Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 12 maja 2025 08:31
  • Data zakończenia: 12 maja 2025 08:38

Egzamin niezdany

Wynik: 11/40 punktów (27,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Które z poniższych stwierdzeń dotyczących konta użytkownika Active Directory w systemie Windows jest prawdziwe?

A. Nazwa logowania użytkownika nie może mieć długości większej niż 100 bajtów
B. Nazwa logowania użytkownika może mieć długość przekraczającą 100 bajtów
C. Nazwa logowania użytkownika może zawierać mniej niż 21 znaków
D. Nazwa logowania użytkownika powinna mieć nie więcej niż 20 znaków
Odpowiedzi sugerujące, że nazwa logowania użytkownika w Active Directory musi mieć mniej niż 20 lub 21 znaków, są błędne. W rzeczywistości, Active Directory nie wprowadza takiego ograniczenia, co jest kluczowe dla zrozumienia elastyczności systemu. Użytkownicy mogą być wprowadzani do systemu z bardziej złożonymi i dłuższymi nazwami, co jest szczególnie istotne w dużych organizacjach, gdzie unikalne identyfikatory są często niezbędne. Utrzymywanie krótszych nazw logowania może prowadzić do zamieszania i niejednoznaczności, zwłaszcza gdy w danej organizacji pracuje wiele osób o podobnych imionach i nazwiskach. Ponadto, nieprawdziwe jest stwierdzenie, że nazwa logowania nie może mieć długości większej niż 100 bajtów. W rzeczywistości, Active Directory pozwala na dłuższe nazwy, co wspiera różnorodność i unikalność kont użytkowników. Błędne koncepcje związane z długością nazw logowania mogą prowadzić do problemów z integracją systemów oraz zwiększać ryzyko błędów przy logowaniu. Użytkownicy muszą być świadomi właściwych praktyk, aby zminimalizować nieporozumienia i poprawić bezpieczeństwo systemów.

Pytanie 2

Jaki adres IPv6 jest stosowany jako adres link-local w procesie autokonfiguracji urządzeń?

A. fe88::/10
B. he88::/10
C. de80::/10
D. fe80::/10
Inne podane adresy, takie jak de80::/10, fe88::/10 oraz he88::/10, są błędne w kontekście adresów link-local. Adres de80::/10 nie jest standardowo przypisany do żadnego celu w IPv6, co sprawia, że jego użycie jest nieprawidłowe. Adres fe88::/10 również nie należy do klasy adresów link-local – rozważając struktury adresowe IPv6, klasa ta jest zarezerwowana wyłącznie dla adresów zaczynających się od prefiksu fe80::/10. Z kolei he88::/10 nie jest poprawnym adresem IPv6, ponieważ prefiks he80::/10 nie istnieje w standardach IPv6. Użytkownicy często popełniają błąd polegający na myleniu prefiksów adresów, co prowadzi do nieprawidłowego przypisania adresów w lokalnych sieciach. Istotne jest zrozumienie, że adresy link-local nie mogą być używane do komunikacji z urządzeniami poza lokalną siecią, co ogranicza ich zastosowanie. Właściwe przypisanie adresów IPv6 jest kluczowe dla zapewnienia prawidłowego działania sieci i komunikacji między urządzeniami. Wszelkie niepoprawne przypisania mogą prowadzić do problemów z dostępem oraz błędnymi konfiguracjami sieciowymi, co należy unikać w praktyce inżynieryjnej.

Pytanie 3

Router przypisany do interfejsu LAN dysponuje adresem IP 192.168.50.1. Został on skonfigurowany w taki sposób, aby przydzielać komputerom wszystkie dostępne adresy IP w sieci 192.168.50.0 z maską 255.255.255.0. Jaką maksymalną liczbę komputerów można podłączyć w tej sieci?

A. 256
B. 254
C. 253
D. 255
Wybierając odpowiedź 256, można mylnie sądzić, że jest to maksymalna liczba adresów IP dostępnych w sieci. Rzeczywistość jest jednak inna; w przypadku sieci z maską 255.255.255.0 co prawda mamy do czynienia z 256 adresami, ale nie wszystkie z nich mogą być przypisane do urządzeń. Pierwszy adres w puli (192.168.50.0) jest adresem identyfikującym sieć i nie może być używany jako adres dla hosta, a ostatni adres (192.168.50.255) to adres rozgłoszeniowy, który również nie może być przypisany do konkretnego urządzenia. Ta zasada dotyczy wszystkich sieci, w których mamy do czynienia z maską podsieci, gdzie dwa adresy są zawsze zarezerwowane. W odpowiedzi 255 również występuje podobne nieporozumienie; nie uwzględnia ona drugiego zarezerwowanego adresu. Natomiast odpowiedzi 254 i 253 są o tyle bliskie, że 254 odnosi się do liczby adresów, które mogą być przypisane, ale nie bierze pod uwagę adresu routera, co w praktyce ogranicza liczbę dostępnych adresów do 253. Kluczowe jest zrozumienie tych zasad podczas projektowania sieci, aby nie tylko prawidłowo przydzielać adresy IP, ale także zapewnić, że każdy z hostów ma unikalny adres w sieci, co jest niezbędne do jej prawidłowego funkcjonowania.

Pytanie 4

Shareware to typ licencji, która polega na

A. nieodpłatnym rozpowszechnianiu programu na czas próbny przed zakupem
B. korzystaniu z programu bez żadnych opłat i ograniczeń
C. użytkowaniu programu przez ustalony czas, po którym program przestaje działać
D. nieodpłatnym dystrybucji aplikacji bez ujawniania kodu źródłowego
Wiele osób myli pojęcie shareware z innymi modelami licencjonowania, co prowadzi do nieporozumień. Przykładowo, stwierdzenie, że shareware to korzystanie z programu przez określony czas, po którym program przestaje działać, jest mylące. Ten opis bardziej pasuje do modeli trial, gdzie użytkownik korzysta z pełnej funkcjonalności, ale z ograniczonym czasem. Z kolei twierdzenie, że shareware pozwala na używanie programu bezpłatnie i bez żadnych ograniczeń, jest nieprecyzyjne, ponieważ shareware oferuje jedynie ograniczoną wersję programu z zamiarem skłonienia użytkowników do zakupu. Opis jako bezpłatne rozprowadzanie aplikacji bez ujawniania kodu źródłowego również jest błędny, ponieważ shareware niekoniecznie dotyczy publikacji kodu źródłowego, a raczej możliwości przetestowania oprogramowania przed zakupem. Typowe błędy myślowe, które prowadzą do takich wniosków, to nieporozumienia dotyczące różnic między modelami licencyjnymi, a także mylenie koncepcji freeware z shareware. Freeware odnosi się do oprogramowania, które jest całkowicie darmowe, bez ograniczeń czasowych, podczas gdy shareware zawsze nastawia się na możliwość zakupu, co jest kluczowe w jego definicji. W związku z tym, zrozumienie tych różnic jest istotne dla właściwego korzystania z oprogramowania i przestrzegania zasad licencjonowania.

Pytanie 5

Urządzenie przedstawione na rysunku

Ilustracja do pytania
A. jest wykorzystywane do przechwytywania oraz rejestrowania pakietów danych w sieciach komputerowych
B. pełni rolę w przesyłaniu ramki pomiędzy segmentami sieci, dobierając port, na który jest ona kierowana
C. umożliwia zamianę sygnału pochodzącego z okablowania miedzianego na okablowanie światłowodowe
D. jest odpowiedzialne za generowanie sygnału analogowego na wyjściu, który stanowi wzmocniony sygnał wejściowy, kosztem energii pobieranej ze źródła prądu
Błędne odpowiedzi wynikają z niepoprawnego zrozumienia funkcji urządzenia przedstawionego na rysunku. Konwerter mediów nie służy do przechwytywania i nagrywania pakietów danych w sieciach komputerowych, co jest zadaniem snifferów sieciowych lub narzędzi do monitorowania sieci. Przechwytywanie pakietów wymaga specjalistycznego oprogramowania działającego na poziomie aplikacji, które analizuje ruch sieciowy w celach diagnostycznych lub bezpieczeństwa. Urządzenie to nie odpowiada również za przekazywanie ramek między segmentami sieci z doborem portu, co jest typowym zadaniem przełączników sieciowych (switchy), które działają w warstwie drugiej modelu OSI i kierują ruch na podstawie adresów MAC. Zadanie wytworzenia sygnału analogowego będącego wzmocnionym sygnałem wejściowym jest charakterystyczne dla wzmacniaczy, które potrafią zwiększać amplitudę sygnałów elektrycznych, ale nie dotyczy to konwerterów mediów. Konwertery mediów, jak pokazane urządzenie, mają wyraźnie określoną rolę w sieciach: konwersję sygnałów miedzianych na światłowodowe, co umożliwia łączność na większe odległości bez utraty jakości sygnału, a więc odpowiedzi te nie dotyczą właściwego zastosowania tego urządzenia.

Pytanie 6

Administrator sieci LAN dostrzegł przełączenie w tryb awaryjny urządzenia UPS. To oznacza, że wystąpiła awaria systemu

A. okablowania
B. urządzeń aktywnych
C. zasilania
D. chłodzenia i wentylacji
Wybór odpowiedzi dotyczącej okablowania czy chłodzenia jako przyczyny przejścia UPS w tryb awaryjny jest nietrafiony i chyba wynika z pomyłki co do tego, jak działają systemy zasilania. Okablowanie, chociaż ważne dla infrastruktury, nie powoduje bezpośrednio przejścia w tryb awaryjny. Jasne, że problemy z kablami mogą wpływać na dane, ale nie mają za dużo wspólnego z zasilaniem, które jest kluczowe dla UPS-a. Urządzenia aktywne, jak routery czy przełączniki, współpracują z UPS-em, ale nie są odpowiedzialne za przerwy w zasilaniu. Chłodzenie i wentylacja są też ważne, by sprzęt nie przegrzewał się, ale nie wpływają na to, co dzieje się z zasilaniem. Często ludzie mylą problemy techniczne z sygnałami, które w rzeczywistości wynikają z problemów z energią. Ważne, żeby administratorzy wiedzieli, że jak UPS przechodzi w tryb awaryjny, to najpierw powinni sprawdzić jakość zasilania i przyczyny awarii, żeby uniknąć długich przerw w działaniu.

Pytanie 7

Możliwość weryfikacji poprawności działania pamięci RAM można uzyskać za pomocą programu diagnostycznego

A. Memtest86+
B. CPU-Z
C. GPU-Z
D. S.M.A.R.T
Memtest86+ jest specjalistycznym narzędziem diagnostycznym stworzonym do testowania pamięci RAM w systemach komputerowych. Jego działanie opiera się na wykonywaniu różnych testów, które mają na celu wykrycie błędów w pamięci operacyjnej. Testy te są niezwykle ważne, ponieważ pamięć RAM jest kluczowym komponentem systemu, który ma bezpośredni wpływ na stabilność i wydajność komputera. W przypadku wykrycia błędów, użytkownik może podjąć decyzję o wymianie uszkodzonych modułów pamięci, co może zapobiec problemom z systemem operacyjnym, takimi jak zawieszanie się czy niespodziewane błędy aplikacji. Praktycznie rzecz biorąc, Memtest86+ uruchamiany jest z bootowalnego nośnika USB lub CD, co pozwala na testowanie pamięci przed załadowaniem systemu operacyjnego. W branży komputerowej jest to jedno z najbardziej uznawanych narzędzi do diagnostyki pamięci, co czyni je standardem w przypadku problemów z RAM-em.

Pytanie 8

Domyślnie dostęp anonimowy do zasobów serwera FTP umożliwia

A. pełne uprawnienia dostępu
B. jedynie prawo do odczytu
C. uprawnienia do odczytu oraz zapisu
D. tylko prawo do zapisu
Wybór odpowiedzi sugerującej inne formy dostępu jest błędny, ponieważ nie uwzględnia zasad działania serwerów FTP w kontekście anonimowego dostępu. Pełne prawa dostępu lub prawa do zapisu są niewłaściwe, ponieważ umożliwiają użytkownikom nie tylko przeglądanie, ale też edytowanie lub usuwanie plików, co stwarza poważne zagrożenie dla bezpieczeństwa. W praktyce, umożliwienie takiego dostępu mogłoby prowadzić do nieautoryzowanej modyfikacji lub zniszczenia danych, co jest sprzeczne z zasadami ochrony informacji, takimi jak zasada najmniejszych uprawnień. W przypadku dostępu tylko do zapisu, użytkownicy mogliby wprowadzać nowe pliki, ale nie mieliby możliwości ich przeglądania. To również stanowi problem, ponieważ użytkownik nie byłby w stanie zweryfikować zawartości katalogu ani sprawdzić, co może być przez niego zapisane. Odpowiedzi sugerujące prawa do odczytu i zapisu są również mylące, gdyż w kontekście serwerów FTP anonimowy dostęp jest projektowany głównie z myślą o umożliwieniu użytkownikom przeglądania plików bez ryzyka ich ingerencji. Właściwe zarządzanie dostępem jest kluczowe w kontekście bezpieczeństwa i zgodności z przepisami, dlatego organizacje powinny zawsze stosować najlepsze praktyki w zakresie ograniczania dostępu do zasobów serwera FTP.

Pytanie 9

Metoda transmisji żetonu (ang. token) znajduje zastosowanie w topologii

A. magistralowej
B. kratowej
C. gwiaździstej
D. pierścieniowej
Wybierając inną topologię, np. kratę, gwiazdę czy magistralę, trochę odbiegasz od zasady działania token passing. W topologii kraty każdy węzeł jest bezpośrednio połączony z innymi, co zwiększa redundancję, ale może być też trudniejsze w zarządzaniu ruchem. Tutaj nie ma jednego mechanizmu, który przydziela kontrolę jednemu węzłowi, przez co może dochodzić do kolizji. Topologia gwiazdy z kolei skupia komunikację wokół jednego przełącznika, więc węzły muszą korzystać z tego centralnego punktu do wysyłania danych, co wyklucza potrzebę stosowania żetonu. Gdybyśmy chcieli używać token passing w gwieździe, to wymagałoby to naprawdę sporego zarządzania i dodatkowego obciążenia dla przełącznika. A w topologii magistrali, gdzie wszystkie urządzenia mają dostęp do jednego medium, nie ma miejsca na żeton, bo każdy węzeł może nadawać kiedy chce, co znów prowadzi do kolizji. Więc pamiętaj, mechanizmy oparte na żetonie są naprawdę specyficzne dla topologii pierścienia, a inne modele sieci po prostu nie nadają się do tego.

Pytanie 10

Jakim protokołem jest realizowana kontrola poprawności transmisji danych w sieciach Ethernet?

A. IP
B. UDP
C. TCP
D. HTTP
Protokół TCP (Transmission Control Protocol) jest kluczowym elementem w architekturze modelu OSI, odpowiedzialnym za zapewnienie niezawodnej transmisji danych w sieciach komputerowych, w tym Ethernet. TCP działa na poziomie transportu i zapewnia kontrolę poprawności przesyłania danych poprzez mechanizmy takie jak segmentacja, numerowanie sekwencyjne pakietów, kontroli błędów oraz retransmisji utraconych danych. Dzięki tym mechanizmom, TCP eliminuje problem duplikacji oraz umożliwia odbiorcy potwierdzenie odbioru danych, co jest kluczowe w aplikacjach wymagających wysokiej niezawodności, takich jak przesyłanie plików czy strumieniowanie wideo. W praktyce, TCP jest wykorzystywany w protokołach wyższego poziomu, takich jak HTTP, FTP czy SMTP, co podkreśla jego znaczenie w globalnej komunikacji internetowej. Standardy RFC definiują szczegółowe zasady działania tego protokołu, a jego implementacja jest powszechna w wielu systemach operacyjnych, co czyni go fundamentem współczesnych sieci komputerowych.

Pytanie 11

Jakie urządzenie należy zastosować do pomiaru mocy zużywanej przez komputer?

A. tester zasilaczy
B. watomierz
C. amperomierz
D. woltomierz
Zdecydowanie dobry wybór z tym watomierzem. To urządzenie jest super do sprawdzania, ile mocy komputer tak naprawdę bierze, bo mierzy to w watach, co jest mega ważne, gdy chcemy wiedzieć, jak nasz sprzęt zużywa energię. Watomierz łączy pomiar napięcia i natężenia prądu, co pozwala dokładnie obliczyć moc czynną. Na przykład, możesz zobaczyć, ile energii komputer potrzebuje w różnych sytuacjach, co może pomóc w optymalizacji jego działania i wyborze odpowiedniego zasilacza. Fajnie też, jak przy zakupie watomierza zwrócisz uwagę na normy, takie jak IEC 62053, bo to zapewnia, że pomiar będzie dokładny i bezpieczny. Z mojego doświadczenia, takie pomiary są super przydatne, zwłaszcza jeśli chcesz mieć kontrolę nad wydatkami na prąd, co jest istotne zarówno dla domów, jak i dla firm.

Pytanie 12

Jakie urządzenie w warstwie łącza danych modelu OSI analizuje adresy MAC zawarte w ramkach Ethernet i na tej podstawie decyduje o przesyłaniu sygnału pomiędzy segmentami sieci lub jego blokowaniu?

A. access point
B. repeater
C. hub
D. bridge
Wybór koncentratora, punktu dostępowego lub wzmacniaka w kontekście analizy adresów MAC i podejmowania decyzji o przesyłaniu sygnału do odpowiednich segmentów sieci jest nieprawidłowy z kilku powodów. Koncentrator to urządzenie, które działa na warstwie fizycznej modelu OSI i nie analizuje ramki ani adresów MAC. Jego funkcja ogranicza się do przesyłania sygnału do wszystkich portów, co prowadzi do większej liczby kolizji i obciążenia sieci. Z kolei punkt dostępowy to urządzenie używane do łączenia urządzeń bezprzewodowych z siecią przewodową. Jego głównym zadaniem jest zapewnienie łączności bezprzewodowej, a nie podejmowanie decyzji na podstawie adresów MAC w ramkach Ethernet. Wzmacniak natomiast wzmacnia sygnał, ale nie ma zdolności do analizy danych ani segregacji ruchu. Użycie tych urządzeń wskazuje na brak zrozumienia warstw modelu OSI oraz funkcji poszczególnych elementów sieci. Kluczowe jest zrozumienie, że decyzje o przesyłaniu danych w sieci oparte są na analizie adresów MAC, co wymaga zastosowania mostu, a nie innych wymienionych urządzeń. W praktyce, niepoprawne użycie tych elementów może prowadzić do nieefektywności w sieci oraz problemów z wydajnością.

Pytanie 13

Zaprezentowane narzędzie jest wykorzystywane do

Ilustracja do pytania
A. zdejmowania izolacji okablowania
B. lokalizacji uszkodzeń włókien światłowodowych
C. spawania przewodów światłowodowych
D. zaciskania wtyków RJ11 oraz RJ45
Narzędzie przedstawione na zdjęciu to lokalizator uszkodzeń włókien światłowodowych. Jest to urządzenie, które emituje widoczne światło laserowe poprzez włókna światłowodowe w celu identyfikacji miejsc uszkodzeń lub pęknięć. W praktyce, gdy światłowód jest uszkodzony światło laserowe wycieka przez uszkodzenie co ułatwia technikom zlokalizowanie problemu. Lokalizatory uszkodzeń są nieocenionym narzędziem w szybkim diagnozowaniu i naprawie sieci optycznych minimalizując czas przestoju. Są zgodne z dobrymi praktykami branżowymi w zakresie utrzymania infrastruktury telekomunikacyjnej. Często stosuje się je podczas instalacji konserwacji oraz testów sieci optycznych. Zastosowanie tego typu urządzenia pozwala na szybkie i efektywne wykrycie źródła problemu co jest istotne w środowisku, w którym niezawodność i szybkość działania są kluczowe. Praca z lokalizatorem wymaga jednak ostrożności ze względu na intensywność światła laserowego która może być szkodliwa dla oczu dlatego zaleca się przestrzeganie zasad bezpieczeństwa.

Pytanie 14

Część płyty głównej, która odpowiada za transmisję danych pomiędzy mikroprocesorem a pamięcią operacyjną RAM oraz magistralą karty graficznej, jest oznaczona na rysunku numerem

Ilustracja do pytania
A. 6
B. 3
C. 5
D. 4
Układ oznaczony numerem 6 na schemacie to tzw. North Bridge (północny mostek) który jest kluczowym elementem płyty głównej odpowiedzialnym za komunikację między mikroprocesorem a pamięcią RAM oraz kartą graficzną. North Bridge pełni funkcję kontrolera magistrali systemowej (FSB) i pośredniczy w wymianie danych między procesorem a szybkimi komponentami systemu takimi jak pamięć operacyjna i magistrala AGP lub PCI Express używana przez kartę graficzną. North Bridge jest bezpośrednio połączony z procesorem i pamięcią RAM co umożliwia szybki dostęp do danych. W nowoczesnych systemach architektura ta została zintegrowana w procesorze w postaci kontrolera pamięci ale w tradycyjnych płytach głównych North Bridge odgrywał kluczową rolę. Dobre praktyki branżowe w projektowaniu płyt głównych uwzględniają optymalizację prędkości komunikacji między North Bridge a innymi komponentami co wpływa na ogólną wydajność systemu. Przykładowo w gamingowych komputerach wydajność North Bridge jest krytyczna dla płynnej grafiki i obsługi zaawansowanych gier.

Pytanie 15

Norma opisująca standard transmisji Gigabit Ethernet to

A. IEEE 802.3ab
B. IEEE 802.3x
C. IEEE 802.3i
D. IEEE 802.3u
Odpowiedź IEEE 802.3ab jest poprawna, ponieważ jest to standard definiujący Gigabit Ethernet, który działa z prędkością 1 Gbit/s. Standard ten został wprowadzony w 1999 roku i jest kluczowy dla nowoczesnych sieci lokalnych. IEEE 802.3ab określa technologię transmisji na skrętkach miedzianych, wykorzystującą złącza RJ-45 i standardowe kable kategorii 5e lub wyższe. Dzięki zastosowaniu technologii 1000BASE-T, Gigabit Ethernet umożliwia przesyłanie danych na odległość do 100 metrów w standardowych warunkach. W praktyce, standard ten jest szeroko stosowany w biurach, centrach danych oraz w aplikacjach wymagających dużej przepustowości, takich jak przesyłanie dużych plików, strumieniowanie wideo w wysokiej rozdzielczości oraz wirtualizacja. Zrozumienie tego standardu i umiejętność jego zastosowania jest kluczowe dla specjalistów IT, którzy projektują i utrzymują infrastrukturę sieciową, aby zapewnić optymalną wydajność oraz niezawodność połączeń.

Pytanie 16

Kabel typu skrętka, w którym każda para żył jest umieszczona w oddzielnym ekranie z folii, a wszystkie przewody znajdują się w jednym ekranie, ma oznaczenie

A. S/UTP
B. F/UTP
C. F/FTP
D. S/FTP
Wybór odpowiedzi S/UTP, F/UTP oraz S/FTP wskazuje na pewne nieporozumienia dotyczące klasyfikacji kabli sieciowych. Oznaczenie S/UTP odnosi się do kabli, w których wszystkie przewody są skręcone w pary, ale nie mają dodatkowego ekranu. Takie kable są bardziej podatne na zakłócenia, co czyni je mniej odpowiednimi dla zastosowań w środowiskach o dużym zakłóceniu elektromagnetycznym. Z drugiej strony, F/UTP oznacza kabel, w którym pary przewodów są nieekranowane, ale ogólny ekran chroni przed zakłóceniami zewnętrznymi. Podobnie jak w przypadku S/UTP, nie zapewnia to wystarczającej ochrony w trudnych warunkach. Ostatnie oznaczenie S/FTP odnosi się do kabli, w których każda para przewodów jest ekranowana, ale nie ma zewnętrznego ekranu. Choć takie rozwiązanie poprawia odporność na crosstalk, nie spełnia wymagań dotyczących pełnej ekranowania, które jest konieczne w niektórych zastosowaniach. Stąd, wybierając między tymi opcjami, można dojść do błędnych wniosków, nie rozumiejąc dostatecznie różnicy w poziomie ochrony i zastosowaniu każdego z typów kabli. Świadomość tych różnic jest kluczowa dla skutecznego projektowania i wdrażania sieci komputerowych.

Pytanie 17

W jaki sposób oznaczona jest skrętka bez zewnętrznego ekranu, mająca każdą parę w osobnym ekranie folii?

A. F/STP
B. F/UTP
C. U/FTP
D. S/FTP
Odpowiedzi F/STP, S/FTP i F/UTP są niepoprawne, ponieważ różnią się one istotnie od właściwej definicji U/FTP. F/STP oznacza skrętkę z zewnętrznym ekranem, co nie jest zgodne z warunkami pytania. W przypadku F/STP, ekran obejmuje cały kabel, co może być korzystne w niektórych aplikacjach, ale w sytuacjach, gdzie każda para wymaga osobnej ochrony, nie sprawdza się to. S/FTP, z kolei, stosuje zarówno ekran na przewody parowe, jak i na cały kabel, co zwiększa ochronę, ale nie odpowiada na pytanie o brak zewnętrznego ekranu, co czyni tę odpowiedź niewłaściwą. F/UTP oznacza brak ekranowania całego kabla, ale z ekranowaniem par przewodów, co również nie spełnia kryteriów opisanych w pytaniu. Często błędnie myśli się, że większa ilość ekranowania zawsze przekłada się na lepszą jakość sygnału, co nie jest prawdą w każdym przypadku. Właściwy dobór typu skrętki powinien być uzależniony od specyficznych warunków zastosowania oraz środowiska, w którym będzie działać sieć. Użycie niewłaściwego standardu może prowadzić do problemów z zakłóceniami oraz zmniejszenia efektywności transmisji danych.

Pytanie 18

Na które wyjście powinniśmy podłączyć aktywne głośniki w karcie dźwiękowej, której schemat przedstawiony jest na rysunku?

Ilustracja do pytania
A. Line in
B. Line out
C. Mic in
D. Speaker out
W tym pytaniu niektóre odpowiedzi mogą wyglądać na dobre, ale po chwili zastanowienia widać, że nie są takie. 'Line in' to gniazdo do podłączania urządzeń audio jak odtwarzacze CD czy inne źródła, które wysyłają sygnał do karty dźwiękowej. To wejście, więc sygnał idzie w stronę przeciwną do tego, co potrzebujemy, żeby zasilać głośniki. 'Mic in' to z kolei miejsce do mikrofonów, ale one też potrzebują wzmocnienia sygnału, więc to też jest wejście. Sygnał z mikrofonu jest zupełnie inny niż liniowy, ma inną impedancję i poziom, dlatego nie można go użyć do głośników. 'Speaker out' niby wygląda na odpowiednie, ale to wyjście jest dla głośników pasywnych, które potrzebują mocy z karty dźwiękowej. Jeśli podepniemy do tego aktywne głośniki, to może być problem, bo sygnał już jest wzmocniony, co prowadzi do zniekształceń. W skrócie, żeby dobrze podłączyć sprzęt audio do komputera i mieć świetną jakość dźwięku, trzeba rozumieć różnice między wejściami a wyjściami, bo to może uchronić nas przed błędami i uszkodzeniami sprzętu.

Pytanie 19

Uzyskanie przechowywania kopii często odwiedzanych witryn oraz zwiększenia bezpieczeństwa przez odfiltrowanie konkretnych treści w sieci Internet można osiągnąć dzięki

A. użytkowaniu systemu z uprawnieniami administratora
B. zainstalowaniu oprogramowania antywirusowego oraz aktualnej bazy wirusów
C. konfiguracji serwera pośredniczącego proxy
D. automatycznemu zablokowaniu plików cookies
Konfiguracja serwera pośredniczącego proxy pozwala na efektywne przechowywanie kopii często odwiedzanych stron oraz zwiększenie bezpieczeństwa użytkowników. Proxy działa jako pośrednik pomiędzy użytkownikiem a serwerem docelowym, co umożliwia buforowanie danych. Dzięki temu, gdy użytkownik odwiedza tę samą stronę ponownie, serwer proxy może dostarczyć mu zawartość z lokalnej pamięci, co znacząco przyspiesza ładowanie strony. Dodatkowo, proxy może filtrować treści, blokując dostęp do niebezpiecznych stron lub zawartości, co zwiększa zabezpieczenia sieciowe. W praktyce, wiele organizacji wykorzystuje serwery proxy do kontroli dostępu do internetu, monitorowania aktywności użytkowników oraz ochrony przed zagrożeniami sieciowymi. Zgodnie z dobrymi praktykami branżowymi, konfiguracja serwerów proxy powinna być wykonana przez specjalistów IT, którzy zapewnią optymalizację oraz odpowiednie zabezpieczenia, co przyczynia się do zwiększenia wydajności oraz bezpieczeństwa infrastruktury sieciowej.

Pytanie 20

Na stabilność obrazu w monitorach CRT istotny wpływ ma

A. odwzorowanie kolorów
B. częstotliwość odświeżania
C. czas reakcji
D. wieloczęstotliwość
Czas reakcji, wieloczęstotliwość i odwzorowanie kolorów to ważne aspekty monitorów, jednak żaden z nich nie wpływa bezpośrednio na stabilność obrazu w monitorach CRT w takim stopniu jak częstotliwość odświeżania. Czas reakcji odnosi się do tego, jak szybko piksele na ekranie mogą zmieniać swój stan, co jest istotne w kontekście monitorów LCD, ale w CRT nie jest to głównym czynnikiem wpływającym na stabilność obrazu. W przypadku monitorów CRT, to nie czas reakcji, ale częstotliwość, z jaką całe urządzenie odświeża obraz, determinuje postrzeganą stabilność. Wieloczęstotliwość odnosi się do zdolności monitora do pracy z różnymi rozdzielczościami i częstotliwościami odświeżania, ale sama w sobie nie gwarantuje stabilności obrazu. Z kolei odwzorowanie kolorów, choć ważne dla jakości obrazu, dotyczy gamy kolorów, które monitor jest w stanie wyświetlić, a nie jego stabilności jako takiej. Niezrozumienie różnicy między tymi parametrami prowadzi do błędnych wniosków, zwłaszcza w kontekście wyboru monitorów do konkretnego zastosowania. Kluczowe jest, aby przy zakupie monitora skupić się na częstotliwości odświeżania, jako głównym parametrze wpływającym na komfort użytkowania oraz jakość wyświetlanego obrazu.

Pytanie 21

W celu zapewnienia jakości usługi QoS, w przełącznikach warstwy dostępu stosuje się mechanizm

A. nadawania wyższych priorytetów niektórym typom danych
B. zastosowania kilku portów jako jednego logicznego połączenia jednocześnie
C. zapobiegającego występowaniu pętli w sieci
D. określania liczby urządzeń, które mogą łączyć się z danym przełącznikiem
Mechanizmy mające na celu zapewnienie jakości usług (QoS) różnią się znacząco w zależności od zastosowanych technologii oraz specyfiki sieci. Wybór odpowiedzi, które koncentrują się na takich kwestiach jak liczba urządzeń łączących się z przełącznikiem czy zapobieganie powstawaniu pętli, nie odnoszą się bezpośrednio do fundamentalnych zasad zarządzania ruchem danych w sieci. Odpowiedź dotycząca liczby urządzeń sugeruje, że ograniczenie liczby podłączonych klientów może mieć wpływ na QoS, jednak nie wpływa to bezpośrednio na priorytetyzację danych, która jest kluczowa dla utrzymania wysokiej jakości usług w warunkach dużego obciążenia sieci. Również koncepcja wykorzystywania kilku portów jako jednego łącza logicznego, chociaż może poprawić przepustowość, nie ma wpływu na to, które dane są przesyłane w sposób priorytetowy. Kluczowym błędem jest zrozumienie, że QoS dotyczy nie tylko zarządzania szerokością pasma, ale przede wszystkim sposobu traktowania różnych typów ruchu. Mechanizmy zapobiegające pętli, takie jak STP (Spanning Tree Protocol), są istotne dla stabilności sieci, ale nie dotyczą zarządzania priorytetami danych. W rezultacie wybór odpowiedzi, które nie odnosi się do nadawania priorytetów danym, prowadzi do niepełnego zrozumienia istoty QoS oraz jej zastosowania w praktyce, co jest kluczowym elementem w projektowaniu i utrzymywaniu nowoczesnych sieci komputerowych.

Pytanie 22

W systemie Linux zarządzanie parametrami transmisji w sieciach bezprzewodowych jest możliwe dzięki

A. winipcfg
B. ifconfig
C. iwconfig
D. ipconfig
Odpowiedzi 'ifconfig', 'ipconfig' i 'winipcfg' są nieprawidłowe, ponieważ każda z tych opcji ma inny zakres zastosowania i nie spełnia funkcji zarządzania parametrami transmisji bezprzewodowej w systemie Linux. 'ifconfig' jest narzędziem używanym do konfiguracji interfejsów sieciowych w systemach UNIX i Linux, ale koncentruje się głównie na interfejsach przewodowych oraz ogólnych ustawieniach sieciowych, a nie zarządzaniu specyficznymi parametrami sieci bezprzewodowej. 'ipconfig' jest powiązane z systemem Windows i służy do wyświetlania lub zmiany konfiguracji pamięci IP, co również nie obejmuje funkcji dla połączeń bezprzewodowych w systemie Linux. Z kolei 'winipcfg' to starsze narzędzie, również dedykowane systemowi Windows, które pozwala zobaczyć informacje o konfiguracji IP, ale nie jest używane w kontekście sieci bezprzewodowych w Linuxie. Te błędne odpowiedzi wynikają z nieporozumienia dotyczącego funkcji narzędzi sieciowych oraz z pomylenia systemów operacyjnych. Ważne jest, aby znać różnice pomiędzy tymi narzędziami i ich zastosowaniem w odpowiednich środowiskach, co jest kluczowe dla efektywnego zarządzania sieciami.

Pytanie 23

W systemach operacyjnych Windows konto użytkownika, które ma najwyższe domyślne uprawnienia, należy do grupy

A. operatorzy kopii zapasowych
B. goście
C. administratorzy
D. użytkownicy zaawansowani
Odpowiedź 'administratorzy' jest poprawna, ponieważ konta użytkowników przypisane do grupy administratorów w systemie Windows mają najwyższe uprawnienia domyślne. Administratorzy mogą instalować oprogramowanie, zmieniać ustawienia systemowe oraz zarządzać innymi kontami użytkowników. Z perspektywy praktycznej, administratorzy są odpowiedzialni za zapewnienie bezpieczeństwa systemu, aktualizacje oraz ochronę danych użytkowników. W organizacjach, administratorzy pełnią kluczową rolę w zarządzaniu dostępem do zasobów, co jest zgodne z zasadami minimalnych uprawnień, które zalecają przyznawanie użytkownikom tylko tych praw, które są niezbędne do wykonywania ich zadań. Dobrym przykładem zastosowania tych uprawnień jest konfiguracja serwera, gdzie administratorzy mogą wprowadzać zmiany w ustawieniach bezpieczeństwa, dodawać nowe konta użytkowników oraz nadzorować logi systemowe. W praktyce administracja kontami użytkowników w Windows wymaga znajomości narzędzi, takich jak 'Zarządzanie komputerem', co pozwala na skuteczne i bezpieczne zarządzanie dostępem do zasobów systemowych.

Pytanie 24

Jak najlepiej chronić zebrane dane przed dostępem w przypadku kradzieży komputera?

A. przygotować punkt przywracania systemu
B. ochronić konta za pomocą hasła
C. wdrożyć szyfrowanie partycji
D. ustawić atrybut ukryty dla wszystkich istotnych plików
Zastosowanie atrybutu ukrytego dla plików nie zapewnia odpowiedniego poziomu ochrony danych. Chociaż pliki z atrybutem ukrytym są mniej widoczne dla przeciętnego użytkownika, nie są one chronione przed dostępem, a to oznacza, że osoba z odpowiednią wiedzą techniczną może je łatwo odkryć. Z kolei punkt przywracania systemu służy głównie do przywracania stanu systemu operacyjnego w przypadku awarii, co nie ma bezpośredniego wpływu na bezpieczeństwo danych w kontekście ich kradzieży. Zabezpieczenie kont hasłem również nie jest wystarczające, ponieważ w przypadku kradzieży sprzętu, fizyczny dostęp do komputera umożliwia potencjalnemu złodziejowi ominięcie zabezpieczeń systemowych. Oparcie się tylko na hasłach nie chroni przed atakami typu brute force czy phishing, które mogą prowadzić do utraty dostępu do danych. Dlatego ważne jest, aby podejść do ochrony danych w sposób kompleksowy, stosując szyfrowanie, które nie tylko ukrywa dane, ale i skutecznie je zabezpiecza przed nieautoryzowanym dostępem. Współczesne standardy bezpieczeństwa wskazują, że szyfrowanie jest podstawowym elementem każdego systemu ochrony informacji, co czyni je niezastąpionym narzędziem w ochronie danych.

Pytanie 25

Z informacji przedstawionych w tabeli wynika, że efektywna częstotliwość pamięci DDR SDRAM wynosi

184 styki
64-bitowa szyna danych
Pojemność 1024 MB
Przepustowość 3200 MB/s

A. 333 MHz
B. 266 MHz
C. 200 MHz
D. 400 MHz
Nieprawidłowe odpowiedzi wynikają z niezrozumienia, jak efektywna częstotliwość pamięci DDR SDRAM jest obliczana. Częstotliwość efektywna jest wynikiem podwojenia częstotliwości zegara bazowego, co jest kluczową cechą technologii DDR (Double Data Rate), gdzie dane są przesyłane dwukrotnie w jednym cyklu zegara. Dla pamięci o przepustowości 3200 MB/s i 64-bitowej szerokości szyny, poprawną częstotliwością efektywną jest 400 MHz. Inne wartości jak 200 MHz, 266 MHz, czy 333 MHz nie odpowiadają tej przepustowości, ponieważ musiałyby mieć inną szerokość szyny danych lub inną przepustowość. Wartości te są charakterystyczne dla innych generacji DDR lub innych standardów pamięci. Typowym błędem jest mylenie częstotliwości bazowej z efektywną, co prowadzi do nieprawidłowych obliczeń. Zrozumienie różnic w technologii DDR i jej kolejnych generacjach (jak DDR2, DDR3) jest kluczowe, ponieważ każda z nich oferuje różne specyfikacje i standardy, które wpływają na wydajność systemu. Ważne jest, aby w praktyce umieć dobierać komponenty zgodnie z rzeczywistymi potrzebami i możliwościami systemu, co pozwala na osiągnięcie optymalnej wydajności i stabilności komputera. Znajomość specyfikacji technicznych pamięci RAM oraz ich wpływu na inne komponenty to kluczowa umiejętność w dziedzinie informatyki i inżynierii systemów komputerowych. Standardy, takie jak JEDEC, pomagają w precyzyjnym określeniu, jakie parametry powinna spełniać pamięć RAM, aby była kompatybilna z innymi komponentami systemu, co znacząco ułatwia integrację i optymalizację sprzętu komputerowego.

Pytanie 26

Podczas testowania połączeń sieciowych za pomocą polecenia ping użytkownik otrzymał wyniki przedstawione na rysunku. Jakie może być źródło braku odpowiedzi serwera przy pierwszym teście, zakładając, że domena wp.pl ma adres 212.77.100.101?

Ilustracja do pytania
A. Nieobecność adresów serwera DNS w konfiguracji karty sieciowej
B. Brak domyślnej bramy w ustawieniach karty sieciowej
C. Brak przypisania serwera DHCP do karty sieciowej
D. Nieprawidłowy adres IP przypisany do karty sieciowej
Błędny adres IP przypisany karcie sieciowej nie miałby wpływu na możliwość rozpoznania nazwy domeny wp.pl ponieważ problem ten dotyczy procesu translacji nazw domen na adresy IP który jest realizowany przez serwery DNS. W przypadku błędnie przypisanego adresu IP karta sieciowa nie mogłaby w ogóle komunikować się z żadnym urządzeniem w sieci co objawiłoby się niemożnością nawiązania połączenia nawet po podaniu właściwego adresu IP serwera. Brak przypisanego karcie sieciowej serwera DHCP nie wpływa bezpośrednio na problem z tłumaczeniem nazwy domeny na adres IP choć może prowadzić do innych problemów sieciowych takich jak brak automatycznego przypisania adresu IP bramy czy właśnie serwerów DNS. Jednakże, w opisywanej sytuacji problem jest bardziej związany z bezpośrednią konfiguracją DNS niż z DHCP. Brak adresu domyślnej bramy w konfiguracji karty sieciowej uniemożliwiałby komunikację z sieciami zewnętrznymi co objawia się brakiem możliwości przesyłania danych do innych sieci niż lokalna. Jednakże w przypadku braku odpowiedzi serwera DNS problem ten nie występuje ponieważ komputer nie przechodzi nawet etapu translacji nazwy na adres IP. Dlatego też wszystkie inne odpowiedzi są nieprawidłowe i wskazują na problemy które nie dotyczą bezpośrednio procesu rozwiązywania nazw DNS.

Pytanie 27

Ile par kabli w standardzie 100Base-TX jest używanych do transmisji danych w obie strony?

A. 3 pary
B. 1 para
C. 2 pary
D. 4 pary
W przypadku błędnych odpowiedzi, pojawia się często nieporozumienie dotyczące liczby par przewodów używanych w standardzie 100Base-TX. Niektórzy mogą uznawać, że jedna para jest wystarczająca do komunikacji, jednak to podejście nie uwzględnia koncepcji pełnodupleksu. Użycie jednej pary oznaczałoby transmisję danych w trybie półdupleksowym, co ograniczałoby jednoczesne przesyłanie informacji w obu kierunkach. Takie ograniczenie byłoby nieefektywne w kontekście nowoczesnych aplikacji sieciowych, które wymagają wysokiej wydajności i niskich opóźnień. Warto zauważyć, że w standardach Ethernet liczba przewodów ma krytyczne znaczenie dla wydajności sieci. Przyjęcie, że do prawidłowej komunikacji wystarczą trzy pary lub wszystkie cztery, jest również mylące, ponieważ w standardzie 100Base-TX tylko dwie pary są zarezerwowane do transmisji danych. Pozostałe pary, chociaż mogą być wykorzystywane w innych standardach, nie mają zastosowania w tym kontekście. Rozumienie architektury sieci i standardów transmisji danych jest kluczowe dla efektywnego projektowania i wdrażania rozwiązań sieciowych.

Pytanie 28

Jakie złącze na płycie głównej komputera jest przeznaczone do zamontowania karty graficznej widocznej na powyższym obrazie?

Ilustracja do pytania
A. PCI-E
B. AGP
C. ISA
D. PCI
Złącze AGP czyli Accelerated Graphics Port było popularnym standardem do instalacji kart graficznych w końcówce lat 90. i na początku lat 2000. jednak jego przepustowość jest znacznie mniejsza w porównaniu do nowszych standardów takich jak PCI-E. AGP działało w trybach 2x 4x i 8x co z czasem okazało się niewystarczające dla coraz bardziej zaawansowanych technologii graficznych. Złącze PCI miało szerokie zastosowanie w różnych komponentach komputerowych ale w przypadku kart graficznych szybko stało się niewystarczające pod względem przepustowości i dlatego zostało zastąpione przez inne bardziej wydajne technologie. ISA to jeszcze starszy standard interfejsu który był powszechnie używany w latach 80. i 90. XX wieku i nie nadaje się do przesyłu danych wymaganych przez nowoczesne karty graficzne. Błędne wybory takie jak AGP PCI czy ISA mogą wynikać z braku aktualnej wiedzy o rozwijających się technologiach komputerowych. Współczesne karty graficzne wymagają złącza które jest w stanie obsłużyć bardzo szybki transfer danych co czyni złącze PCI-E najbardziej odpowiednim wyborem. Często osoby mylą się co do standardów z powodu podobieństwa nazw lub nieznajomości specyfikacji technicznych dlatego ważne jest ciągłe aktualizowanie wiedzy w zakresie rozwoju sprzętu komputerowego szczególnie w dziedzinie technologii graficznych gdzie postęp jest bardzo dynamiczny i szybki. W związku z tym zrozumienie jakie złącze jest odpowiednie dla nowoczesnych kart graficznych jest kluczowe dla skutecznej modernizacji i optymalizacji sprzętu komputerowego co ma bezpośredni wpływ na efektywność i wydajność systemu szczególnie w zastosowaniach wymagających dużej mocy obliczeniowej jak grafika czy gry komputerowe. Poprawne zidentyfikowanie złącza PCI-E jako właściwego dla kart graficznych to krok w stronę wydajnej i nowoczesnej konfiguracji sprzętowej.

Pytanie 29

Protokół pakietów użytkownika, który zapewnia dostarczanie datagramów w trybie bezpołączeniowym, to

A. TCP
B. ARP
C. UDP
D. IP
UDP (User Datagram Protocol) to protokół transportowy, który umożliwia bezpołączeniowe przesyłanie danych w formie datagramów. W przeciwieństwie do TCP, UDP nie nawiązuje dedykowanego połączenia przed przesłaniem danych, co czyni go bardziej efektywnym w sytuacjach, gdzie niższe opóźnienia są kluczowe. Przykłady zastosowań UDP obejmują aplikacje strumieniowe, takie jak transmisje wideo na żywo czy gry online, gdzie szybkie dostarczanie danych jest ważniejsze niż gwarancja ich dostarczenia. Protokół ten pozwala na wysyłanie pakietów bez potrzeby ich potwierdzania przez odbiorcę, co znacząco zwiększa wydajność w odpowiednich zastosowaniach. Dobre praktyki branżowe zalecają stosowanie UDP w przypadkach, gdzie tolerancja na utratę pakietów jest wyższa, a latencja ma kluczowe znaczenie. Specyfikacja UDP jest zawarta w standardzie IETF RFC 768, co potwierdza jego powszechnie akceptowane zastosowanie w sieciach komputerowych.

Pytanie 30

Który z komponentów komputera, gdy zasilanie jest wyłączone, zachowuje program inicjujący uruchamianie systemu operacyjnego?

Ilustracja do pytania
A. CPU
B. RAM
C. I/O
D. ROM
CPU czyli Central Processing Unit to jednostka odpowiedzialna za wykonywanie instrukcji i obliczeń w komputerze jednak sam w sobie nie przechowuje programów a jedynie interpretuje i wykonuje instrukcje dostarczane z innych zasobów pamięci. Z tego powodu nie może przechowywać programu rozpoczynającego ładowanie systemu operacyjnego. RAM czyli Random Access Memory to pamięć operacyjna która traci swoje dane po wyłączeniu zasilania. Używana jest do tymczasowego przechowywania danych i programów które są obecnie używane przez komputer co czyni ją niestabilną i nieodpowiednią do przechowywania programu rozruchowego. Kolejnym błędem jest uznanie I/O czyli Input/Output za miejsce przechowywania danych oprogramowania rozruchowego. I/O są odpowiedzialne za komunikację komputera z urządzeniami zewnętrznymi takimi jak klawiatury myszy czy drukarki i nie pełnią roli w procesie przechowywania danych systemowych. To nieporozumienie wynika często z mylnego rozumienia roli poszczególnych komponentów w komputerze gdzie zakłada się że każdy element może pełnić dowolną funkcję co nie jest zgodne z rzeczywistością. Rozumienie różnic w funkcjonalnościach tych części jest kluczowe dla projektowania i konserwacji systemów komputerowych zgodnie z najlepszymi praktykami w branży IT. Ważne jest aby dobrze rozpoznać zadania każdej z tych jednostek co wpływa na optymalizację pracy całego systemu komputerowego oraz jego efektywność i niezawodność w codziennym użytkowaniu.

Pytanie 31

Rekord startowy dysku twardego w komputerze to

A. BOOT
B. MBR
C. PT
D. FAT
Główny rekord rozruchowy dysku twardego, znany jako MBR (Master Boot Record), jest kluczowym elementem w procesie uruchamiania systemu operacyjnego. MBR znajduje się na pierwszym sektorze dysku twardego i zawiera nie tylko kod rozruchowy, ale także tablicę partycji, która wskazuje, jak na dysku są zorganizowane partycje. Dzięki MBR system operacyjny może zidentyfikować, która partycja jest aktywna i zainicjować jej uruchomienie. W praktyce, podczas instalacji systemu operacyjnego, MBR jest tworzony automatycznie, a jego właściwe skonfigurowanie jest kluczowe dla stabilności i bezpieczeństwa systemu. Dobre praktyki wymagają regularnego tworzenia kopii zapasowych MBR, szczególnie przed przeprowadzaniem jakichkolwiek operacji, które mogą wpłynąć na strukturę partycji. Ponadto, MBR jest ograniczony do obsługi dysków o pojemności do 2 TB oraz maksymalnie czterech partycji podstawowych, co może być ograniczeniem w przypadku nowoczesnych dysków twardych, dlatego w wielu przypadkach stosuje się nowocześniejszy standard GPT (GUID Partition Table).

Pytanie 32

Kod BREAK interpretowany przez system elektroniczny klawiatury wskazuje na

A. usterkę kontrolera klawiatury
B. zwolnienie klawisza
C. konieczność ustawienia wartości opóźnienia powtarzania znaków
D. aktywację funkcji czyszczącej bufor
Wybór odpowiedzi, która mówi o awarii kontrolera klawiatury lub funkcji czyszczącej bufor, pokazuje, że możesz nie do końca rozumieć podstawowe zasady działania klawiatury. Tak naprawdę awaria kontrolera klawiatury to problem sprzętowy i nie ma to nic wspólnego z kodem BREAK. Ten kod nie ma też nic wspólnego z buforem, bo to dotyczy pamięci i danych, a nie tego, co robisz na klawiaturze. Co więcej, opóźnienie powtarzania znaków to inna sprawa, chodzi o to, jak szybko znów możesz nacisnąć ten sam klawisz. Więc te wszystkie odpowiedzi, które wybrałeś, mylą podstawowe zasady używania klawiatury. Ważne jest, by zrozumieć, że kod BREAK to sygnał, który mówi o tym, że klawisz był zwolniony, a nie o awariach czy ustawieniach systemowych. Dobrze ogarnąć tę różnicę, żeby nie popełniać błędów w programowaniu i projektowaniu systemów.

Pytanie 33

Wskaż technologię stosowaną do zapewnienia dostępu do Internetu w połączeniu z usługą telewizji kablowej, w której światłowód oraz kabel koncentryczny pełnią rolę medium transmisyjnego

A. xDSL
B. HFC
C. GPRS
D. PLC
Odpowiedzi PLC, xDSL i GPRS nie są zgodne z opisanym kontekstem technologicznym. PLC (Power Line Communication) wykorzystuje istniejącą infrastrukturę elektryczną do przesyłania sygnału, co ogranicza jego zastosowanie do obszarów, w których nie ma dostępu do sieci kablowych czy światłowodowych. Technologia ta ma ograniczenia związane z jakością sygnału oraz zakłóceniami, dlatego nie jest odpowiednia do łączenia usług telewizyjnych z Internetem na dużą skalę. Z kolei xDSL (Digital Subscriber Line) to technologia oparta na tradycyjnych liniach telefonicznych, która również nie korzysta z światłowodów ani kabli koncentrycznych, a jej prędkości transmisji są znacznie niższe w porównaniu do HFC. xDSL jest często stosowane w miejscach, gdzie nie ma możliwości podłączenia do sieci światłowodowej, co ogranicza jego zasięg i niezawodność. GPRS (General Packet Radio Service) to technologia stosowana głównie w sieciach komórkowych, która pozwala na przesyłanie danych w trybie pakietowym, jednak jej prędkości są znacznie niższe w porównaniu z rozwiązaniami kablowymi. Istnieje tu wiele typowych błędów myślowych, takich jak mylenie różnych technologii transmisyjnych oraz niewłaściwe łączenie ich z wymaganiami dotyczącymi jakości i prędkości sygnału. W związku z tym, wybór odpowiedniej technologii do dostarczania Internetu i telewizji powinien być oparty na analizie specyficznych potrzeb użytkowników oraz możliwości infrastrukturalnych.

Pytanie 34

Jakie jest zadanie usługi DNS?

A. weryfikacja poprawności adresów domenowych
B. konwersja adresów IP na nazwy domenowe
C. konwersja nazw domenowych na adresy IP
D. weryfikacja poprawności adresów IP
Wybór odpowiedzi, które sugerują inne funkcje systemu DNS, błędnie odzwierciedla jego rzeczywistą rolę i działanie. Sprawdzanie poprawności adresów IP czy domenowych to zadania, które mogą być realizowane w ramach innych usług, ale nie są bezpośrednio związane z funkcją DNS. System DNS nie zajmuje się weryfikacją adresów IP, lecz ich tłumaczeniem z formy tekstowej na numeryczną, co jest kluczowe dla komunikacji w sieci. Ponadto, translacja adresów IP na nazwy domenowe, choć możliwa, nie jest podstawowym zadaniem usługi DNS; tę funkcję pełnią inne mechanizmy, takie jak odwrotne zapytania DNS (reverse DNS lookup), które są mniej powszechne i nie są stosowane w codziennej praktyce internetowej. Warto zwrócić uwagę, że niepoprawne interpretowanie funkcji DNS może prowadzić do mylnych założeń w projektowaniu systemów sieciowych, co z kolei skutkuje problemami z dostępem do stron internetowych, a także błędami w konfiguracji serwerów. Aby skutecznie zarządzać infrastrukturą internetową, należy zrozumieć, że DNS działa na zasadzie hierarchicznej struktury, gdzie odpowiedzialność za poszczególne domeny jest rozdzielona między różne serwery, co zwiększa wydajność i niezawodność usług. Ignorowanie tych aspektów prowadzi do uproszczenia tematu, co jest niebezpieczne w kontekście zarządzania nowoczesnymi sieciami komputerowymi.

Pytanie 35

Dokument mający na celu przedstawienie oferty cenowej dla inwestora dotyczącej przeprowadzenia robót instalacyjnych w sieci komputerowej, to

A. przedmiar robót
B. specyfikacja techniczna
C. kosztorys ślepy
D. kosztorys ofertowy
Przedmiar robót to spis wszystkich prac i materiałów potrzebnych do projektu, ale nie ma tam wyceny. Chodzi głównie o to, żeby pomóc ocenić, ile pracy jest do zrobienia i przygotować kosztorys. Kosztorys ślepy z kolei jest tworzony bez znajomości rynkowych cen, więc nie nadaje się do przedstawienia oferty inwestorowi. Moim zdaniem, można go używać wewnętrznie, ale nie w formalnych przetargach, bo nie oddaje rzeczywistych kosztów. Specyfikacja techniczna to inna sprawa – opisuje wymagania techniczne i jakościowe, ale nie ma elementu cenowego, więc też nie pasuje do pytania. Ważne, żeby nie mylić kosztorysu ofertowego z innymi dokumentami, bo każdy z nich ma swoje specyficzne cele. Kosztorys ofertowy jest naprawdę kluczowy w przetargach, a jego brak może prowadzić do złych decyzji inwestycyjnych.

Pytanie 36

Ile adresów urządzeń w sieci jest dostępnych dzięki zastosowaniu klasy adresowej C w systemach opartych na protokołach TCP/IP?

A. 254
B. 200
C. 100
D. 256
Wybór 100 jako liczby dostępnych adresów w klasie C jest wynikiem nieporozumienia dotyczącego konstrukcji adresów IP. Klasa C nie ogranicza się tylko do 100 adresów, a zrozumienie, jak działa segmentacja adresów IP, jest kluczowe. Liczba 200 również nie ma podstaw, ponieważ po odjęciu adresów zarezerwowanych nie możemy uzyskać takiej liczby dostępnym adresów w tej klasie. Warto również zauważyć, że 256 to liczba teoretyczna, ale w rzeczywistości, ze względu na zarezerwowane adresy, dostępnych jest tylko 254. Typowe błędy myślowe, które prowadzą do tych nieprawidłowych odpowiedzi, to ignorowanie zarezerwowanych adresów oraz niewłaściwe zrozumienie podziału na segmenty sieciowe i hostów. Kluczowe jest zrozumienie, że adresy IP są zorganizowane w klasy, a każda klasa ma swoje zasady dotyczące rozdzielania adresów na część sieciową i część hosta. Dodatkowo, administracja siecią wymaga znajomości nie tylko liczby adresów, ale także ich efektywnego wykorzystania, co jest istotne w kontekście rozwoju Internetu oraz zarządzania adresami w organizacjach.

Pytanie 37

Aby zmierzyć moc zużywaną przez komputer, należy zastosować

A. woltomierz
B. watomierz
C. tester zasilaczy
D. amperomierz
Wybór watomierza do pomiaru mocy komputera to naprawdę dobry wybór. Watomierz mierzy moc, jaka rzeczywiście jest pobierana przez sprzęt, a to jest ważne. W praktyce moc oblicza się jako iloczyn napięcia i prądu, a watomierze biorą pod uwagę też współczynnik mocy. To istotne, bo zasilacze komputerowe mogą mieć różne obciążenia. Na przykład, jeśli mamy standardowy zasilacz ATX, to dzięki watomierzowi możemy sprawdzić jego efektywność energetyczną i zobaczyć, ile mocy komputer potrzebuje w czasie rzeczywistym. To może być przydatne, bo pozwala na oszczędzanie energii i dbałość o środowisko. Watomierze są też używane w laboratoriach do sprawdzania, czy urządzenia spełniają normy energetyczne, co może być bardzo ważne przy kosztach eksploatacji.

Pytanie 38

Jaką minimalną ilość pamięci RAM musi mieć komputer, aby móc uruchomić 64-bitowy system operacyjny Windows 7 w trybie graficznym?

A. 512MB
B. 256MB
C. 1GB
D. 2GB
Wybór jakiejkolwiek odpowiedzi, która wskazuje na ilość pamięci RAM mniejszą niż 2GB, jest błędny. W przypadku wersji 64-bitowej Windows 7, 256MB oraz 512MB są zdecydowanie niewystarczające do płynnego działania systemu operacyjnego. Systemy operacyjne, szczególnie te z bardziej zaawansowanym interfejsem graficznym, wymagają minimum 2GB RAM, aby efektywnie zarządzać aplikacjami i procesami. Wybór 1GB również nie spełnia norm wydajnościowych, ponieważ przy takiej ilości pamięci, użytkownik może napotkać liczne ograniczenia w działaniu aplikacji, co prowadzi do spowolnienia oraz zwiększonego ryzyka zawieszania się systemu. Często użytkownicy błędnie zakładają, że minimalna ilość pamięci RAM, która była wystarczająca dla starszych wersji systemów operacyjnych, będzie odpowiednia dla nowszych. Tego rodzaju myślenie jest mylne, ponieważ technologia ewoluuje, a wymagania sprzętowe wzrastają wraz z rozwojem oprogramowania. Przy obecnie powszechnie używanych aplikacjach, takich jak przeglądarki internetowe czy programy biurowe, które są bardziej zasobożerne, 2GB RAM to absolutne minimum, które powinno być brane pod uwagę przez osoby planujące instalację Windows 7 64-bit.

Pytanie 39

Jak nazywa się serwer Windows, na którym zainstalowano usługę Active Directory?

A. serwerem plików
B. kontrolerem domeny
C. serwerem WWW
D. serwerem DHCP
Pojęcia takie jak serwer DHCP, serwer WWW czy serwer plików niosą ze sobą różne funkcje, które nie są bezpośrednio związane z rolą kontrolera domeny. Serwer DHCP, na przykład, jest odpowiedzialny za dynamiczne przydzielanie adresów IP urządzeniom w sieci, co ma na celu uproszczenie zarządzania adresacją i optymalizację dostępnych zasobów sieciowych. W przeciwieństwie do kontrolera domeny, serwer DHCP nie zarządza tożsamościami użytkowników, ani nie przechowuje informacji o zasobach. Serwer WWW służy do hostowania stron internetowych i obsługi żądań HTTP, co również różni się zasadniczo od funkcji kontrolera domeny, który nie jest odpowiedzialny za publikację treści internetowych. Serwer plików, z drugiej strony, skupia się na przechowywaniu i udostępnianiu plików użytkownikom w sieci, co jest bardziej ograniczoną rolą, w porównaniu do wszechstronności kontrolera domeny. Zrozumienie tych różnic jest kluczowe dla prawidłowego zarządzania infrastrukturą IT, a błędne utożsamianie tych ról może prowadzić do nieefektywnego zarządzania zasobami oraz naruszeń bezpieczeństwa.

Pytanie 40

Aby system operacyjny mógł szybciej uzyskiwać dostęp do plików na dysku twardym, należy wykonać

A. szyfrowanie dysku
B. fragmentację dysku
C. podział dysku
D. defragmentację dysku
Partycjonowanie dysku odnosi się do procesu podziału dysku twardego na mniejsze, logiczne sekcje, które mogą być zarządzane niezależnie. Choć partycjonowanie może zwiększyć organizację danych i umożliwić instalację różnych systemów operacyjnych, nie ma bezpośredniego wpływu na szybkość dostępu do plików. Fragmentacja dysku to zjawisko polegające na tym, że dane plików są rozproszone w różnych miejscach na dysku, co może prowadzić do spowolnienia operacji odczytu i zapisu, lecz nie jest to rozwiązanie dla problemu z szybkością dostępu. Szyfrowanie dysku, z drugiej strony, to proces zabezpieczania danych przed nieautoryzowanym dostępem, który wymaga dodatkowych zasobów obliczeniowych, co może skutkować pewnym spowolnieniem dostępu do plików. Dlatego wybierając metodę poprawy wydajności dostępu do danych, należy skupić się na defragmentacji, która fizycznie reorganizuje dane na dysku, a nie na partycjonowaniu, fragmentacji czy szyfrowaniu, które nie mają na celu optymalizacji szybkości dostępu.