z przewodów jest otoczony ekranem foliowym, a ponadto wszystkie pary są dodatkowo zabezpieczone siatką, to kabel

A. S/FTP
B. U/UTP
C. SF/UTP
D. F/UTP
Odpowiedź S/FTP jest prawidłowa, ponieważ oznaczenie to wskazuje na kabel, w którym każda para przewodów jest ekranowana folią, a dodatkowo wszystkie pary są ekranowane wspólnie siatką. Takie rozwiązanie znacząco zwiększa odporność na zakłócenia elektromagnetyczne, co jest kluczowe w zastosowaniach, gdzie wymagane są wysokie prędkości przesyłu danych oraz stabilność sygnału. Kable S/FTP są często wykorzystywane w nowoczesnych sieciach komputerowych, w tym w centrach danych oraz w aplikacjach wymagających przesyłu dużych ilości danych, takich jak streaming wideo czy aplikacje VoIP. Stosowanie kabli ekranowanych zgodnych z międzynarodowymi standardami, takimi jak ISO/IEC 11801, zapewnia nie tylko bezpieczeństwo, ale również wysoką jakość transmisji danych. Dzięki zastosowaniu ekranów, kable S/FTP minimalizują ryzyko zakłóceń, co jest istotne w środowiskach o dużym natężeniu źródeł zakłóceń elektromagnetycznych.

Pytanie 13

Jakie jest odpowiednik maski 255.255.252.0 w postaci prefiksu?

A. /25
B. /24
C. /23
D. 122
Czasem ludzie mylą prefiksy takie jak /24, /23 czy /25 z maską 255.255.252.0, ale to trochę inna bajka. Prefiks /24 używa 24 bity do identyfikacji podsieci i daje maksymalnie 256 adresów w danej podsieci (to 2^8), co sprawdza się w małych sieciach. Prefiks /23 to z kolei już 512 adresów (2^9), co może być ok dla nieco większych środowisk, ale nadal to nie jest duża maszynka. A /25 to tylko 128 adresów (2^7) i to już jest za mało dla dużych zastosowań. Dużym błędem jest myślenie tylko o liczbie adresów, a nie o tym, jak sieć ma być zorganizowana. Zrozumienie, jak maski i prefiksy wpływają na organizację adresów IP, jest mega ważne w projektowaniu sieci. Jak coś pomylisz w tej kwestii, to mogą być kłopoty z komunikacją i zarządzaniem ruchem. Ważne, by pamiętać, że wybór odpowiednich masek to nie tylko liczba adresów, ale też ogólna efektywność i bezpieczeństwo w sieci, więc warto się z tym dobrze zapoznać przed podjęciem decyzji.

Pytanie 14

Jakie polecenie w systemie Windows pokazuje tablicę routingu hosta?

A. netstat - r
B. ipconfig /renew
C. ipconfig /release
D. netstat -n
Polecenie 'netstat -r' w systemie Windows jest używane do wyświetlania tabeli routingu, która zawiera informacje o dostępnych trasach sieciowych, jakie komputer wykorzystuje do komunikacji z innymi urządzeniami w sieci. To polecenie dostarcza przede wszystkim informacji o lokalnych interfejsach sieciowych, ich adresach IP, maskach podsieci oraz bramach domyślnych. W praktyce, administratorzy sieci korzystają z tego narzędzia do diagnozowania problemów z połączeniami sieciowymi, monitorowania tras przesyłania danych oraz weryfikacji poprawności konfiguracji sieci. Znajomość tabeli routingu jest kluczowa dla efektywnego zarządzania ruchem sieciowym oraz dla zapewnienia, że dane są kierowane prawidłowo do odpowiednich docelowych adresów. Dodatkowo, w standardach branżowych, takich jak TCP/IP, zarządzanie trasami jest jednym z fundamentalnych aspektów, który wpływa na wydajność i niezawodność komunikacji w sieci.

Pytanie 15

Który z poniższych adresów jest adresem prywatnym zgodnym z dokumentem RFC 1918?

A. 172.16.0.1
B. 172.0.0.1
C. 171.0.0.1
D. 172.32.0.1
Adres 172.16.0.1 jest poprawnym adresem prywatnym, definiowanym przez dokument RFC 1918, który ustanawia zakresy adresów IP przeznaczonych do użytku w sieciach lokalnych. Adresy prywatne nie są routowane w Internecie, co oznacza, że mogą być używane w sieciach wewnętrznych bez obawy o kolizje z adresami publicznymi. Zakres adresów prywatnych dla klasy B obejmuje 172.16.0.0 do 172.31.255.255, zatem 172.16.0.1 znajduje się w tym zakresie. Przykładowo, firmy często wykorzystują te adresy do budowy sieci lokalnych (LAN), co pozwala urządzeniom w sieci na komunikację bez potrzeby posiadania publicznego adresu IP. W praktyce, urządzenia takie jak routery lokalne przydzielają adresy prywatne w ramach sieci, a następnie wykorzystują translację adresów sieciowych (NAT) do komunikacji z Internetem, co zwiększa bezpieczeństwo i efektywność przydziału adresów.

Pytanie 16

Jakie urządzenie pozwala na połączenie lokalnej sieci komputerowej z Internetem?

A. driver.
B. switch.
C. router.
D. hub.
Ruter jest kluczowym urządzeniem w infrastrukturze sieciowej, które umożliwia podłączenie lokalnej sieci komputerowej do Internetu. Jego rola polega na kierowaniu pakietami danych pomiędzy różnymi sieciami, co pozwala na komunikację pomiędzy urządzeniami w sieci lokalnej a zdalnymi zasobami w Internecie. Ruter pracuje na warstwie trzeciej modelu OSI, co oznacza, że analizuje adresy IP w pakietach danych, aby określić najlepszą trasę do docelowego adresu. Przykładem zastosowania rutera może być domowa sieć Wi-Fi, gdzie ruter łączy wiele urządzeń, takich jak komputery, smartfony czy telewizory, z globalną siecią Internet. W praktyce, ruter może także pełnić funkcje zabezpieczeń, takie jak zapora ogniowa (firewall), co zwiększa bezpieczeństwo naszej sieci. Dobre praktyki w konfiguracji rutera obejmują regularne aktualizacje oprogramowania oraz stosowanie silnych haseł do zabezpieczenia dostępu do administracji. Warto również zwrócić uwagę na konfigurację NAT (Network Address Translation), która pozwala na ukrycie wewnętrznych adresów IP w sieci lokalnej, co dodatkowo zwiększa bezpieczeństwo.

Pytanie 17

Licencja typu TRIAL pozwala na korzystanie z oprogramowania

A. przez określony okres (np. 3 miesiące)
B. w ograniczonym zakresie, np. z pominięciem niektórych funkcji
C. przez nieograniczony czas, z możliwością wprowadzenia zmian
D. wyłącznie do zastosowań niekomercyjnych
Licencja typu TRIAL jest stworzona, aby umożliwić użytkownikom przetestowanie oprogramowania przez określony czas, najczęściej od kilku dni do kilku miesięcy, co umożliwia ocenę jego funkcjonalności i dopasowania do potrzeb użytkownika. Ten model licencjonowania jest powszechnie stosowany w branży oprogramowania, pozwalając potencjalnym klientom na zapoznanie się z produktem, zanim podejmą decyzję o jego zakupie. Przykładem może być oprogramowanie do edycji wideo, które oferuje 30-dniowy okres próbny. W tym czasie użytkownik ma dostęp do pełnej funkcjonalności, co pozwala mu na swobodne korzystanie i testowanie narzędzi. Warto podkreślić, że takie licencje są zgodne z dobrymi praktykami branżowymi, ponieważ zwiększają zaufanie klientów i mogą prowadzić do większej liczby zakupów po zakończeniu okresu próbnego. Rekomendacje dla użytkowników wskazują, aby podczas korzystania z wersji trial dokładnie ocenić, czy oprogramowanie spełnia ich oczekiwania, a także sprawdzić, jakie są warunki licencji po jej zakończeniu, co jest istotne z punktu widzenia dalszego użytkowania.

Pytanie 18

Jaka jest maksymalna liczba adresów sieciowych dostępnych w adresacji IP klasy A?

A. 128 adresów
B. 32 adresy
C. 64 adresy
D. 254 adresy
Wybór odpowiedzi sugerującej, że dostępnych jest 32, 64 lub 254 adresy sieciowe w klasie A opiera się na mylnym zrozumieniu zasad podziału i przydziału adresów IP. Odpowiedzi te mogą wynikać z nieprawidłowej interpretacji struktury adresów IP, gdzie użytkownicy mylą liczbę adresów sieciowych z liczbą dostępnych adresów hostów. Odpowiedź 32 adresy mogłaby odnosić się do małych podsieci, ale w kontekście klasy A, jest to nieprawidłowe. Liczba 64 adresów mogłaby sugerować błąd w obliczeniach, uwzględniając niepełne zrozumienie maski podsieci. Podobnie, 254 adresy jest wartością typową dla podsieci klasy C, gdzie dostępne adresy hostów są ograniczone do 256 minus dwa (adres sieci i adres rozgłoszeniowy). Te błędy pokazują, jak ważne jest zrozumienie, że klasa A oferuje 128 sieci, co jest wynikiem obliczenia 2^7, a każda z tych sieci może pomieścić ogromną liczbę hostów. W praktyce, niewłaściwe przydzielenie adresów może prowadzić do problemów z routingiem i zarządzaniem siecią, co wpływa na jakość i efektywność komunikacji w sieci. Zrozumienie klasyfikacji adresów IP oraz ich zastosowań jest kluczowe dla każdego, kto pracuje w dziedzinie IT i telekomunikacji.

Pytanie 19

Proces łączenia sieci komputerowych, który polega na przesyłaniu pakietów protokołu IPv4 przez infrastrukturę opartą na protokole IPv6 oraz w przeciwnym kierunku, nosi nazwę

A. translacją protokołów
B. tunelowaniem
C. mapowaniem
D. podwójnego stosu IP
Tunelowaniem nazywamy mechanizm, który umożliwia przesyłanie pakietów danych z protokołu IPv4 przez infrastrukturę zaprojektowaną dla protokołu IPv6 oraz odwrotnie. Ten proces polega na tworzeniu wirtualnych tuneli, które encapsulują (opakowują) dane protokołu IPv4 w pakiety IPv6, co pozwala na komunikację między sieciami korzystającymi z różnych wersji protokołu IP. W praktyce tunelowanie jest często wykorzystywane w przypadkach, gdzie starsze systemy, które jeszcze nie przeszły na IPv6, muszą komunikować się z nowymi sieciami. Przykładem zastosowania tunelowania jest transfer danych w firmach, które posiadają zarówno starsze, jak i nowoczesne urządzenia sieciowe, co pozwala im na stopniową migrację do IPv6, jednocześnie zapewniając ciągłość działania usług sieciowych. Z perspektywy standardów, tunelowanie jest jednym z kluczowych elementów strategii przejścia na IPv6, co zostało określone w dokumentach IETF, takich jak RFC 3056 oraz RFC 4213. Te dobre praktyki są ważne dla administrowania nowoczesnymi sieciami komputerowymi, umożliwiając elastyczne podejście do migracji.

Pytanie 20

Do zakończenia kabla skręcanego wtykiem 8P8C wykorzystuje się

A. zaciskarkę do złączy typu F
B. zaciskarkę do wtyków RJ-45
C. narzędzie uderzeniowe
D. spawarkę światłowodową
Zaciskarka do wtyków RJ-45 jest narzędziem niezbędnym do zakończenia skrętek, które są powszechnie stosowane w sieciach Ethernet. Wtyki RJ-45, znane również jako wtyki 8P8C, mają osiem pinów, które muszą być odpowiednio umieszczone i zabezpieczone w obudowie wtyku. Proces zaciskania polega na wprowadzeniu skrętek do wtyku, a następnie użyciu zaciskarki do trwałego ściśnięcia metalowych styków wtyku, co zapewnia solidne połączenie elektryczne. W branży telekomunikacyjnej i informatycznej, stosowanie zaciskarki do RJ-45 jest standardową praktyką, szczególnie w instalacjach sieciowych. Umożliwia to tworzenie niestandardowych kabli Ethernet o różnych długościach, co znacznie ułatwia konfigurację i organizację sieci. Dobrą praktyką jest również przestrzeganie kolorów okablowania zgodnie z normą T568A lub T568B, co zapewnia spójność i poprawność połączeń. Ponadto, używanie zaciskarki do RJ-45 pozwala na łatwe naprawy kabli oraz ich rekonfiguracje, co jest niezwykle istotne w dynamicznie zmieniającym się środowisku IT.

Pytanie 21

Jakiego wtyku należy użyć do zakończenia ekranowanej skrętki czteroparowej?

A. SC
B. 8P8C
C. RP-SMA
D. RJ-11
Wtyk 8P8C, znany również jako RJ-45, jest standardowym złączem stosowanym w sieciach Ethernet oraz do zakończeń ekranowanych skrętek, takich jak skrętki czteroparowe. Umożliwia on przesyłanie danych z prędkością do 10 Gbps na odległość do 100 metrów, co czyni go odpowiednim wyborem dla nowoczesnych aplikacji sieciowych. Wtyk 8P8C jest zaprojektowany do obsługi ośmiu żył, które są odpowiednio parowane, co minimalizuje zakłócenia elektromagnetyczne. Użycie wtyku 8P8C w kablach sieciowych zapewnia zgodność z normami TIA/EIA-568, które definiują sposób układania i zakończenia przewodów. W praktyce, właściwe zakończenie kabla skręcanego z użyciem wtyku 8P8C pozwala na osiągnięcie optymalnej wydajności oraz stabilności połączeń, co jest kluczowe w środowiskach biurowych i przemysłowych, gdzie jakość sygnału ma ogromne znaczenie dla pracy systemów informatycznych.

Pytanie 22

Który z poniższych dokumentów nie wchodzi w skład dokumentacji powykonawczej lokalnej sieci komputerowej?

A. Dokumentacja materiałowa
B. Lista użytych nazw użytkowników oraz haseł
C. Dokumentacja techniczna kluczowych elementów systemu
D. Plan rozmieszczenia sieci LAN
Dokumentacja powykonawcza lokalnej sieci komputerowej powinna obejmować wszystkie istotne aspekty zrealizowanej instalacji, a jej kluczowym celem jest zapewnienie przyszłych referencji oraz ułatwienie zarządzania infrastrukturą. Niektóre elementy, które mogą wydawać się istotne, jednak nie pasują do tej klasyfikacji, to specyfikacja techniczna głównych elementów systemu oraz specyfikacja materiałowa. Specyfikacja techniczna dostarcza szczegółowego opisu urządzeń, takich jak routery, przełączniki, serwery, a także ich parametrów technicznych oraz interakcji w sieci. Tego typu dokumenty są zgodne z dobrą praktyką projektowania systemów i są kluczowe dla administratorów sieci, którzy mogą potrzebować zrozumieć, jak poszczególne elementy współpracują w celu zapewnienia efektywności i wydajności całego systemu. Z kolei specyfikacja materiałowa określa szczegółowo, jakie komponenty zostały wykorzystane w budowie sieci, co jest niezwykle ważne w kontekście przyszłych aktualizacji czy konserwacji. Użytkownicy często mylą te pojęcia z wykazem nazw użytkowników i haseł, sądząc, że są one równie istotne dla dokumentacji powykonawczej, co dokumenty techniczne. Jednakże, nazwy użytkowników i hasła to dane wrażliwe, które powinny być zarządzane zgodnie z politykami bezpieczeństwa, a ich uwzględnienie w dokumentacji powykonawczej mogłoby prowadzić do nieautoryzowanego dostępu do sieci. Z tego powodu nie są one uwzględniane w dokumentacji powykonawczej, a ich przechowywanie powinno odbywać się w bezpiecznych lokalizacjach, aby zminimalizować ryzyko wycieku informacji.

Pytanie 23

Protokół SNMP (Simple Network Management Protocol) służy do

A. przydzielania adresów IP oraz adresu bramy i serwera DNS
B. konfiguracji urządzeń sieciowych oraz zbierania danych na ich temat
C. odbierania wiadomości e-mail
D. szyfrowania połączeń terminalowych z zdalnymi komputerami
Protokół SNMP, czyli Simple Network Management Protocol, to naprawdę ważne narzędzie, jeśli chodzi o zarządzanie i monitorowanie urządzeń w sieci. Dzięki niemu, administratorzy mogą zbierać wszystkie ważne info o stanie czy wydajności różnych urządzeń, jak routery czy serwery. Ma to ogromne znaczenie, żeby sieć działała sprawnie. Na przykład, SNMP może pomóc w monitorowaniu obciążenia procesora lub pamięci. A to z kolei pozwala szybko zlokalizować problemy i podjąć odpowiednie działania. SNMP działa na zasadzie klient-serwer, gdzie agent na urządzeniu zbiera dane i przesyła je do systemu. To wszystko sprawia, że wiele procesów, jak aktualizacja konfiguracji, można zautomatyzować. Protokół ten jest zgodny z normami IETF, co również wspiera dobre praktyki w zarządzaniu sieciami oraz sprawia, że różne urządzenia od różnych producentów mogą ze sobą współpracować. To czyni SNMP naprawdę kluczowym elementem w nowoczesnych infrastrukturach IT w firmach.

Pytanie 24

Która norma określa parametry transmisyjne dla komponentów kategorii 5e?

A. EIA/TIA 607
B. TIA/EIA-568-B-1
C. CSA T527
D. TIA/EIA-568-B-2
Norma TIA/EIA-568-B-2 definiuje wymogi dotyczące kabli i komponentów dla systemów sieciowych, w tym dla komponentów kategorii 5e. Specyfikacja ta objmuje m.in. parametry transmisyjne, takie jak tłumienie, diafonia i impedancja, które są kluczowe dla zapewnienia odpowiedniej wydajności sieci. Zastosowanie tej normy jest szczególnie ważne w kontekście instalacji sieci lokalnych (LAN), gdzie kable kategorii 5e są szeroko stosowane do przesyłania danych z prędkością do 1 Gbps na odległości do 100 metrów. Zrozumienie i przestrzeganie normy TIA/EIA-568-B-2 jest niezbędne dla projektantów i instalatorów systemów telekomunikacyjnych, ponieważ zapewnia nie tylko zgodność z wymogami branżowymi, ale także optymalizuje wydajność i niezawodność sieci. Przykładem praktycznego zastosowania tej normy jest planowanie infrastruktury w biurach, gdzie wymagane są szybkie i stabilne połączenia, co można osiągnąć dzięki zastosowaniu wysokiej jakości kabli spełniających normy TIA/EIA-568-B-2.

Pytanie 25

Jaką funkcję pełni protokół ARP (Address Resolution Protocol)?

A. Nadzoruje przepływ pakietów w obrębie systemów autonomicznych
B. Zarządza grupami multicastowymi w sieciach działających na protokole IP
C. Określa adres MAC na podstawie adresu IP
D. Wysyła informacje zwrotne dotyczące problemów w sieci
Odpowiedzi 2, 3 i 4 wskazują na pewne nieporozumienia dotyczące funkcji protokołu ARP oraz jego roli w sieciach komputerowych. Pierwsza z nich sugeruje, że ARP przesyła informacje zwrotne o problemach z siecią, co jest związane bardziej z protokołami diagnostycznymi, jak ICMP (Internet Control Message Protocol). Protokół ARP nie jest zaprojektowany do monitorowania stanu sieci ani przesyłania informacji o błędach. Kolejna odpowiedź, dotycząca zarządzania grupami multicastowymi, odnosi się do protokołów takich jak IGMP (Internet Group Management Protocol), które mają zupełnie inną funkcję w kontekście zarządzania transmisją multicastową, a nie ustalania adresów MAC. Z kolei kontrola przepływu pakietów w systemach autonomicznych odnosi się do protokołów routingu, jak BGP (Border Gateway Protocol), które są odpowiedzialne za wymianę informacji o trasach między różnymi sieciami, a nie do lokalizacji adresów MAC. Odpowiedzi te mogą być mylące, ponieważ łączą różne aspekty działania sieci, ale nie rozumieją podstawowej funkcji ARP. Protokół ten pełni kluczową rolę w komunikacji lokalnej, ale nie ma związku z zarządzaniem błędami, multicastem czy routingiem autonomicznym. Zrozumienie, że ARP jest dedykowany do rozwiązywania problemów związanych z adresami MAC w kontekście lokalnej wymiany danych, jest fundamentalne dla efektywnego projektowania sieci.

Pytanie 26

Która z par: protokół – odpowiednia warstwa, w której funkcjonuje dany protokół, jest właściwie zestawiona zgodnie z modelem TCP/IP?

A. ICMP - warstwa Internetu
B. RARP – warstwa transportowa
C. DNS - warstwa aplikacji
D. DHCP – warstwa dostępu do sieci
Wybór opcji RARP – warstwa transportowa jest niepoprawny, ponieważ RARP (Reverse Address Resolution Protocol) działa w warstwie łącza danych, a nie transportowej modelu TCP/IP. RARP służy do mapowania adresów sprzętowych (MAC) na adresy IP, co jest istotne w sytuacjach, gdy urządzenia nie mają przypisanego adresu IP, a muszą uzyskać go na podstawie swojego adresu MAC. Umieszczanie RARP w warstwie transportowej wskazuje na fundamentalne nieporozumienie dotyczące funkcji warstw modelu TCP/IP. Warstwa transportowa jest odpowiedzialna za przesyłanie danych między aplikacjami działającymi na różnych hostach i obejmuje protokoły takie jak TCP i UDP. W przypadku DNS (Domain Name System), który działa w warstwie aplikacji, jego główną funkcją jest zamiana nazw domenowych na adresy IP, co pozwala na łatwiejsze korzystanie z zasobów internetowych. DHCP (Dynamic Host Configuration Protocol) również działa w warstwie aplikacji, a nie w warstwie dostępu do sieci, i jest używany do dynamicznego przydzielania adresów IP oraz innych informacji konfiguracyjnych hostom w sieci. Typowe błędy w zrozumieniu modelu TCP/IP często wynikają z mylenia ról poszczególnych protokołów oraz ich powiązań z odpowiednimi warstwami, co może prowadzić do nieefektywnego projektowania sieci oraz problemów z jej zarządzaniem.

Pytanie 27

Do właściwości pojedynczego konta użytkownika w systemie Windows Serwer zalicza się

A. maksymalna objętość pojedynczego pliku, który użytkownik może zapisać na dysku serwera
B. numer telefonu, na który serwer ma oddzwonić w przypadku nawiązania połączenia telefonicznego przez tego użytkownika
C. maksymalna objętość profilu użytkownika
D. maksymalna objętość pulpitu użytkownika
Odpowiedzi dotyczące maksymalnej wielkości pojedynczego pliku, maksymalnej wielkości pulpitu użytkownika oraz maksymalnej wielkości profilu użytkownika są niepoprawne w kontekście cech pojedynczego konta użytkownika w systemie Windows Serwer. Pojedyncze konto użytkownika nie ma zdefiniowanej maksymalnej wielkości pliku, którą użytkownik mógłby zapisać na dysku serwera, ponieważ zależy to od ustawień systemowych oraz polityk grupowych, które mogą być zastosowane w danej infrastrukturze IT. Kolejnym błędnym założeniem jest to, iż maksymalna wielkość pulpitu użytkownika jest określona na poziomie konta. W rzeczywistości, pulpit jest przestrzenią roboczą, której rozmiar i wygląd można dostosować indywidualnie przez każdego użytkownika, a nie przez administratorów jako cechę konta. Wreszcie, maksymalna wielkość profilu użytkownika jest kwestią ograniczeń systemowych, a nie cechą przypisaną do konta. Profile użytkowników w Windows Serwer mogą mieć limitowane rozmiary, ale to nie jest właściwość konta samego w sobie. Te nieporozumienia mogą wynikać z mylnego założenia, że wszystkie parametry związane z użytkownikiem są sztywno określone przy tworzeniu konta, podczas gdy w rzeczywistości wiele z tych właściwości zależy od polityki IT oraz funkcji zarządzania, które są stosowane w danej organizacji.

Pytanie 28

Którą maskę należy zastosować, aby komputery o adresach IPv4, przedstawionych w tabeli, były przydzielone do właściwych sieci?

Adresy IPv4 komputerówOznaczenie sieci
192.168.10.30Sieć 1
192.168.10.60Sieć 1
192.168.10.130Sieć 2
192.168.10.200Sieć 3

A. 255.255.255.192
B. 255.255.255.224
C. 255.255.255.128
D. 255.255.255.240
Wybór błędnej maski sieciowej może prowadzić do wielu problemów związanych z adresowaniem i komunikacją w sieciach komputerowych. Na przykład, maska 255.255.255.128 (/25) tworzy podsieć z 128 adresami, co jest nadmiarem w kontekście podziału na dwie sieci. Posiadanie 126 dostępnych adresów hostów w jednej sieci mogłoby prowadzić do nieefektywnego wykorzystania adresacji IP, a także do zatorów komunikacyjnych, jeśli wiele urządzeń próbuje jednocześnie korzystać z tej samej podsieci. Podobnie, maski 255.255.255.240 (/28) i 255.255.255.224 (/27) oferują zbyt małą lub zbyt dużą ilość dostępnych adresów, co również jest nieoptymalne w analizowanej sytuacji. Maska 255.255.255.240 daje jedynie 16 adresów, co jest niewystarczające dla większej liczby hostów, natomiast 255.255.255.224 oferuje 32 adresy, co może nie spełniać wymagań dotyczących oddzielania dwóch różnych sieci. W kontekście projektowania sieci, kluczowe jest zrozumienie jak właściwie dobierać maski, aby efektywnie wykorzystać przestrzeń adresową oraz zminimalizować ryzyko konfliktów i problemów związanych z routingiem. Prawidłowe przydzielanie maski sieciowej jest fundamentalne nie tylko dla zapewnienia komunikacji, ale również dla osiągnięcia wydajności i stabilności w infrastrukturze sieciowej.

Pytanie 29

W ustawieniach haseł w systemie Windows Server aktywowana jest opcja hasło musi spełniać wymagania dotyczące złożoności. Ile minimalnie znaków powinno mieć hasło użytkownika?

A. 10 znaków
B. 12 znaków
C. 6 znaków
D. 5 znaków
Wybór haseł składających się z 5, 10 lub 12 znaków może wydawać się logiczny, lecz nie uwzględnia pełnych wymagań dotyczących złożoności w systemie Windows Server. Chociaż hasła o większej długości, takie jak 10 czy 12 znaków, mogą być bardziej skomplikowane, to ich długość nie jest zgodna z minimalnymi wymaganiami systemu. Kluczowym aspektem jest zrozumienie, że zasady dotyczące haseł w Windows Server wyraźnie określają, iż hasła muszą składać się z minimum 6 znaków. Wybór 5 znaków jest zdecydowanie niewystarczający, gdyż tego rodzaju hasła są łatwiejsze do odgadnięcia lub złamania, co naraża system na ataki. Praktyka stosowania haseł o 10 lub 12 znakach, mimo że wydaje się być bardziej bezpieczna, nie rozwiązuje problemu, gdyż nieodpowiednia długość hasła może prowadzić do nieaprobowanych luk w zabezpieczeniach. Często spotykanym błędem jest mylenie długości hasła z jego złożonością. Kluczowe jest nie tylko dobranie odpowiedniej liczby znaków, ale również ich różnorodności, co znacznie zwiększa poziom bezpieczeństwa. Z tego względu ważne jest, aby zawsze kierować się ustalonymi wymaganiami, które nie tylko chronią indywidualne konta, ale także całą infrastrukturę systemową.

Pytanie 30

Jakie jest standardowe port do przesyłania poleceń (command) serwera FTP?

A. 25
B. 20
C. 21
D. 110
Wybór portów 25, 20 i 110 jest nie do końca trafiony z kilku przyczyn. Port 25 to port dla SMTP, czyli do wysyłania e-maili. Czasami ludzie mylą go z FTP, ale to zupełnie inna działka – to port do poczty, nie do przesyłania plików. Port 20 natomiast jest używany do przesyłania danych w trybie aktywnym FTP, ale nie służy do łączenia się ani wysyłania poleceń. A port 110 to z kolei dla POP3, który odbiera wiadomości e-mail, a nie transferuje pliki. Jak się wybiera błędne porty, można się pogubić w ich funkcjach, co utrudnia prawidłowe działanie systemów i komunikację sieciową. Ważne jest, żeby dobrze rozumieć, co każdy port robi, bo to jest kluczowe dla zarządzania siecią i zabezpieczania danych.

Pytanie 31

Protokół pomocniczy do kontroli stosu TCP/IP, który odpowiada za identyfikację oraz przekazywanie informacji o błędach podczas działania protokołu IP, to

A. Routing Information Protocol (RIP)
B. Internet Control Message Protocol (ICMP)
C. Address Resolution Protocol (ARP)
D. Reverse Address Resolution Protocol (RARP)
Internet Control Message Protocol (ICMP) to kluczowy protokół w rodzinie protokołów TCP/IP, który pełni istotną rolę w diagnostyce i zarządzaniu siecią. Jego podstawową funkcją jest wymiana informacji o błędach oraz informacji kontrolnych pomiędzy węzłami sieciowymi. ICMP umożliwia wykrywanie problemów, takich jak niedostępność hosta lub przekroczenie limitu czasu przesyłania pakietów. Przykładowo, polecenie 'ping', które wykorzystuje ICMP, wysyła pakiety echo do określonego hosta i oczekuje na odpowiedź, co pozwala na ocenę dostępności i opóźnień w komunikacji sieciowej. Dobre praktyki branżowe zalecają stosowanie ICMP do monitorowania stanu sieci oraz diagnostyki problemów, a także przychodzących i wychodzących tras w komunikacji. ICMP jest również używany w protokole Traceroute, który pomaga określić trasę, jaką pokonują pakiety w sieci, co jest niezbędne w zarządzaniu sieciami.

Pytanie 32

Protokół używany do konwertowania fizycznych adresów MAC na adresy IP w sieciach komputerowych to

A. RARP (Reverse Address Resolution Protocol)
B. ARP (Address Resolution Protocol)
C. DHCP (Dynamic Host Configuration Protocol)
D. DNS (Domain Name System)
Protokóły DHCP, ARP i DNS pełnią różne funkcje w sieciach komputerowych, co może prowadzić do błędnych wniosków na temat ich zastosowania. DHCP, czyli Dynamic Host Configuration Protocol, koncentruje się na przydzielaniu adresów IP oraz innych parametrów konfiguracyjnych urządzeniom w sieci. Nie przekształca on adresów MAC na IP, lecz dynamicznie zarządza przydzielaniem adresów IP na podstawie zgłoszeń z urządzeń. ARP, czyli Address Resolution Protocol, jest stosowany do odwrotnego procesu, czyli przekształcania adresów IP na adresy MAC. Umożliwia to urządzeniom w sieci lokalnej komunikację z innymi urządzeniami, czyli przetłumaczenie adresu IP na odpowiadający mu adres MAC. DNS, z kolei, odpowiada za tłumaczenie nazw domenowych na adresy IP, co jest kluczowe dla funkcjonowania internetu. Działanie DNS nie ma związku z adresami MAC, co prowadzi do nieporozumień. Zrozumienie różnic między tymi protokołami jest kluczowe do prawidłowego zarządzania i projektowania sieci komputerowych. Często mylone są funkcje tych protokołów, co skutkuje nieefektywnym zarządzaniem adresowaniem i komunikacją w sieciach.

Pytanie 33

Aby utworzyć kontroler domeny w środowisku systemów Windows Server na lokalnym serwerze, należy zainstalować rolę

A. usług LDS w Active Directory
B. usług certyfikatów w Active Directory
C. usług domenowej w Active Directory
D. usług zarządzania prawami dostępu w Active Directory
Utworzenie kontrolera domeny w środowisku Windows Server jest kluczowym krokiem w ustanawianiu struktury Active Directory, a odpowiedzialna za to rola to usługi domenowej w usłudze Active Directory. Ta rola pozwala na zarządzanie zasobami sieciowymi, takimi jak komputery, użytkownicy i grupy, w centralny sposób. Kontroler domeny jest odpowiedzialny za autoryzację i uwierzytelnianie użytkowników oraz komputerów w sieci, co jest fundamentalne dla zabezpieczenia dostępu do zasobów. Przykładem zastosowania tej roli może być zbudowanie infrastruktury IT w firmie, gdzie kontroler domeny umożliwia wdrożenie polityk grupowych, co z kolei ułatwia zarządzanie konfiguracjami komputerów i bezpieczeństwem. Standardy branżowe, takie jak ITIL, podkreślają znaczenie posiadania dobrze zorganizowanej struktury zarządzania IT, a usługi domenowe w Active Directory są kluczowym elementem tej struktury, wspierającym zautomatyzowane zarządzanie oraz centralizację usług.

Pytanie 34

Które z poniższych urządzeń sieciowych umożliwia segmentację sieci na poziomie warstwy 3 modelu OSI?

A. Switch
B. Router
C. Punkt dostępowy (Access Point)
D. Repeater (regenerator sygnału)
Router to urządzenie, które działa na warstwie trzeciej modelu OSI, czyli warstwie sieciowej. To właśnie routery odpowiadają za segmentację sieci na poziomie IP – rozdzielają ruch pomiędzy różne podsieci, umożliwiają komunikację między nimi oraz podejmują decyzje o trasowaniu pakietów. Dzięki temu możliwe jest tworzenie złożonych, dobrze zarządzanych i bezpiecznych architektur sieciowych. W praktyce, routery pozwalają np. oddzielić sieć firmową od sieci gościnnej, a także izolować ruch różnych działów w przedsiębiorstwie. Standardowo wykorzystuje się je do łączenia lokalnych sieci LAN z Internetem czy innymi sieciami WAN. Warto pamiętać, że niektóre zaawansowane switche warstwy 3 również mogą pełnić funkcje segmentacji na tym poziomie, ale ich podstawowe zadanie to przełączanie w warstwie drugiej. Routery są jednak dedykowanym rozwiązaniem do segmentacji warstwy trzeciej i trasowania. Moim zdaniem z punktu widzenia praktyka sieciowego, zrozumienie tej roli routera to absolutna podstawa, bo od tego zależy cała logika podziału i bezpieczeństwa sieci w każdej szanującej się organizacji.

Pytanie 35

Aby zrealizować ręczną konfigurację interfejsu sieciowego w systemie LINUX, należy wykorzystać komendę

A. ifconfig
B. ipconfig
C. route add
D. eth0
Odpowiedź 'ifconfig' jest poprawna, ponieważ jest to klasyczne polecenie używane w systemach Linux do konfigurowania i zarządzania interfejsami sieciowymi. Umożliwia ono nie tylko wyświetlenie szczegółowych informacji o aktualnych ustawieniach interfejsów, takich jak adres IP, maska podsieci czy stan interfejsu, ale także pozwala na zmianę tych ustawień. Przykładem użycia może być wydanie polecenia 'ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up', które ustawia adres IP dla interfejsu eth0. Pomimo że 'ifconfig' był standardowym narzędziem przez wiele lat, od czasu wprowadzenia narzędzia 'ip' w pakiecie iproute2, zaleca się używanie polecenia 'ip' do zarządzania interfejsami sieciowymi. Niemniej jednak, 'ifconfig' pozostaje w użyciu w wielu systemach oraz w starszych instrukcjach i dokumentacjach, co czyni go istotnym elementem wiedzy o administracji sieciami w systemach Linux.

Pytanie 36

W którym rejestrze systemu Windows znajdziemy informacje o błędzie spowodowanym brakiem synchronizacji czasu systemowego z serwerem NTP?

A. Ustawienia.
B. Aplikacja.
C. System.
D. Zabezpieczenia.
Wybór innych dzienników, takich jak Ustawienia, Zabezpieczenia czy Aplikacja, na pewno nie jest właściwy w kontekście diagnostyki problemów z synchronizacją czasu systemowego. Dziennik Ustawienia głównie rejestruje zmiany konfiguracji systemu i nie zawiera szczegółowych informacji dotyczących operacji systemowych, takich jak synchronizacja NTP. Odpowiedzi odwołujące się do dziennika Zabezpieczeń są mylące, ponieważ koncentrują się głównie na rejestrowaniu zdarzeń związanych z bezpieczeństwem, takich jak logowania użytkowników oraz uprawnienia, a nie na procesach systemowych. Z kolei dziennik Aplikacji dotyczy aplikacji, które mogą rejestrować swoje własne błędy i zdarzenia, ale nie są odpowiednie do oceny problemów na poziomie systemu operacyjnego. Często spotykanym błędem jest mylenie kontekstu, w którym zdarzenia są rejestrowane; administratorzy mogą zakładać, że wszelkie problemy z systemem są związane z aplikacjami, a nie z samym systemem operacyjnym. Właściwe zrozumienie struktury dzienników systemowych jest kluczowe dla efektywnego rozwiązywania problemów, a ograniczenie się do jednej kategorii dzienników może prowadzić do niekompletnych analiz i opóźnienia w naprawie błędów.

Pytanie 37

Simple Mail Transfer Protocol to protokół odpowiedzialny za

A. obsługę odległego terminala w architekturze klient-serwer
B. przekazywanie poczty elektronicznej w Internecie
C. zarządzanie grupami multicastowymi w sieciach opartych na protokole IP
D. synchronizację czasu pomiędzy komputerami
Simple Mail Transfer Protocol (SMTP) to standardowy protokół komunikacyjny wykorzystywany do przesyłania poczty elektronicznej w Internecie. Został opracowany w latach 80. XX wieku i od tego czasu stał się jednym z kluczowych elementów infrastruktury komunikacyjnej w sieci. Protokół ten działa na zasadzie klient-serwer, gdzie klient (np. program pocztowy) wysyła wiadomości do serwera pocztowego, który następnie przekazuje je do odpowiednich serwerów odbiorców. Jednym z głównych zastosowań SMTP jest umożliwienie przesyłania wiadomości między różnymi domenami. W praktyce, większość systemów e-mailowych, takich jak Gmail czy Outlook, korzysta z SMTP do obsługi wysyłania wiadomości e-mail. Protokół ten również obsługuje różne metody autoryzacji, co zwiększa bezpieczeństwo przesyłania wiadomości. Warto również zauważyć, że SMTP współpracuje z innymi protokołami, takimi jak IMAP czy POP3, które są używane do odbierania e-maili. Zrozumienie SMTP jest niezbędne dla osób zajmujących się administracją systemami e-mailowymi oraz dla specjalistów IT, którzy chcą zapewnić efektywną komunikację w organizacjach.

Pytanie 38

Jakie narzędzie należy zastosować do zakończenia kabli UTP w module keystone z wkładkami typu 110?

A. Narzędzia uderzeniowego
B. Wkrętaka krzyżakowego
C. Wkrętaka płaskiego
D. Zaciskarki do wtyków RJ45
Zastosowanie nieodpowiednich narzędzi do zarabiania końcówek kabla UTP w module keystone ze stykami typu 110 może prowadzić do wielu problemów, w tym do słabej jakości połączeń i awarii systemów. Wkrętak krzyżakowy, mimo że jest przydatny w wielu zastosowaniach, nie jest w stanie zapewnić odpowiedniego połączenia pomiędzy przewodami a stykami. Jego głównym przeznaczeniem jest dokręcanie lub odkręcanie śrub, co jest zupełnie inną funkcją niż mechaniczne wciśnięcie żył w styk. Zaciskarka do wtyków RJ45, na którą wielu może pomyśleć, jest narzędziem przeznaczonym do innego rodzaju połączeń, zazwyczaj stosowanych z wtykami RJ45, a nie do modułów keystone. Wkrętak płaski również nie jest odpowiedni, ponieważ nie ma mechanizmu uderzeniowego, który jest kluczowy w tym kontekście. Użycie niewłaściwego narzędzia może prowadzić do problemów z transmisją danych, takich jak zakłócenia sygnału czy niestabilność połączeń, co może negatywnie wpłynąć na całą infrastrukturę sieciową. W związku z tym, dla uzyskania wysokiej jakości i niezawodnych połączeń, kluczowe jest stosowanie narzędzia uderzeniowego zgodnie z ustalonymi standardami branżowymi.

Pytanie 39

Aby serwer DNS mógł poprawnie przekształcać nazwy domenowe na adresy IPv6, konieczne jest skonfigurowanie rekordu

A. AAAA
B. CNAME
C. MX
D. A
Wybór rekordu MX, CNAME czy A zamiast AAAA do odwzorowania nazw domen na adresy IPv6 to spora pomyłka. Rekord MX to przecież serwery pocztowe dla danej domeny, więc w ogóle się nie nadaje do adresów IP. Z kolei rekordy CNAME służą do aliasowania nazw, co też nie ma sensu w tym kontekście. Rekord A również nie jest pomocny, bo on działa tylko z IPv4. Zrozumienie tych różnic jest kluczowe, bo brak odpowiedniego rekordu AAAA w DNS sprawi, że użytkownicy z IPv6 nie będą mogli się połączyć z serwisem. To częsty błąd – myślenie, że wszystkie rekordy DNS mają takie same zastosowania. W rzeczywistości każdy typ rekordu ma swój cel, a korzystanie z nich na właściwy sposób to podstawa w administrowaniu siecią.

Pytanie 40

Aby zapewnić, że jedynie wybrane urządzenia mają dostęp do sieci WiFi, konieczne jest w punkcie dostępowym

A. zmienić sposób szyfrowania z WEP na WPA
B. zmienić hasło
C. skonfigurować filtrowanie adresów MAC
D. zmienić kanał radiowy
Zmiana hasła do sieci WiFi jest istotnym krokiem w zabezpieczeniu dostępu, jednak sama w sobie nie ogranicza dostępu wybranym urządzeniom. Hasło można łatwo przechwycić, a jego zmiana nie wprowadza mechanizmu, który by blokował nieautoryzowane urządzenia. Zmiana kanału radiowego może pomóc w minimalizacji zakłóceń z innych sieci, ale nie ma wpływu na to, które urządzenia mogą łączyć się z punktem dostępowym. Zmiana metody szyfrowania z WEP na WPA stanowi dobry krok w kierunku poprawy bezpieczeństwa, ponieważ WEP jest przestarzałym protokołem, który łatwo można złamać. Niemniej jednak, sama zmiana szyfrowania nie pozwala na selektywne zarządzanie dostępem do sieci. W praktyce, aby skutecznie zarządzać dostępem do sieci WiFi, administratorzy powinni wdrażać wielowarstwowe podejście do bezpieczeństwa, które obejmuje zarówno silne hasła, jak i filtrowanie adresów MAC. Ignorując tę ostatnią metodę, można zaniechać istotnej warstwy zabezpieczeń, co w dłuższym okresie może prowadzić do poważnych incydentów bezpieczeństwa.