Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 5 czerwca 2025 01:13
  • Data zakończenia: 5 czerwca 2025 01:23

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką funkcję punkt dostępu wykorzystuje do zabezpieczenia sieci bezprzewodowej, aby jedynie urządzenia z określonymi adresami fizycznymi mogły się z nią połączyć?

A. Filtrowanie adresów MAC
B. Uwierzytelnianie
C. Radius (Remote Authentication Dial In User Service)
D. Nadanie SSID
Filtrowanie adresów MAC to technika zabezpieczania sieci bezprzewodowej, która polega na zezwalaniu na dostęp tylko dla urządzeń o określonych adresach MAC, czyli fizycznych adresach sprzętowych. W praktyce, administrator sieci tworzy listę dozwolonych adresów MAC, co pozwala na kontrolowanie, które urządzenia mogą łączyć się z siecią. To podejście jest często stosowane w małych i średnich przedsiębiorstwach, gdzie istnieje potrzeba szybkiego działania i uproszczonego zarządzania dostępem. Należy jednak pamiętać, że mimo iż filtrowanie MAC zwiększa bezpieczeństwo, nie jest to metoda absolutna. Złośliwi użytkownicy mogą skanować sieć i kopiować adresy MAC, co czyni tę metodę podatną na ataki. Dobrym rozwiązaniem jest stosowanie filtrowania MAC w połączeniu z innymi mechanizmami zabezpieczeń, takimi jak WPA3 (Wi-Fi Protected Access 3) lub uwierzytelnianie 802.1X, co znacznie podnosi poziom ochrony sieci.

Pytanie 2

Jaką komendę wykorzystuje się do ustawiania interfejsu sieciowego w systemie Linux?

A. netstate
B. ipconfig
C. netsh
D. ifconfig
Odpowiedź 'ifconfig' jest poprawna, ponieważ jest to narzędzie używane w systemach operacyjnych Linux do konfigurowania interfejsów sieciowych. Umożliwia ono wyświetlanie informacji o interfejsach, takich jak adresy IP, maski podsieci oraz status interfejsów. Przykładowe użycie to komenda 'ifconfig eth0 up', która aktywuje interfejs sieciowy o nazwie 'eth0'. Warto zaznaczyć, że 'ifconfig' jest częścią pakietu net-tools, który w wielu nowoczesnych dystrybucjach Linuxa jest zastępowany przez bardziej zaawansowane narzędzie 'ip'. Do konfigurowania interfejsów sieciowych zgodnie z aktualnymi standardami zaleca się korzystanie z polecenia 'ip', które oferuje szersze możliwości i jest bardziej zgodne z standardami sieciowymi. Prawidłowe zarządzanie konfiguracją interfejsów ma kluczowe znaczenie dla zapewnienia stabilności i bezpieczeństwa systemu operacyjnego oraz efektywności sieci.

Pytanie 3

Aby aktywować FTP na systemie Windows, konieczne jest zainstalowanie roli

A. serwera Plików
B. serwera sieci Web (IIS)
C. serwera DNS
D. serwera DHCP
Wybór innych ról, takich jak serwer DHCP, serwer Plików czy serwer DNS, jest błędny, ponieważ każda z tych ról pełni zupełnie inną funkcję w infrastrukturze sieciowej. Serwer DHCP (Dynamic Host Configuration Protocol) odpowiada za przydzielanie adresów IP urządzeniom w sieci, co jest kluczowe dla komunikacji, ale nie ma nic wspólnego z transferem plików. Serwer Plików może umożliwiać przechowywanie i udostępnianie plików w sieci, jednak nie obsługuje on bezpośrednio protokołu FTP, co jest istotne, gdyż FTP wymaga dedykowanego serwera do zarządzania połączeniami i transferem. Serwer DNS (Domain Name System) jest odpowiedzialny za tłumaczenie nazw domen na adresy IP, co jest niezbędne do lokalizacji zasobów w internecie, ale również nie ma związku z protokołem FTP. Wybierając nieodpowiednie odpowiedzi, można wpaść w pułapkę myślową, gdzie mylimy różne usługi i ich funkcje. Kluczowym aspektem jest zrozumienie, że FTP wymaga specyficznej infrastruktury, która została zaprojektowana do obsługi tego protokołu, a to oferuje jedynie rola serwera sieci Web (IIS), co czyni ją niezbędną w kontekście uruchamiania usług FTP.

Pytanie 4

W jakiej topologii fizycznej sieci każde urządzenie ma dokładnie dwa połączenia, z których jedno prowadzi do najbliższego sąsiada, a dane są przesyłane z jednego komputera do następnego w formie pętli?

A. Gwiazda.
B. Pierścień.
C. Siatka.
D. Drzewo.
Topologia pierścienia charakteryzuje się tym, że każde urządzenie sieciowe, zwane węzłem, jest połączone z dokładnie dwoma innymi węzłami. Taki układ tworzy zamkniętą pętlę, przez którą dane są przesyłane w jednym kierunku, co znacząco upraszcza proces transmisji. Główną zaletą topologii pierścienia jest to, że pozwala na ciągłe przekazywanie informacji bez potrzeby skomplikowanego routingu. Przykładem zastosowania tej topologii mogą być sieci token ring, które były popularne w latach 80. i 90. XX wieku. W takich sieciach stosowano tokeny, czyli specjalne ramki, które kontrolowały dostęp do medium transmisyjnego, co pozwalało uniknąć kolizji danych. Warto wspomnieć, że w przypadku uszkodzenia jednego z węzłów, sieć może przestać działać, co jest istotnym ograniczeniem tej topologii. Aby zwiększyć niezawodność, często stosuje się różne mechanizmy redundancji, takie jak dodatkowe połączenia zapewniające alternatywne ścieżki dla danych. W nowoczesnych aplikacjach sieciowych znajomość i umiejętność konfiguracji różnych topologii jest kluczowa, zwłaszcza w kontekście zapewnienia odpowiedniej wydajności i bezpieczeństwa sieci.

Pytanie 5

Dwie stacje robocze w tej samej sieci nie mogą się nawzajem komunikować. Która z poniższych okoliczności może być prawdopodobną przyczyną tego problemu?

A. Tożsame nazwy użytkowników
B. Identyczne adresy IP stacji roboczych
C. Inne systemy operacyjne stacji roboczych
D. Różne bramy domyślne stacji roboczych
Odpowiedź, że takie same adresy IP stacji roboczych są przyczyną problemów w komunikacji, jest prawidłowa. Gdy dwa urządzenia w tej samej sieci lokalnej mają przypisane identyczne adresy IP, występuje konflikt adresów, co uniemożliwia poprawną wymianę danych. W standardzie IPv4, każdy adres IP musi być unikalny w danej sieci. W sytuacji konfliktu, urządzenia mogą odbierać wzajemne pakiety, ale nie będą w stanie wysyłać danych do siebie, co skutkuje brakiem komunikacji. Praktycznie, aby unikać takich sytuacji, organizacje powinny stosować system zarządzania adresami IP, jak DHCP, który automatycznie przydziela unikalne adresy IP do urządzeń w sieci. Istotne jest również regularne monitorowanie i weryfikacja konfiguracji sieci, aby upewnić się, że nie występują dublujące się adresy IP. W przypadku większych sieci, należy stosować subnetting, co również ułatwia zarządzanie adresami IP i minimalizuje ryzyko konfliktów.

Pytanie 6

Jakie polecenie pozwoli na wyświetlenie ustawień interfejsu sieciowego w systemie Linux?

A. ipconfig
B. iproute show
C. traceroute
D. ipaddr show
Polecenie 'ipaddr show' jest odpowiednie do wyświetlania konfiguracji interfejsu sieciowego w systemie Linux, ponieważ jest częścią zestawu narzędzi związanych z konfiguracją sieci w nowoczesnych dystrybucjach. Narzędzie to pozwala na uzyskanie szczegółowych informacji na temat adresów IP przypisanych do interfejsów sieciowych, a także na wyświetlenie ich stanu. Przykładowo, po wpisaniu 'ipaddr show' w terminalu administrator może szybko sprawdzić, jakie adresy są przypisane do poszczególnych interfejsów, co jest kluczowe w procesie diagnozowania problemów z łącznością sieciową. W praktyce, to polecenie jest standardem w administracji systemami Linux, a jego znajomość jest niezbędna dla każdego specjalisty zajmującego się sieciami komputerowymi. Warto zauważyć, że 'ipaddr' jest częścią zestawu poleceń 'ip', które zastępują starsze polecenia, takie jak 'ifconfig', co pokazuje trend w kierunku bardziej zintegrowanych i funkcjonalnych narzędzi w administracji siecią.

Pytanie 7

Który z protokołów przesyła pakiety danych użytkownika bez zapewnienia ich dostarczenia?

A. ICMP
B. UDP
C. TCP
D. HTTP
Wybór TCP jako odpowiedzi na pytanie o protokół przesyłający datagramy użytkownika bez gwarancji dostarczenia jest nieprawidłowy. TCP (Transmission Control Protocol) jest protokołem zapewniającym niezawodność transmisji poprzez mechanizmy takie jak numerowanie sekwencyjne, potwierdzenia odbioru oraz retransmisje. Oznacza to, że TCP jest zaprojektowany tak, aby dostarczać dane w sposób uporządkowany i gwarantować ich dostarczenie do odbiorcy, co sprawia, że jest idealnym rozwiązaniem dla aplikacji wymagających wysokiej niezawodności, takich jak przesyłanie plików czy przeglądanie stron internetowych. Wybór ICMP (Internet Control Message Protocol) również nie jest trafny, ponieważ ten protokół jest używany do przesyłania komunikatów kontrolnych i diagnostycznych w sieciach, a nie do przesyłania datagramów użytkownika. Z kolei HTTP (Hypertext Transfer Protocol) jest protokołem warstwy aplikacji opartym na TCP, służącym do przesyłania danych w Internecie, co również nie odpowiada na pytanie. Typowym błędem w tego typu zagadnieniach jest mylenie protokołów transportowych z protokołami aplikacyjnymi, co prowadzi do nieporozumień w kontekście ich funkcjonalności i zastosowań. Kluczowe jest zrozumienie, że wybór odpowiedniego protokołu ma istotne znaczenie dla wydajności i niezawodności komunikacji sieciowej, dlatego ważne jest, aby dobrze rozumieć różnice między nimi.

Pytanie 8

W sieci o strukturze zaleca się, aby na powierzchni o wymiarach

A. 10 m2
B. 30 m2
C. 20 m2
D. 5 m2
W sieci strukturalnej, umieszczenie jednego punktu abonenckiego na powierzchni 10 m2 jest zgodne z zaleceniami standardów branżowych oraz dobrą praktyką inżynieryjną. Takie rozmieszczenie zapewnia optymalną długość kabli, minimalizując straty sygnału i zakłócenia. Praktyczne zastosowanie tej zasady można zauważyć w projektowaniu sieci lokalnych (LAN), gdzie odpowiednia gęstość punktów abonenckich pozwala na efektywne wykorzystanie dostępnej infrastruktury, zapewniając jednocześnie odpowiednią jakość usług. Warto również wspomnieć o standardzie ANSI/TIA-568, który określa wymagania dotyczące okablowania strukturalnego. Zgodnie z tym standardem, rozmieszczenie punktów abonenckich na powierzchni 10 m2 pozwala na efektywne zarządzanie siecią, co przekłada się na lepszą jakość usług dla użytkowników końcowych. Umożliwia to także lepszą elastyczność w rozbudowie sieci oraz dostosowywaniu do zmieniających się potrzeb użytkowników, co jest kluczowe w dynamicznym środowisku technologicznym.

Pytanie 9

Wskaż właściwy adres hosta?

A. 192.169.192.0/18
B. 192.168.192.0/18
C. 128.129.0.0/9
D. 128.128.0.0/9
Odpowiedź 128.129.0.0/9 jest poprawna, ponieważ adres ten jest zgodny z zasadami przydzielania adresów IP w klasycznej architekturze IPv4. W tym przypadku, adres 128.129.0.0 z maską /9 oznacza, że pierwsze 9 bitów definiuje część sieciową, co daje możliwość zaadresowania wielu hostów w tej samej sieci. Adresy w tej klasie są często wykorzystywane w dużych organizacjach lub instytucjach, które potrzebują obsługiwać znaczne ilości urządzeń. Przykładem może być duża uczelnia, która zarządza setkami komputerów w różnych wydziałach. Warto także wspomnieć, że adresy IP w zakresie 128.0.0.0 do 191.255.255.255 są klasyfikowane jako klasy B, co jest standardem ustalonym przez IETF w dokumencie RFC 791. Poprawne zarządzanie adresami IP jest kluczowe dla zapewnienia efektywności komunikacji w sieci oraz unikania konfliktów adresowych, co czyni tę wiedzę niezbędną dla specjalistów z dziedziny IT.

Pytanie 10

Parametr, który definiuje stosunek liczby wystąpionych błędnych bitów do ogólnej liczby odebranych bitów, to

A. Propagation Delay Skew
B. Return Loss
C. Near End Crosstalk
D. Bit Error Rate
Bit Error Rate (BER) to kluczowy parametr w telekomunikacji, który określa stosunek liczby błędnych bitów do całkowitej liczby otrzymanych bitów. Mierzy on jakość transmisji danych oraz niezawodność systemów komunikacyjnych. Niska wartość BER jest pożądana, ponieważ wskazuje na wysoką jakość sygnału i efektywność przesyłania informacji. W zastosowaniach praktycznych, takich jak sieci komputerowe czy systemy satelitarne, monitorowanie BER pozwala na szybką identyfikację problemów związanych z zakłóceniami sygnału, co jest kluczowe dla utrzymania wysokiej jakości usług. Standardy, takie jak ITU-T G.826, definiują sposoby pomiaru BER oraz akceptowalne poziomy w różnych aplikacjach. Zrozumienie i kontrola BER pozwala inżynierom na projektowanie bardziej niezawodnych systemów oraz na świadome podejmowanie decyzji dotyczących wyboru technologii transmisji, co w praktyce przekłada się na lepsze doświadczenia użytkowników końcowych.

Pytanie 11

W obiekcie przemysłowym, w którym działają urządzenia elektryczne mogące generować zakłócenia elektromagnetyczne, jako medium transmisyjne w sieci komputerowej powinno się wykorzystać

A. światłowód jednomodowy lub fale radiowe 2,4 GHz
B. światłowód jednomodowy lub kabel U-UTP kategorii 5e
C. kabel U-UTP kategorii 6 lub fale radiowe 2,4 GHz
D. kabel S-FTP kategorii 5e lub światłowód
Wybór kabla S-FTP kategorii 5e lub światłowodu jako medium transmisyjnego w środowisku, gdzie występują zakłócenia elektromagnetyczne, jest uzasadniony ze względu na ich wysoką odporność na interferencje. Kabel S-FTP (Shielded Foiled Twisted Pair) ma dodatkowe ekranowanie, które skutecznie redukuje wpływ zakłóceń elektromagnetycznych, co jest kluczowe w budynkach produkcyjnych, gdzie urządzenia elektryczne mogą generować znaczne zakłócenia. Światłowód natomiast, poprzez swoją konstrukcję opartą na transmisji światła, jest całkowicie odporny na zakłócenia elektromagnetyczne, co czyni go idealnym rozwiązaniem w trudnych warunkach. Zastosowanie tych mediów pozwala nie tylko na zapewnienie stabilnej komunikacji w sieci komputerowej, ale również na utrzymanie wysokiej wydajności i jakości przesyłanych danych. Przykładem zastosowania może być sieć komputerowa w fabryce, gdzie różne maszyny generują silne pola elektromagnetyczne, a wybór odpowiedniego medium transmisyjnego zapewnia nieprzerwaną pracę systemów informatycznych. Dodatkowo, zgodność z normami, takimi jak ANSI/TIA-568, podkreśla znaczenie stosowania kabli odpowiedniej kategorii w kontekście jakości i wydajności transmisji danych.

Pytanie 12

Jakie ograniczenie funkcjonalne występuje w wersji Standard systemu Windows Server 2019?

A. Brak interfejsu graficznego
B. Wirtualizacja maksymalnie dla dwóch instancji
C. Obsługuje najwyżej dwa procesory
D. Licencjonowanie na maksymalnie 50 urządzeń
Odpowiedź dotycząca wirtualizacji maksymalnie dla dwóch instancji w Windows Server 2019 w wersji Standard jest poprawna, ponieważ ta edycja systemu operacyjnego rzeczywiście ogranicza użytkownika do uruchamiania maksymalnie dwóch instancji systemu wirtualnego na maszynach wirtualnych. Przykładowo, jeśli przedsiębiorstwo decyduje się na wdrożenie środowiska testowego oraz produkcyjnego, to z użyciem edycji Standard ma możliwość stworzenia dwóch różnych instancji, co jest wystarczające dla mniejszych środowisk. Warto zaznaczyć, że w odróżnieniu od edycji Datacenter, która pozwala na nieograniczoną wirtualizację, edycja Standard została zaprojektowana z myślą o małych i średnich przedsiębiorstwach, które nie potrzebują rozbudowanej infrastruktury wirtualizacji. To ograniczenie skłania do przemyślenia architektury IT oraz planowania dalszego rozwoju, ponieważ w miarę rozwoju organizacji może być konieczne przeszkalanie na wyższą edycję. Zgodnie z najlepszymi praktykami, przedsiębiorstwa powinny ocenić swoje potrzeby w zakresie wirtualizacji przed podjęciem decyzji o wyborze wersji systemu.

Pytanie 13

Ustanawianie zaszyfrowanych połączeń pomiędzy hostami w publicznej sieci Internet, wykorzystywane w sieciach VPN (Virtual Private Network), to

A. trasowanie
B. mapowanie
C. tunelowanie
D. mostkowanie
Tunelowanie to technika, która umożliwia tworzenie zaszyfrowanych połączeń między hostami w publicznej sieci Internet, co jest kluczowe w kontekście Virtual Private Network (VPN). Proces ten polega na enkapsulacji danych w dodatkowych nagłówkach, co pozwala na przesyłanie informacji przez niezabezpieczone sieci w sposób bezpieczny i prywatny. Przykładem zastosowania tunelowania są protokoły takie jak PPTP, L2TP oraz OpenVPN, które implementują różne metody szyfrowania i autoryzacji, zapewniając tym samym poufność i integralność przesyłanych danych. W praktyce tunelowanie pozwala użytkownikom na bezpieczne połączenia zdalne do sieci lokalnych, co jest niezbędne dla pracowników zdalnych oraz dla firm, które pragną chronić swoje zasoby przed nieautoryzowanym dostępem. Dobre praktyki w zakresie konfiguracji VPN obejmują stosowanie silnych algorytmów szyfrowania oraz regularne aktualizacje oprogramowania, aby upewnić się, że systemy są odporne na znane zagrożenia.

Pytanie 14

Komputer w sieci lokalnej ma adres IP 172.16.0.0/18. Jaka jest maska sieci wyrażona w postaci dziesiętnej?

A. 255.255.128.0
B. 255.255.255.192
C. 255.255.192.0
D. 255.255.255.128
Wybór błędnej odpowiedzi może wynikać z niepełnego rozumienia koncepcji adresacji IP oraz maski podsieci. Na przykład, 255.255.255.192 to maska odpowiadająca prefiksowi /26, co oznacza, że 26 bitów jest używanych do identyfikacji sieci. Taka maska umożliwia 64 adresy IP w danej podsieci, z czego 62 mogą być używane przez hosty. W przypadku sieci 172.16.0.0/18, jednak potrzebujemy więcej adresów, ponieważ ta podsieć pozwala na 16382 hostów. Podobnie, 255.255.128.0 odpowiada masce /17, co znowu zmniejsza liczbę dostępnych adresów w porównaniu do /18. Wykorzystanie 255.255.255.128, która odpowiada /25, ogranicza nas do 126 hostów w podsieci. Istotne jest zrozumienie, że wybór odpowiedniej maski jest kluczowy w kontekście zarówno zarządzania adresacją IP, jak i planowania sieci. Typowym błędem jest niewłaściwe przeliczenie bitów maski lub zrozumienie, jak te bity wpływają na dostępność adresów. Z tego powodu, dla sieci o adresie IP 172.16.0.0/18 najlepszym rozwiązaniem jest maska 255.255.192.0, co wskazuje na umiejętność prawidłowego planowania oraz organizacji sieci.

Pytanie 15

Jakie narzędzie wirtualizacji stanowi część systemów operacyjnych Windows?

A. VMWARE
B. ESXI
C. HYPER-V
D. QEMU
HYPER-V to natywne narzędzie wirtualizacji opracowane przez firmę Microsoft, które jest integralną częścią systemów operacyjnych Windows Server oraz Windows 10 i nowszych. Umożliwia tworzenie i zarządzanie maszynami wirtualnymi, co jest kluczowe w kontekście nowoczesnych środowisk IT, gdzie efektywność i elastyczność są na wagę złota. HYPER-V obsługuje wiele funkcji, takich jak dynamiczne przydzielanie pamięci, co pozwala na automatyczne dostosowywanie zasobów w zależności od potrzeb uruchomionych maszyn. Dodatkowo, HYPER-V wspiera różne systemy operacyjne gości, co zwiększa jego wszechstronność. Przykładowe zastosowanie HYPER-V obejmuje testowanie aplikacji w izolowanym środowisku, uruchamianie złożonych środowisk serwerowych w ramach jednego hosta, a także disaster recovery dzięki klonowaniu maszyn wirtualnych. W ramach branżowych standardów, HYPER-V spełnia wymagania dotyczące bezpieczeństwa oraz zgodności z technologiami wirtualizacji, takimi jak VDI (Virtual Desktop Infrastructure).

Pytanie 16

Oblicz koszt brutto materiałów niezbędnych do połączenia w sieć, w topologii gwiazdy, 3 komputerów wyposażonych w karty sieciowe, wykorzystując przewody o długości 2 m. Ceny materiałów podano w tabeli.

Nazwa elementuCena jednostkowa brutto
przełącznik80 zł
wtyk RJ-451 zł
przewód typu „skrętka"1 zł za 1 metr

A. 92 zł
B. 252 zł
C. 89 zł
D. 249 zł
Aby obliczyć koszt brutto materiałów do stworzenia sieci w topologii gwiazdy dla trzech komputerów, kluczowe jest zrozumienie, jakie elementy są potrzebne do prawidłowego połączenia. W tym przypadku, do połączenia komputerów niezbędne są: przełącznik, przewody o długości 2 m oraz wtyki RJ-45. Koszt przełącznika jest stały, a koszt przewodów i wtyków można obliczyć na podstawie ich liczby. Każdy komputer wymaga jednego przewodu, co w przypadku trzech komputerów oznacza 3 przewody, czyli 6 m w sumie. Do tego dodajemy koszt przełącznika i wtyków. Po zsumowaniu wszystkich kosztów dochodzimy do kwoty 92 zł, która jest poprawna. Warto pamiętać, że w praktyce, przy projektowaniu sieci, właściwy dobór sprzętu i materiałów ma ogromne znaczenie dla wydajności i stabilności sieci. Wytyczne branżowe zalecają, aby przy budowie sieci lokalnych zwracać uwagę na jakość komponentów oraz ich zgodność z obowiązującymi standardami, co może zapobiec problemom z komunikacją i stabilnością w przyszłości.

Pytanie 17

Którego numeru portu używa usługa FTP do wysyłania komend?

A. 80
B. 69
C. 20
D. 21
Wybór innych numerów portów w kontekście usługi FTP do przesyłania poleceń jest błędny z kilku kluczowych powodów. Port 80 jest standardowym portem dla protokołu HTTP, który jest używany do przesyłania treści stron internetowych. Jego zastosowanie w kontekście FTP jest mylące, ponieważ FTP i HTTP to różne protokoły służące do różnych celów – FTP do transferu plików, a HTTP do przesyłania dokumentów HTML. Port 20, z kolei, jest wykorzystywany do transferu danych w ramach FTP, a nie do komunikacji kontrolnej, dlatego jego wybór jako portu do przesyłania poleceń jest błędny. Port 69 jest zarezerwowany dla TFTP (Trivial File Transfer Protocol), który jest uproszczoną wersją FTP, jednak nie jest używany do typowych zastosowań FTP. Typowym błędem myślowym jest mylenie ról portów oraz protokołów, co prowadzi do nieporozumień w konfiguracji usług sieciowych. Aby prawidłowo zarządzać połączeniami i zapewnić ich bezpieczeństwo, kluczowe jest zrozumienie, który port jest przypisany do jakiego protokołu i w jaki sposób te protokoły współdziałają w sieci.

Pytanie 18

Jaką maksymalną liczbę komputerów można zaadresować adresami IP w klasie C?

A. 256 komputerów
B. 252 komputery
C. 254 komputery
D. 255 komputerów
Wybór 256 komputerów jako maksymalnej liczby hostów w sieci klasy C jest błędny z kilku istotnych powodów. Liczba ta wynika z niepełnego zrozumienia struktury adresu IP. Klasa C, zgodnie z definicją, przeznacza 8 bitów na identyfikację hostów, co teoretycznie rzeczywiście daje 256 adresów. Jednak w praktyce dwa z tych adresów są zarezerwowane. Adres sieci, który jest używany do identyfikacji samej sieci, oraz adres rozgłoszeniowy, który służy do komunikacji z wszystkimi hostami w sieci, nie mogą być przydzielane do urządzeń. To fundamentalna zasada w projektowaniu sieci, która często bywa pomijana przez osoby nieposiadające doświadczenia w tej dziedzinie. Wybierając 255 komputerów, również można popełnić błąd w myśleniu, gdyż znów nie uwzględnia to rezerwacji adresu rozgłoszeniowego, a zatem wciąż nie jest to prawidłowa liczba. Podobnie, 252 komputery mogą wydawać się logicznym wyborem, ale nie uwzględnia to pełnej możliwości wykorzystania adresów zarezerwowanych wyłącznie dla hostów. W praktyce, skuteczne zarządzanie adresacją IP wymaga zrozumienia tych zasad oraz ich konsekwencji dla projektowania i operacyjności sieci. Brak tej wiedzy może prowadzić do problemów z komunikacją i zarządzaniem siecią, co jest krytyczne w każdym środowisku IT.

Pytanie 19

Jakie oznaczenie według normy ISO/IEC 11801:2002 definiuje skrętkę foliowaną, przy czym wszystkie pary żył są ekranowane folią?

A. F/FTP
B. U/UTP
C. F/UTP
D. S/FTP
Wybór innych oznaczeń związanych z typami skrętek nie oddaje prawidłowo charakterystyki F/UTP. Zaczynając od S/FTP, jest to skrętka, gdzie każda para żył jest ekranowana osobno, a dodatkowo cały kabel jest otoczony ekranem, co zapewnia wysoki poziom ochrony, ale zdecydowanie różni się od tego, co oferuje F/UTP – oznaczającego ekranowanie tylko par żył. U/UTP wskazuje na kabel nieekranowany, co jest użyteczne w mniej zakłóconych środowiskach, lecz nie dostarcza ochrony, jaką oferują typy ekranowane, przez co jest mniej zalecany w miejscach o wysokim natężeniu zakłóceń elektromagnetycznych. F/FTP natomiast wskazuje, że cały kabel jest ekranowany folią, co mogłoby wydawać się korzystniejsze, jednakże nie odpowiada specyfikacji pytania dotyczącego skrętki foliowanej, gdzie ekranowanie dotyczy jedynie par. Typowe błędy myślowe prowadzące do tych niepoprawnych odpowiedzi polegają na myleniu stopnia ekranowania oraz nieprawidłowym interpretowaniu oznaczeń, co może skutkować wyborem niewłaściwego typu kabla do danej aplikacji. W praktyce, dobór odpowiedniego typu skrętki jest kluczowy dla zapewnienia optymalnej wydajności sieci oraz bezpieczeństwa przesyłanych danych.

Pytanie 20

Proces łączenia sieci komputerowych, który polega na przesyłaniu pakietów protokołu IPv4 przez infrastrukturę opartą na protokole IPv6 oraz w przeciwnym kierunku, nosi nazwę

A. mapowaniem
B. podwójnego stosu IP
C. translacją protokołów
D. tunelowaniem
Mechanizmy integracji sieci komputerowych mogą być mylone, co prowadzi do nieprawidłowych wyborów odpowiedzi. Mapowanie, chociaż istotne w kontekście konwersji adresów IP, nie odnosi się bezpośrednio do transferu pakietów między różnymi wersjami protokołu IP. Mapowanie to proces, który ma miejsce w kontekście translacji adresów, ale nie obejmuje bezpośredniego przesyłania danych w formie tuneli. Z kolei translacja protokołów dotyczy zmiany jednego protokołu na inny, co niekoniecznie oznacza tunelowanie. Takie podejście nie uwzględnia infrastruktury sieciowej, która jest kluczowa w kontekście komunikacji między IPv4 a IPv6. Ponadto, podwójny stos IP to metoda, w której urządzenia obsługują zarówno IPv4, jak i IPv6 równolegle, co również nie jest synonimem tunelowania. W praktyce, pomylenie tych terminów może prowadzić do błędnej konfiguracji sieci oraz problemów z komunikacją między różnymi systemami. Kluczowe jest więc zrozumienie różnicy między tymi mechanizmami i ich zastosowaniem w praktyce, aby uniknąć typowych pułapek związanych z integracją nowoczesnych i starszych systemów sieciowych.

Pytanie 21

Jakie urządzenie należy wykorzystać, aby połączyć lokalną sieć z Internetem dostarczanym przez operatora telekomunikacyjnego?

A. Punkt dostępu
B. Ruter ADSL
C. Przełącznik warstwy 3
D. Konwerter mediów
Ruter ADSL jest urządzeniem, które łączy lokalną sieć komputerową z Internetem dostarczanym przez operatora telekomunikacyjnego. Działa on na zasadzie modulacji sygnału ADSL, co pozwala na jednoczesne przesyłanie danych przez linię telefoniczną, bez zakłócania połączeń głosowych. Ruter ADSL pełni funkcję bramy do sieci, umożliwiając podłączenie wielu urządzeń w sieci lokalnej do jednego połączenia internetowego. Zazwyczaj wyposażony jest w porty LAN, przez które można podłączyć komputery, drukarki oraz inne urządzenia. Przykładem zastosowania może być domowa sieć, gdzie ruter ADSL łączy się z modemem telefonicznym, a następnie rozdziela sygnał na różne urządzenia w sieci. Dodatkowo, rutery ADSL często zawierają funkcje zarządzania jakością usług (QoS) oraz zabezpieczenia, takie jak firewall, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa sieci. Warto również zauważyć, że rutery ADSL są standardowym rozwiązaniem w przypadku lokalnych sieci, które korzystają z technologii xDSL i są szeroko stosowane w domach oraz małych biurach.

Pytanie 22

Jak nazywa się usługa, która pozwala na przekształcanie nazw komputerów w adresy IP?

A. DHCP (Dynamic Host Configuration Protocol)
B. DNS (Domain Name System)
C. WINS (Windows Internet Name Service)
D. NIS (Network Information Service)
Prawidłowa odpowiedź to DNS (Domain Name System), który jest kluczowym elementem infrastruktury internetowej, umożliwiającym tłumaczenie nazw domenowych na adresy IP. Bez DNS, korzystanie z Internetu byłoby znacznie trudniejsze, ponieważ użytkownicy musieliby zapamiętywać numeryczne adresy IP dla każdego zasobu online. DNS działa na zasadzie hierarchicznej struktury, w której poszczególne serwery DNS współpracują, aby dostarczyć odpowiednie informacje o adresach IP. Na przykład, kiedy wpisujesz adres www.example.com w przeglądarce, zapytanie DNS jest wysyłane do serwera DNS, który następnie zwraca odpowiadający mu adres IP, co pozwala na szybkie połączenie z odpowiednim serwisem. W praktyce, wiele organizacji korzysta z serwerów DNS, aby zapewnić łatwiejszy dostęp do swoich zasobów, a także do zarządzania rekordami DNS, co wpływa na wydajność i bezpieczeństwo sieci. Standaryzacja protokołu DNS, z jego rozbudowanymi funkcjami jak rekurencyjne zapytania czy strefy, jest kluczowym elementem nowoczesnej architektury sieciowej.

Pytanie 23

Jakie jest odpowiednik maski 255.255.252.0 w postaci prefiksu?

A. /25
B. 122
C. /23
D. /24
Maska podsieci 255.255.252.0 to nic innego jak prefiks /22. To znaczy, że 22 bity używamy do określenia identyfikatora podsieci w adresie IPv4. Mówiąc prosto, te dwa ostatnie bity dają nam możliwość utworzenia 4 podsieci i 1022 hostów w każdej (liczy się 2^10 - 2, bo trzeba odjąć adres sieci i rozgłoszeniowy). Ta maska jest całkiem przydatna w większych sieciach, gdzie chcemy dobrze zarządzać adresami IP. Na przykład w firmach można ją zastosować do podziału dużych zakresów adresów na mniejsze, lepiej zorganizowane podsieci, co potem pomaga w zarządzaniu ruchem i bezpieczeństwem. Używanie odpowiednich masek podsieci to ważny aspekt w projektowaniu sieci, bo to jedna z tych najlepszych praktyk w branży. A jeśli chodzi o IPv6, to już nie jest tak krytyczne, ale wciąż dobrze wiedzieć, jak to wszystko działa w kontekście routingu i adresowania.

Pytanie 24

Aby użytkownicy sieci lokalnej mogli przeglądać strony WWW przez protokoły HTTP i HTTPS, zapora sieciowa powinna pozwalać na ruch na portach

A. 90 i 443
B. 90 i 434
C. 80 i 434
D. 80 i 443
Odpowiedź 80 i 443 jest prawidłowa, ponieważ port 80 jest standardowym portem używanym do komunikacji w protokole HTTP, natomiast port 443 jest przeznaczony dla protokołu HTTPS, który zapewnia szyfrowanie danych przesyłanych w sieci. Umożliwiając przepuszczanie ruchu na tych portach, zapora sieciowa pozwala użytkownikom sieci lokalnej na bezpieczne przeglądanie stron internetowych. Przykładem może być środowisko biurowe, w którym pracownicy korzystają z przeglądarek internetowych do dostępu do zasobów online, takich jak platformy chmurowe czy portale informacyjne. W kontekście najlepszych praktyk, wiele organizacji stosuje zasady bezpieczeństwa, które obejmują zezwolenie na ruch tylko na tych portach, aby zminimalizować ryzyko ataków oraz nieautoryzowanego dostępu do sieci. Dodatkowo, stosowanie HTTPS na portach 443 jest zalecane przez organizacje takie jak Internet Engineering Task Force (IETF), co przyczynia się do lepszego zabezpieczenia danych użytkowników.

Pytanie 25

Aby umożliwić jedynie urządzeniom z określonym adresem fizycznym połączenie z siecią WiFi, trzeba ustawić w punkcie dostępowym

A. bardziej zaawansowane szyfrowanie
B. firewall
C. strefę o ograniczonym dostępie
D. filtrację adresów MAC
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi jedynie do urządzeń posiadających określone adresy MAC (Media Access Control). Każde urządzenie sieciowe ma unikalny adres MAC, który identyfikuje je w sieci lokalnej. Konfigurując filtrację adresów MAC w punkcie dostępowym, administrator może wprowadzić listę dozwolonych adresów, co zwiększa bezpieczeństwo sieci. Przykład zastosowania tej technologii może obejmować małe biuro lub dom, gdzie właściciel chce zapewnić, że tylko jego smartfony, laptopy i inne urządzenia osobiste mogą łączyć się z siecią, uniemożliwiając dostęp nieznanym gościom. Choć filtracja adresów MAC nie jest niezawodna (ponieważ adresy MAC mogą być spoofowane), jest jednym z elementów strategii bezpieczeństwa, współpracując z innymi metodami, takimi jak WPA2 lub WPA3, co zapewnia wielowarstwową ochronę przed nieautoryzowanym dostępem do sieci.

Pytanie 26

Zestaw zasad do filtrowania ruchu w routerach to

A. ACL (Access Control List)
B. ACPI (Advanced Configuration and Power Interface)
C. NNTP (Network News Transfer Protocol)
D. MMC (Microsoft Management Console)
Dobra robota z odpowiedzią na ACL! To jest naprawdę trafne, bo ACL, czyli Access Control List, to zbiór reguł, które naprawdę mają duże znaczenie w sieciach. Dzięki nim można decydować, co można przesyłać do i z urządzeń, takich jak ruter. To działa na poziomie pakietów, co daje adminom możliwość kontrolowania ruchu sieciowego za pomocą adresów IP, protokołów i portów. Fajnym przykładem, jak można to wykorzystać, jest ograniczenie dostępu do niektórych zasobów czy też zezwolenie tylko zaufanym adresom IP. To naprawdę pomaga w zwiększeniu bezpieczeństwa sieci. W branży często mówi się o tym, żeby stosować ACL jako część większej strategii bezpieczeństwa, obok takich rzeczy jak firewalle czy systemy wykrywania włamań. Nie zapomnij też, że warto regularnie przeglądać i aktualizować te reguły, bo środowisko sieciowe ciągle się zmienia, a dostęp do ważnych zasobów trzeba minimalizować tylko do tych, którzy naprawdę go potrzebują.

Pytanie 27

Jakie jest adres rozgłoszeniowy (broadcast) dla hosta z adresem IP 192.168.35.202 oraz 26-bitową maską?

A. 192.168.35.255
B. 192.168.35.63
C. 192.168.35.192
D. 192.168.35.0
Adresy 192.168.35.63, 192.168.35.0 oraz 192.168.35.192 są błędnymi odpowiedziami, ponieważ wynikają z niepoprawnego zrozumienia struktury adresacji IP oraz zasad obliczania adresu rozgłoszeniowego. Rozpoczynając od adresu 192.168.35.0, który jest adresem sieciowym, należy zauważyć, że nie może być użyty jako adres rozgłoszeniowy, ponieważ jest to adres identyfikujący sieć, a nie konkretne urządzenie. Kolejnym błędnym podejściem jest wybranie adresu 192.168.35.192; ten adres jest pierwszym adresem, który może być przypisany do hostów w tej podsieci, a zatem nie może być adresem rozgłoszeniowym. Ostatecznie, 192.168.35.63 nie jest poprawnym adresem rozgłoszeniowym, gdyż mieści się w niewłaściwym zakresie, który wynika z zastosowanej maski. Właściwy sposób obliczania adresów IP wymaga staranności oraz znajomości koncepcji dotyczących podziału sieci i adresowania. Mocna znajomość tych zasad jest kluczowa dla administratorów sieci, aby skutecznie zarządzać połączeniami i optymalizować ruch w sieci, co stanowi fundament dobrej praktyki w inżynierii sieciowej.

Pytanie 28

Jak wiele punktów rozdzielczych, według normy PN-EN 50174, powinno być umiejscowionych w budynku o trzech kondygnacjach, przy założeniu, że powierzchnia każdej z kondygnacji wynosi około 800 m2?

A. 4
B. 2
C. 1
D. 3
Zgodnie z normą PN-EN 50174, która reguluje wymagania dotyczące planowania i instalacji systemów telekomunikacyjnych w budynkach, liczba punktów rozdzielczych w obiekcie zależy od kilku kluczowych czynników, takich jak powierzchnia kondygnacji oraz ilość kondygnacji. W przypadku 3-kondygnacyjnego budynku o powierzchni każdej kondygnacji wynoszącej około 800 m², norma wskazuje na konieczność zainstalowania trzech punktów rozdzielczych. Każdy punkt rozdzielczy powinien być strategicznie rozmieszczony, aby maksymalizować efektywność sieci telekomunikacyjnej oraz zapewnić łatwy dostęp do infrastruktury. Praktyczne zastosowanie tej zasady sprawdza się w obiektach o dużej powierzchni użytkowej, gdzie odpowiednia liczba punktów rozdzielczych ułatwia zarządzanie siecią, a także minimalizuje ryzyko awarii. Zastosowanie normy PN-EN 50174 w projektowaniu sieci telekomunikacyjnych jest istotne dla zapewnienia nieprzerwanego dostępu do usług, co jest kluczowe w obiektach komercyjnych oraz publicznych.

Pytanie 29

Urządzenie warstwy dystrybucji, które odpowiada za połączenie odrębnych sieci oraz zarządzanie przepływem danych między nimi, nazywane jest

A. routerem
B. serwerem
C. przełącznikiem
D. koncentratorem
Serwer, jako urządzenie, pełni zupełnie inną rolę niż router. Jest to system komputerowy, który dostarcza różnorodne usługi i zasoby innym komputerom w sieci, nie zajmując się bezpośrednim zarządzaniem przepływem informacji między sieciami. Serwery mogą obsługiwać aplikacje, przechowywać dane czy oferować usługi takie jak hosting stron internetowych, ale nie mają zdolności do trasowania pakietów danych jak routery. Przełącznik natomiast działa na warstwie drugiej modelu OSI, czyli zajmuje się przekazywaniem ramek między urządzeniami w tej samej sieci lokalnej. Jego główną funkcją jest przełączanie ramek w oparciu o adresy MAC, co sprawia, że nie jest on w stanie łączyć różnych sieci. Koncentratory, które są urządzeniami starszej generacji, również nie mają zdolności do zarządzania ruchem między sieciami; działają na poziomie fizycznym, po prostu przekazując sygnały do wszystkich podłączonych urządzeń bez inteligentnego kierowania nimi. Te mylne pojęcia mogą prowadzić do nieefektywnego projektowania sieci, ponieważ zrozumienie specyfiki każdego z tych urządzeń jest kluczowe dla ich prawidłowego zastosowania. Warto zwrócić uwagę, że wybór odpowiedniego urządzenia sieciowego powinien być oparty na konkretnej funkcjonalności i wymaganiach sieci.

Pytanie 30

Jaka jest maksymalna liczba adresów sieciowych dostępnych w adresacji IP klasy A?

A. 64 adresy
B. 128 adresów
C. 32 adresy
D. 254 adresy
Adresacja IP klasy A jest jedną z głównych klas adresów w protokole IP, który służy do identyfikacji urządzeń w sieci komputerowej. W klasie A pierwsze bity adresu wynoszą '0', co pozwala na maksymalne stworzenie 2^7 (czyli 128) adresów sieciowych. Każdy adres w tej klasie może mieć do 16,777,216 (2^24) unikalnych adresów hostów, co czyni klasę A odpowiednią do dużych sieci. Przykładem zastosowania adresacji klasy A są duże organizacje, takie jak korporacje międzynarodowe, które potrzebują ogromnej liczby adresów IP do obsługi wielu urządzeń i serwerów. W praktyce, standardy takie jak RFC 791 definiują zasady dotyczące przydzielania adresów, co przyczynia się do efektywnego zarządzania przestrzenią adresową w Internecie. Wiedza o strukturze adresów IP jest kluczowa dla administratorów sieci oraz specjalistów IT, gdyż pozwala na odpowiednie planowanie i projektywanie architektury sieci. Zrozumienie klasy A i jej możliwości jest podstawą w projektowaniu skalowalnych i wydajnych systemów sieciowych.

Pytanie 31

Internet Relay Chat (IRC) to protokół wykorzystywany do

A. realizacji czatów za pomocą interfejsu tekstowego
B. przesyłania wiadomości na forum dyskusyjnym
C. wysyłania wiadomości e-mail
D. transmisji dźwięku przez sieć
Internet Relay Chat (IRC) jest protokołem komunikacyjnym, który umożliwia prowadzenie rozmów za pomocą konsoli tekstowej w czasie rzeczywistym. Użytkownicy mogą łączyć się w kanałach, które działają jak wirtualne pokoje rozmowy, gdzie mogą wymieniać wiadomości tekstowe z innymi uczestnikami. IRC został zaprojektowany w latach 80. XX wieku i jest jednym z najstarszych protokołów komunikacyjnych w sieci. W praktyce, IRC jest często wykorzystywany do organizacji i koordynacji pracy zespołów, w społecznościach gier online oraz w różnych projektach open source, gdzie komunikacja w czasie rzeczywistym jest kluczowa. Standardowe klienty IRC, takie jak mIRC czy HexChat, oferują różne funkcje, takie jak możliwość tworzenia skryptów, co umożliwia automatyzację pewnych procesów. Warto również zauważyć, że IRC opiera się na architekturze klient-serwer, co oznacza, że klienci łączą się z serwerem IRC, który zarządza rozmowami i kanałami, co jest zgodne z najlepszymi praktykami w budowie systemów komunikacyjnych.

Pytanie 32

Jakiego protokołu dotyczy port 443 TCP, który został otwarty w zaporze sieciowej?

A. HTTPS
B. DNS
C. NNTP
D. SMTP
Zrozumienie portów i przypisanych do nich protokołów jest kluczowe w kontekście zarządzania siecią i bezpieczeństwa. W przypadku odpowiedzi związanych z SMTP, NNTP oraz DNS, ważne jest, aby zrozumieć, do jakich portów są przypisane te protokoły. SMTP (Simple Mail Transfer Protocol) używa portu 25, który jest wykorzystywany do przesyłania wiadomości e-mail. Z kolei NNTP (Network News Transfer Protocol) korzysta z portu 119, który służy do przesyłania wiadomości w grupach dyskusyjnych. Port 53 jest zarezerwowany dla DNS (Domain Name System), który przetwarza zapytania dotyczące nazw domenowych i ich adresów IP. Często zdarza się, że osoby mylnie kojarzą porty z protokołami, co prowadzi do nieprawidłowych wniosków. Kluczowym błędem jest utożsamianie portu 443 z innymi protokołami, które mają zupełnie inne zastosowanie i nie są związane z przesyłaniem bezpiecznych danych. Niewłaściwe przypisanie portu do protokołu może prowadzić do nieefektywnego zarządzania siecią i problemów z bezpieczeństwem, dlatego ważne jest, aby zawsze odnosić się do standardowych przyporządkowań portów zgodnych z dokumentacją IANA (Internet Assigned Numbers Authority). W erze, gdy bezpieczeństwo danych jest kluczowe, wiedza na temat odpowiednich protokołów i portów jest niezbędna dla każdego specjalisty w dziedzinie IT.

Pytanie 33

Jak można zidentyfikować przeciążenie w sieci lokalnej LAN?

A. reflektometru optycznego OTDR
B. miernika uniwersalnego
C. diodowego testera okablowania
D. analizatora protokołów sieciowych
Diodowy tester okablowania, miernik uniwersalny oraz reflektometr optyczny OTDR to narzędzia, które pełnią inne funkcje w zarządzaniu sieciami, ale nie są odpowiednie do wykrywania przeciążenia w sieci lokalnej. Diodowy tester okablowania jest używany głównie do weryfikacji poprawności połączeń oraz jakości kabla, co może pomóc ustalić, czy fizyczne połączenie jest sprawne, lecz nie dostarcza informacji na temat obciążenia lub wydajności transmisji danych. Miernik uniwersalny, choć przydatny do pomiaru napięcia, prądu i oporu, nie ma zastosowania w kontekście analizy ruchu czy identyfikacji zatorów w sieci. Z kolei reflektometr optyczny OTDR jest stosowany w sieciach światłowodowych do oceny jakości włókien optycznych, lokalizacji uszkodzeń oraz analizy strat sygnału, ale również nie dostarcza informacji na temat przeciążeń w LAN. Takie podejścia mogą prowadzić do mylnych wniosków, ponieważ mogą sugerować, że odpowiednie narzędzia do monitorowania są zbędne, co w rzeczywistości jest kluczowe dla utrzymania optymalnej wydajności sieci. W praktyce, zrozumienie różnicy między różnymi typami narzędzi diagnostycznych jest niezbędne dla skutecznego zarządzania siecią.

Pytanie 34

Przy projektowaniu sieci przewodowej, która ma maksymalną prędkość transmisji wynoszącą 1 Gb/s, a maksymalna długość między punktami sieci nie przekracza 100 m, jakie medium transmisyjne powinno być zastosowane?

A. fale radiowe o częstotliwości 2,4 GHz
B. kabel UTP kategorii 5e
C. fale radiowe o częstotliwości 5 GHz
D. kabel koncentryczny o średnicy ¼ cala
Kabel UTP kategorii 5e jest idealnym medium transmisyjnym do budowy sieci przewodowej o maksymalnej szybkości transmisji 1 Gb/s i odległości do 100 m. UTP (Unshielded Twisted Pair) to rodzaj kabla, który składa się z par skręconych przewodów, co znacząco zmniejsza zakłócenia elektromagnetyczne i pozwala na osiąganie wysokich prędkości transmisji. Standard ten zapewnia przepustowość do 100 MHz, co umożliwia przesyłanie danych z prędkościami sięgającymi 1 Gb/s w odległości do 100 m, zgodnie z normą IEEE 802.3ab dla Ethernetu. Przykładem zastosowania mogą być biura, gdzie sieci komputerowe muszą być niezawodne i wydajne, co czyni kabel UTP 5e odpowiednim wyborem. Warto również zwrócić uwagę, że kabel ten jest powszechnie stosowany w standardzie Ethernet, co czyni go dobrze udokumentowanym i łatwo dostępnym rozwiązaniem w branży IT.

Pytanie 35

W zasadach grup włączono i skonfigurowano opcję "Ustaw ścieżkę profilu mobilnego dla wszystkich użytkowników logujących się do tego komputera":

\\serwer\profile\%username%
W którym folderze serwera będzie się znajdował profil mobilny użytkownika jkowal?

A. \profile\jkowal
B. \profile\serwer\username
C. \profile\username
D. \profile\username\jkowal
Odpowiedź \profile\jkowal jest poprawna, ponieważ ścieżka do profilu mobilnego użytkownika w systemach operacyjnych jest konstruowana na podstawie nazwy użytkownika. W praktyce, podczas konfigurowania profili mobilnych, system dodaje nazwę użytkownika do podstawowej ścieżki folderu profilu, co w tym przypadku daje \profile\jkowal. To podejście jest zgodne z najlepszymi praktykami w zarządzaniu kontami użytkowników w sieciach komputerowych. Użycie profili mobilnych pozwala na synchronizację ustawień i plików użytkownika między różnymi komputerami, co jest niezwykle przydatne w środowisku zdalnym i biurowym. Dzięki temu użytkownicy mogą uzyskać dostęp do swoich danych niezależnie od miejsca pracy, co zwiększa efektywność i elastyczność pracy. Zrozumienie tego procesu jest kluczowe dla administratorów systemów, którzy muszą zapewnić, że użytkownicy mają dostęp do swoich zasobów w sposób bezpieczny i efektywny.

Pytanie 36

The Dude, Cacti oraz PRTG to przykłady aplikacji wykorzystujących protokół SNMP (ang. Simple Network Management Protocol), używanego do

A. przechwytywania i analizy danych pakietowych
B. udostępniania zasobów w sieci
C. sprawdzania wydajności sieci
D. monitorowania oraz zarządzania urządzeniami sieciowymi
Odpowiedź "monitoringu i zarządzania urządzeniami sieciowymi" jest prawidłowa, ponieważ SNMP (Simple Network Management Protocol) to standardowy protokół używany głównie do zbierania informacji o stanie urządzeń sieciowych, takich jak routery, przełączniki, serwery i inne komponenty infrastruktury IT. Protokół ten pozwala administratorom na monitorowanie wydajności urządzeń, takich jak obciążenie CPU, wykorzystanie pamięci RAM, stan interfejsów sieciowych i wiele innych metryk. Na przykład, oprogramowanie takie jak PRTG Network Monitor wykorzystuje SNMP do regularnego zbierania danych z urządzeń w sieci, co pozwala na wczesne wykrywanie problemów oraz ich szybsze rozwiązywanie. Dobre praktyki zarządzania siecią zalecają wykorzystanie SNMP do automatyzacji procesów monitorowania, co zwiększa efektywność i niezawodność zarządzania infrastrukturą sieciową. Protokół ten jest również zgodny z różnymi standardami, takimi jak IETF RFC 1157, co zapewnia jego szeroką akceptację w branży.

Pytanie 37

Adres IPv6 pętli zwrotnej to adres

A. ::
B. FC80::
C. ::1
D. FE80::
Adres IPv6 pętli zwrotnej, czyli ::1, to coś jak lokalny adres, którego używamy, kiedy chcemy, żeby nasze urządzenie gadało samo ze sobą. Jest to standardowy sposób testowania różnych aplikacji czy usług, bez potrzeby łączenia się z innymi urządzeniami w sieci. Jak wysyłasz coś na ten adres, to tak jakbyś rzucał piłkę do lustra - to wraca do ciebie, a to przydaje się, kiedy chcesz sprawdzić, czy coś działa. Widać, że zgodnie z RFC 4291, ten adres ma swoje miejsce w strukturze IPv6. Z mojej perspektywy, zrozumienie tego adresu jest naprawdę ważne, zwłaszcza jeśli programujesz sieciowe aplikacje albo konfigurujesz serwery. Używanie lokalnego testowania przez ten adres pozwala szybko diagnozować usterki, nie bawiąc się w zewnętrzne połączenia. Można nawet ustawić serwery baz danych, żeby słuchały tylko na ::1, co poprawia bezpieczeństwo. To naprawdę fajne rozwiązanie!

Pytanie 38

Który z poniższych dokumentów nie wchodzi w skład dokumentacji powykonawczej lokalnej sieci komputerowej?

A. Lista użytych nazw użytkowników oraz haseł
B. Dokumentacja techniczna kluczowych elementów systemu
C. Dokumentacja materiałowa
D. Plan rozmieszczenia sieci LAN
Dokumentacja powykonawcza lokalnej sieci komputerowej powinna obejmować wszystkie istotne aspekty zrealizowanej instalacji, a jej kluczowym celem jest zapewnienie przyszłych referencji oraz ułatwienie zarządzania infrastrukturą. Niektóre elementy, które mogą wydawać się istotne, jednak nie pasują do tej klasyfikacji, to specyfikacja techniczna głównych elementów systemu oraz specyfikacja materiałowa. Specyfikacja techniczna dostarcza szczegółowego opisu urządzeń, takich jak routery, przełączniki, serwery, a także ich parametrów technicznych oraz interakcji w sieci. Tego typu dokumenty są zgodne z dobrą praktyką projektowania systemów i są kluczowe dla administratorów sieci, którzy mogą potrzebować zrozumieć, jak poszczególne elementy współpracują w celu zapewnienia efektywności i wydajności całego systemu. Z kolei specyfikacja materiałowa określa szczegółowo, jakie komponenty zostały wykorzystane w budowie sieci, co jest niezwykle ważne w kontekście przyszłych aktualizacji czy konserwacji. Użytkownicy często mylą te pojęcia z wykazem nazw użytkowników i haseł, sądząc, że są one równie istotne dla dokumentacji powykonawczej, co dokumenty techniczne. Jednakże, nazwy użytkowników i hasła to dane wrażliwe, które powinny być zarządzane zgodnie z politykami bezpieczeństwa, a ich uwzględnienie w dokumentacji powykonawczej mogłoby prowadzić do nieautoryzowanego dostępu do sieci. Z tego powodu nie są one uwzględniane w dokumentacji powykonawczej, a ich przechowywanie powinno odbywać się w bezpiecznych lokalizacjach, aby zminimalizować ryzyko wycieku informacji.

Pytanie 39

Poniżej przedstawiono wynik działania polecenia

Interface Statistics

                         Received              Sent
Bytes                  3828957336        3249252169
Unicast packets          35839063         146809272
Non-unicast packets          5406             25642
Discards                       50                 0
Errors                          0                 0
Unknown protocols               0

A. netstat -e
B. tracert -e
C. ipconfig -e
D. dnslookup -e
Odpowiedź 'netstat -e' jest poprawna, ponieważ to polecenie w systemach operacyjnych Windows służy do wyświetlania szczegółowych informacji na temat statystyk interfejsu sieciowego. W szczególności, 'netstat -e' prezentuje dane dotyczące przesyłania pakietów i bajtów, co jest szczególnie przydatne w troubleshootingu i monitorowaniu wydajności sieci. Umożliwia administratorom systemów i sieci analizę błędów, odrzuconych pakietów oraz identyfikację nieznanych protokołów, co może wskazywać na potencjalne problemy z konfiguracją bądź bezpieczeństwem. W praktyce, korzystając z 'netstat -e', można szybko ocenić, czy interfejs sieciowy działa zgodnie z oczekiwaniami, co jest kluczowe w zarządzaniu infrastrukturą sieciową. Dobrym przykładem zastosowania jest sytuacja, gdy administrator zauważa spowolnienie działania aplikacji sieciowych i za pomocą tego polecenia może stwierdzić, czy interfejs jest w stanie przetwarzać odpowiednią ilość danych.

Pytanie 40

Która norma określa standardy dla instalacji systemów okablowania strukturalnego?

A. PN-EN 50174
B. PN-EN 50310
C. PN-EN 55022
D. PN-EN50173
Wybór innych norm, takich jak PN-EN 50310, PN-EN 50173 lub PN-EN 55022, może wynikać z niepełnego zrozumienia zakresu ich zastosowania. Norma PN-EN 50310 dotyczy wymagań dotyczących systemów okablowania w kontekście instalacji elektrycznych i sieciowych, jednak nie odnosi się bezpośrednio do standardów instalacji okablowania strukturalnego. Natomiast PN-EN 50173 określa wymagania dotyczące systemów okablowania strukturalnego, ale skupia się głównie na jego projektowaniu i nie obejmuje kompleksowych wytycznych dotyczących instalacji, co jest kluczowe w kontekście efektywnego układania kabli. Z kolei norma PN-EN 55022 koncentruje się na wymaganiach dotyczących emisji elektromagnetycznej urządzeń elektronicznych, co jest całkowicie inną dziedziną i nie ma zastosowania w kontekście instalacji okablowania. Wybierając niewłaściwe normy, można wprowadzić nieefektywne praktyki instalacyjne, które mogą prowadzić do problemów z wydajnością systemu, takich jak straty sygnału, zakłócenia elektromagnetyczne oraz problemy z serwisowaniem. Zrozumienie różnic między tymi normami oraz ich rzeczywistymi zastosowaniami jest kluczowe dla prawidłowego projektowania i instalacji systemów okablowania, co w dłuższej perspektywie wpływa na niezawodność i efektywność instalacji telekomunikacyjnych.