Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 6 maja 2025 09:27
  • Data zakończenia: 6 maja 2025 10:13

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Telewizor nie odbiera żadnego sygnału z zewnętrznej anteny w transmisji naziemnej, natomiast prawidłowo wyświetla obraz z tunera satelitarnego połączonego z telewizorem kablem EURO SCART oraz z kamery VHS-C. Wskazane symptomy sugerują, że uszkodzony jest moduł

A. odchylania poziomego i pionowego
B. wzmacniacza obrazu
C. wielkiej i pośredniej częstotliwości
D. separatora sygnałów
Wybór odpowiedzi dotyczących wzmacniacza wizji jest nieprawidłowy, ponieważ wzmacniacz wizji odpowiada za wzmocnienie sygnału wizyjnego po demodulacji, co nie ma bezpośredniego wpływu na odbiór sygnału z anteny. W przypadku braku sygnału z anteny, wzmacniacz wizji nie jest przyczyną problemu, lecz skutkiem złego odbioru. Separator impulsów jest układem używanym w niektórych telewizorach do oddzielania sygnałów synchronizacji od sygnałów wideo, jednak w omawianym przypadku brak obrazu z anteny wskazuje na problem na poziomie sygnałów RF i IF, a nie na poziomie przetwarzania wizyjnego. Uszkodzenie odchylania poziomego i pionowego również nie tłumaczy braku odbioru z anteny, ponieważ te moduły odpowiadają za poprawne wyświetlanie obrazu na ekranie, a nie za jego odbiór. Typowe błędy myślowe prowadzące do takich wniosków to skupienie się na symptomach, a nie na źródłach problemu. Przy diagnozowaniu usterek w odbiornikach telewizyjnych istotne jest przeprowadzenie analizy sygnału na różnych etapach przetwarzania, co pozwala na szybkie zidentyfikowanie rzeczywistych przyczyn problemów z odbiorem sygnału.

Pytanie 2

Czujnik kontaktronowy, często wykorzystywany w systemach alarmowych, zmienia swój stan pod wpływem

A. pola elektrycznego
B. zmiany natężenia dźwięku
C. pola magnetycznego
D. zmiany temperatury
Czujnik kontaktronowy działa na zasadzie detekcji pola magnetycznego. W jego wnętrzu znajdują się dwa metalowe styki, które są zamknięte w hermetycznej obudowie. Gdy w pobliżu czujnika pojawia się pole magnetyczne, styki te zbliżają się do siebie, co skutkuje zmianą stanu czujnika z otwartego na zamknięty. To zjawisko jest wykorzystywane w systemach sygnalizacji włamania oraz w różnych zastosowaniach automatyki budynkowej. Na przykład, w systemach alarmowych, czujniki kontaktronowe mogą być umieszczane w drzwiach i oknach, by informować o ich otwarciu. Dobrą praktyką jest umieszczanie ich w miejscach, gdzie mogą być łatwo zintegrowane z centralą alarmową, co zwiększa bezpieczeństwo obiektu. Warto również zauważyć, że kontaktrony są preferowane w sytuacjach, gdzie wymagana jest wysoka niezawodność oraz estetyka, ponieważ ich działanie jest ciche, a sama konstrukcja jest minimalistyczna.

Pytanie 3

Całkowity koszt wykonania instalacji alarmowej, przy wartości materiałów wynoszącej 2 000 zł netto oraz kosztach robocizny w wysokości 1 000 zł netto, wyniesie ile, jeżeli materiały są objęte 23% a usługa 8% podatkiem VAT?

A. 3 460 zł
B. 3 540 zł
C. 3 080 zł
D. 3 240 zł
Aby obliczyć łączny koszt instalacji alarmowej, należy najpierw ustalić wartość materiałów i robocizny, a następnie doliczyć odpowiednie stawki podatku VAT. W tym przypadku wartość materiałów wynosi 2 000 zł netto. Stawka VAT dla materiałów wynosi 23%, co daje kwotę 460 zł (2 000 zł x 0,23). Z kolei koszt robocizny wynosi 1 000 zł netto, a stawka VAT dla robocizny wynosi 8%, co daje kwotę 80 zł (1 000 zł x 0,08). Łączny koszt materiałów z VAT to 2 000 zł + 460 zł = 2 460 zł, natomiast łączny koszt robocizny z VAT to 1 000 zł + 80 zł = 1 080 zł. Sumując te wartości, otrzymujemy całkowity koszt instalacji wynoszący 2 460 zł + 1 080 zł = 3 540 zł. Takie obliczenia są zgodne z obowiązującymi przepisami VAT i są kluczowe w branży budowlanej oraz instalacyjnej, gdzie precyzyjne kalkulacje kosztów mają istotne znaczenie dla rentowności projektów.

Pytanie 4

Czy światło słoneczne może doprowadzić do utraty danych w pamięci rodzaju

A. DRAM
B. EEPROM
C. EPROM
D. SDRAM
DRAM (Dynamic Random Access Memory) to pamięć, która przechowuje dane w postaci ładunków elektrycznych w kondensatorach, a jej zawartość jest ulotna, co oznacza, że dane z niej znikają po wyłączeniu zasilania. W przeciwieństwie do EPROM, DRAM nie może być kasowane przy użyciu światła, co czyni tę odpowiedź niewłaściwą. Z kolei SDRAM (Synchronous Dynamic Random Access Memory) jest rozwinięciem DRAM, które synchronizuje operacje pamięci z sygnałem zegarowym, co poprawia wydajność, ale również nie jest wrażliwe na światło ultrafioletowe. EEPROM (Electrically Erasable Programmable Read-Only Memory) z kolei to pamięć, którą można kasować i programować elektrycznie, co sprawia, że jest bardziej uniwersalna w zastosowaniach, niż EPROM, jednak nie jest ona narażona na usunięcie danych w wyniku ekspozycji na światło. Typowe błędy myślowe przy wyborze niepoprawnych odpowiedzi wynikają z mylenia właściwości pamięci oraz z braku zrozumienia, jakie mechanizmy są używane do kasowania i programowania tych typów pamięci. Właściwe zrozumienie różnic między tymi typami pamięci jest kluczowe dla inżynierów i projektantów systemów, którzy muszą wybrać odpowiednie rozwiązania w zależności od wymagań aplikacji.

Pytanie 5

Skrót ADSL odnosi się do technologii, która pozwala na

A. transmisję informacji cyfrowych za pośrednictwem fal radiowych
B. kompresję materiałów audio i wideo
C. szerokopasmowy asymetryczny dostęp do sieci teleinformatycznych
D. odbieranie cyfrowej telewizji naziemnej
ADSL, czyli Asymmetrical Digital Subscriber Line, to technologia szerokopasmowego dostępu do internetu, która wykorzystuje istniejące linie telefoniczne do przesyłania danych cyfrowych. Jej główną cechą jest asymetryczność, co oznacza, że prędkość pobierania danych (downstream) jest znacznie wyższa niż prędkość wysyłania danych (upstream). Dzięki temu ADSL jest szczególnie przystosowane do typowego użytkowania, gdzie użytkownicy częściej pobierają dane (np. przeglądanie stron internetowych, oglądanie filmów) niż je wysyłają. Przykładem zastosowania ADSL jest domowe lub biurowe łącze internetowe, które umożliwia korzystanie z szerokopasmowego dostępu bez potrzeby instalacji kosztownych infrastrukturalnych rozwiązań. ADSL jest zgodne z międzynarodowymi standardami ITU-T G.992.1, co zapewnia interoperacyjność między różnymi urządzeniami i dostawcami usług. Ponadto, ADSL jest często wykorzystywane w kontekście usług Triple Play, które integrują dostęp do internetu, telewizji i telefonii w jedną ofertę.

Pytanie 6

Weryfikacja parametrów instalacji antenowej DVB-T wymaga dokonania

A. rezystancji kabla
B. bitowej stopy błędów
C. izolacji kabla
D. kąta elewacji oraz azymutu
Pomiar parametrów instalacji antenowej DVB-T nie opiera się na sprawdzaniu rezystancji kabla, kąta elewacji ani azymutu, czy izolacji kabla, ponieważ te aspekty nie są bezpośrednio związane z jakością odbioru sygnału. Rezystancja kabla, chociaż istotna dla oceny jego integralności, nie dostarcza informacji o tym, jak dobrze sygnał jest przesyłany i odbierany. Izolacja kabla może wpływać na zakłócenia, jednak nie wskazuje na jakość samego sygnału DVB-T. Kąt elewacji i azymutu są istotne w kontekście skierowania anteny w stronę nadajnika, ale ich pomiar nie dostarcza informacji o jakości i stabilności sygnału odbieranego przez urządzenia końcowe. Takie podejścia mogą prowadzić do mylnych ocen, ponieważ nie uwzględniają one najważniejszych parametrów wpływających na jakość transmisji, jakimi są sygnały błędów. Osoby koncentrujące się na tych aspektach mogą przeoczyć konieczność przeprowadzenia rzeczywistych testów odbioru, które ujawniają problemy z jakością sygnału, prowadząc do zainstalowania anteny w nieoptymalnej pozycji. Dlatego istotne jest, aby technicy instalacji antenowej koncentrowali się na pomiarze BER i innych parametrach związanych z jakością sygnału, zgodnie z najlepszymi praktykami branżowymi.

Pytanie 7

Podczas hibernacji komputera zachodzi

A. zapisanie zawartości pamięci na dysku twardym.
B. reset systemu.
C. przełączanie na zasilanie z UPS.
D. zamknięcie systemu.
Hibernacja systemu komputerowego jest często mylona z innymi procesami związanymi z zarządzaniem energią, dlatego ważne jest zrozumienie różnic między nimi. Resetowanie systemu to całkowite ponowne uruchomienie, które nie zachowuje żadnych otwartych programów ani danych w pamięci operacyjnej. Takie działanie prowadzi do utraty wszelkich niezapisanych postępów i jest używane głównie w przypadku awarii lub potrzeby zakończenia pracy systemu. Z kolei przełączanie na zasilanie z UPS, czyli zasilacza awaryjnego, dotyczy sytuacji kryzysowych, takich jak przerwy w dostawie prądu, i nie ma związku z hibernacją. W przypadku zamykania systemu, użytkownik decyduje się na całkowite zakończenie pracy komputera, co również skutkuje utratą otwartych aplikacji, chyba że zostały one wcześniej zapisane. Wiele osób może mieć mylne przekonanie, że hibernacja i usypianie są tym samym, jednak usypianie polega jedynie na tymczasowym przechowywaniu danych w pamięci, co wymaga ciągłego zasilania. Dlatego istotne jest rozróżnienie tych procesów oraz zrozumienie ich zastosowania w praktyce, aby skutecznie zarządzać energią i wydajnością systemu. Zrozumienie tych koncepcji jest kluczowe dla efektywnego użytkowania komputerów w różnych scenariuszach operacyjnych.

Pytanie 8

Jeśli po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski lub rozmowa jest cicho, co należy zrobić?

A. dostosować poziom głośności w zasilaczu
B. dostosować napięcie w kasecie rozmownej
C. podnieść napięcie zasilania elektrozaczepu
D. zwiększyć poziom głośności w unifonie
Wybór opcji związanej z podwyższeniem poziomu głośności w unifonie nie jest wystarczająco skuteczny, ponieważ w sytuacjach, gdy dźwięk jest słabo słyszalny lub słychać piski, problem często leży w zasilaczu. Unifon, jako urządzenie odbierające sygnał, może być zbyt czuły lub nie mieć możliwości skutecznej regulacji, jeśli zasilacz nie dostarcza odpowiedniego sygnału. Ponadto, podwyższenie napięcia zasilania elektrozaczepu nie ma wpływu na jakość dźwięku w słuchawce, ponieważ elektrozaczep odpowiada tylko za otwieranie drzwi i nie wpływa na przekaz audio. Regulacja napięcia w kasecie rozmownej także nie rozwiązuje problemu, ponieważ nie jest odpowiedzialna za głośność, lecz za ogólną funkcjonalność urządzenia. Niekiedy użytkownicy błędnie myślą, że wszelkie problemy z dźwiękiem można rozwiązać poprzez dostosowanie ustawień w odbiorniku, zapominając o kluczowej roli, jaką odgrywa zasilacz w całym systemie. Z tego powodu, ważne jest, aby przy instalacji domofonów zwracać uwagę na wszystkie komponenty systemu oraz ich wzajemne oddziaływanie. Właściwe zrozumienie funkcji oraz zależności między poszczególnymi elementami jest niezbędne dla efektywnej diagnostyki i naprawy występujących problemów.

Pytanie 9

W trakcie pomiaru rezystancji po zamontowaniu komponentów wykryto bardzo wysoką rezystancję, która była efektem pojawienia się zimnego lutu na połączeniu jednego z komponentów z polem lutowniczym. Jak można usunąć tę wadę?

A. Przylutować obok komponentu drugi element tego samego typu
B. Wylutować komponent i po sprawdzeniu jego funkcjonalności ponownie przylutować ten element
C. Wylutować komponent i przylutować koniecznie nowy o identycznych parametrach
D. Przylutować obok komponentu odcinek przewodu
Wylutowanie elementu i późniejsze przylutowanie go po sprawdzeniu, czy działa, to naprawdę najlepszy sposób na pozbycie się zimnego lutowania. Zimny lut, który ma wysoką rezystancję, pojawia się najczęściej, gdy podgrzanie elementów lutowniczych jest niewystarczające albo lutowia nie są zbyt dobrej jakości. Kiedy wylutujesz element, możesz dokładnie sprawdzić, czy działa poprawnie, co jest mega ważne, jak chcesz, żeby cały układ funkcjonował. Dobrze jest też przetestować lut pod kątem przewodności i pewności, żeby nie było innych problemów. Gdy przylutujesz go znowu, pamiętaj o odpowiednich technikach lutowania i temperaturze. Użycie lutownicy, która ma regulowaną temperaturę, może bardzo poprawić jakość tych połączeń. Ta metoda jest zgodna z najlepszymi standardami, takimi jak IPC-A-610, gdzie mówią, co jest akceptowalne w lutach i połączeniach elektronicznych. Jak połączenie lutownicze jest dobrze zrobione, to nie tylko ma niską rezystancję, ale też zwiększa stabilność i niezawodność całego układu.

Pytanie 10

Jaki element elektroniczny jest określany przez symbole: S-źródło, G-bramka, D-dren?

A. Tyrystor
B. Tranzystor unipolarny
C. Tranzystor bipolarny
D. Trymer
Tyrystory, tranzystory bipolarne oraz trymer to elementy elektroniczne o różnych zastosowaniach i zasadach działania, które nie pasują do opisanego schematu terminali S, G i D. Tyrystor jest urządzeniem półprzewodnikowym, które działa jako przełącznik i jest aktywowany przez impuls prądowy, jednak posiada tylko dwa główne terminale: anody i katody. Jego struktura oraz sposób działania są inne niż w tranzystorze unipolarnym, co prowadzi do nieporozumień w identyfikacji. Tranzystor bipolarny, z kolei, ma trzy terminale: emiter, bazę i kolektor, gdzie prąd przepływa na podstawie sygnału wejściowego z bazy, co różni się od zasady działania tranzystora unipolarnego, gdzie kluczową rolę odgrywa napięcie na bramce. Natomiast trymer jest kondensatorem o regulowanej pojemności, wykorzystywanym głównie w obwodach rezonansowych, co również nie odpowiada opisanemu terminowi. Błędy w analizie pytania mogą prowadzić do mylnego rozumienia podstaw elektroniki, a także do niewłaściwego doboru komponentów w praktycznych zastosowaniach. Zrozumienie różnicy między tymi elementami jest kluczowe dla skutecznego projektowania systemów elektronicznych, co wymaga znajomości ich właściwości i funkcji. Przy projektowaniu obwodów, istotne jest stosowanie odpowiednich elementów w zależności od wymagań aplikacji i standardów branżowych.

Pytanie 11

Skrót DVB-T odnosi się do telewizji w formacie cyfrowym

A. naziemnej
B. satelitarnej
C. kablowej
D. przemysłowej
DVB-T, czyli Digital Video Broadcasting - Terrestrial, to tak naprawdę standard, który pozwala nam na odbiór telewizji cyfrowej przez nadajniki na ziemi. Nie trzeba tu kombinować z żadnymi satelitami czy kablówkami. W praktyce oznacza to, że możesz cieszyć się różnymi kanałami w fajnej jakości, bez dodatkowych opłat za usługi kablowe. W Polsce ten standard jest dość popularny i daje nam dostęp do zarówno publicznych, jak i komercyjnych programów. Co więcej, mamy też DVB-T2, który wprowadza jeszcze lepszą jakość obrazu, a nawet 4K. Fajnie, że teraz możemy mieć lepsze wrażenia wizualne, a nie musi to wiązać się z dużymi wydatkami. Również w innych krajach korzystają z DVB-T, co pokazuje, że ten standard działa i ludzie go lubią. Aha, warto dodać, że DVB-T pozwala też na przesyłanie różnych ciekawych dodatków, jak interaktywne dane czy EPG (Electronic Program Guide).

Pytanie 12

Podczas regularnego przeglądu systemu telewizyjnego należy między innymi

A. zmierzyć impedancję falową kabla koncentrycznego
B. zmierzyć poziom sygnału w gniazdku abonenckim oraz ocenić jakość połączeń wtyków F
C. oczyścić oraz pomalować antenę, a następnie ją ustawić
D. określić rezystancję falową kabla i w razie potrzeby ją skorygować
Pomiar impedancji falowej kabla koncentrycznego, chociaż istotny w kontekście projektowania systemów telewizyjnych, nie jest krokiem, który należy wykonać podczas okresowego przeglądu instalacji telewizyjnej. Podczas przeglądu głównym celem jest zapewnienie, że sygnał dociera do odbiorcy w odpowiedniej jakości. Rezystancja falowa kabla nie jest parametrem, który użytkownicy odbiorników telewizyjnych bezpośrednio kontrolują ani nie ma bezpośredniego wpływu na jakość obrazu. Podobnie, wyznaczanie rezystancji falowej i jej korekcja są bardziej zaawansowanymi zagadnieniami inżynieryjnymi, które mają zastosowanie w projektowaniu i optymalizacji systemów, ale nie są one rutynowymi czynnościami w trakcie regularnego przeglądu. W kontekście mycia i malowania anteny, choć może to być korzystne w przypadku, gdy antena jest zanieczyszczona lub uszkodzona, to nie jest to standardowa praktyka ani nie wpływa na jakość sygnału. Często pojawiające się błędne przekonania dotyczące konieczności estetycznej konserwacji sprzętu mogą prowadzić do zaniedbania ważniejszych aspektów technicznych, takich jak pomiar sygnału i kontrola jakości połączeń. Właściwe podejście do przeglądów instalacji powinno skupiać się na rzeczywistych parametrach sygnału i ich jakości, co jest kluczowe dla efektywnego funkcjonowania systemu telewizyjnego.

Pytanie 13

Który z poniższych przyrządów jest używany do pomiaru rezystancji izolacji kabli?

A. Induktor
B. Mostek Wiena
C. Wobulator
D. Mostek Thomsona
Induktor, jako element pasywny, jest kluczowy w pomiarach rezystancji izolacji kabli, ponieważ jego działanie opiera się na zjawisku indukcji elektromagnetycznej. Podczas testowania izolacji, induktor jest wykorzystywany do generowania zmiennego pola magnetycznego, co pozwala na ocenę jakości izolacji przewodów. Stosując induktory, technicy mogą testować izolację w warunkach rzeczywistych, co jest zgodne z normami branżowymi, takimi jak IEC 61010, które podkreślają znaczenie bezpieczeństwa i dokładności w pomiarach. Przykład zastosowania induktora w tej dziedzinie to testowanie kabli wysokiego napięcia, gdzie konieczne jest potwierdzenie, że izolacja jest w stanie wytrzymać określone napięcia bez przewodzenia prądu przez izolację. Regularne pomiary rezystancji izolacji pozwalają na wcześniejsze wykrycie potencjalnych problemów, co jest praktyką zalecaną w utrzymaniu infrastruktury elektrycznej, zmniejszając ryzyko awarii i zapewniając większe bezpieczeństwo użytkowników.

Pytanie 14

Krótkoterminowe przerwy w dostawie napięcia do systemu CCTV (na przykład w trakcie silnych burz) mogą skutkować

A. obniżeniem efektywności rejestratora
B. zmianą parametrów działania kamer
C. zawieszeniem pracy systemu
D. przegrzaniem rejestratora
Krótkotrwałe zaniki napięcia zasilającego system CCTV mogą prowadzić do "zawieszenia" pracy systemu, ponieważ urządzenia te wymagają stabilnego i ciągłego zasilania, aby prawidłowo funkcjonować. W przypadku spadków napięcia, rejestratory i kamery mogą utracić synchronizację, co skutkuje przerwą w rejestrowaniu obrazu lub brakiem możliwości przesyłania danych. W praktyce oznacza to, że podczas dużych wichur, gdy zasilanie może być niestabilne, system CCTV może całkowicie przestać działać. Dobrą praktyką w zabezpieczeniu systemów monitoringu przed takimi zdarzeniami jest zastosowanie zasilaczy UPS, które zapewniają ciągłość zasilania w przypadku zaniku prądu. Zgodnie z normami branżowymi, regularne testowanie tych systemów zasilania awaryjnego oraz ich odpowiednia konserwacja są kluczowe dla efektywności i niezawodności systemów CCTV.

Pytanie 15

Kiedy urządzenie elektroniczne nie wykazuje żadnych oznak funkcjonowania, od czego powinno się zacząć diagnostykę uszkodzenia?

A. obwodów wyjściowych
B. systemu masy
C. układu zasilania
D. obwodów wejściowych
Układ zasilania jest kluczowym elementem w każdym urządzeniu elektronicznym. To właśnie ten układ dostarcza energię niezbędną do działania pozostałych komponentów. W przypadku braku oznak funkcjonowania urządzenia, pierwszym krokiem w diagnostyce powinno być sprawdzenie źródła zasilania. Może to obejmować weryfikację, czy urządzenie jest podłączone do sieci, czy nie ma uszkodzeń w kablu zasilającym oraz czy wtyczka i gniazdo są sprawne. Wykorzystując multimetr, można zmierzyć napięcie na wyjściu zasilacza, aby upewnić się, że dostarczane napięcie jest zgodne z wymaganiami urządzenia. Dobrym standardem jest również ocena, czy w przypadku urządzeń zasilanych bateryjnie nie doszło do rozładowania ogniw. Przykładowo, w przypadku laptopów, często pierwszy objaw problemu z zasilaniem to brak reakcji po naciśnięciu przycisku zasilania, co wymaga sprawdzenia zarówno zasilacza, jak i stanu baterii. Powinno to być zgodne z najlepszymi praktykami diagnostyki, które zalecają systematyczne podejście do analizy problemów zasilania.

Pytanie 16

Co oznacza skrót DISEqC?

A. konwerter satelitarny przeznaczony do hybrydowych sieci kablowych
B. protokół komunikacyjny do zarządzania urządzeniami satelitarnymi
C. modulator jedno wstęgowy używany w zbiorczych systemach telewizyjnych
D. adapter sieciowy do przesyłania sygnałów satelitarnych
Wszystkie inne odpowiedzi mogą wydać się w porządku, ale żadna z nich porządnie nie wyjaśnia, czym tak właściwie jest DISEqC. Jeśli ktoś mówi, że to konwerter satelitarny do hybrydowych sieci kablowych, to się myli – bo DISEqC to nie sprzęt, a właśnie ten protokół do komunikacji. Konwertery satelitarne to tylko sprzęt, który może korzystać z tego protokołu. Inna odpowiedź, która mówi o modulatorze jedno wstęgowym, też nie ma sensu, bo DISEqC nie zajmuje się modulowaniem sygnałów, tylko ich przekazywaniem i kontrolowaniem. Mówiąc o adapterze sieciowym do transmisji sygnałów satelitarnych, też jest nieprecyzyjnie, bo DISEqC nie jest adapterem, tylko protokołem, który różne urządzenia mogą używać do wymiany informacji. Te wszystkie błędy prowadzą do tego, że nie rozumiemy, jak ważne jest DISEqC w zarządzaniu urządzeniami satelitarnymi. Niezbędne jest zrozumienie tego protokołu, jeśli chce się dobrze obsługiwać systemy satelitarne, bo to fundament nowoczesnych rozwiązań w tej dziedzinie.

Pytanie 17

Jak powinna przebiegać prawidłowa sekwencja uruchamiania instalacji telewizyjnej?

A. zaprogramować kanały, uruchomić odbiornik TV, podłączyć kabel antenowy
B. uruchomić odbiornik TV, zaprogramować kanały, podłączyć kabel antenowy
C. podłączyć kabel antenowy, zaprogramować kanały, uruchomić odbiornik TV
D. podłączyć kabel antenowy, uruchomić odbiornik TV, zaprogramować kanały
Prawidłowa kolejność uruchomienia instalacji telewizyjnej to podłączenie kabla antenowego, uruchomienie odbiornika TV, a następnie zaprogramowanie kanałów. Zaczynając od podłączenia kabla antenowego, zapewniamy odbiornikowi dostęp do sygnału telewizyjnego, co jest kluczowe, ponieważ bez tego nie będzie on w stanie odebrać żadnych transmisji. Po upewnieniu się, że kabel antenowy jest prawidłowo podłączony, należy uruchomić odbiornik telewizyjny. W momencie włączenia urządzenia, system operacyjny TV inicjuje potrzebne procesy, które umożliwiają dalszą konfigurację. Ostatecznie, programowanie kanałów jest krokiem, który pozwala na dostosowanie odbiornika do preferencji użytkownika i lokalnych dostępnych stacji. Ta sekwencja działa zgodnie z najlepszymi praktykami instalacyjnymi, ponieważ zapewnia logiczny i efektywny proces konfiguracji, co jest zgodne z zaleceniami producentów sprzętu telewizyjnego. Prawidłowe podejście do instalacji wpływa na ogólne doświadczenia użytkownika oraz funkcjonalność urządzenia, co podkreśla znaczenie przestrzegania ustalonych procedur.

Pytanie 18

Zwiększenie histerezy w regulatorze dwustawnym w systemie regulacji

A. spowoduje zmniejszenie amplitudy zmian sygnału kontrolowanego
B. spowoduje powiększenie amplitudy zmian sygnału kontrolowanego
C. nie wpłynie na kształt sygnału
D. spowoduje przesunięcie wykresu w górę o wartość pętli histerezy
Nieprawidłowe podejście do analizy histerezy w regulatorze dwustawowym wiąże się z błędnym zrozumieniem samej jej natury oraz efektów, jakie wywołuje w układzie regulacji. Odpowiedzi sugerujące, że zwiększenie histerezy nie wpłynie na przebieg sygnału lub spowoduje jego przesunięcie, są mylące. Histereza nie jest jedynie parametrem statycznym, lecz dynamicznie wpływa na zachowanie systemu. Wartości histerezy definiują progi, w których następuje zmiana stanu wyjściowego, co oznacza, że każda zmiana tych wartości ma bezpośredni wpływ na reakcję sygnału. Zwiększenie histerezy prowadzi do zmiany zakresu, w jakim sygnał może fluktuować przed osiągnięciem nowego stanu stabilnego, co w praktyce przekłada się na większe amplitudy zmian. Ponadto, koncepcje mówiące o przesunięciu przebiegu w górę o szerokość histerezy ignorują fakt, że histereza nie jest przesunięciem, a raczej różnicą pomiędzy dwoma stanami. To może prowadzić do błędnych interpretacji podczas projektowania systemów regulacji, gdzie kluczowe jest zrozumienie, że histereza pozwala na redukcję niepożądanych oscylacji i stabilizację odpowiedzi systemu. Ignorowanie aspektu dynamicznego histerezy w kontekście regulacji może skutkować zbyt dużymi fluktuacjami w sygnale sterowanym, co jest szczególnie problematyczne w procesach wymagających precyzyjnego nadzoru, takich jak kontrola temperatury czy ciśnienia w systemach przemysłowych.

Pytanie 19

Analogowy woltomierz ma skalę od 0 do 100 działek. Jaka jest wartość napięcia, jeżeli pomiar był wykonany w zakresie 200 V, a wskaźnik wskazuje 80 działek?

A. 160 V
B. 40 V
C. 120 V
D. 80 V
Woltomierz analogowy działa na zasadzie wskazywania wartości napięcia na skali w oparciu o wychylenie wskazówki. W przypadku pomiaru w zakresie 200 V, skala analogowa jest wyskalowana na 100 działek, co oznacza, że każda działka odpowiada wartości napięcia równej 2 V (200 V / 100 działek = 2 V/działkę). Jeśli wskazówka wychyla się na 80 działek, to wartość napięcia wynosi 80 działek * 2 V/działkę = 160 V. Przykład ten pokazuje, jak istotne jest zrozumienie skali woltomierza oraz prawidłowe przeliczanie wartości napięcia na podstawie wychylenia. W praktyce, takie pomiary są niezbędne w elektryce i elektronice, gdzie precyzyjne wskazanie napięcia jest kluczowe dla bezpieczeństwa i efektywności systemów. Przestrzeganie odpowiednich standardów pomiarowych, takich jak ISO 9001, jest również ważne w kontekście zapewnienia jakości pomiarów i wiarygodności wyników.

Pytanie 20

Warystor to komponent, który zabezpiecza urządzenia elektroniczne przed skutkami działania

A. wyładowań atmosferycznych.
B. opadów deszczu.
C. niskich temperatur.
D. promieniowania X.
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumienia na temat funkcji warystora i jego zastosowania. Promieniowanie rentgenowskie, niska temperatura oraz opady deszczu nie są związane z zasadą działania warystorów. Promieniowanie rentgenowskie to forma promieniowania elektromagnetycznego, które nie wpływa na integralność elektronicznych układów poprzez przepięcia. Niska temperatura może wpłynąć na działanie niektórych komponentów elektronicznych, ale nie jest bezpośrednim zagrożeniem, które mogłoby być neutralizowane przez warystor. Opady deszczu mogą powodować korozję lub zwarcia w urządzeniach, ale nie są powiązane z przepięciami, dla których warystory zapewniają ochronę. Typowym błędem myślowym jest mylenie skutków z przyczynami: warystory są projektowane wyłącznie do ochrony przed nadmiernym napięciem, a nie do ochrony przed innymi czynnikami zewnętrznymi. Dlatego kluczowe jest zrozumienie, że warystor działa jako element zabezpieczający przed skutkami wyładowań atmosferycznych, a nie przed innymi zagrożeniami. Zrozumienie tych różnic jest kluczowe w projektowaniu systemów zabezpieczeń w urządzeniach elektronicznych.

Pytanie 21

Jaki jest zakres pomiarowy watomierza, jeśli jego zakres prądowy wynosi 2 A, a zakres napięciowy to 200 V?

A. 100 W
B. 800 W
C. 400 W
D. 200 W
Wiesz, żeby obliczyć zakres pomiarowy watomierza, trzeba skorzystać z wzoru na moc elektryczną. Mamy tutaj proste równanie: P = U * I. W tym przypadku to wygląda tak: prąd wynosi 2 A, a napięcie to 200 V. Jak to podstawisz do wzoru, wyjdzie ci P = 200 V * 2 A, co daje 400 W. To znaczy, że maksymalna moc, którą ten watomierz może zmierzyć, to 400 W – to pasuje do jego specyfikacji. W praktyce, jak będziesz mógł mierzyć różne urządzenia, ważne jest, żeby wiedzieć, jaki jest maksymalny zakres pomiarowy, bo inaczej ryzykujesz uszkodzenie urządzenia i błędne odczyty. Takie pomiary są przydatne w wielu sytuacjach – od monitorowania zużycia energii w domu po sprawdzanie wydajności w przemyśle. Zrozumienie zakresu pomiarowego jest kluczowe, bo pozwala inżynierom i technikom na właściwy dobór sprzętu do konkretnych zadań.

Pytanie 22

Jakie urządzenie jest odpowiedzialne za rozdzielanie tonów niskich, średnich i wysokich do głośników?

A. limiter
B. zwrotnica głośnikowa
C. komparator głośnikowy
D. equalizer
Komparator głośnikowy, equalizer oraz limiter pełnią inne role w systemach audio i nie są odpowiednie do rozdzielania tonów niskich, średnich i wysokich. Komparator głośnikowy jest urządzeniem, które zazwyczaj służy do porównywania sygnałów audio, jednak nie jest zaprojektowany do efektywnego zarządzania częstotliwościami w systemach głośnikowych. Jego zastosowanie w kontekście rozdzielania tonów jest mylące, ponieważ nie oferuje funkcji filtracji i nie wpływa na kierowanie sygnału do odpowiednich głośników. Również equalizer, mimo że dostosowuje poziomy częstotliwości, nie dzieli sygnału na różne pasma w sposób, który jest wymagany do efektywnego używania głośników tonów niskich, średnich i wysokich. Equalizer jedynie pozwala na regulację głośności poszczególnych częstotliwości, co może poprawić brzmienie, ale nie rozdziela sygnału. Z kolei limiter służy do ograniczania maksymalnego poziomu sygnału audio, co ma na celu zapobieganie przesterowaniom. Ograniczanie sygnału nie jest związane z filtrowaniem częstotliwości i nie ma zastosowania w kontekście kierowania sygnałów do odpowiednich głośników. Zrozumienie tych różnic jest kluczowe, aby nie wprowadzać się w błąd podczas projektowania lub optymalizacji systemów audio. Fikcyjne przypisanie tych funkcji do zwrotnic prowadzi do niewłaściwego wykorzystania sprzętu, co negatywnie wpływa na jakość dźwięku oraz efektywność nagłośnienia.

Pytanie 23

W jakiej kolejności należy wykonać czynności związane z wymianą kamery w systemie telewizji dozorowej?

A.B.
archiwizacja nagrań,
odłączenie rejestratora od zasilania,
odłączenie przewodów od kamery,
wymiana kamery,
podłączenie przewodów do kamery,
podłączenie rejestratora do zasilania,
rozpoczęcie rejestracji.
odłączenie rejestratora od zasilania,
archiwizacja nagrań,
odłączenie przewodów od kamery,
wymiana kamery,
podłączenie przewodów do kamery,
podłączenie rejestratora do zasilania,
rozpoczęcie rejestracji.
C.D.
archiwizacja nagrań,
odłączenie przewodów od kamery,
odłączenie rejestratora od zasilania,
wymiana kamery,
podłączenie przewodów do kamery,
rozpoczęcie rejestracji,
podłączenie rejestratora do zasilania.
archiwizacja nagrań,
odłączenie rejestratora od zasilania,
odłączenie przewodów od kamery,
wymiana kamery,
podłączenie rejestratora do zasilania,
podłączenie przewodów do kamery,
rozpoczęcie rejestracji.

A. C.
B. D.
C. B.
D. A.
Wybór niewłaściwej odpowiedzi wynika z niepełnego zrozumienia procesu wymiany kamery w systemie telewizji dozorowej. Ważne jest, aby zrozumieć, że podczas takich operacji kluczowe jest zachowanie kolejności, która zapewnia zarówno bezpieczeństwo sprzętu, jak i integritet danych. Niewłaściwe podejście do wymiany kamery, takie jak pominięcie archiwizacji nagrań, może prowadzić do ich utraty, co w przypadkach krytycznych może być katastrofalne. Również, jeśli rejestrator nie zostanie odłączony od zasilania, istnieje ryzyko zwarcia, które może uszkodzić zarówno rejestrator, jak i nową kamerę. Często błędne odpowiedzi opierają się na założeniu, że można działać w sposób ad-hoc, co jest niebezpieczne w kontekście pracy z elektroniką. Niedostateczna uwaga nad właściwym odłączeniem przewodów może prowadzić do nadwyrężenia kabli lub uszkodzenia gniazd, co skutkuje kosztownymi naprawami. Należy również pamiętać, że po każdej wymianie sprzętu należy przeprowadzić testy w celu weryfikacji poprawności działania systemu. Właściwa kolejność działań nie jest kwestią przypadkową, lecz opiera się na standardach branżowych, które mają na celu ochronę zarówno użytkowników, jak i sprzętu.

Pytanie 24

W systemach zabezpieczeń najbardziej podatna na przeciągi w strzeżonym pomieszczeniu jest

A. akustyczna czujka stłuczenia szyby
B. czujka wibracyjna
C. pasywna czujka podczerwieni
D. czujka magnetyczna
Pasywna czujka podczerwieni (PIR) jest zaprojektowana do wykrywania zmian w promieniowaniu podczerwonym, które emitują obiekty w ruchu, takie jak ludzie. Jej wrażliwość na przeciągi wynika z faktu, że czujka ta działa na zasadzie różnicy temperatur między obiektami a otoczeniem. W przypadku przeciągu, zmiany temperatury mogą wpływać na skuteczność wykrywania, co czyni ją bardziej podatną na zakłócenia. W praktyce, w pomieszczeniach, gdzie występuje wzmożony ruch powietrza, zaleca się umieszczanie czujek PIR w taki sposób, aby zminimalizować ich kontakt z bezpośrednim ruchem powietrza, co jest zgodne z dobrymi praktykami instalacji systemów alarmowych. Warto również stosować czujki o różnej technologii w zależności od charakterystyki chronionego obszaru, aby zwiększyć efektywność systemu. Standardy branżowe, takie jak EN 50131, wskazują na konieczność przeprowadzania analizy ryzyka dla każdego rodzaju instalacji, co podkreśla znaczenie odpowiedniego doboru typów czujek w zależności od warunków w pomieszczeniu.

Pytanie 25

Obwód sabotażowy bez zastosowania rezystorów w systemie alarmowym powinien być skonfigurowany w trybie

A. EOL
B. NC
C. 2EOL
D. NO
Konfiguracja EOL (End of Line) polega na zastosowaniu rezystorów na końcu linii czujników, co jest przydatne w bardziej skomplikowanych systemach, gdzie chcemy monitorować stan obwodu na całej jego długości. Jednak w przypadku obwodu sabotażowego bez rezystorów, zastosowanie tej konfiguracji nie jest możliwe, ponieważ wymaga ona dodatkowych komponentów, których w tym przypadku nie ma. Ustawienia NO (Normally Open) również nie są właściwe, ponieważ w tej konfiguracji obwód jest domyślnie otwarty, co w sytuacji sabotażu może nie wywołać alarmu, co jest sprzeczne z zamiarem zabezpieczenia. W przypadku sabotażu, gdy obwód jest otwarty, nie zostanie wysłany żaden sygnał, co prowadzi do poważnego ryzyka. Typowe błędy myślowe, które mogą prowadzić do wyboru niepoprawnych odpowiedzi, obejmują niepełne zrozumienie zasad działania obwodów lub mylenie ich z innymi zastosowaniami. Wybór opcji 2EOL jest także niewłaściwy w kontekście danej kwestii, ponieważ ta metoda również zakłada użycie rezystorów na końcu linii, co nie jest zgodne z wymaganiami pytania. Ostatecznie, zrozumienie różnicy między tymi konfiguracjami oraz ich zastosowaniem w systemach alarmowych jest kluczowe dla skutecznego projektowania i wdrażania zabezpieczeń.

Pytanie 26

Podczas instalacji wzmacniacza antenowego najpierw należy

A. uziemić urządzenie, następnie podłączyć przewody antenowe, włączyć zasilanie, a na końcu zamontować urządzenie
B. najpierw podłączyć zasilanie, uziemić, następnie podłączyć przewody antenowe, a na końcu zamontować urządzenie
C. najpierw podłączyć przewody antenowe, później włączyć zasilanie, uziemić i na końcu zamontować urządzenie
D. zamontować urządzenie, uziemić, podłączyć przewody antenowe, a na końcu podłączyć zasilanie
Podczas montażu wzmacniacza antenowego kluczowe jest zrozumienie, dlaczego niektóre podejścia są błędne. Rozpoczęcie procesu od podłączenia zasilania przed uziemieniem i zamontowaniem urządzenia może prowadzić do poważnych konsekwencji, zarówno dla sprzętu, jak i dla użytkownika. Włączając zasilanie przed uziemieniem, narażamy urządzenie na ryzyko uszkodzenia w wyniku przepięć, które mogą wystąpić w instalacji, co jest sprzeczne z zasadami bezpieczeństwa elektrycznego. Uziemienie powinno być zawsze realizowane jako pierwszy krok po zamontowaniu urządzenia, a nie jako jeden z ostatnich. Kolejnym błędem jest pominięcie montażu przed podłączeniem przewodów antenowych; taki porządek może skutkować trudnościami w dostępie do urządzenia w przypadku konieczności dokonania korekt. Dobrą praktyką jest także przetestowanie połączeń przed podłączeniem zasilania, co pozwala na wczesne wykrycie potencjalnych problemów. Zrozumienie sekwencji działań w kontekście bezpieczeństwa, funkcjonalności i efektywności jest kluczowe dla każdego, kto zajmuje się instalacją systemów antenowych.

Pytanie 27

Jaką wartość ma częstotliwość prądu zmiennego, jeśli jego okres wynosi 0,001 s?

A. 0,1 kHz
B. 100 kHz
C. 1 kHz
D. 10 kHz
Częstotliwość prądu zmiennego (AC) jest odwrotnością okresu, który jest czasem jednego pełnego cyklu fali. Wzór na obliczenie częstotliwości (f) to f = 1/T, gdzie T to okres w sekundach. Dla okresu wynoszącego 0,001 s, obliczamy częstotliwość jako f = 1/0,001 s = 1000 Hz, co jest równoważne 1 kHz. Częstotliwość 1 kHz jest powszechnie występująca w różnych zastosowaniach, takich jak telekomunikacja, gdzie sygnały o wyższej częstotliwości są transmitowane z mniejszymi stratami. W praktyce 1 kHz można spotkać w prostych układach elektronicznych oraz w aplikacjach audio. Zrozumienie tego związku między okresem a częstotliwością jest kluczowe w projektowaniu i analizie systemów elektronicznych, zgodnie z zasadami inżynierii elektrycznej, które podkreślają znaczenie właściwego doboru parametrów sygnału, aby zapewnić jego skuteczną transmisję i minimalizację zakłóceń.

Pytanie 28

Jakie z wymienionych urządzeń znajduje zastosowanie w systemach zarządzania dostępem oraz zabezpieczeniach?

A. Skaner portów
B. Centrala abonencka
C. Stacja czołowa
D. Zamek elektroniczny
Zamek elektroniczny to kluczowy element systemów kontroli dostępu i zabezpieczeń. Jego głównym zadaniem jest zapewnienie, że tylko upoważnione osoby mają dostęp do określonych obszarów. W przeciwieństwie do tradycyjnych zamków mechanicznych, zamki elektroniczne wykorzystują technologie takie jak karty zbliżeniowe, biometryka czy aplikacje mobilne do otwierania drzwi. Przykłady zastosowania obejmują budynki biurowe, hotele oraz obiekty przemysłowe, gdzie bezpieczeństwo i kontrola dostępu są priorytetowe. Warto również zaznaczyć, że zamki elektroniczne mogą być integrowane z systemami alarmowymi i monitoringu, co podnosi ich efektywność. Standardy branżowe, takie jak ISO/IEC 27001, podkreślają znaczenie skutecznej kontroli dostępu w zarządzaniu bezpieczeństwem informacji. W praktyce, wiele firm decyduje się na zainstalowanie zamków elektronicznych, aby zwiększyć poziom bezpieczeństwa oraz uprościć proces zarządzania dostępem.

Pytanie 29

Co należy zrobić, gdy pracownik omdleje w źle wentylowanej pracowni elektronicznej?

A. ustawić poszkodowanego w pozycji siedzącej i dać mu wodę do picia
B. wynieść poszkodowanego na świeże powietrze i ułożyć go na brzuchu
C. położyć poszkodowanego na plecach, umieścić zimny kompres na czole i monitorować tętno
D. wynieść poszkodowanego na świeże powietrze, położyć na plecach i unieść kończyny w górę
Odpowiedź sugerująca wyniesienie poszkodowanego na świeże powietrze, ułożenie go na plecach oraz uniesienie kończyn jest poprawna z kilku powodów. Omdlenie często jest wynikiem obniżonego ciśnienia krwi, co prowadzi do niedotlenienia mózgu. Dlatego kluczowe jest jak najszybsze zapewnienie dostępu świeżego powietrza, co zwiększa ilość tlenu dostarczanego do organizmu. Ułożenie poszkodowanego na plecach z uniesionymi nogami wspomaga krążenie krwi i przywraca prawidłowe ciśnienie w organizmie. W praktyce, tak postępowanie jest zgodne z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie pozycji leżącej w przypadku omdlenia. Ważne jest również monitorowanie stanu poszkodowanego, aby w razie potrzeby móc szybko zareagować. Przykładem może być sytuacja, w której pracownik w warsztacie elektronicznym doświadcza omdlenia z powodu wysokiej temperatury oraz braku wentylacji. W takich okolicznościach szybkie działanie może uratować życie.

Pytanie 30

Aby zrealizować nierozłączne połączenie włókien światłowodowych, jakie urządzenie jest niezbędne?

A. klamry.
B. spawarka.
C. lutownica.
D. zgrzewarka.
Spawarka jest kluczowym narzędziem używanym do wykonania nierozłącznych połączeń włókien światłowodowych. Proces spawania polega na precyzyjnym połączeniu końcówek włókien za pomocą wysokotemperaturowego łuku elektrycznego, co pozwala na uzyskanie minimalnych strat sygnału i maksymalnej integralności optycznej. Użycie spawarki zapewnia, że włókna są idealnie wyrównane i połączone, co jest niezbędne dla zachowania jakości transmisji danych. Przykłady zastosowania spawarki obejmują instalacje sieci telekomunikacyjnych, systemy CCTV oraz wszelkie inne aplikacje, gdzie niezawodność i jakość połączeń są kluczowe. Zgodnie z normami IEC 61300-3-34, które definiują metody testowania i oceny połączeń włókien, należy stosować techniki spawania w celu osiągnięcia wysokiej wydajności systemu. Dobrze przeprowadzony proces spawania nie tylko eliminuje błąd w transmisji sygnału, ale także zwiększa odporność na czynniki zewnętrzne, co jest niezbędne w trudnych warunkach eksploatacyjnych.

Pytanie 31

Który z poniższych elementów elektronicznych jest najbardziej podatny na uszkodzenia w trakcie wymiany, jeśli osoba wymieniająca nie użyje opaski uziemiającej?

A. Rezystor mocy
B. Tranzystor z izolowaną bramką
C. Dioda prostownicza
D. Tranzystor bipolarny
Rezystory mocy, diody prostownicze i tranzystory bipolarne są mniej wrażliwe na uszkodzenia spowodowane wyładowaniami elektrostatycznymi w porównaniu do tranzystorów z izolowaną bramką. Rezystory mocy są zaprojektowane do rozpraszania dużych ilości energii i nie mają złożonej struktury elektronicznej jak IGBT, dlatego ich uszkodzenie wskutek ESD jest mniej prawdopodobne. Dioda prostownicza, choć również istotna w obwodach, ma prostą budowę i jest odporna na uszkodzenia statyczne, co czyni ją bardziej odporną na przypadkowe uszkodzenia podczas wymiany. Tranzystory bipolarne, mimo że mogą być uszkodzone przez ESD, nie są tak wrażliwe jak IGBT, ponieważ mają mniej skomplikowane struktury. Warto jednak pamiętać, że brak odpowiednich środków ochrony, takich jak opaski uziemiające, oznacza ryzyko uszkodzeń dla wszystkich komponentów elektronicznych. Użytkownicy powinni być świadomi znaczenia ESD i stosować odpowiednie procedury ochronne, aby uniknąć przypadkowych uszkodzeń, co jest zgodne z najlepszymi praktykami w branży elektronicznej.

Pytanie 32

Jakie narzędzia są używane do określenia trasy przewodów na ścianie z betonu?

A. ołówek i poziomica
B. śruby i śrubokręt
C. gwoździe oraz młot
D. wiertarka i kołki rozporowe
Wybranie ołówka i poziomnicy do wyznaczenia trasy przewodów na ścianie betonowej jest najbardziej właściwym podejściem, ponieważ te narzędzia pozwalają na precyzyjne i estetyczne wykonanie pracy. Ołówek umożliwia zaznaczenie linii, po których będą prowadzone przewody, co jest kluczowe dla zachowania porządku i estetyki w instalacji. Poziomnica natomiast jest niezbędna do uzyskania dokładności w poziomie, co ma fundamentalne znaczenie dla zapewnienia prawidłowego ułożenia przewodów oraz ich prawidłowego funkcjonowania. Przykładowo, gdy przewody są prowadzone wzdłuż ściany, ich równe ułożenie nie tylko poprawia estetykę, ale również minimalizuje ryzyko uszkodzeń mechanicznych oraz ułatwia późniejsze prace konserwacyjne. Zgodnie ze standardami branżowymi, takie jak normy ISO dotyczące instalacji elektrycznych, precyzyjne wyznaczenie tras przewodów jest kluczowym elementem w zapewnieniu bezpieczeństwa i trwałości instalacji. Warto również pamiętać, że poprawnie wykonana instalacja nie tylko spełnia wymagania techniczne, ale również wpływa na komfort użytkowania przestrzeni.

Pytanie 33

W jakim czujniku do działania wykorzystuje się efekt zmiany pola magnetycznego?

A. Kontaktronowym
B. Tensometrycznym
C. Pojemnościowym
D. Bimetalicznym
Czujnik bimetaliczny nie wykorzystuje zmiany pola magnetycznego do swojego działania, lecz opiera się na różnicy rozszerzalności cieplnej dwóch różnych metali. Gdy temperatura wzrasta, jeden z metali rozszerza się bardziej niż drugi, co powoduje zgięcie elementu bimetalicznego i uruchomienie mechanizmu. To zjawisko znajduje zastosowanie w termometrach oraz regulatorach temperatury, ale nie ma związku z magnetyzmem. Z kolei czujnik pojemnościowy działa na zasadzie pomiaru zmian pojemności elektrycznej, które mogą być spowodowane przez obecność obiektów w polu elektrycznym, a nie w polu magnetycznym. Jest on często stosowany w aplikacjach takich jak detekcja poziomu cieczy czy w elektronice użytkowej, ale również nie odnosi się do zjawiska magnetycznego. Czujnik tensometryczny z kolei mierzy odkształcenia mechaniczne materiału na podstawie zmian oporu elektrycznego, co jest zupełnie innym zjawiskiem fizycznym. Typowym błędem jest mylenie różnych rodzajów czujników oraz ich zasad działania, co prowadzi do niewłaściwych wniosków o ich zastosowaniach i funkcjonalności. Aby poprawnie ocenić, który czujnik działa na zasadzie zmiany pola magnetycznego, trzeba zrozumieć podstawową różnicę w zasadzie działania każdego z tych czujników.

Pytanie 34

Jakie urządzenia należy wykorzystać w systemie monitoringu, aby zwiększyć dystans między kamerą a rejestratorem, jeśli połączenie jest zrealizowane za pomocą kabla UTP?

A. Zwrotnice
B. Symetryzatory
C. Transformatory wideo
D. Filtry wideo
Wybór symetryzatorów może prowadzić do zamieszania, jeśli chodzi o zwiększanie odległości między kamerą a rejestratorem w systemach wideo. Tak naprawdę, symetryzatory mają na celu poprawę jakości sygnału w audio i wideo, ale głównie to chodzi o eliminację zakłóceń i wzmocnienie sygnału. Nie są one zbyt odpowiednie do przesyłania sygnału na długie odległości. Często w monitoringu wideo się ich nie stosuje, bo nie są projektowane pod kątem sygnału wideo, który potrzebuje specyficznych parametrów, jak impedancja czy pasmo przenoszenia. Filtry wideo, które usuwają niepożądane częstotliwości, też nie są idealnym rozwiązaniem, jeśli chodzi o zwiększanie odległości – raczej poprawiają jakość sygnału przy określonej długości kabla. A zwrotnice to inna sprawa, używane są w telekomunikacji do kierowania sygnałami, ale w kontekście monitoringu nie pomagają zwiększyć odległości. Często myśli się, że każde urządzenie, które poprawia sygnał, będzie też dobre do przesyłania na dużą odległość, ale to wcale nie jest takie proste. Wymagania dotyczące przesyłu sygnału wideo są dość szczegółowe i trzeba używać odpowiednich rozwiązań, jak właśnie transformatory wideo, które zapewniają lepszą jakość na długich dystansach.

Pytanie 35

Zanim przystąpimy do konserwacji jednostki centralnej komputera stacjonarnego podłączonego do lokalnej sieci, najpierw powinniśmy

A. odłączyć przewód zasilający
B. otworzyć obudowę jednostki centralnej
C. uziemić metalowe elementy obudowy
D. wyciągnąć przewód sieciowy
Odpowiedź 'odłączyć przewód zasilający' jest kluczowa przed przystąpieniem do konserwacji jednostki centralnej komputera, ponieważ wyłącza zasilanie urządzenia. W przypadku konserwacji, takiej jak czyszczenie komponentów czy wymiana podzespołów, istnieje ryzyko zwarcia, które może prowadzić do uszkodzenia sprzętu lub zagrożenia dla zdrowia użytkownika. Odłączenie przewodu zasilającego jest pierwszym krokiem w procedurze bezpiecznej konserwacji i jest zgodne z najlepszymi praktykami w branży IT. Przykładowo, w standardach OSHA (Occupational Safety and Health Administration) oraz IEC (International Electrotechnical Commission) podkreśla się znaczenie odłączania zasilania przed jakimikolwiek pracami serwisowymi. Warto również pamiętać o używaniu odpowiednich narzędzi, takich jak opaski antyelektrostatyczne, aby zminimalizować ryzyko uszkodzenia komponentów przez ładunki elektrostatyczne. W prawidłowej konserwacji istotne jest, aby zawsze działać zgodnie z zaleceniami producenta sprzętu, co dodatkowo podnosi poziom bezpieczeństwa i efektywności działań serwisowych.

Pytanie 36

W trakcie prac serwisowych dotyczących wlutowywania elementów elektronicznych w wzmacniaczu akustycznym, pracownik powinien założyć

A. hełm ochronny
B. obuwie elektroizolacyjne
C. odzież ochronną
D. rękawice elektroizolacyjne
Wybór rękawic elektroizolacyjnych, hełmu ochronnego lub obuwia elektroizolacyjnego, mimo że są to elementy ochrony osobistej, nie jest adekwatny do konkretnego kontekstu prac serwisowych związanych z wlutowywaniem elementów elektronicznych we wzmacniaczu akustycznym. Rękawice elektroizolacyjne są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym, co jest istotne w sytuacjach pracy z napięciem, ale nie są one absolutnie wymagane w przypadku, gdy prace nie dotyczą elementów pod napięciem. Hełm ochronny ma zastosowanie w sytuacjach, gdzie istnieje ryzyko urazów głowy, jednak w typowym środowisku warsztatowym przy wlutowywaniu elementów, ryzyko to jest zminimalizowane. Obuwie elektroizolacyjne jest istotne w kontekście ochrony przed porażeniem, ale jego użycie nie jest konieczne, jeśli prace nie są wykonywane w obszarze zagrożonym wysokim napięciem. Niewłaściwe podejście do doboru środków ochrony osobistej może prowadzić do błędów w ocenie ryzyka, co z kolei zwiększa szansę na wystąpienie wypadków. Kluczowe jest zrozumienie, że każdy rodzaj ochrony powinien być dostosowany do specyfiki pracy, a ogólna zasada mówi, że zawsze należy stosować odpowiednią odzież ochronną, aby zapewnić bezpieczeństwo w miejscu pracy. W praktyce, niezastosowanie odzieży ochronnej może prowadzić do kontaktu z substancjami szkodliwymi, co może skutkować poważnymi konsekwencjami zdrowotnymi.

Pytanie 37

Aby połączyć kartę sieciową komputera PC z routerem, należy użyć kabla z wtykami

A. RJ-45
B. DIN
C. JACK
D. BNC
Odpowiedź RJ-45 jest poprawna, ponieważ wtyki RJ-45 są standardowo używane do łączenia komputerów z routerami w sieciach lokalnych (LAN). RJ-45 to złącze, które obsługuje kable Ethernet, co umożliwia przesyłanie danych z dużymi prędkościami, typowo od 10 Mbps do 10 Gbps, w zależności od zastosowanego standardu (np. 10BASE-T, 100BASE-TX, 1000BASE-T). Wtyki te mają osiem styków, co pozwala na przesyłanie danych w formie zbalansowanej, co zwiększa odporność na zakłócenia elektromagnetyczne. Użycie kabla z wtykami RJ-45 jest zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 11801. W praktyce, RJ-45 jest najczęściej spotykanym złączem w domowych i biurowych sieciach komputerowych. Przykładem zastosowania jest podłączenie laptopa do routera, aby uzyskać stabilne połączenie internetowe. Warto również wspomnieć o różnych kategoriach kabli Ethernet, takich jak Cat5e, Cat6, które różnią się prędkościami transferu oraz zakresem częstotliwości, co również wpływa na ich zastosowanie w różnych sieciach.

Pytanie 38

Odbiornik satelitarny, który pozwala na nagrywanie innego programu niż ten aktualnie oglądany, to model

A. DUO
B. COMBO
C. TWIN
D. FTA
Odpowiedzi DUO, FTA i COMBO są błędne z różnych powodów. Tuner DUO, mimo że często mylony z modelem TWIN, zazwyczaj odnosi się do odbiorników, które mogą obsługiwać dwa źródła sygnału, ale niekoniecznie pozwalają na równoczesne nagrywanie i odbieranie dwóch różnych programów. FTA (Free To Air) odnosi się do odbiorników telewizyjnych, które mogą odbierać darmowe sygnały satelitarne, ale nie mają wbudowanej funkcji nagrywania. Takie urządzenia są ograniczone w możliwościach, ponieważ nie mogą zapisywać programów na dysku twardym. Z kolei COMBO to urządzenie, które łączy funkcje tunera satelitarnego i telewizyjnego, jednak niekoniecznie oferuje podwójne nagrywanie. Wybór takiego tunera może prowadzić do frustracji w użytkowaniu, ponieważ ogranicza możliwość jednoczesnego odbioru i nagrywania, co jest kluczowe dla wielu użytkowników. Zrozumienie tych różnic jest istotne, aby uniknąć zakupów, które nie spełniają oczekiwań, oraz by dobrze dostosować urządzenie do indywidualnych potrzeb użytkownika. Warto zwrócić uwagę na specyfikacje techniczne i funkcjonalności, które są dostosowane do współczesnych standardów telewizyjnych oraz potrzeb użytkowników.

Pytanie 39

Aby odpowiednio dopasować impedancję w systemie antenowym, konieczne jest zastosowanie

A. symetryzatora.
B. zwrotnicy antenowej.
C. wzmacniacza antenowego.
D. rozdzielacza.
Rozgałęźnik, zwrotnica antenowa oraz wzmacniacz antenowy są urządzeniami, które pełnią różne funkcje w systemach antenowych, ale żadne z nich nie jest przeznaczone do dopasowania impedancji. Rozgałęźnik służy do dzielenia sygnału na kilka odbiorników, co może wprowadzać dodatkowe straty sygnału i nie rozwiązuje problemu dopasowania impedancji. Użycie rozgałęźnika w instalacji antenowej bez odpowiedniego dopasowania impedancji może prowadzić do znacznego pogorszenia jakości odbioru sygnału. Zwrotnica antenowa jest stosowana do kierunkowego podziału sygnału, na przykład do oddzielania kanałów telewizyjnych z różnych częstotliwości, ale podobnie jak rozgałęźnik, nie zajmuje się dopasowaniem impedancji. Wzmacniacz antenowy z kolei ma na celu zwiększenie poziomu sygnału, ale jeśli impedancja nie jest odpowiednio dopasowana, to wzmacniacz może jedynie wzmocnić zakłócenia i inne niepożądane sygnały. Często popełnianym błędem jest mylenie tych urządzeń z symetryzatorem, co prowadzi do nieefektywnego projektowania instalacji antenowych. Właściwe zrozumienie funkcji każdego z tych elementów jest kluczowe dla osiągnięcia optymalnej jakości sygnału w systemach antenowych, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej.

Pytanie 40

Jaką liczbę wyjść ma konwerter TWIN?

A. cztery wyjścia
B. jedno wyjście
C. dwa wyjścia
D. osiem wyjść
Konwerter TWIN to urządzenie, które zapewnia dwa wyjścia, co jest istotne w kontekście jego zastosowania w systemach automatyki oraz w rozdzielniach elektrycznych. Posiadanie dwóch wyjść pozwala na jednoczesne zasilanie dwóch różnych obwodów, co zwiększa elastyczność w projektowaniu instalacji. Na przykład, w przypadku systemów zasilania awaryjnego, jedno wyjście może być przeznaczone do zasilania krytycznych obciążeń, a drugie do mniej istotnych urządzeń. Dzięki takiemu rozwiązaniu możliwe jest zoptymalizowanie zużycia energii oraz minimalizacja ryzyka przeciążeń. W praktyce, konwertery tego typu są wykorzystywane w różnorodnych aplikacjach, takich jak zasilanie systemów oświetleniowych, urządzeń HVAC, a także w automatyce przemysłowej. Dobrą praktyką jest również regularne monitorowanie parametrów pracy konwertera, co umożliwia wczesne wykrywanie potencjalnych usterek i zapewnia niezawodność systemu elektrycznego.