Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 5 czerwca 2025 09:02
  • Data zakończenia: 5 czerwca 2025 09:16

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do trwałych metod stabilizacji punktów osnowy poziomej nie zaliczają się

A. trzpienie metalowe
B. rurki stalowe
C. paliki drewniane
D. słupy betonowe
Paliki drewniane nie są odpowiednie do trwałego sposobu stabilizacji punktów osnowy poziomej z kilku powodów. Przede wszystkim, drewno jako materiał jest podatne na degradację, zwłaszcza w warunkach atmosferycznych, co prowadzi do utraty stabilności i dokładności pomiarów geodezyjnych. Z czasem paliki mogą gnić, ulegać deformacji lub przesuwać się w wyniku zmian wilgotności i temperatury. W praktyce geodezyjnej preferuje się materiały o wysokiej trwałości i odporności na czynniki zewnętrzne, takie jak metale i beton, które zapewniają długoterminową stabilność punktów osnowy. Na przykład, trzpienie metalowe i rurki stalowe, wykorzystywane w stabilizacji punktów, są odporne na korozję i mechaniczne uszkodzenia, co czyni je bardziej niezawodnymi w długim okresie. Zgodnie z normami geodezyjnymi, zastosowanie stałych punktów o wysokiej trwałości jest niezbędne do zapewnienia dokładności pomiarów i ich powtarzalności w czasie, co jest kluczowe w projektowaniu i realizacji inwestycji budowlanych oraz infrastrukturalnych.

Pytanie 2

Jaki typ błędu mógł wystąpić podczas pomiaru długości w kierunku powrotnym, jeśli osoba dokonująca pomiaru niepoprawnie określiła liczbę pełnych odłożeń taśmy, ponieważ zgubiła jedną szpilkę?

A. Przypadkowy
B. Gruby
C. Systematyczny
D. Losowy
Błędy klasyfikowane jako systematyczne, przypadkowe czy losowe, choć mogą występować w pomiarach, nie są odpowiednie w tym kontekście. Błąd systematyczny to błąd, który ma stały charakter i powtarza się w każdym pomiarze, co prowadzi do systematycznego zawyżenia lub zaniżenia wyników. W przypadku zgubienia szpilki, nie można mówić o takim charakterze błędu, ponieważ skutki są bardziej losowe i zależne od konkretnej sytuacji pomiarowej. Z drugiej strony, błąd przypadkowy odnosi się do nieprzewidywalnych fluktuacji w procesie pomiarowym, które mogą być spowodowane różnorodnymi czynnikami, takimi jak zmiany temperatury czy drgania. Wreszcie, pojęcie błędu losowego nie jest adekwatne do opisanego przypadku, ponieważ odnosi się do całkowicie nieprzewidywalnych błędów, które nie są wynikiem konkretnej pomyłki pomiarowej. W praktyce pomiarowej kluczowe znaczenie ma precyzyjne określenie liczby odłożeń oraz monitorowanie używanego sprzętu, aby unikać błędów, które mogą wprowadzać nieścisłości w wynikach, a w efekcie prowadzić do znacznych kosztów w procesach produkcyjnych i budowlanych.

Pytanie 3

Długość odcinka zmierzonego na mapie o skali 1:500 wynosi 11,1 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 2,22 m
B. 22,20 m
C. 5,55 m
D. 55,50 m
Odpowiedź 55,50 m to dobry wybór. Jeśli popatrzysz na scale 1:500, to każdy centymetr na mapie oznacza 500 centymetrów w rzeczywistości. Czyli, żeby znaleźć długość w terenie, wystarczy pomnożyć długość na mapie, czyli 11,1 cm przez 500. Jak to zrobimy, to wychodzi 11,1 cm * 500 = 5550 cm, co daje nam 55,50 m. Rozumienie, jak działa skala, jest mega ważne w geodezji i kartografii, bo precyzyjne pomiary to podstawa przy wszelkich projektach budowlanych czy drogowych. Na przykład, przy projektowaniu jakiejś infrastruktury miejskiej, znajomość skali mapy pozwala lepiej przenieść to, co zaplanowaliśmy na rzeczywistość. To ma spore znaczenie, żeby wszystko było zgodne z planami zagospodarowania i innymi standardami, jak normy geodezyjne. Generalnie, umiejętność przeliczania wymiarów z map na rzeczywiste odległości to coś, co powinien umieć każdy inżynier czy geodeta.

Pytanie 4

Punkty pomiarowe osnowy sytuacyjnej powinny być stabilizowane w sposób gwarantujący ich jednoznaczne oznakowanie w terenie, podczas

A. aktualizacji danych w bazie obiektów topograficznych
B. inwentaryzacji po zakończeniu budowy obiektu
C. inwentaryzacji po zakończeniu budowy sieci uzbrojenia terenu
D. pracy w trakcie już rozpoczętego lub planowanego procesu inwestycyjnego
Prac w rozpoczętym lub przewidywanym procesie inwestycyjnym są kluczowe dla stabilizacji punktów pomiarowej osnowy sytuacyjnej, gdyż w tym kontekście zapewnia się nie tylko ich dokładność, ale i trwałość w terenie. Stabilizacja punktów pomiarowych ma na celu umożliwienie ich jednoznacznego oznaczenia i pomiaru w obszarach, gdzie prowadzone są działania budowlane lub infrastrukturalne. W procesie inwestycyjnym należy zastosować odpowiednie metody geodezyjne oraz techniki weryfikacji, takie jak pomiary GPS, które umożliwiają precyzyjne ustalenie lokalizacji punktów osnowy. Zgodnie z normami branżowymi, takie jak PN-EN ISO 17123-1, stabilizacja punktów powinna być przeprowadzana zgodnie z określonymi procedurami zapewniającymi ich ochronę przed zniszczeniem lub przemieszczeniem. Przykładami zastosowania mogą być projekty drogowe, budowy budynków, gdzie punkty osnowy stanowią fundament dla dalszych pomiarów geodezyjnych i inwentaryzacyjnych, co podkreśla ich znaczenie dla całego procesu inwestycyjnego.

Pytanie 5

Na podstawie zamieszczonych w tabeli wyników pomiarów punktów kontrolowanych, oblicz przemieszczenie pionowe punktu nr 3.

Nr punktuPomiar pierwotny
Hp [m]
Pomiar wtórny
Hw [m]
1521,2578521,2480
2521,2521521,2410
3521,2610521,2554
4521,2586521,2533
5521,2567521,2458
6521,2505521,2412

A. +5,6 mm
B. -56 mm
C. +56 mm
D. -5,6 mm
Odpowiedź -5,6 mm jest rzeczywiście trafna, bo dokładnie pokazuje, że punkt nr 3 przesunął się w dół o 5,6 mm. To dość istotne w geodezji i inżynierii, bo takie pomiary mówią nam, czy konstrukcje są stabilne i czy coś się zmienia w terenie. Żeby obliczyć to przemieszczenie, porównujemy pomiary z początku i po zmianach. W tym wypadku, pierwotna wartość punktu nr 3 została zmniejszona o 5,6 mm. To przydaje się w praktyce, na przykład przy analizie osiadań budynków, bo musimy wiedzieć, czy się nie zapadają. W branży używa się różnych metod, jak tachimetria czy GNSS, żeby mieć pewność co do dokładności danych o przemieszczeniach. Przepisy, takie jak Eurokod 7, wymagają regularnego sprawdzania tych wartości, by zapewnić bezpieczeństwo naszych budowli.

Pytanie 6

Która z podanych czynności nie dotyczy aktualizacji mapy zasadniczej?

A. Wprowadzenie jedynie wybranych danych
B. Usunięcie sytuacji, która już nie istnieje w terenie
C. Korekta zmian w nazewnictwie
D. Dodanie nowych elementów treści mapy
Odpowiedź 'naniesienie tylko wybranych danych' jest prawidłowa, ponieważ proces aktualizacji mapy zasadniczej wymaga kompleksowego podejścia do uzupełniania i weryfikacji danych. Mapa zasadnicza, jako dokument urzędowy, powinna odzwierciedlać pełny stan rzeczy w terenie, co oznacza, że każda istotna zmiana, w tym wprowadzenie nowych elementów, poprawa nazewnictwa oraz usunięcie nieaktualnych obiektów, powinny być wprowadzane w sposób kompleksowy. Na przykład, jeżeli na danym terenie zbudowano nową drogę, to nie wystarczy jedynie nanieść tej drogi – konieczne jest również zaktualizowanie nazw ulic, systemów adresowych oraz wszelkich powiązanych danych. Ponadto, zgodnie z obowiązującymi standardami, w tym normami ISO oraz krajowymi przepisami prawa geodezyjnego, aktualizacja mapy zasadniczej powinna być przeprowadzana w sposób systematyczny i całościowy, aby zapewnić jej rzetelność oraz aktualność. Tylko w ten sposób mapa może służyć jako wiarygodne źródło informacji dla różnych użytkowników, w tym instytucji publicznych, inwestorów oraz obywateli.

Pytanie 7

Cechą charakterystyczną wskazującą na lokalizację przebiegu instalacji wodociągowej, której położenie jest zdefiniowane w państwowym systemie odniesień przestrzennych przy użyciu współrzędnych prostokątnych płaskich oraz wysokości, jest

A. bagnet
B. pikieta
C. poligon
D. reper
Pikieta to naprawdę ważny element, kiedy mówimy o terenie w geodezji oraz inżynierii lądowej. Używa się jej, żeby określić, gdzie znajdują się różne części infrastruktury, np. przewody wodociągowe. Generalnie pikieta opiera się na konkretnych współrzędnych i wysokości, więc jest kluczowym składnikiem systemów odniesienia przestrzennego. W czasie prac pomiarowych pikiety pomagają w zachowaniu precyzji i dokładności. Dzięki ich umiejscowieniu można lepiej kontrolować postępy w budowie i upewnić się, że wszystko idzie zgodnie z planem. Osobiście myślę, że fajnie, że pikiety dają też możliwość monitorowania stanu technicznego przewodów wodociągowych. Ważne jest, żeby regularnie sprawdzać, czy pikiety zgadzają się z aktualnymi planami i mapami, bo to jest zgodne z geodezyjnymi normami.

Pytanie 8

Teoretyczna suma kątów wewnętrznych zamkniętego pięcioboku wynosi

A. 400g
B. 1000g
C. 600g
D. 800g
Suma teoretyczna kątów wewnętrznych wielokąta obliczana jest za pomocą wzoru: (n - 2) × 180°, gdzie n jest liczbą boków wielokąta. Dla pięcioboku, n wynosi 5, więc suma kątów wynosi (5 - 2) × 180° = 3 × 180° = 540°. Zwróć uwagę, że w tym pytaniu chodzi o pięciobok zamknięty, co jest istotne, ponieważ w kontekście geometrii zamkniętej suma kątów wewnętrznych zawsze pozostaje stała i wynosi właśnie 540°. W praktyce, znajomość sumy kątów wewnętrznych jest kluczowa w architekturze i inżynierii, gdzie obliczenia dotyczące kształtów i konstrukcji budynków oraz innych obiektów są niezbędne. Na przykład, projektując dachy wielokątne, architekci muszą uwzględniać tę wartość, aby zapewnić prawidłowe wymiary i estetykę budynku. Wartości kątów są również istotne przy tworzeniu modeli 3D, gdzie dokładność geometrii ma bezpośrednie przełożenie na jakość wizualizacji i obliczeń fizycznych.

Pytanie 9

Wysokość anteny odbiorczej przed oraz po zakończeniu sesji pomiarowej przy użyciu metody precyzyjnego pozycjonowania z zastosowaniem GNSS powinna być określona z dokładnością wynoszącą

A. 0,02 m
B. 0,004 m
C. 0,001 m
D. 0,01 m
Odpowiedź 0,01 m jest prawidłowa, ponieważ w kontekście precyzyjnego pozycjonowania GNSS, precyzja ustaleń dotyczących wysokości anteny odbiornika jest kluczowa dla uzyskania dokładnych wyników. Standardy pomiarowe, takie jak te określone przez IGS (International GNSS Service), wskazują, że dokładność pomiarów wysokości powinna wynosić co najmniej 0,01 m w przypadku dokładnych aplikacji, takich jak geodezja czy monitoring deformacji terenu. Przykładowo, w projektach budowlanych, gdzie precyzyjne pomiary wysokości mają kluczowe znaczenie dla stabilności konstrukcji, ustalanie wysokości anteny z dokładnością 0,01 m pozwala na minimalizację błędów, co przekłada się na wyższą jakość wykonania oraz bezpieczeństwo obiektów. Tego typu precyzja jest również kluczowa w aplikacjach związanych z systemami nawigacyjnymi oraz w badaniach geofizycznych, gdzie nawet najdrobniejsze różnice w wysokości mogą wpływać na wyniki analiz. Zatem, 0,01 m jest standardem, który zapewnia wystarczającą dokładność dla większości zastosowań związanych z GNSS.

Pytanie 10

W niwelacji geometrycznej podczas pomiarów przyjmuje się, że wagi są

A. odwrotnie proporcjonalne do długości ciągów
B. wprost proporcjonalne do długości ciągów
C. odwrotnie proporcjonalne do różnic wysokości ciągów
D. wprost proporcjonalne do różnic wysokości ciągów
W pomiarach niwelacyjnych wagi przyjmowane są odwrotnie proporcjonalnie do długości ciągów, co oznacza, że im dłuższy jest ciąg niwelacyjny, tym mniejsza waga przypisywana jest jego wartości. Jest to zgodne z zasadą, że dłuższe ciągi mogą wprowadzać większe błędy pomiarowe, przez co ich wpływ na wyniki pomiarów powinien być odpowiednio zredukowany. Przykładowo, w standardach branżowych, takich jak normy ISO dotyczące geodezji, uwzględnia się, że długość ciągu ma kluczowe znaczenie dla dokładności pomiaru. Z tego względu, podczas precyzyjnych pomiarów niwelacyjnych, stosuje się odpowiednią korekcję, aby zminimalizować wpływ długości ciągu na wynik. W praktyce oznacza to, że w sytuacjach, gdy mamy do czynienia z różnymi długościami ciągów, wagi dla krótko i długościowych odcinków powinny być starannie obliczone, aby zachować wysoką dokładność całego procesu niwelacyjnego, co jest kluczowe w projektowaniu infrastruktury, budownictwie czy w geodezji.

Pytanie 11

Konstrukcja przestrzennego wcięcia w przód opiera się na połączeniu kątowego wcięcia w przód z techniką

A. tachimetryczną
B. niwelacji trygonometrycznej
C. niwelacji geometrycznej
D. biegunową
Wielu ludzi może mieć problem z różnicowaniem metod niwelacji, co czasami prowadzi do złych wyborów. Metoda biegunowa, która opiera się na pomiarze kątów i odległości z jednego punktu, nie bierze pod uwagę kilku ważnych spraw przy przestrzennym wcięciu w przód. Moim zdaniem, trochę mylące jest też myślenie, że metoda tachimetryczna, mimo swojego zaawansowania, dotyczy tylko pomiaru kątów i odległości, a to jakoś nie wystarcza do dokładnych obliczeń wysokości. A jeśli chodzi o niwelację geometryczną, to chociaż działa w pomiarze różnic wysokości, to nie wykorzystuje kątów w taki sposób, żeby skutecznie zastosować wcięcie w przód. Często też mylą się pojęcia związane z tymi metodami, co prowadzi do pomyłek i źle dobranych technik w pracy geodezyjnej. Ważne jest, żeby zrozumieć, że każda z tych metod ma swoje plusy i minusy, a niwelacja trygonometryczna to tylko jedno z wielu narzędzi, które umożliwiają precyzyjne pomiary w terenie. Dobrze zrozumiane podstawy tych metod i ich odpowiednie zastosowanie są kluczowe dla każdego geodety.

Pytanie 12

W regionalnej części zbioru geodezyjnego i kartograficznego przechowywane są mapy topograficzne w skali

A. 1 : 500 000
B. 1 : 10 000
C. 1 : 300 000
D. 1 : 20 000
Odpowiedź 1: 1 : 10 000 jest poprawna, gdyż w wojewódzkiej części zasobu geodezyjnego i kartograficznego gromadzone są przede wszystkim mapy topograficzne w tej skali. Mapy w skali 1 : 10 000 są szczegółowymi przedstawieniami terenu, co pozwala na precyzyjne odwzorowanie obiektów oraz ich wzajemnych relacji. Tego typu mapy są wykorzystywane w planowaniu przestrzennym, urbanistyce oraz w działalności inwestycyjnej, gdzie niezbędna jest dokładna wiedza o infrastrukturze oraz ukształtowaniu terenu. W polskim prawodawstwie oraz normach geodezyjnych, takich jak „Rozporządzenie w sprawie szczegółowych zasad i trybu prowadzenia państwowego zasobu geodezyjnego i kartograficznego”, jasno określono, że skala 1 : 10 000 jest standardem, który pozwala na efektywne zarządzanie danymi geodezyjnymi. Dodatkowo, mapy te są kluczowe w sytuacjach kryzysowych, takich jak planowanie akcji ratunkowych czy zarządzanie katastrofami naturalnymi, dzięki czemu można szybko ocenić sytuację i podjąć odpowiednie działania.

Pytanie 13

W teodolicie, okrąg lub ring z zaznaczonym podziałem kątowym określa się jako

A. spodarką
B. alidadą
C. celownikiem
D. limbusem
Limbus w teodolicie to element, który zawiera podziałką kątową, co pozwala na precyzyjne pomiary kątów poziomych i pionowych. W praktyce limbusem określa się okrągły lub pierścieniowy element instrumentu, na którym naniesione są wartości kątowe. Umożliwia on użytkownikowi łatwe odczytywanie zmierzonych kątów, co jest kluczowe w geodezji oraz inżynierii lądowej. Teodolit jest niezbędnym narzędziem w pomiarach terenowych, a limbusem posługują się geodeci do określania pozycji punktów i tworzenia map. Warto zaznaczyć, że zgodnie z normami geodezyjnymi, precyzja pomiarów wykonanych przy użyciu teodolitu jest kluczowa dla zapewnienia jakości realizowanych projektów. Użycie limbusa pozwala na uzyskanie dokładnych wyników, które są zgodne z wymaganiami branżowymi, a jego właściwa kalibracja i konserwacja są podstawą sukcesu w pomiarach.

Pytanie 14

Południkiem osiowym w odwzorowaniu Gaussa-Krügera dla układu współrzędnych PL-2000 jest południk

A. 20°
B. 21°
C. 22°
D. 19°
Odpowiedź 21° jest poprawna, ponieważ w układzie współrzędnych PL-2000 południkiem osiowym odwzorowania Gaussa-Krügera dla strefy, w której mieści się Polska, jest właśnie południk 21°. Układ PL-2000 jest oparty na odwzorowaniu Gaussa-Krügera, które jest używane do precyzyjnego odwzorowywania powierzchni ziemi na płaszczyznach. Południki osiowe są kluczowe, ponieważ definiują strefy odwzorowań, co jest istotne w kontekście dokładności geodezyjnej oraz kartograficznej. Użycie południka 21° pozwala na minimalizację zniekształceń w obszarze, co jest przydatne w praktyce, na przykład w geodezji czy podczas tworzenia map topograficznych. Dobór odpowiednich południków jest zgodny z normami, takimi jak PN-EN ISO 19111, które określają zasady klasyfikacji i odwzorowań strefowych. Wiedza na temat południków osiowych jest kluczowa dla profesjonalistów zajmujących się kartografią i geodezją, ponieważ wpływa na jakość i dokładność realizowanych projektów.

Pytanie 15

Jeśli bok kwadratu zmierzonego w terenie ma długość 10 m, to na mapie w skali 1:1000 jego pole powierzchni wyniesie

A. 1,0 cm2
B. 100,0 cm2
C. 10,0 cm2
D. 0,1 cm2
Wybór niewłaściwej odpowiedzi może wynikać z nieprawidłowego podejścia do obliczeń związanych z polem powierzchni na mapie w określonej skali. Na przykład, odpowiedzi takie jak 0,1 cm2 i 10,0 cm2 mogą sugerować błędne obliczenia w przeliczeniach jednostek lub zrozumienia, jak skala wpływa na rzeczywiste wymiary. W przypadku 0,1 cm2, nieprawidłowość polega na tym, że ktoś mógł błędnie zinterpretować przeliczenie, zakładając, że powierzchnia na mapie jest znacznie mniejsza, niż jest w rzeczywistości, co prowadzi do zaniżenia wartości. Z kolei 10,0 cm2 może wydawać się uzasadnione, gdyż można by pomyśleć o jednostkowym przeliczeniu, ale pomija to kluczowy krok w rozumieniu skali, który polega na prawidłowym przeliczeniu całkowitego obszaru. Kluczowym błędem wielu uczniów jest niepełne zrozumienie, że pole powierzchni na mapie jest funkcją kwadratu długości boku, a nie jedynie przeliczeniem liniowym. Prawidłowe zrozumienie geometrii oraz równań powierzchni jest istotne, a także znajomość tego, jak współczesne metody pomiarowe i kartograficzne wymagają precyzyjnych obliczeń, aby uniknąć błędów w planowaniu przestrzennym czy inżynieryjnym.

Pytanie 16

Jakie jest wartość błędu względnego pomiaru długości odcinka wynoszącego 120 m, przy średnim błędzie pomiaru równym ±2 cm?

A. 1:4000
B. 1:8000
C. 1:6000
D. 1:2000
Błąd względny pomiaru to stosunek błędu pomiaru do wartości rzeczywistej, co można wyrazić wzorem: błąd względny = (błąd pomiaru / wartość rzeczywista). W przypadku podanego odcinka o długości 120 m i błędzie pomiaru wynoszącym ±2 cm, najpierw musimy zamienić długość odcinka na centymetry, co daje 12000 cm. Następnie obliczamy błąd względny: ±2 cm / 12000 cm = 0,0001667. Przekształcając ten wynik na postać ułamka dziesiętnego, otrzymujemy 1:6000. Takie obliczenia są kluczowe w pomiarach inżynieryjnych, gdzie precyzja jest niezwykle ważna. W praktyce, wiedza o błędach względnych pozwala inżynierom ocenić jakość pomiarów oraz wdrożyć odpowiednie procedury, które mogą zmniejszyć te błędy. Warto też zaznaczyć, że błąd względny powinien zawsze być analizowany w kontekście standardów pomiarowych i jakości, takich jak ISO 9001, które podkreślają znaczenie dokładności i powtarzalności pomiarów.

Pytanie 17

Jakiego typu przyrządów geodezyjnych należy użyć do przeprowadzenia pomiarów w metodzie tachimetrii klasycznej?

A. Niwelatora oraz tyczki
B. Teodolitu oraz tyczki
C. Niwelatora oraz łaty niwelacyjnej
D. Teodolitu oraz łaty niwelacyjnej
Odpowiedź 'Teodolitu i łaty niwelacyjnej' jest poprawna, ponieważ tachimetria to metoda pomiarów geodezyjnych, która łączy w sobie funkcje teodolitu oraz niwelacji. Teodolit umożliwia dokładne pomiary kątów poziomych i pionowych, co jest kluczowe w ustalaniu położenia punktów w terenie. Łata niwelacyjna z kolei pozwala na pomiar różnic wysokości, co jest niezbędne dla uzyskania precyzyjnych wyników. W praktycznym zastosowaniu, pomiar odbywa się poprzez ustawienie teodolitu na statywie w punkcie kontrolnym, a następnie skierowanie go na łaty niwelacyjne umieszczone w różnych lokalizacjach. Dzięki tej metodzie można szybko i efektywnie zrealizować pomiary, co jest szczególnie istotne w kontekście dużych projektów budowlanych oraz inżynieryjnych, gdzie czas i dokładność są kluczowe. Warto również zauważyć, że stosowanie teodolitu i łaty niwelacyjnej jest zgodne z normami geodezyjnymi oraz najlepszymi praktykami w branży, co zapewnia wysoką jakość i wiarygodność uzyskanych wyników.

Pytanie 18

Na podstawie zamieszczonych w tabeli wyników pomiarów punktów kontrolowanych, oblicz kierunkowe przemieszczenia poziome dla punktu nr 32.

Nr
punktu
Pomiar pierwotnyPomiar wtórny
X₀ [m]Y₀ [m]Xw [m]Yw [m]
3178,462634,25678,482634,212
32142,058582,235142,124582,218
33169,151613,968169,142613,967

A. ΔX = -0,066 m; ΔY = 0,017 m
B. ΔX = -66 cm; ΔY = 44 cm
C. ΔX = 66 cm; ΔY = -44 cm
D. ΔX = 0,066 m; ΔY = -0,017 m
Poprawna odpowiedź, czyli ΔX = 0,066 m oraz ΔY = -0,017 m, wynika z właściwego zastosowania metod obliczania przemieszczeń w układzie współrzędnych. Przemieszczenie poziome ΔX oblicza się jako różnicę między współrzędną X punktu końcowego a współrzędną X punktu początkowego, co w tym przypadku daje 0,066 m. Analogicznie, przemieszczenie ΔY, które wynosi -0,017 m, uzyskuje się poprzez odejmowanie wartości Y. Tego rodzaju obliczenia są kluczowe w geodezji, inżynierii lądowej oraz w pracach budowlanych, gdzie precyzyjne określenie lokalizacji punktów odniesienia jest niezbędne. Zastosowanie tej metody pozwala na uzyskanie dokładnych wyników, co jest zgodne z normami takimi jak ISO 17123 dotyczące pomiarów w geodezji. Prawidłowe zrozumienie obliczeń przemieszczeń jest fundamentem dalszej analizy i projektowania różnych konstrukcji, a także w przeprowadzaniu pomiarów kontrolnych.

Pytanie 19

Jakie jest nachylenie linii łączącej dwa punkty, które znajdują się na sąsiednich warstwicach oddalonych o 50 m, jeśli wysokość cięcia warstwicowego wynosi 0,5 m?

A. 0,5%
B. 5%
C. 10%
D. 1%
Prawidłowa odpowiedź wynika z zastosowania wzoru na obliczenie nachylenia (pochylenia) linii łączącej dwa punkty w terenie, które jest definiowane jako stosunek zmiany wysokości do poziomej odległości. W tym przypadku, mamy różnicę wysokości równą cięciu warstwicowemu, które wynosi 0,5 m, oraz poziomą odległość między punktami równą 50 m. Obliczamy pochylenie, dzieląc różnicę wysokości przez poziomą odległość, a następnie mnożąc wynik przez 100, aby otrzymać wartość procentową. Pochylenie = (0,5 m / 50 m) * 100 = 1%. Tego rodzaju obliczenia są niezbędne w inżynierii lądowej, geotechnice oraz planowaniu przestrzennym, gdzie ważne jest zrozumienie ukształtowania terenu. Używanie takich narzędzi pomagających w analizie pochylenia terenu przyczynia się do lepszego zaplanowania dróg, budynków czy innych inwestycji budowlanych, co z kolei wpływa na bezpieczeństwo i funkcjonalność tych obiektów. Standardy branżowe, takie jak normy geodezyjne, często opierają się na dokładnych obliczeniach nachyleń, co potwierdza znaczenie tej wiedzy.

Pytanie 20

Na czym umieszcza się współrzędne X oraz Y punktów osnowy realizacyjnej?

A. szkicu dokumentacyjnym
B. szkicu inwentaryzacyjnym
C. mapie ewidencyjnej
D. mapie zasadniczej
Szkic inwentaryzacyjny, mapa ewidencyjna i mapa zasadnicza to dokumenty, które mają różne role w geodezji i kartografii, ale nie nadają się do nanoszenia współrzędnych punktów osnowy realizacyjnej tak, jak szkic dokumentacyjny. Szkic inwentaryzacyjny pokazuje stan obiektów budowlanych i infrastruktury, a jego głównym celem jest odzwierciedlenie stanu fizycznego obiektów. Mapa ewidencyjna zajmuje się rejestracją danych o gruntach i ich użytkowaniu, a nie tak dokładnym przedstawieniem współrzędnych punktów osnowy. Mapa zasadnicza w ogóle dostarcza ogólnych informacji o terenie, pokazując cechy topograficzne i administracyjne, ale nie sprawdzi się przy dokumentacji dokładnych pomiarów. Dużo ludzi myśli, że te mapy i szkice można używać zamiennie, co wprowadza w błąd i może prowadzić do problemów przy późniejszych pracach geodezyjnych. Ważne, żeby rozumieć różnice między tymi dokumentami i ich zastosowaniem, bo to klucz do wiarygodnych wyników w geodezji i zgodności ze standardami w branży.

Pytanie 21

W teodolicie oś rotacji instrumentu jest oznaczona

A. hh
B. vv
C. cc
D. ll
Odpowiedź 'vv' jest prawidłowa, ponieważ oznaczenie to odnosi się do osi obrotu teodolitu. Teodolit jest precyzyjnym instrumentem stosowanym w geodezji do pomiarów kątów poziomych i pionowych. Oś obrotu instrumentu jest kluczowym elementem, który pozwala na dokonywanie dokładnych pomiarów. Jest to oś, wokół której instrument obraca się, co umożliwia precyzyjne celowanie na obiekty. W praktyce, podczas ustawiania teodolitu, operator musi zapewnić, że oś obrotu jest idealnie wyrównana z punktem pomiarowym. Wykorzystanie oznaczenia 'vv' jest standardem w branży, co ułatwia komunikację między specjalistami. Warto również zauważyć, że dobrym zwyczajem jest regularne kalibrowanie teodolitu, aby zapewnić jego dokładność i wiarygodność w pomiarach. Wiedza na temat funkcji i oznaczeń elementów teodolitu jest kluczowa dla skutecznego prowadzenia prac geodezyjnych oraz inżynieryjnych, co potwierdzają międzynarodowe normy ISO dotyczące pomiarów geodezyjnych.

Pytanie 22

Cyfra 2 w symbolu 2/5, użytym podczas oznaczania w terenie punktów hektometrowych stworzonych w trakcie wytyczania linii profilu podłużnego, wskazuje na

A. numer hektometra w konkretnym kilometrze
B. całkowitą liczbę metrów w jednym odcinku trasy
C. całkowitą liczbę kilometrów od początku trasy
D. liczbę hektometrów w danym kilometrze trasy
Odpowiedź wskazująca, że cyfra 2 w symbolu 2/5 oznacza pełną liczbę kilometrów od początku trasy, jest prawidłowa. W kontekście wytyczenia linii profilu podłużnego, ten format graficzny jest powszechnie stosowany w inżynierii lądowej i geodezji. Cyfry w takim zapisie odpowiadają segmentom trasy, przy czym licznik (2) wskazuje na liczbę pełnych kilometrów. Oznacza to, że pomiar dotyczy odległości od punktu startowego trasy, co jest kluczowe dla poprawnej interpretacji danych geodezyjnych. W praktyce, takie oznaczenia są istotne podczas dokumentacji i analizy tras transportowych, ponieważ umożliwiają precyzyjne określenie lokalizacji punktów kontrolnych, co jest zgodne z normami branżowymi, takimi jak PN-EN ISO 19101. Na przykład, w projektach budowlanych czy inżynieryjnych, znajomość i poprawne odczytywanie tych symboli jest niezbędne do planowania i koordynacji prac budowlanych, co wpływa na efektywność realizacji zadań.

Pytanie 23

Jakiej z poniższych czynności nie przeprowadza się podczas wywiadu terenowego?

A. Zestawienia treści materiałów PZG i K ze stanem rzeczywistym
B. Rozpoznania w terenie punktów osnowy geodezyjnej
C. Stabilizacji znaków punktów osnowy geodezyjnej
D. Uzyskania informacji o terenie, który ma być poddany pomiarom
Odpowiedź 'Stabilizacji znaków punktów osnowy geodezyjnej' jest prawidłowa, ponieważ stabilizacja znaków odbywa się w ramach prac geodezyjnych, które są realizowane po przeprowadzeniu wywiadu terenowego. Wywiad terenowy ma na celu zebranie niezbędnych informacji o terenie, a nie bezpośrednią stabilizację punktów. Stabilizacja znaków polega na ich odpowiednim umiejscowieniu oraz zapewnieniu długotrwałej, niezmiennej lokalizacji, co jest kluczowe dla późniejszych pomiarów i obliczeń. Przykładem zastosowania tej wiedzy jest sytuacja, gdy na obszarze planowanej budowy konieczne jest ustalenie punktów osnowy geodezyjnej, aby zapewnić dokładne pomiary i dokumentację geodezyjną. Takie działania są zgodne z normami i standardami, które określają procedury związane z geodezyjnym pozyskiwaniem danych i ich weryfikacją w terenie. W praktyce, po przeprowadzeniu wywiadu, geodeci mogą planować stabilizację punktów, co pozwala na długoterminowe i precyzyjne monitorowanie zmian w terenie.

Pytanie 24

Jaki błąd jest wskaźnikiem precyzji tyczenia?

A. Błąd średni tyczenia
B. Błąd względny tyczenia
C. Błąd graniczny tyczenia
D. Błąd przypadkowy tyczenia
Błąd średni tyczenia to naprawdę ważna sprawa, jeśli chodzi o dokładność w pomiarach. Mówiąc prościej, to średnia różnica między tym, co zmierzyliśmy, a tym, co jest rzeczywiste. Dzięki temu wiemy, jak dobrze nam idzie w terenie. W praktyce, na przykład przy ustalaniu granic działki, precyzyjność pomiaru jest kluczowa. Jeśli coś pójdzie nie tak, mogą pojawić się konflikty z sąsiadami. No i w dokumentach geodezyjnych też musimy być dokładni. W branży są różne normy, jak te z ISO/TS, które pokazują, jakie błędy są akceptowalne. To naprawdę dowodzi, jak istotny jest błąd średni w geodezji. Analizując go, geodeci mogą zdecydować, czy trzeba coś poprawić czy powtórzyć pomiary, co zdecydowanie wpływa na jakość danych geodezyjnych.

Pytanie 25

Zbieranie, rejestrowanie, przechowywanie, udostępnianie oraz zabezpieczanie materiałów pochodzących z państwowego zasobu geodezyjnego i kartograficznego, odbywa się przy użyciu systemu

A. komunikacyjnego
B. ewidencyjnego
C. teleinformatycznego
D. informacyjnego
System teleinformatyczny jest kluczowym narzędziem w procesie pozyskiwania, ewidencjonowania, przechowywania, udostępniania oraz zabezpieczania materiałów z państwowego zasobu geodezyjnego i kartograficznego. Dzięki zastosowaniu nowoczesnych technologii informacyjnych, możliwe jest zautomatyzowanie wielu procesów, co przyspiesza i upraszcza pracę. Przykładem może być wykorzystanie systemów GIS (Geographic Information Systems), które umożliwiają analizowanie i wizualizowanie danych przestrzennych. W praktyce, instytucje takie jak ośrodki dokumentacji geodezyjnej i kartograficznej korzystają z teleinformatycznych systemów zarządzania danymi, co zapewnia ich aktualność, integralność oraz bezpieczeństwo. Zgodnie z normami ISO/IEC 27001, należy wdrażać odpowiednie środki ochrony danych, co jest realizowane poprzez technologie szyfrowania oraz systemy kontroli dostępu. Poprawne wdrożenie systemu teleinformatycznego znacząco podnosi jakość usług świadczonych przez administrację publiczną w zakresie geodezji i kartografii.

Pytanie 26

W jakim dokumencie, będącym częścią każdego operatu geodezyjnego, określone są: cel i zakres rzeczowy oraz terytorialny przeprowadzonych prac, czas realizacji prac geodezyjnych oraz identyfikator zgłoszenia dotyczącego pracy geodezyjnej?

A. W dzienniku pomiarów
B. W wykazie robót geodezyjnych
C. W sprawozdaniu technicznym
D. Na szkicu polowym
Sprawozdanie techniczne stanowi kluczowy dokument w operacie geodezyjnym, w którym szczegółowo opisane są cel oraz zakres rzeczowy i terytorialny wykonanych prac geodezyjnych. Jego istotą jest nie tylko dokumentacja wykonanych czynności, ale również pełna identyfikacja projektu, co jest zgodne z wymogami standardów geodezyjnych. Sprawozdanie zawiera również informacje o okresie realizacji prac oraz identyfikatorze zgłoszenia, co umożliwia efektywne zarządzanie danymi i ich późniejszą weryfikację przez organy nadzoru. Przykładowo, w przypadku kontroli jakości wykonanych usług geodezyjnych, sprawozdanie techniczne stanowi nieocenione źródło informacji, pozwalające na ocenę zgodności z założeniami projektowymi i regulacjami prawnymi. Zastosowanie sprawozdania technicznego jako podstawy w dokumentacji geodezyjnej jest zgodne z dobrymi praktykami w branży, które kładą nacisk na transparentność i rzetelność w dokumentacji geodezyjnej.

Pytanie 27

W trakcie stabilizacji punktu poziomej osnowy 1 klasy, w jego otoczeniu oraz jako jego ochrona, utworzono cztery punkty

A. poboczniki
B. przeniesienia
C. podcentra
D. kierunkowe
Poboczniki to dodatkowe punkty pomiarowe, które są zakładane w pobliżu punktu osnowy, aby zapewnić stabilność i precyzję w pomiarach geodezyjnych. Wszechstronność poboczników jest szczególnie ważna podczas stabilizacji punktów osnowy 1 klasy, gdzie kluczowe znaczenie ma dokładność i niezawodność danych. W praktyce, poboczniki mogą być używane do weryfikacji i korekty błędów pomiarowych, a także do minimalizowania wpływu zjawisk atmosferycznych, które mogą zakłócać wyniki. Na przykład, w przypadku pomiarów w trudnych warunkach terenowych, takie jak obszary górzyste, użycie poboczników pozwala na uzyskanie dodatkowych danych, które mogą być wykorzystane do kalibracji głównych punktów osnowy. W branży geodezyjnej standardy takie jak norma PN-EN ISO 17123-1 określają wytyczne dotyczące zakładania i użytkowania poboczników, co czyni je niezbędnym elementem w realizacji zadań geodezyjnych.

Pytanie 28

W miejscowym planie zagospodarowania przestrzennego obszary przeznaczone na sport i rekreację powinny być oznaczane symbolem literowym

A. US
B. ZP
C. MW
D. U
W miejscowych planach zagospodarowania przestrzennego tereny sportu i rekreacji są oznaczane symbolem US, co oznacza "tereny usług sportowych". Jest to zgodne z przyjętymi standardami planowania przestrzennego, które mają na celu zapewnienie odpowiednich przestrzeni dla działalności sportowej i rekreacyjnej w miastach oraz na terenach wiejskich. Oznaczenie to pozwala na jednoznaczne definiowanie obszarów przeznaczonych pod różne formy działalności sportowej, takie jak stadiony, boiska, parki rekreacyjne czy obiekty sportowe. Zastosowanie symbolu US w planach zagospodarowania przestrzennego jest kluczowe dla koordynacji działań urbanistycznych i planistycznych, a także dla zapewnienia harmonijnego rozwoju infrastruktury sportowej. Przykładem praktycznego zastosowania może być projektowanie nowego kompleksu sportowego, gdzie odpowiednie oznaczenie w planie pozwala na łatwiejsze pozyskanie funduszy i wsparcia ze strony lokalnych władz oraz organizacji sportowych. Zrozumienie tego symbolu w kontekście planowania przestrzennego jest zatem istotne dla każdego specjalisty zajmującego się urbanistyką.

Pytanie 29

Na mapach naturalne formy rzeźby terenu zaznacza się kolorem

A. żółtym
B. szarym
C. czarnym
D. brązowym
Naturalne formy rzeźby terenu, takie jak góry, doliny, wzgórza czy inne ukształtowania, są na mapach topograficznych zazwyczaj przedstawiane kolorem brązowym. To ustalenie wynika z międzynarodowych standardów kartograficznych, które wskazują, że brąz jest najbardziej adekwatnym kolorem do reprezentacji ukształtowania terenu, ponieważ kojarzy się z ziemią oraz jest najlepiej widoczny na tle innych kolorów używanych do oznaczania wód (niebieski) oraz terenów zabudowanych (czarny). Przykładowo, w przypadku analiz geograficznych i ekologicznych, używanie brązowych odcieni na mapach pozwala nie tylko na łatwiejszą interpretację rzeźby terenu, ale również na identyfikację obszarów potencjalnego zagrożenia erozją czy osuwiskami. Dodatkowo, w kontekście planowania przestrzennego, zrozumienie ukształtowania terenu jest kluczowe dla podejmowania decyzji o lokalizacji infrastruktury, co czyni znajomość zasad przedstawiania rzeźby terenu niezbędną umiejętnością w wielu dziedzinach związanych z geografią i urbanistyką.

Pytanie 30

Jak geodeta oznaczy na szkicu przyłącze energetyczne niskiego napięcia do budynku mieszkalnego, jeśli wykonał inwentaryzację powykonawczą za pomocą lokalizatora?

A. e
B. eA
C. eNA
D. eN
Oznaczenie eNA dla przyłącza energetycznego niskiego napięcia do budynku mieszkalnego jest zgodne z aktualnymi standardami oraz praktykami branżowymi. Skrót ten oznacza, że przyłącze jest zasilane napięciem niższym niż 1 kV i jest przeznaczone do budynków mieszkalnych. W praktyce, geodeci oraz inżynierowie zajmujący się projektowaniem sieci elektroenergetycznych korzystają z tej konwencji, aby jasno komunikować typ i przeznaczenie przyłącza. W dokumentacji powykonawczej, szczególnie w przypadkach związanych z inwentaryzacją, jasne oznaczenie przyłącza jest kluczowe dla późniejszej analizy oraz oceny stanu technicznego instalacji. Przykładem zastosowania może być sytuacja, w której różne typy przyłączy są oznaczane w sposób ujednolicony na mapach oraz szkicach, co umożliwia sprawniejszą identyfikację i zarządzanie siecią elektroenergetyczną. Oznaczenie eNA jest również zgodne z wytycznymi Komisji Europejskiej oraz krajowymi normami, co pomaga w zapewnieniu bezpieczeństwa oraz efektywności energetycznej w budynkach mieszkalnych.

Pytanie 31

Przeprowadzając pomiar kąta w dwóch pozycjach lunety, możliwe jest zredukowanie błędu

A. kolimacji
B. libelli okrągłej
C. urządzenia odczytowego
D. pionu optycznego
Wybór odpowiedzi dotyczącej "pionu optycznego" jest nietrafiony, ponieważ pion optyczny odnosi się do instrumentu, który wykorzystuje zjawisko grawitacji do ustalenia linii pionowej. Pomiary kątów nie są bezpośrednio związane z pionem optycznym, a jego użycie nie eliminuje błędów związanych z ustawieniem lunety. Używanie libelli okrągłej jest również niewłaściwe w tym kontekście. Libella służy do ustalania poziomu, ale nie ma zastosowania w eliminacji błędów pomiarowych związanych z kolimacją lunety. Kolejną błędną koncepcją jest wskazanie na "urządzenie odczytowe". To pojęcie odnosi się do mechanizmu do odczytu wyników pomiarowych, a jego poprawność nie wpływa na kolimację lunety, która jest kluczowym elementem w precyzyjnych pomiarach kątowych. Często błędne wnioski wynikają z mylnego zrozumienia funkcji różnych instrumentów pomiarowych oraz ich wzajemnych relacji. Ważne jest, aby właściwie rozumieć, w jaki sposób różnorodne narzędzia wspierają proces pomiarowy, aby uniknąć nieporozumień i błędnych interpretacji.

Pytanie 32

Południkiem centralnym odwzorowania Gaussa-Krügera w systemie współrzędnych PL-1992 jest południk

A. 19°
B. 21°
C. 15°
D. 17°
Wybór odpowiedzi 17°, 21° czy 15° wskazuje na niezrozumienie podstawowych zasad funkcjonowania układu współrzędnych PL-1992 oraz odwzorowania Gaussa-Krügera. W kontekście kartografii, południk osiowy stanowi kluczowy element, który określa orientację mapy oraz zapewnia spójność pomiarów geodezyjnych w danym regionie. Odpowiedzi te mogą wynikać z błędnych założeń dotyczących lokalizacji geograficznej Polski, a także mylnej interpretacji systemów odwzorowania. Warto zauważyć, że każdy z tych południków może być używany w różnych odwzorowaniach, ale tylko jeden z nich jest właściwy dla konkretnego regionu. Południki 17°, 21° i 15° mogą być mylone z innymi systemami odwzorowań, co prowadzi do nieporozumień w zakresie ich zastosowania. Często pojawiającym się błędem jest mylenie południków z innymi parametrami geograficznymi, takimi jak równoleżniki, co zaburza zrozumienie struktury systemów geodezyjnych. Aby skutecznie posługiwać się systemem PL-1992, ważne jest zrozumienie, że południk 19° jest optymalny dla tego obszaru, ponieważ minimalizuje zniekształcenia w odwzorowaniu, co jest niezbędne w geodezji i kartografii. Zatem, dla każdego, kto chce pracować w dziedzinie pomiarów geodezyjnych czy tworzenia map, wiedza o odpowiednim południku osiowym jest fundamentalna.

Pytanie 33

W jakiej skali według układu PL-2000 wykonany jest arkusz mapy zasadniczej z godłem 7.125.30.10.3?

A. 1:1000
B. 1:5000
C. 1:500
D. 1:2000
Odpowiedź 1:1000 jest prawidłowa, ponieważ w układzie PL-2000 arkusz mapy zasadniczej o godle 7.125.30.10.3 jest sporządzony w skali 1:1000. Tego typu skala jest powszechnie stosowana w dokumentacji geodezyjnej, ponieważ pozwala na szczegółowe przedstawienie małych obszarów, takich jak działki budowlane czy obiekty infrastrukturalne. W praktyce, dla geodetów i urbanistów, skala 1:1000 umożliwia precyzyjne planowanie przestrzenne oraz analizę zagospodarowania terenu. Ponadto, zgodnie z obowiązującymi przepisami prawno-geodezyjnymi, mapy w takiej skali muszą spełniać określone standardy jakości, co zapewnia ich użyteczność w procesach decyzyjnych związanych z inwestycjami budowlanymi. Dodatkowo, w kontekście normatywów, skala ta jest uznawana za optymalną dla przedstawienia szczegółowych informacji, takich jak granice działek, ukształtowanie terenu, czy lokalizację istniejącej infrastruktury. W związku z tym, posługiwanie się skalą 1:1000 w arkuszach mapy zasadniczej jest nie tylko zgodne z wymaganiami, ale również efektywne z punktu widzenia praktycznego zastosowania w geodezji i urbanistyce.

Pytanie 34

Na podstawie przedstawionych w ramce wyników z czterokrotnego pomiaru kąta, z jednakową dokładnością, określ najbardziej prawdopodobną wartość tego kąta.

a1 = 76° 56' 21''
a1 = 76° 56' 15''
a1 = 76° 56' 14''
a1 = 76° 56' 18''

A. 76° 56' 17''
B. 76° 56' 18''
C. 76° 56' 14''
D. 76° 56' 19''
Odpowiedź 76g 56c 17cc jest tą, która najlepiej pasuje do średniej arytmetycznej tych pomiarów. W pomiarach kątów to obliczenie średniej jest dość ważne, bo daje nam najwiarygodniejszy wynik. W inżynierii czy architekturze, gdzie musimy być pewni pomiarów, precyzja kątów jest mega istotna. Jak na przykład w budownictwie, źle policzone kąty mogą naprawde narobić kłopotów podczas stawiania konstruktów. Dlatego mamy różne normy, jak ISO 17123, które mówią, że najlepiej jest liczyć średnią, żeby zminimalizować błędy w pomiarach. W analizach statystycznych z pomiarami kątów, wyliczenie średniej to podstawowy krok, który pokazuje, jak ważna jest ta technika w różnych dziedzinach nauki.

Pytanie 35

Jakiego przyrządu powinno się użyć do dokładnego naniesienia ramki sekcyjnej oraz siatki kwadratów w procesie tworzenia mapy analogowej?

A. Współrzędnika
B. Nanośnika biegunowego
C. Koordynatografu
D. Nanośnika prostokątnego
Wybierając nanośnik biegunowy, współrzędnik lub nanośnik prostokątny, można wprowadzić do procesu opracowywania map błędne założenia dotyczące precyzji i dokładności. Nanośnik biegunowy, mimo iż potrafi wspierać pomiar na powierzchni, nie jest narzędziem zoptymalizowanym do tworzenia ramki sekcyjnej czy siatki na mapie. Jego zastosowanie jest bardziej związane z określaniem kierunków, a nie precyzyjnym nanoszeniem detali. W przypadku współrzędnika, jego konstrukcja może wprowadzać ograniczenia w dokładności pomiaru, co jest kluczowe w kontekście opracowywania map. Z kolei nanośnik prostokątny, choć bywa używany do wyznaczania obszarów, nie oferuje tego samego poziomu wsparcia w precyzyjnym nanoszeniu siatek, co koordynatograf. Często błędem jest mylenie funkcji tych narzędzi, co może prowadzić do poważnych nieścisłości w opracowywanych mapach. Profesjonalne podejście do kartografii wymaga zrozumienia, że każdy instrument ma swoje specyficzne zastosowania, a ich niewłaściwe użycie może skutkować obniżeniem standardów jakościowych, co jest nieakceptowalne w branży, gdzie precyzja jest kluczowa.

Pytanie 36

Godło mapy zasadniczej 6.115.27.4 w systemie współrzędnych PL-2000 wskazuje na mapę stworzoną w skali

A. 1:1000
B. 1:500
C. 1:2000
D. 1:5000
Odpowiedzi, które wskazują na skale 1:1000, 1:500 oraz 1:2000, mogą prowadzić do nieporozumień w kontekście zastosowania map zasadniczych i ich oznaczeń. Skala 1:1000 jest często stosowana w przypadku map do celów budowlanych i lokalizacyjnych, co może wzbudzać mylne przekonanie, że jest odpowiednia dla mapy zasadniczej. Jednakże, w kontekście mapy oznaczonej kodem 6.115.27.4, skala 1:1000 jest zbyt szczegółowa, a tego typu mapy nie są standardowo klasyfikowane jako mapy zasadnicze. Podobnie, skala 1:500, choć przydatna dla bardzo lokalnych analiz, jest również nieodpowiednia w tym przypadku, ponieważ nie odpowiada standardowym klasyfikacjom map zasadniczych, które są bardziej skoncentrowane na ogólnym przedstawieniu obszarów. Z kolei skala 1:2000, chociaż bliska prawidłowej skali, również nie spełnia wymogów, ponieważ nie dostarcza wystarczającej szczegółowości dla typowych zastosowań map zasadniczych. Warto zauważyć, że stosowanie niewłaściwych skal w analizach przestrzennych może prowadzić do błędnych interpretacji danych, co w konsekwencji wpływa na decyzje administracyjne czy inwestycyjne. Dlatego kluczowe jest, aby zawsze odnosić się do odpowiednich norm oraz standardów branżowych, które precyzyjnie definiują zasady tworzenia i użycia map, co pozwoli uniknąć typowych błędów myślowych i nieporozumień.

Pytanie 37

Jakie jest zwiększenie współrzędnej ∆y1-2, jeśli zmierzona długość d1-2 = 100,00 m, a sinA1-2 = 0,8910 oraz cosA1-2 = 0,4540?

A. 4,54 m
B. 8,91 m
C. 89,10 m
D. 45,40 m
Poprawna odpowiedź to 89,10 m, co wynika z zastosowania podstawowych zasad trygonometrii w kontekście obliczeń inżynieryjnych. Przyrost współrzędnej ∆y1-2 można obliczyć, stosując wzór: ∆y = d1-2 * sin(A1-2), gdzie d1-2 to długość między dwoma punktami, a A1-2 to kąt, pod jakim ta długość jest zmierzona. W tym przypadku, mając d1-2 równą 100,00 m oraz sinA1-2 wynoszący 0,8910, obliczenie przyrostu współrzędnej wygląda następująco: ∆y = 100,00 m * 0,8910 = 89,10 m. W praktyce, taka metodologia obliczeń jest kluczowa w geodezji oraz budownictwie, gdzie precyzyjne pomiary i obliczenia są fundamentem dla prawidłowego prowadzenia prac budowlanych czy projektowych. Zrozumienie, jak wykorzystać funkcje trygonometryczne do obliczeń w przestrzeni, ma również zastosowanie w systemach nawigacyjnych oraz w analizie danych przestrzennych, co czyni tę wiedzę niezwykle przydatną w wielu branżach.

Pytanie 38

Jaką maksymalną długość rzędnej można stosować przy pomiarze sytuacyjnym obrysów budynków metodą prostokątnych domiarów?

A. 30 m
B. 20 m
C. 25 m
D. 15 m
Odpowiedzi, które sugerują inne długości rzędnej, takie jak 20 m, 30 m czy 15 m, mogą prowadzić do poważnych nieporozumień dotyczących standardów pomiarowych. Długości te są nieadekwatne do wymagań zawartych w normach geodezyjnych, które jasno określają optymalne zasięgi dla różnych metod pomiarowych. W przypadku 20 m można sądzić, że to zbyt krótka długość, która nie pozwala na uzyskanie wystarczającej precyzji przy dużych odległościach. Z kolei długość 30 m staje się problematyczna w kontekście pomiarów, gdyż może zwiększać ryzyko błędów kumulacyjnych oraz trudności związanych z precyzyjnym przenoszeniem wymiarów na większe odległości. Odpowiedź sugerująca 15 m jest nie tylko niewłaściwa, ale także w praktyce może prowadzić do istotnych trudności w realizacji pomiarów budowlanych, szczególnie na otwartych terenach, gdzie warunki atmosferyczne i uwarunkowania przestrzenne mogą wpływać na dokładność. Istotne jest, aby geodeci mieli świadomość, że stosowanie nieodpowiednich długości rzędnych może skutkować błędami, które mogą wpłynąć na całkowitą rzetelność projektu budowlanego, prowadząc do niepoprawnych danych geodezyjnych i konsekwencji w fazach realizacji inwestycji. Dlatego znajomość i stosowanie przyjętej długości rzędnej, jaką jest 25 m, jest kluczowe dla zapewnienia wysokiej jakości pomiarów.

Pytanie 39

Jaką czynność należy wykonać podczas przeprowadzania wywiadu terenowego, który poprzedza pomiary sytuacyjne i wysokościowe?

A. Identyfikację w terenie punktów osnowy geodezyjnej
B. Sporządzenie szkicu polowego z mierzonego terenu
C. Pomiar kontrolny szczegółów terenowych
D. Zgłoszenie pracy geodezyjnej geodecie powiatowemu
Identyfikacja w terenie punktów osnowy geodezyjnej jest kluczowym etapem przed przystąpieniem do pomiarów sytuacyjnych i wysokościowych. Osnowa geodezyjna stanowi fundament, na którym opierają się wszystkie inne pomiary. Jej odpowiednie zidentyfikowanie pozwala na precyzyjne odniesienie danych pomiarowych do układu współrzędnych, co jest niezbędne w geodezji. Przykładowo, podczas wykonywania pomiarów dla nowego projektu budowlanego, geodeta najpierw lokalizuje punkty osnowy, aby móc ustawić instrumenty pomiarowe w odpowiednich miejscach. Takie praktyki są zgodne z normami, takimi jak PN-EN ISO 17123, które podkreślają znaczenie stabilności i precyzji punktów osnowy dla efektywnego i wiarygodnego pomiaru. Właściwa identyfikacja punktów osnowy geodezyjnej nie tylko zwiększa dokładność pomiarów, ale również przyczynia się do redukcji błędów w późniejszych analizach i projektach.

Pytanie 40

Który z dokumentów jest konieczny do zlokalizowania w terenie punktu osnowy geodezyjnej?

A. Opis topograficzny punktu
B. Dziennik pomiaru długości boków osnowy
C. Dziennik pomiaru kątów osnowy
D. Szkic polowy osnowy
Opis topograficzny punktu jest kluczowym dokumentem w geodezji, ponieważ zawiera szczegółowe informacje o lokalizacji i charakterystyce punktu osnowy geodezyjnej. Zazwyczaj obejmuje takie elementy jak współrzędne geograficzne, wysokość, otoczenie punktu oraz dostępność do niego. Dzięki temu geodeta, przebywając w terenie, może szybko zlokalizować punkt osnowy, co jest istotne przy wykonywaniu pomiarów. Przykładowo, w przypadku prowadzenia pomiarów dla celów projektowych, posiadanie opisu topograficznego pozwala na efektywne planowanie prac w terenie oraz minimalizowanie ryzyk związanych z błędami lokalizacyjnymi. W branży geodezyjnej stosuje się standardy, które wymagają, aby wszystkie punkty osnowy miały odpowiednio przygotowaną dokumentację, co podnosi jakość i dokładność przeprowadzanych pomiarów.