Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 16 maja 2025 15:08
  • Data zakończenia: 16 maja 2025 15:23

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Urządzenia elektroniczne, które gwarantują stabilność napięcia prądu elektrycznego na wyjściu, niezależnie od obciążeń oraz zmian w napięciu w sieci, określamy mianem

A. prostowników
B. zasilaczy
C. generatorów
D. stabilizatorów
Prostowniki, jako urządzenia przekształcające prąd zmienny na prąd stały, nie są odpowiednie do utrzymywania stałości napięcia na wyjściu. Ich podstawową funkcją jest konwersja, a nie stabilizacja. W przypadku generatorów, ich rola polega na wytwarzaniu energii elektrycznej, zazwyczaj w formie prądu zmiennego, co również nie pozwala na utrzymanie stałej wartości napięcia w zmiennych warunkach obciążenia czy napięcia zasilania. Zasilacze, z drugiej strony, mogą oferować różne poziomy regulacji napięcia, ale nie zapewniają one takiej samej stałości jak stabilizatory. Błędne jest więc utożsamianie tych urządzeń ze stabilizatorami, ponieważ stabilizatory są specjalnie zaprojektowane do tego celu. Często mylone są one z zasilaczami, jednak zasilacze mogą mieć wewnętrzne regulacje, które nie gwarantują stałości napięcia przy różnych obciążeniach. W praktyce, nieumiejętność rozróżnienia tych terminów może prowadzić do niewłaściwych wyborów w projektach elektronicznych, co skutkuje uszkodzeniami sprzętu oraz nieprawidłowym działaniem systemów. Warto znać różnice pomiędzy tymi elementami, aby podejmować świadome decyzje projektowe zgodne z najlepszymi praktykami branżowymi.

Pytanie 2

W tabeli podano dane techniczne sterownika PLC Jakim maksymalnym prądem można obciążyć sterownik dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalnyDC 20,4 ... 28,8 V
Przy sygnale „0"maks. AC/DC 5 V
Przy sygnale „1"min. AC/DC 12 V
Prąd wejściowy2,5 mA
Wyjścia:
Rodzaj4 przekaźnikowe
Prąd ciągły10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym

A. 3 A
B. 0,75 A
C. 2,5 A
D. 10 A
Wybór odpowiedzi, które wskazują na inne wartości prądu, może wynikać z kilku typowych błędów myślowych obowiązujących w temacie doboru komponentów do systemów automatyki. Podawanie wartości takich jak 0,75 A, 2,5 A czy 10 A może sugerować nieporozumienie dotyczące charakterystyki silników indukcyjnych oraz ich wymagań prądowych. Na przykład, wybranie niskiego prądu, jak 0,75 A, może wynikać z założenia, że silnik o niewielkiej mocy wymaga niewielkiego prądu. Jednakże, nawet małe silniki mogą mieć prąd rozruchowy, który jest znacznie wyższy od prądu nominalnego, co może prowadzić do uszkodzenia sterownika, jeśli jego maksymalny prąd nie jest wystarczający. Z kolei podanie 10 A jako limitu jest całkowicie błędne, ponieważ wiele typowych sterowników PLC nie jest zaprojektowanych do obsługi tak dużych obciążeń bez dodatkowych urządzeń zabezpieczających. Zrozumienie zasadności obliczeń dotyczących prądu oraz ich konsekwencji w praktyce jest kluczowe w doborze odpowiednich komponentów. W automatyce przemysłowej, ignorowanie tych zasad może prowadzić do poważnych uszkodzeń sprzętu, co z kolei wiąże się z kosztami naprawy oraz przestojami w produkcji. Dlatego, przed podłączeniem jakiegokolwiek obciążenia do sterownika, zawsze należy dokładnie zapoznać się z jego specyfikacjami technicznymi i warunkami pracy.

Pytanie 3

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Liczba wrzecion.
B. Gramatura wtrysku.
C. Najwyższa prędkość ruchu dla poszczególnych osi.
D. Dokładność pozycjonowania.
Gramatura wtrysku to parametr odnoszący się głównie do procesów wtrysku tworzyw sztucznych, a nie frezowania. Frezarki numeryczne są urządzeniami przeznaczonymi do obróbki skrawaniem, a ich kluczowe parametry dotyczą precyzji i wydajności obróbczej. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to istotne wskaźniki efektywności operacyjnej frezarek. Na przykład, liczba wrzecion określa, ile narzędzi może być jednocześnie używanych do obróbki, co wpływa na zwiększenie wydajności procesu. Powtarzalność pozycjonowania definiuje zdolność maszyny do powtarzania tych samych operacji z dokładnością, co jest kluczowe w produkcji seryjnej. Maksymalna prędkość ruchu osi wpływa na szybkość realizacji zleceń, co ma bezpośrednie przełożenie na czas produkcji oraz koszty. Zrozumienie tych parametrów jest niezbędne dla efektywnego planowania procesów produkcyjnych oraz optymalizacji pracy frezarek numerycznych.

Pytanie 4

Obniżenie temperatury czynnika w sprężarkach skutkuje

A. skraplaniem pary wodnej oraz osuszaniem powietrza
B. osadzaniem zanieczyszczeń na dnie zbiornika
C. wzrostem ciśnienia sprężonego powietrza
D. powiększaniem objętości sprężonego powietrza
Zwiększenie objętości sprężonego powietrza, które jest sugerowane w jednej z odpowiedzi, jest błędnym założeniem. W rzeczywistości, schładzanie czynnika roboczego w sprężarkach nie skutkuje zwiększeniem objętości, ponieważ objętość gazu w zamkniętym układzie nie zmienia się w sposób znaczący podczas tego procesu. Z kolei wzrost ciśnienia sprężonego powietrza to efekt spadku temperatury, który prowadzi do kompaktowania cząsteczek gazu. Osuszanie powietrza poprzez skraplanie pary wodnej jest również związane z innymi mechanizmami, takimi jak stosowanie separatorów czy filtrów, a nie bezpośrednio ze schładzaniem czynnika. Osadzanie zanieczyszczeń na dnie zbiornika jest również mylone z procesem schładzania, jednakże dotyczy ono głównie aspektów związanych z niewłaściwą filtracją oraz z przegrzewaniem powietrza. Takie nieporozumienia mogą wynikać z braku zrozumienia podstawowych zasad termodynamiki oraz procesów fizycznych zachodzących w sprężarkach. Ważne jest, aby zgłębić temat właściwego działania sprężarek oraz ich wpływu na jakość sprężonego powietrza, co jest kluczowe w przemyśle oraz w zastosowaniach technologicznych.

Pytanie 5

Jakim urządzeniem można zmierzyć siłę nacisku tłoka w siłowniku hydraulicznym?

A. tensometrem
B. hallotronem
C. termistorem
D. pirometrem
Tensometr to urządzenie pomiarowe, które wykorzystuje zjawisko zmiany oporu elektrycznego w wyniku odkształcenia materiału. W kontekście siłowników hydraulicznych, tensometry mogą być używane do precyzyjnego pomiaru siły nacisku tłoka, ponieważ siła ta powoduje odkształcenie elementu pomiarowego, co bezpośrednio wpływa na zmianę jego oporu. Dzięki temu, tensometry pozwalają na uzyskanie dokładnych i wiarygodnych wyników pomiarów, które są kluczowe w wielu zastosowaniach inżynieryjnych, takich jak automatyka przemysłowa, systemy hydrauliczne oraz testowanie materiałów. Przykładem zastosowania tensometrów w praktyce może być monitorowanie siły nacisku w maszynach do formowania, gdzie precyzyjna kontrola siły jest niezbędna do zapewnienia jakości produkcji. W branży inżynieryjnej stosuje się różne normy, takie jak ISO 376, które dotyczą metod pomiarowych przy użyciu tensometrów, co podkreśla ich znaczenie oraz zastosowanie w profesjonalnych pomiarach.

Pytanie 6

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, który jest sterowany przez PLC, należy zająć się zasilaniem pneumatycznym.

A. dezaktywować zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu i przewody
B. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz wyłączyć PLC
C. odłączyć przewody zasilające sterownik oraz przewody pneumatyczne od elektrozaworu
D. wprowadzić sterownik PLC w tryb STOP, odłączyć zasilanie elektryczne oraz pneumatyczne układu
Poprawna odpowiedź wskazuje na kluczowe etapy przygotowania do wymiany zaworu elektropneumatycznego, który jest zintegrowany z systemem sterowania PLC. Wprowadzenie sterownika PLC w tryb STOP jest niezbędne, aby zapobiec niekontrolowanemu działaniu systemu podczas przeprowadzania prac serwisowych. Wyłączenie zasilania elektrycznego oraz pneumatycznego całego układu eliminuje ryzyko wystąpienia niebezpiecznych sytuacji, takich jak przypadkowe uruchomienie czy wyciek sprężonego powietrza, co mogłoby prowadzić do uszkodzeń sprzętu lub zagrożenia dla operatorów. Dobrym przykładem jest procedura serwisowa w przemyśle automatyzacyjnym, gdzie przed wymianą komponentów pneumatycznych zawsze stosuje się blokady i procedury bezpieczeństwa, zgodne z normami ISO 13849, które regulują bezpieczeństwo maszyn. Praktyczne zastosowanie tej wiedzy zwiększa bezpieczeństwo operacji oraz efektywność pracy, minimalizując ryzyko awarii i wypadków.

Pytanie 7

Za pomocą multimetru cyfrowego zmierzono spadek napięcia na podwójnym złączu półprzewodnikowym Si. Odczyt multimetru wynosi około

A. 0,6 V
B. 0,3 V
C. 1,4 V
D. 0 V
Wartości spadku napięcia na złączu półprzewodnikowym mogą być mylnie interpretowane, co prowadzi do błędnych wniosków w analizie odpowiedzi. Odpowiedzi takie jak 0,6 V i 0,3 V mogą wynikać z niepełnego zrozumienia działania diod oraz ich właściwości. Spadek napięcia 0,6 V odnosi się do pojedynczego złącza p-n, ale w kontekście podwójnego złącza opartego na krzemie, który składa się z dwóch takich złącz, wartość ta powinna być podwojona, co daje około 1,4 V. Inna odpowiedź, 0 V, sugeruje brak przewodzenia, co jest niemożliwe dla diody w odpowiednich warunkach, gdyż złącze p-n przewodzi prąd po osiągnięciu minimalnego napięcia. Ponadto, spadek napięcia 1,4 V jest typowy dla diod, gdyż przy takim napięciu obie diody w złączu są aktywne. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych odpowiedzi, obejmują ignorowanie zasad dotyczących szeregowego i równoległego połączenia złącz oraz niezrozumienie, w jaki sposób diody wpływają na spadek napięcia. Zrozumienie tych aspektów jest kluczowe w zastosowaniach takich jak projektowanie obwodów elektronicznych czy analiza układów półprzewodnikowych. Wiedza ta pomoże w lepszym zrozumieniu zachowań różnych komponentów elektronicznych oraz ich interakcji w obwodach.

Pytanie 8

Jakie napięcie wyjściowe przetwornika ciśnienia będzie przy wartościach ciśnienia wynoszących 450 kPa, jeśli jego napięcie wyjściowe mieści się w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa przy liniowej charakterystyce?

A. 4,5 V
B. 7,5 V
C. 3,0 V
D. 10,0 V
Odpowiedź 7,5 V to dobra odpowiedź. Przetwornik ciśnienia działa liniowo, co znaczy, że napięcie na wyjściu rośnie proporcjonalnie do ciśnienia. Zaczynając od 0 kPa do 600 kPa, napięcia wahają się od 0 do 10 V. Możemy łatwo policzyć napięcie dla 450 kPa. To 75% całego zakresu, bo 450 kPa podzielone przez 600 kPa daje 0,75. Jak to pomnożymy przez 10 V, dostajemy 7,5 V. W inżynierii, zwłaszcza w automatyce, takie dokładne pomiary ciśnienia są naprawdę ważne. Liniowe przetworniki są wszędzie tam, gdzie trzeba mieć precyzyjne dane. Oczywiście warto regularnie kalibrować te urządzenia, bo to zapewnia ich prawidłowe działanie i eliminuje błędy w pomiarach.

Pytanie 9

Aby zweryfikować ciągłość układów elektrycznych, wykorzystuje się

A. amperomierz
B. watomierz
C. woltomierz
D. omomierz
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru rezystancji elektrycznej, a jego zastosowanie w zakresie sprawdzania ciągłości połączeń elektrycznych jest kluczowe. W praktyce, omomierz jest wykorzystywany do wykrywania ewentualnych przerw w obwodach oraz oceny jakości połączeń. Na przykład, w instalacjach elektrycznych, przed oddaniem do użytkowania, ważne jest, aby sprawdzić, czy wszystkie połączenia są prawidłowo wykonane i czy nie występują utraty kontaktu. Normy takie jak PN-IEC 60364-6 podkreślają znaczenie przeprowadzania pomiarów ciągłości przewodów ochronnych, co można zrealizować właśnie przy pomocy omomierza. Warto również zauważyć, że pomiar ciągłości powinien być wykonywany w stanie nieenergetycznym instalacji, co zapewnia bezpieczeństwo oraz dokładność pomiarów. Umiejętność posługiwania się omomierzem w kontekście sprawdzania połączeń elektrycznych jest istotna dla każdego elektryka, a także dla osób zajmujących się konserwacją i przeglądami instalacji elektrycznych.

Pytanie 10

Jakiego typu silnik należy wykorzystać do zasilania systemu, który wymaga bardzo wysokiego momentu rozruchowego (przekraczającego moment znamionowy)?

A. Asynchroniczny
B. Szeregowy
C. Krokowy
D. Bocznikowy
Silnik szeregowy jest najbardziej odpowiedni do aplikacji wymagających wysokiego momentu rozruchowego, ponieważ jego konstrukcja pozwala na uzyskanie znacznie większego momentu przy niskich obrotach. W silniku szeregowym, uzwojenia wirnika są połączone szeregowo z uzwojeniem stojana, co powoduje, że przepływ prądu przez uzwojenia wirnika i stojana jest taki sam. W rezultacie, gdy silnik startuje, prąd wzrasta, co prowadzi do znaczącego wzrostu momentu obrotowego. Taka charakterystyka sprawia, że silniki szeregowe są powszechnie stosowane w aplikacjach takich jak dźwigi, przenośniki, czy inne urządzenia wymagające dużego momentu rozruchowego. Przykładowo, silniki szeregowe są wykorzystywane w systemach transportu materiałów, gdzie konieczne jest pokonanie początkowego oporu. Dobrą praktyką w branży jest dobór silnika szeregowego do zastosowań, gdzie moment rozruchowy przewyższa moment znamionowy, co zapewnia efektywne i bezpieczne użytkowanie maszyn.

Pytanie 11

Po wyczyszczeniu filtra używanego do wstępnego oczyszczania powietrza, kondensat należy

A. przefiltrować przy użyciu węgla aktywnego
B. osuszyć z nadmiaru wody
C. odprowadzić bezpośrednio do ścieków
D. oczyścić z resztek oleju
Odpowiedzi sugerujące odprowadzenie kondensatu bezpośrednio do kanalizacji, osuszenie z wody lub przefiltrowanie za pomocą węgla aktywnego są niewłaściwe z kilku powodów. Przede wszystkim, bezpośrednie wprowadzenie kondensatu do kanalizacji jest ryzykowne, ponieważ może on zawierać substancje ropopochodne, które są zabronione w wielu systemach kanalizacyjnych. Takie działania mogą prowadzić do zanieczyszczenia wód gruntowych i naruszenia przepisów dotyczących ochrony środowiska. Osuszanie kondensatu z wody nie ma sensu, ponieważ najważniejszym problemem są zanieczyszczenia olejowe, a nie stała obecność wody. Węgiel aktywny jest skuteczny w usuwaniu niektórych zanieczyszczeń chemicznych, jednak nie jest optymalnym rozwiązaniem w przypadku kondensatu, który zawiera cząstki olejowe. Proces filtracji węgla aktywnego wymaga odpowiedniej konfiguracji i często jest kosztowny w zastosowaniu. Typowe błędy myślowe, prowadzące do takich niepoprawnych wniosków, polegają na nieuwzględnieniu specyfiki zanieczyszczeń oraz nieznajomości regulacji prawnych związanych z gospodarowaniem odpadami. Właściwe podejście do zarządzania kondensatami wymaga dokładnej analizy składników zanieczyszczenia oraz zastosowania odpowiednich technologii oczyszczania zgodnych z normami branżowymi.

Pytanie 12

Zgodnie z normami ochrony przeciwpożarowej, do gaszenia urządzeń elektrycznych pod napięciem przekraczającym 1000 V należy zastosować gaśnicę

A. proszkową oznaczoną ABC
B. śniegową oznaczoną BC
C. pianową oznaczoną AF
D. proszkową oznaczoną ABC/E
Wybór gaśnicy do elektryki to nie taka prosta sprawa, trzeba znać klasyfikacje i zasady bezpieczeństwa. Odpowiedzi z gaśnicą śniegową BC oraz pianową AF nie są odpowiednie, bo mają swoje ograniczenia, jeśli chodzi o urządzenia pod napięciem. Gaśnice śniegowe są super do gaszenia cieczy palnych i gazów, ale w przypadku elektryki mogą narazić nas na ryzyko porażenia prądem. Gaśnice pianowe też nie są najlepszym rozwiązaniem, bo ich przewodność może być niebezpieczna właśnie przy pożarach elektrycznych. Co prawda, gaśnice proszkowe ABC są dość uniwersalne, ale brak tego 'E' oznacza, że nie są stworzone do strefy elektrycznej. Wybierając niewłaściwą gaśnicę, można narazić siebie i innych na niebezpieczeństwo – gaszenie pożaru może się wręcz pogorszyć. Podczas pożarów elektrycznych ważne jest używanie sprzętu, który jest skuteczny i bezpieczny. To, co mówi europejska norma PN-EN 2, ma ogromne znaczenie w tych sprawach.

Pytanie 13

Aby ustalić wznios silnika indukcyjnego, należy wykonać pomiar

A. średnicy stojana
B. odległości między osią wału a podstawą uchwytów silnika
C. wysokości silnika
D. szerokości silnika oraz średnicy wirnika
Wysokość silnika, średnica stojana i szerokość silnika z wirnikiem to takie parametry, które są związane z konstrukcją silnika, ale nie mają nic wspólnego z pomiarem wzniosu. Jasne, że wysokość silnika jest ważna, kiedy chodzi o to, gdzie ten silnik jest wbudowany, ale nie pokazuje, jaka jest właściwa odległość między osią wału a podstawą łap. Średnica stojana dotyczy wymiarów wewnętrznych silnika i ma znaczenie dla jego działania, ale nie ma wpływu na wznios. Szerokość silnika oraz średnica wirnika to też ważne wymiary, ale nie mówią nam, jak silnik jest zamontowany, a to jest kluczowe dla jego prawidłowego działania. Często zdarza się, że ludzie mylą wznios z parametrami konstrukcyjnymi silnika, zamiast skupić się na tej rzeczywistej odległości, która może mieć duży wpływ na wydajność i współpracę z innymi elementami. Zrozumienie, jak te różne parametry się powiązane, może pomóc uniknąć problemów w eksploatacji i dobrze dobrać silnik do konkretnego zastosowania.

Pytanie 14

Aby dokładnie zmierzyć średnicę wałka, należy użyć

A. mikroskopu technicznego
B. przymiaru średnicowego
C. śruby mikrometrycznej
D. przymiaru kreskowego
Śruba mikrometryczna to narzędzie pomiarowe, które umożliwia uzyskanie wyjątkowo dokładnych wyników pomiarów średnicy wałków oraz innych elementów cylindrycznych. Posiada ona mechaniczną konstrukcję, która pozwala na odczyt wartości z dokładnością do setnych lub nawet tysięcznych części milimetra. Dzięki zastosowaniu śruby mikrometrycznej użytkownik może precyzyjnie ustawić narzędzie na obiekcie pomiarowym, a następnie odczytać wynik z podziałki, co zapewnia wysoką powtarzalność i dokładność. W praktyce, śruby mikrometryczne są powszechnie stosowane w laboratoriach pomiarowych, zakładach produkcyjnych oraz w warsztatach mechanicznych, gdzie precyzja pomiarów jest kluczowa. Przykładem zastosowania może być kontrola średnicy wałków w przemyśle motoryzacyjnym, gdzie tolerancje wymiarowe mają bezpośredni wpływ na bezpieczeństwo i funkcjonalność pojazdów. Biorąc pod uwagę standardy takie jak ISO 2878, precyzyjne pomiary przy użyciu śrub mikrometrycznych są niezbędne do zapewnienia zgodności z wymaganiami jakościowymi.

Pytanie 15

Jakim przyrządem pomiarowym można zmierzyć wartość napięcia zasilającego cewkę elektrozaworu?

A. Woltomierz
B. Miernik mocy
C. Miernik oporności
D. Miernik prądu
Woltomierz jest przyrządem pomiarowym, który służy do pomiaru napięcia elektrycznego w obwodach. W przypadku cewki elektrozaworu, której działanie zależy od odpowiedniego napięcia zasilającego, użycie woltomierza pozwala na precyzyjne określenie wartości tego napięcia. Prawidłowy pomiar napięcia jest kluczowy, ponieważ zbyt niskie napięcie może prowadzić do nieprawidłowego działania cewki, a w konsekwencji do awarii systemu. W praktyce, aby zmierzyć napięcie na cewce elektrozaworu, należy podłączyć woltomierz równolegle do cewki, co pozwala na odczyt wartości napięcia, które w danym momencie jest dostarczane do cewki. Standardowe woltomierze cyfrowe, zgodne z normami IEC 61010, charakteryzują się wysoką dokładnością i bezpieczeństwem użytkowania, co czyni je niezastąpionym narzędziem w pracy technika. Użycie woltomierza powinno być wykonywane zgodnie z dobrymi praktykami, takimi jak zapewnienie, że urządzenie jest odpowiednio skalibrowane i że przewody pomiarowe są w dobrym stanie, aby uniknąć błędów pomiarowych.

Pytanie 16

Z wymienionych materiałów wybierz ten, który jest najczęściej używany w produkcji łożysk ślizgowych?

A. Epoksyt
B. Żeliwo białe
C. Polistyren
D. Teflon
Epoksyt, teflon, polistyren oraz żeliwo białe reprezentują różne materiały, które mogą być używane w różnych kontekstach inżynieryjnych, lecz nie wszystkie z nich są optymalne w produkcji łożysk ślizgowych. Epoksyt to materiał kompozytowy, który charakteryzuje się wysoką wytrzymałością mechaniczną oraz odpornością na chemikalia, ale nie ma właściwości samosmarujących, co jest kluczowe dla łożysk, które wymagają minimalizacji tarcia i zwiększonej trwałości. Polistyren, z drugiej strony, jest materiałem o niskiej wytrzymałości mechanicznej i wysokiej podatności na działanie wysokich temperatur, co czyni go nieodpowiednim w zastosowaniach wymagających dużej odporności. Żeliwo białe, chociaż jest materiałem o dobrej trwałości, nie nadaje się na łożyska ślizgowe, ze względu na swoją sztywność i dużą masę, które mogą prowadzić do zwiększenia oporów tarcia. Często błędem jest utożsamianie materiałów z wysoką wytrzymałością z ich zastosowaniem w łożyskach; w rzeczywistości kluczowe znaczenie mają także ich właściwości tribologiczne, które w przypadku niektórych z wymienionych materiałów są niewystarczające. Zrozumienie różnic w zastosowaniach tych materiałów i ich właściwości jest kluczowe w procesie projektowania komponentów mechanicznych.

Pytanie 17

Skrót THT (Through-Hole Technology) odnosi się do metody montażu

A. zaciskowego
B. skręcanego
C. przewlekanego
D. powierzchniowego
Odpowiedzi, które wskazują na skręcanie, zaciskanie lub montaż powierzchniowy, są nieprawidłowe, ponieważ każda z tych metod różni się zasadniczo od technologii przewlekanego montażu. Skręcanie komponentów to technika, która znajduje zastosowanie w montażu mechanicznym, gdzie elementy są łączone za pomocą śrub lub nakrętek. W kontekście elektroniki, skręcanie może nie zapewniać wymaganej stabilności połączeń elektrycznych, a także jest mniej odpowiednie dla małych komponentów, które często wymagają niższej wagi oraz oszczędności miejsca. Zaciskowy montaż również nie odnosi się do THT; jest to technika używana w połączeniach takich jak złącza przewodowe, gdzie nie stosuje się lutowania. Montaż powierzchniowy (SMT) to nowocześniejsza technologia, w której komponenty są osadzane na powierzchni płytki, co powoduje zmniejszenie rozmiarów i zwiększenie gęstości montażu. Ta metoda ma swoje zastosowanie w wielu nowoczesnych urządzeniach, ale nie jest tożsama z przewlekanym montażem. Istotnym błędem myślowym jest mylenie tych technologii, co może prowadzić do nieprawidłowych założeń dotyczących trwałości, jakości i odpowiedniości technologii dla konkretnych zastosowań. Zrozumienie różnic pomiędzy tymi metodami jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i produkcją układów elektronicznych, aby zapewnić optymalizację procesu produkcji oraz jakości finalnych produktów.

Pytanie 18

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. wzrostu obrotów silnika
B. zmniejszenia reaktancji uzwojeń silnika
C. obniżenia wartości napięcia zasilania
D. spadku obrotów silnika
Wzrost obrotów silnika w układzie napędowym z silnikiem prądu przemiennego zasilanym z falownika jest zgodny z zasadą, że zmiana częstotliwości napięcia zasilającego wpływa na prędkość obrotową silnika. Zgodnie z równaniem: n = (120 × f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość zasilania, a p to liczba par biegunów silnika, możemy zauważyć, że zgodnie z tym równaniem, zwiększenie częstotliwości f prowadzi do proporcjonalnego wzrostu prędkości obrotowej n. Przykładowo, w zastosowaniach przemysłowych, takich jak napęd wentylatorów, pomp, czy taśmociągów, wykorzystuje się falowniki do precyzyjnego sterowania prędkością obrotową, co pozwala na oszczędność energii oraz zwiększenie efektywności procesów technologicznych. Warto także zwrócić uwagę na standardy takie jak IEC 60034, które definiują normy dla maszyn elektrycznych, w tym dla silników elektrycznych, co jest istotne dla zapewnienia ich prawidłowej pracy i bezpieczeństwa użytkowania. Zrozumienie tej zasady jest kluczowe dla inżynierów automatyków oraz techników zajmujących się systemami napędowymi.

Pytanie 19

Charakterystykę I = f(U) diody półprzewodnikowej można uzyskać za pomocą oscyloskopu dwukanałowego w trybie

A. X/T
B. X/Y
C. AC
D. DC
Użycie trybu AC do analizy charakterystyki prądowo-napięciowej diody półprzewodnikowej jest niewłaściwe, ponieważ ten tryb oscyloskopu służy przede wszystkim do analizy sygnałów zmiennych. W trybie AC oscyloskop nie wyświetla sygnałów stałych, co ogranicza możliwość monitorowania prądów i napięć w nieliniowych elementach, takich jak diody, które wymagają analizy w pełnym zakresie napięć. Z kolei tryb DC pozwala na obserwację sygnałów stałych, ale nie umożliwia jednoczesnego przedstawienia prądu i napięcia na jednym wykresie, co jest kluczowe do zrozumienia charakterystyki diody. Opcja X/T również nie jest odpowiednia, gdyż ten tryb jest używany do analizy sygnałów czasowych, a nie do porównania dwóch zmiennych, jak w przypadku prądu i napięcia. Typowym błędem przy wyborze trybu oscyloskopu jest założenie, że wystarczy wybrać jakikolwiek tryb do analizy, nie biorąc pod uwagę specyfiki badanego elementu. Aby skutecznie analizować nieliniowe charakterystyki, konieczne jest zrozumienie, że odpowiedni tryb X/Y dostarcza najbardziej wartościowych informacji, które są niezbędne dla właściwej interpretacji wyników oraz projektowania układów elektronicznych.

Pytanie 20

W siłowniku działającym w obie strony o średnicy tłoka D = 20 mm oraz efektywności 0,8, zasilanym ciśnieniem p = 0,6 MPa, teoretyczna siła przy wysunięciu siłownika wynosi około

A. 140 N
B. 130 N
C. 150 N
D. 160 N
Wybór błędnych odpowiedzi często wynika z nieprawidłowego zrozumienia podstawowych zasad działania siłowników oraz z braku znajomości obliczeń związanych z ich parametrami. W przypadku siłownika dwustronnego, kluczowe jest zrozumienie, że siła generowana przez siłownik jest bezpośrednio związana z polem powierzchni tłoka oraz ciśnieniem zasilającym. Nieprawidłowe odpowiedzi mogą wynikać z nieuwzględnienia sprawności siłownika. Wiele osób może przyjąć ciśnienie jako jedyny czynnik wpływający na siłę, zaniedbując istotny element, jakim jest pole powierzchni tłoka. Ponadto, niektórzy mogą błędnie zakładać, że siła obliczona w oparciu o ciśnienie będzie równa siły roboczej, co jest mylące. W praktyce inżynieryjnej, zarówno w pneumatyce, jak i hydraulice, uwzględnienie sprawności jest kluczowe, ponieważ każdy siłownik ma swoje ograniczenia związane z efektywnością działania. Dlatego ważne jest, aby przy obliczeniach brać pod uwagę wszystkie istotne parametry i zrozumieć, jak one współdziałają, co w konsekwencji pozwoli na podejmowanie właściwych decyzji projektowych i operacyjnych.

Pytanie 21

Falownik to urządzenie przetwarzające moc, które konwertuje prąd

A. zmienny o regulowanej częstotliwości na prąd zmienny 50 Hz
B. stały na prąd zmienny o regulowanej częstotliwości
C. zmienny o częstotliwości 50 Hz na prąd stały
D. trój fazowy na prąd jednofazowy
Wszystkie podane niepoprawne odpowiedzi zawierają nieporozumienia dotyczące funkcji falownika. Falownik nie przekształca prądu zmiennego o częstotliwości 50 Hz na prąd stały, ponieważ jego podstawowym zadaniem jest konwersja prądu stałego na prąd zmienny. Wskazanie, że falownik zamienia prąd trójfazowy na jednofazowy, również jest błędne, ponieważ falownik nie zmienia liczby faz, a raczej generuje prąd zmienny z dostępnego prądu stałego. Co więcej, sugestia, że falownik przekształca zmienny prąd o regulowanej częstotliwości na prąd zmienny 50 Hz, jest myląca – falownik działa w odwrotnym kierunku, regulując częstotliwość wyjściowego prądu zmiennego. Zrozumienie funkcji falownika wymaga znajomości jego roli w kontekście systemów zasilania oraz zastosowań w automatyzacji. Dodatkowo, często popełnianym błędem jest mylenie różnych rodzajów przetworników, takich jak prostowniki, które zamieniają prąd zmienny na stały. W praktyce, aby uniknąć takich nieporozumień, ważne jest zapoznanie się z właściwościami technicznymi falowników oraz ich zastosowaniem w różnych sektorach przemysłowych, co pozwala na skuteczniejsze projektowanie i wdrażanie systemów zasilania.

Pytanie 22

Wartość sygnału binarnego (11100111)2 na wyjściu ośmiobitowego przetwornika A/C w urządzeniu mechatronicznym odpowiada liczbie dziesiętnej

A. (230)10
B. (255)10
C. (231)10
D. (254)10
Podczas rozwiązywania tego typu zadań kluczowe jest zrozumienie, jak działa konwersja między systemami liczbowymi. Odpowiedzi, które nie prowadzą do wyniku (231)10, mogą wynikać z błędów w obliczeniach lub mylnych założeń. Na przykład, zinterpretowanie wartości binarnej jako reprezentacji w innym systemie liczbowym, takim jak dziesiętny, bez odpowiedniego przeliczenia, prowadzi do niepoprawnych wyników. Zwracając uwagę na odpowiedzi (230)10, (255)10 oraz (254)10, widzimy, że każdy z tych wyników różni się od prawidłowego w istotny sposób. Może to być skutkiem pomyłki w dodawaniu wartości poszczególnych bitów lub pominięcia niektórych z nich. Na przykład, w przypadku odpowiedzi na (255)10, można zauważyć, że osoba rozwiązująca pytanie mogła nie uwzględnić, że wszystkie bity są w rzeczywistości aktywne i interpretuje samą ilość bitów 1 jako maksymalną wartość 8-bitowego systemu binarnego, co daje 255. Wartości te są krytyczne w kontekście projektowania systemów cyfrowych, gdzie precyzyjna konwersja wartości jest niezbędna do prawidłowego działania urządzeń. Dlatego tak ważne jest, aby szczegółowo zrozumieć proces konwersji i zastosować go w praktyce, aby unikać tych powszechnych pułapek myślowych.

Pytanie 23

Znamionowe napięcie międzyfazowe uzwojenia stojana silnika asynchronicznego, trójfazowego, o danych znamionowych podanych w tabelce jest równe

Δ400V5,9A
2,5kWS1cosφ = 0,8
1425obr/min50Hz
Y240V6,6A
Izol. – Kl.B/FIP3335kg

A. 240 V
B. 400 V
C. 380V
D. 230 V
Nieprawidłowe odpowiedzi są wynikiem błędnego zrozumienia zasad działania silników trójfazowych oraz ich charakterystyki elektrycznej. Odpowiedzi 240 V, 380 V i 230 V są typowymi wartościami napięć, które mogą występować w różnych kontekstach, jednak nie odpowiadają one znamionowemu napięciu międzyfazowemu dla silnika asynchronicznego o danych znamionowych. W przypadku silników trójfazowych, napięcie międzyfazowe wynoszące 400 V jest normą w wielu krajach, w tym w Europie. Odpowiedzi 240 V, 230 V i 380 V mogą wynikać z nieporozumień dotyczących napięcia międzyfazowego i jednofazowego lub pomiarów napięcia w różnych warunkach. Często występującym błędem jest mylenie napięcia fazowego z napięciem międzyfazowym; w układzie trójfazowym napięcie fazowe wynosi 230 V, co prowadzi do mylnego wniosku, że jest to wartość właściwa dla napięcia międzyfazowego. Dlatego ważne jest, aby przy analizie danych technicznych silników oraz przy projektowaniu instalacji elektrycznych mieć na uwadze standardy oraz dobre praktyki w branży, których celem jest zapewnienie bezpieczeństwa i niezawodności systemów zasilania.

Pytanie 24

Jaką powierzchnię czynną ma tłok siłownika generującego siłę 1 600 N przy ciśnieniu 1 MPa oraz sprawności wynoszącej 0,8?

A. 1 000 mm2
B. 3 000 mm2
C. 1 500 mm2
D. 2 000 mm2
Często można spotkać się z błędami w obliczeniach powierzchni tłoka, które wynikają z nieprawidłowego zrozumienia relacji między siłą, ciśnieniem a powierzchnią. Osoby, które udzieliły odpowiedzi wskazujących na 3000 mm², 1500 mm² czy 1000 mm², mogą nie uwzględniać istotnego czynnika, jakim jest współczynnik sprawności. Taki współczynnik uwzględnia rzeczywiste straty energii w systemie hydraulicznym, a jego zignorowanie prowadzi do błędnych obliczeń. W przypadku odpowiedzi 3000 mm² mogło dojść do błędnego założenia, że siła wytwarzana przez tłok jest wyższa niż w rzeczywistości, co jest niezgodne z podanymi danymi. Osoba, która wskazała 1500 mm², najprawdopodobniej obliczyła powierzchnię czynną bez uwzględnienia ciśnienia lub zastosowała niewłaściwe jednostki. Natomiast wskazanie 1000 mm² może wynikać z mylnego założenia, że współczynnik sprawności działa w odwrotny sposób niż w rzeczywistości. W rzeczywistości, aby uzyskać pożądaną siłę, musimy uwzględnić sprawność jako element redukujący efektywną moc. Dlatego kluczowe jest zrozumienie i prawidłowe stosowanie wzorów, a także znajomość jednostek miary, aby uniknąć takich pomyłek. Zastosowanie odpowiedniej metodologii obliczeniowej oraz znajomość standardów inżynieryjnych może znacząco poprawić jakość i trafność naszych wyników.

Pytanie 25

W układzie do przygotowania sprężonego powietrza, reduktor ciśnienia

A. łączy sprężone powietrze z mgłą olejową
B. generuje mgłę olejową
C. zapewnia stałe ciśnienie robocze
D. zmniejsza ilość zanieczyszczeń w sprężonym powietrzu
Reduktor ciśnienia w zespole przygotowania sprężonego powietrza pełni kluczową rolę w utrzymaniu stałego ciśnienia roboczego, co jest niezbędne do prawidłowego funkcjonowania urządzeń pneumatycznych. Dzięki zastosowaniu reduktora, można dostosować ciśnienie powietrza do wymagań konkretnego procesu technologicznego, co przekłada się na poprawę efektywności energetycznej i wydajności systemu. Przykładem zastosowania reduktorów ciśnienia może być linia produkcyjna, gdzie różne maszyny wymagają różnych poziomów ciśnienia, a reduktor umożliwia ich optymalne zasilanie. W standardach branżowych, takich jak ISO 8573, podkreśla się znaczenie kontrolowania parametrów sprężonego powietrza, a właściwe ustawienie i konserwacja reduktorów ciśnienia są kluczowe dla zminimalizowania ryzyka awarii oraz zapewnienia jakości wykorzystywanego medium. Dodatkowo, stałe ciśnienie robocze pozwala na przewidywalność działania systemów, co jest istotne w kontekście bezpieczeństwa operacji przemysłowych.

Pytanie 26

Siłownik, który przesuwa tłok w jedną stronę dzięki sprężonemu powietrzu, a powrót tłoka jest wymuszany przez sprężynę, określamy jako siłownik pneumatyczny

A. dwustronnej pracy, bez amortyzacji.
B. różnicowy.
C. dwustronnej pracy.
D. jednostronnej pracy.
Siłownik jednostronnego działania to urządzenie, w którym sprężone powietrze działa na tłok jedynie w jednym kierunku, podczas gdy jego powrót do pozycji wyjściowej jest wymuszany przez sprężynę. Tego typu siłowniki są powszechnie stosowane w aplikacjach, gdzie nie jest wymagane ciągłe działanie w obie strony, co czyni je idealnym rozwiązaniem w systemach automatyki i pneumatyki. Przykładem zastosowania siłowników jednostronnego działania są chwytaki pneumatyczne, które chwytają obiekty w jednym kierunku, a następnie powracają do pozycji startowej dzięki sprężynie. Warto zwrócić uwagę, że siłowniki tego typu są często projektowane zgodnie z normami ISO, co zapewnia ich wysoką jakość i niezawodność. Dodatkowo, ograniczenie ruchu do jednej strony pozwala na oszczędność miejsca oraz efektywniejsze wykorzystanie sprężonego powietrza, co przekłada się na niższe koszty eksploatacyjne w dłuższej perspektywie czasowej.

Pytanie 27

Jakim przyrządem mierzy się czas trwania skoku siłownika elektrycznego?

A. miliwoltomierzem
B. mikrometrem
C. czujnikiem zegarowym
D. stoperem
Mikrometr, miliwoltomierz i czujnik zegarowy to narzędzia pomiarowe, które służą do różnych celów i nie są odpowiednie do bezpośredniego mierzenia czasu wykonania skoku siłownika elektrycznego. Mikrometr jest narzędziem do precyzyjnego pomiaru wymiarów liniowych, a jego zastosowanie w kontekście pomiaru czasu jest błędne, ponieważ nie ma on zdolności do rejestrowania upływu czasu ani do analizy dynamiki ruchu. Miliwoltomierz służy do pomiaru napięcia elektrycznego, co również nie ma związku z pomiarem czasu. Użycie miliwoltomierza do określenia wydajności siłownika mogłoby prowadzić do niepoprawnych wniosków, ponieważ nie dostarcza informacji o czasach reakcji. Czujnik zegarowy, chociaż może mierzyć czas, w kontekście skoków siłowników elektrycznych nie jest optymalnym rozwiązaniem ze względu na jego specyfikę stosowania. Czujniki te często wymagają manualnej obsługi i mogą nie być wystarczająco szybkie oraz dokładne w przypadku dynamicznych ruchów. W praktyce, aby uzyskać precyzyjne pomiary czasu reakcji siłowników elektrycznych, zaleca się użycie stopera, który oferuje automatyzację i większą dokładność, co jest istotne w kontekście wydajności i niezawodności systemów automatyzacji przemysłowej. Typowe błędy myślowe, które mogą prowadzić do wyboru niewłaściwego narzędzia, obejmują mylenie pomiarów fizycznych z czasem reakcji oraz brak zrozumienia specyfiki narzędzi pomiarowych.

Pytanie 28

Przepisy dotyczące usuwania używanych urządzeń elektronicznych nakładają obowiązek

A. wyrzucić je do pojemnika na śmieci po wcześniejszym stłuczeniu szyjki kineskopu
B. przekazać je firmie zajmującej się odbiorem odpadów po wcześniejszym uzgodnieniu
C. wrzucić je do kosza na śmieci
D. pozostawić je obok kontenera na śmieci
Odpowiedź "przekazać je firmie wywożącej śmieci po uprzednim uzgodnieniu" jest prawidłowa, ponieważ zgodnie z przepisami dotyczącymi gospodarki odpadami, w tym szczególnie dotyczy to urządzeń elektronicznych, istnieją ściśle określone procedury ich utylizacji. Utylizacja tego typu odpadów wymaga, aby były one przekazywane do wyspecjalizowanych firm, które mają odpowiednie zezwolenia i zasoby do ich bezpiecznego przetwarzania. Tego rodzaju przedsiębiorstwa posiadają technologie pozwalające na recykling części elektronicznych oraz odpowiednie metody unieszkodliwiania niebezpiecznych substancji, takich jak rtęć czy ołów, które mogą występować w niektórych urządzeniach. Przykładowo, wiele z tych firm oferuje usługi odbioru z miejsca zamieszkania, co ułatwia użytkownikom przestrzeganie przepisów. Przekazanie urządzeń wykwalifikowanym specjalistom nie tylko zapewnia zgodność z prawem, ale również chroni środowisko i zdrowie ludzi, zmniejszając ryzyko zanieczyszczenia.

Pytanie 29

Kolejność montażu silnika elektrycznego w wiertarce stołowej powinna być następująca:

A. zamocować silnik w obudowie wiertarki przy użyciu śrub, założyć pasek klinowy, podłączyć źródło zasilania
B. zamocować silnik w obudowie wiertarki przy użyciu śrub, podłączyć źródło zasilania, założyć pasek klinowy
C. podłączyć źródło zasilania, założyć pasek klinowy, zamocować silnik w obudowie wiertarki przy użyciu śrub
D. podłączyć źródło zasilania, zamocować silnik w obudowie wiertarki przy użyciu śrub, założyć pasek klinowy
Montaż silnika elektrycznego w wiertarce stołowej powinien być przeprowadzany w określonej kolejności, aby zapewnić prawidłowe działanie urządzenia oraz bezpieczeństwo użytkownika. Pierwszym krokiem jest zamocowanie silnika w obudowie wiertarki przy pomocy śrub. Taka procedura zapewnia stabilność silnika, co jest kluczowe dla jego prawidłowego funkcjonowania oraz minimalizuje ryzyko uszkodzenia mechanicznego. Następnie zakłada się pasek klinowy, który łączy silnik z wrzecionem wiertarki. Pasek klinowy przenosi moc z silnika na narzędzie wiertarskie, dlatego jego prawidłowe umiejscowienie i napięcie są istotne dla efektywności pracy. Ostatnim krokiem jest podłączenie źródła zasilania. Przy takim podejściu unikamy sytuacji, w której silnik mógłby pracować bez odpowiedniego połączenia mechanicznego, co mogłoby prowadzić do uszkodzeń. Zgodność z tymi krokami uznaje się za najlepsze praktyki w branży montażu urządzeń elektrycznych, co zapewnia nie tylko ich wydajność, ale również bezpieczeństwo użytkowników.

Pytanie 30

Elementy z komponentów przeznaczone do montażu urządzenia powinny być posegregowane na stanowisku roboczym według

A. kształtu
B. wielkości
C. poziomu złożoności
D. kolejności montażu
Twoja odpowiedź, która mówi o układaniu części według kolejności montażu, jest naprawdę trafna. Wiesz, to mega ważne, bo jak wszystko jest dobrze zorganizowane na stanowisku pracy, to cały proces idzie sprawniej. Jak masz części poukładane po kolei, to szybciej je znajdziesz i mniejsze ryzyko, że coś sknocisz. Na przykład, w produkcji często korzysta się z metod takich jak 'Just-in-Time', które pomagają w efektywnym dostępie do elementów, kiedy akurat ich potrzebujesz. Warto też pamiętać o dobrych praktykach jak 5S, które podkreślają jak ważny jest porządek. Jeśli narzędzia i części są ustawione według kolejności montażu, to nie tylko przyspiesza pracę, ale i sprawia, że praca jest bezpieczniejsza. Dobrze jest też używać wizualnych oznaczeń i instrukcji w pobliżu, bo to naprawdę pomaga utrzymać całość w porządku i zapewnia jakość oraz terminowość.

Pytanie 31

Czujnik indukcyjny zbliżeniowy

A. informuje o odległości od zbliżającego się obiektu
B. reaguje, gdy do sensora zbliżają się obiekty nieprzezroczyste
C. informuje o kontakcie z zewnętrznym przedmiotem
D. reaguje, gdy do sensora zbliżają się obiekty metalowe
Indukcyjny sensor zbliżeniowy jest urządzeniem, które reaguje na obecność metalowych obiektów w swoim polu detekcji. Działa na zasadzie generowania pola elektromagnetycznego, które zmienia się w obecności metalu. Kiedy metalowy obiekt zbliża się do sensora, jego pole zmienia właściwości, co powoduje, że sensor uruchamia sygnał wyjściowy. Tego typu czujniki są często wykorzystywane w automatyce przemysłowej, na przykład do wykrywania pozycji narzędzi w maszynach, kontroli obecności elementów w liniach produkcyjnych, a także w systemach bezpieczeństwa, gdzie mają za zadanie monitorować dostęp do zamkniętych przestrzeni. Dzięki ich odporności na zewnętrzne warunki, takie jak zanieczyszczenia czy wilgoć, są to jedne z najczęściej stosowanych sensorów w trudnych warunkach przemysłowych. Ponadto, zgodnie z normami IEC 60947-5-2, czujniki indukcyjne powinny być odpowiednio zainstalowane, by zapewnić ich niezawodną pracę oraz bezpieczeństwo operacyjne.

Pytanie 32

Na etykiecie rozdzielacza pneumatycznego MEH-5/2-1/8-B zaznaczono średnicę przyłącza

A. 8 mm
B. G 1/8
C. G5/2
D. 5 mm
Oznaczenie G 1/8 na obudowie rozdzielacza pneumatycznego MEH-5/2-1/8-B wskazuje na typ gwintu przyłączeniowego, który jest standardem w branży pneumatycznej. W tym przypadku 'G' oznacza gwint zewnętrzny typu metrycznego, a '1/8' odnosi się do nominalnej średnicy otworu, która wynosi 1/8 cala. Gwinty G są powszechnie stosowane w instalacjach pneumatycznych i hydraulicznych, a ich rozmiary są określane według normy BSP (British Standard Pipe). W praktyce oznacza to, że do tego typu rozdzielacza należy stosować złącza odpowiednie dla gwintu 1/8, co zapewnia kompatybilność i szczelność układu. Znajomość tych oznaczeń jest kluczowa dla inżynierów i techników zajmujących się instalacjami pneumatycznymi, ponieważ niewłaściwe dobieranie złączek może prowadzić do wycieków, awarii systemu oraz zwiększenia kosztów eksploatacyjnych. Przykładem zastosowania mogą być instalacje w automatyzacji przemysłowej, gdzie precyzyjne zarządzanie ciśnieniem i wydajnością jest kluczowe dla efektywności operacyjnej.

Pytanie 33

Kiedy należy dokonać wymiany filtrów standardowych w systemie przygotowania powietrza?

A. W trakcie przeglądu konserwacyjnego przeprowadzanego co pół roku
B. W trakcie przeglądu konserwacyjnego przeprowadzanego co dwa lata i kiedy spadek ciśnienia na filtrze przekroczy 1 bar
C. W trakcie przeglądu konserwacyjnego przeprowadzanego co miesiąc
D. W trakcie przeglądu konserwacyjnego przeprowadzanym raz w roku lub kiedy spadek ciśnienia na filtrze przekroczy 0,5 bara
Odpowiedź wskazująca na konieczność wymiany elementów filtrów standardowych w zespole przygotowania powietrza podczas przeglądu konserwacyjnego wykonywanego raz w roku lub w przypadku, gdy spadek ciśnienia na filtrze przekroczy 0,5 bara, jest zgodna z najlepszymi praktykami w zakresie utrzymania systemów wentylacyjnych i klimatyzacyjnych. Regularne przeglądy, co najmniej raz w roku, pozwalają na wczesne wykrycie problemów oraz zapewnienie optymalnej wydajności filtrów, co jest kluczowe dla jakości powietrza w pomieszczeniach. W przypadku, gdy spadek ciśnienia na filtrze przekracza 0,5 bara, oznacza to, że filtr jest zanieczyszczony lub zatkany, co może prowadzić do spadku efektywności całego systemu, a w skrajnych przypadkach do uszkodzeń urządzeń. Przykładem zastosowania tej praktyki może być przemysłowe użycie systemów filtracji w halach produkcyjnych, gdzie zanieczyszczenia powietrza mogą wpływać na jakość produktów. W takich przypadkach, regularna wymiana filtrów jest nie tylko zalecana, ale wręcz niezbędna dla zapewnienia ciągłości produkcji oraz ochrony zdrowia pracowników. Ponadto, stosowanie się do zaleceń producenta dotyczących konserwacji i wymiany filtrów pozwala na utrzymanie gwarancji na urządzenia oraz na optymalizację kosztów eksploatacyjnych.

Pytanie 34

Osoba, która doświadczyła porażenia prądem elektrycznym, nie oddycha, natomiast krążenie krwi jest prawidłowe. Jakie czynności należy wykonać w odpowiedniej kolejności podczas udzielania pierwszej pomocy?

A. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania i masaż serca
B. sztuczne oddychanie oraz masaż serca
C. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania
D. ustawienie na boku, sztuczne oddychanie
Odpowiedź "udrożnienie dróg oddechowych, sztuczne oddychanie" jest prawidłowa, ponieważ w sytuacji, gdy osoba porażona prądem elektrycznym nie oddycha, ale krążenie jest zachowane, priorytetem jest zapewnienie prawidłowego przepływu powietrza do płuc. Procedura ta jest zgodna z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie udrożnienia dróg oddechowych jako pierwszego kroku w każdym przypadku zatrzymania oddechu. Udrożnienie dróg oddechowych można osiągnąć poprzez odpowiednią pozycję ciała poszkodowanego (np. metoda odchylenia głowy do tyłu, unieś podbródek) oraz usunięcie ewentualnych przeszkód, takich jak ciała obce. Następnie, sztuczne oddychanie powinno być przeprowadzane w celu dostarczenia tlenu do płuc poszkodowanego, co jest kluczowe dla uniknięcia niedotlenienia mózgu. Wsparcie w tej sytuacji może być realizowane poprzez metody takie jak wentylacja ustami ust lub przy użyciu urządzeń wentylacyjnych, jeśli są dostępne. W przypadku dalszego braku samodzielnego oddechu, konieczne może być wprowadzenie resuscytacji krążeniowo-oddechowej, jednak najpierw trzeba zająć się zapewnieniem drożności dróg oddechowych i wentylacji, co zgodne jest z zasadami w pierwszej pomocy.

Pytanie 35

Jaką z wymienionych czynności należy regularnie przeprowadzać w trakcie konserwacji systemu pneumatycznego?

A. Usuwać kondensat wodny
B. Regulować ciśnienie powietrza
C. Wymieniać szybkozłącza
D. Wymieniać rury pneumatyczne
Usuwanie kondensatu wodnego z układu pneumatycznego jest kluczową czynnością konserwacyjną, która zapobiega wielu problemom technicznym. Kondensat wodny, który powstaje w wyniku różnicy temperatury między powietrzem a elementami układu, może prowadzić do korozji, uszkodzeń uszczelek oraz obniżenia efektywności działania systemu. Regularne usuwanie kondensatu jest nie tylko zalecane, ale wręcz wymagane przez standardy branżowe, takie jak ISO 8573, które definiują jakość sprężonego powietrza. Przykładem praktycznego zastosowania tej wiedzy jest instalacja odpowiednich separatorów kondensatu w systemie, które automatycznie usuwają wodę, minimalizując ryzyko jej nagromadzenia. Dodatkowo, regularne przeglądy układu oraz kontrola poziomu kondensatu w zbiornikach powinny być integralną częścią planu konserwacji, co pozwala na wczesne wykrywanie potencjalnych problemów i zapewnienie ciągłości pracy urządzeń.

Pytanie 36

W jaki sposób można zmienić kierunek obrotów wału w trójfazowym silniku indukcyjnym?

A. podłączyć przewód neutralny
B. zwiększyć obciążenie
C. zamienić miejscami dwa dowolne fazowe przewody zasilające
D. obniżyć częstotliwość zasilania
Żeby zmienić kierunek wirowania wału w silniku indukcyjnym trójfazowym, wystarczy zamienić ze sobą dwa przewody zasilające. To takie proste! Chodzi o to, żeby zmienić kolejność, w jakiej napięcie działa na uzwojenia silnika. W silnikach trójfazowych, wirujące pole magnetyczne jest tworzone przez zasilanie fazowe, a jego kierunek jest zależny od tego, w jakiej kolejności te fazy są podłączone. Jak zamienisz te przewody, to zmienia się sekwencja faz, a to prowadzi do tego, że kierunek wirowania się odwraca. W praktyce to jest często wykorzystywane i jeżeli robisz to na zgodnych zasadach bezpieczeństwa, nie ma ryzyka, że coś się zepsuje. W wielu branżach przemysłowych, gdzie używa się silników trójfazowych, umiejętność zmiany kierunku wirowania jest ważna, żeby maszyny działały prawidłowo, na przykład przy transporcie materiałów czy w produkcji. Zmiana kierunku wirowania sprawia też, że silnik lepiej dopasowuje się do zmieniających się warunków, co jest super istotne w efektywnym zarządzaniu energią.

Pytanie 37

Jaką czynność zrealizuje polecenie COMPILE w kontekście programowania systemów mechatronicznych?

A. Konwersja kodu binarnego na format dziesiętny
B. Przesłanie programu do kontrolera
C. Przetłumaczenie programu na kod binarny
D. Pobranie programu z kontrolera
Wywołanie polecenia COMPILE w kontekście programowania urządzeń mechatronicznych może być mylone z innymi czynnościami związanymi z zarządzaniem programem. Nie należy utożsamiać kompilacji z przesyłaniem programu do sterownika, gdyż te operacje są od siebie odrębne. Przesłanie programu do sterownika odbywa się po etapie kompilacji, a jego celem jest zainstalowanie odpowiednio przetłumaczonego kodu binarnego w pamięci urządzenia. Zrozumienie tego procesu jest kluczowe, aby uniknąć błędów w programowaniu. Kolejnym typowym nieporozumieniem jest mylenie kompilacji z tłumaczeniem kodu binarnego na format zrozumiały dla człowieka, jak kod decymalny. Tego rodzaju operacje, nazywane dekompilacją, są rzadko praktykowane w kontekście programowania urządzeń mechatronicznych, ponieważ zazwyczaj pracujemy w odwrotnym kierunku, przetwarzając kod źródłowy na binarny. Ostatnią pomyłką jest pomylenie kompilacji z pobieraniem programu ze sterownika, co jest kolejnym krokiem w cyklu życia oprogramowania, ale nie jest bezpośrednio związane z procesem kompilacji. Kluczowym elementem skutecznego programowania jest zrozumienie tych różnic oraz umiejętność ich zastosowania w praktyce.

Pytanie 38

Po wykonaniu otworów w płaskowniku, które są potrzebne do zrealizowania połączenia śrubowego, należy pozbyć się metalowych zadziorów. Jak się nazywa ta czynność?

A. Powiercanie
B. Szlifowanie
C. Wygładzanie
D. Gratowanie
Wybór odpowiedzi takich jak wygładzanie, szlifowanie czy powiercanie wskazuje na pewne nieporozumienia dotyczące procesów obróbczych. Wygładzanie to termin odnoszący się do redukcji chropowatości powierzchni, ale nie koncentruje się na usuwaniu zadziorów czy resztek metalu. Zazwyczaj stosuje się je w kontekście wykańczania powierzchni, jednak nie jest to proces dedykowany do postępowania ze krawędziami otworów. Szlifowanie natomiast jest bardziej skomplikowanym procesem obróbczy, który polega na użyciu narzędzi szlifierskich do precyzyjnego formowania i wygładzania, ale również nie jest to najbardziej efektywna metoda do usuwania zadziorów w otworach. Powiercanie, z kolei, odnosi się do samego procesu wiercenia, podczas którego powstają otwory, ale nie dotyczy to usuwania resztek metalu, które pozostają po tym procesie. Wybór tych terminów może wynikać z braku zrozumienia specyfiki obróbki metali oraz celów poszczególnych technik. Kluczowe w pracy z materiałami metalowymi jest zrozumienie, że gratowanie jest niezbędnym krokiem, który zapewnia bezpieczeństwo i jakość połączeń śrubowych, a także wpływa na ogólną efektywność i trwałość wykonanych elementów.

Pytanie 39

Niewielkie, drobne zarysowania na tłoczysku hydraulicznego siłownika eliminuje się za pomocą

A. lutowania
B. spawania
C. polerowania
D. napawania
Polerowanie to skuteczna metoda usuwania drobnych, niewielkich rys na tłoczysku siłownika hydraulicznego, ponieważ pozwala na wygładzenie powierzchni metalowej bez potrzeby dodawania materiału. W procesie polerowania wykorzystuje się różne materiały ścierne, takie jak pasty polerskie czy materiały ścierne o drobnych ziarnach, co umożliwia osiągnięcie wysokiej jakości wykończenia. Przykładem zastosowania polerowania w praktyce jest konserwacja siłowników hydraulicznych w maszynach budowlanych, gdzie ich długowieczność oraz niezawodność są kluczowe. Polerowanie nie tylko poprawia estetykę, ale również minimalizuje ryzyko dalszego uszkodzenia, zmniejszając tarcie i zużycie materiału. W branży hydraulicznej standardy jakości, takie jak ISO 9001, zalecają regularne kontrolowanie stanu tłoczysk i ich polerowanie w celu zapewnienia optymalnej wydajności oraz bezpieczeństwa operacyjnego urządzeń hydraulicznych. Warto również wspomnieć, że polerowanie przyczynia się do poprawy właściwości tribologicznych powierzchni, co wpływa na efektywność pracy siłowników.

Pytanie 40

W trakcie inspekcji efektywności systemu sterującego urządzeń transportujących elementy aluminiowe, w środowisku produkcyjnym o podwyższonym poziomie hałasu powinno się używać

A. kasku ochronnego
B. rękawic dielektrycznych
C. ochronników słuchu
D. okularów ochronnych
Ochronniki słuchu są kluczowym elementem ochrony osobistej w środowisku pracy, gdzie poziom hałasu przekracza dopuszczalne normy. W przypadku kontroli sprawności układu sterowania urządzenia transportującego kształtki aluminiowe, które mogą generować wysokie poziomy hałasu, zastosowanie ochronników słuchu jest niezbędne dla minimalizacji ryzyka uszkodzenia słuchu. Zgodnie z normami takimi jak PN-N-01307:2013, każdy pracownik narażony na hałas o poziomie przekraczającym 85 dB powinien stosować odpowiednie środki ochrony. Ochronniki słuchu mogą występować w różnych formach, takich jak nauszniki lub wkładki douszne, dostosowane do specyfiki pracy. W praktyce, ich stosowanie nie tylko chroni zdrowie pracownika, ale również zwiększa komfort pracy, umożliwiając lepszą koncentrację na wykonywanych zadaniach. Dbanie o zdrowie pracowników poprzez stosowanie wymaganych środków ochrony osobistej jest nie tylko kwestią zgodności z przepisami, ale także wpływa na ogólną wydajność i morale w zespole.