Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 4 czerwca 2025 02:17
  • Data zakończenia: 4 czerwca 2025 02:24

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaki jest błąd względny pomiaru na wadze o precyzji 0,1 g dla próbki o wadze 1 g?

A. 10%
B. 100%
C. 1%
D. 0,1%
Stwierdzenia, że błąd względny wynosi 1%, 100% lub 0,1% są wynikiem nieprawidłowego rozumienia definicji błędu względnego oraz jego obliczania. Błąd względny jest proporcjonalny do stosunku błędu pomiaru do wartości mierzanej, co w omawianym przypadku oznacza, że jeżeli mamy wagę z dokładnością 0,1 g, to w kontekście próbki o masie 1 g, maksymalny błąd pomiaru wynosi 0,1 g. Obliczając błąd względny, musimy uwzględnić, iż 0,1 g to 10% z 1 g, co jest kluczowym aspektem w analizie wyników. Odpowiedzi takie jak 1% sugerują, że badacz błędnie oblicza proporcję błędu do całkowitej wagi próbki, co może prowadzić do poważnych konsekwencji w analizach laboratoryjnych. Odpowiedź 100% jest całkowicie mylna, ponieważ błędy pomiaru nie mogą przekraczać wartości mierzonych. Ostatnia opcja, 0,1%, jest wprowadzająca w błąd, ponieważ nie uwzględnia rzeczywistego stosunku błędu do wartości mierzonych. W zakresie kontroli jakości oraz walidacji metod pomiarowych, kluczowe jest posługiwanie się poprawnymi definicjami i wzorami, aby zapewnić dokładność i wiarygodność wyników analitycznych.

Pytanie 2

Na podstawie danych zawartych w tabeli wskaż, które opakowania zawierają produkt zgodny ze specyfikacją.

WŁAŚCIWOŚCINORMA KLASY A
wg specyfikacji produktu
OPAKOWANIE
123
POSTAĆBezbarwna ciecz, bez zanieczyszczeń.
Dopuszcza się niebieskawе zabаrwienie
i obecność skrystalizowanego osadu
Bezbarwna ciecz
Zawartość ługu sodowego
(NaOH), min, % masy
46,046,546,848,0
Węglan sodu (Na₂CO₃),
nie więcej niż, % masy
0,40,30,30,2
Chlorek sodu (NaCl),
nie więcej niż, % masy
0,0200,0150,0140,011
Chloran sodu (NaClO₃),
nie więcej niż, % masy
0,0070,0060,0050,002
Siarczan sodu (Na₂SO₄),
nie więcej niż, % masy
0,0400,0380,0350,029
Zawartość żelaza (Fe₂O₃),
max, WT. PPM
15151510

A. Tylko 1 i 2.
B. Wszystkie.
C. Żadne.
D. Tylko 3.
Wybranie odpowiedzi mówiącej, że żadne opakowania nie są zgodne z normami, to typowy błąd. Może się to brać stąd, że nie widzisz wszystkich ważnych szczegółów w danych. Wydaje mi się, że to trochę przez brak zrozumienia specyfikacji produktu i norm dotyczących jakości opakowań. Czasem ludzie mają tendencję do uogólniania, co prowadzi do błędnych wniosków. Pamiętaj, że każde opakowanie trzeba przeanalizować dokładnie, a stwierdzenie, że nic nie spełnia norm, jest po prostu nietrafione. Gdy mówisz, że tylko niektóre są zgodne, to znaczy, że mogłeś nie uwzględnić wszystkich parametrów z specyfikacji. Każde opakowanie powinno się oceniać z osobna, a złe oceny mogą mieć poważne konsekwencje, jak wprowadzenie wadliwych produktów na rynek, co może skutkować stratami lub zepsuciem reputacji firmy. Dlatego ważne jest, by oceniający też byli dobrze poinformowani i trzymali się standardów, żeby uniknąć takich sytuacji.

Pytanie 3

W celu wydania świadectwa kontroli jakości odczynnika chemicznego - jodku potasu cz.d.a. przeprowadzono jego analizę. Wymagania oraz wyniki badań zapisano w tabeli:
Z analizy danych zawartych w tabeli wynika, że jodek potasu cz.d.a.

WymaganiaWynik badania
Zawartość KImin. 99,5%99,65%
Wilgoćmax. 0,1%0,075%
Substancje nierozpuszczalne w wodziemax. 0,005%0,002%
pH (5%, H2O)6 ÷ 86,8
Azot ogólny (N)max. 0,001%0,0007%
Chlorki i bromki (j. Cl)max. 0,01%0,004%
Fosforany (PO4)max. 0,001%0,0006%
Jodany (IO3)max. 0,0003%0,0001%
Siarczany (SO4)max. 0,001%0,0004%
Metale ciężkie (j. Pb)max. 0,0005%0,00025%
Arsen (As)max. 0,00001%0,000006%
Magnez (Mg)max. 0,001%0,0004%
Sód (Na)max. 0,05%0,015%
Wapń (Ca)max. 0,001%0,0006%
Żelazo (Fe)max. 0,0003%0,0003%

A. spełnia wymagania i można wydać świadectwo jakości.
B. nie spełnia wymagań pod względem zawartości żelaza.
C. nie spełnia wymagań pod względem zawartości metali ciężkich.
D. nie spełnia wymagań pod względem pH i zawartości jodanów.
Twoja odpowiedź jest na pewno trafna. Jodek potasu cz.d.a. rzeczywiście spełnia normy jakościowe, co jest bardzo ważne, gdy mówimy o wydaniu świadectwa kontroli jakości. W badaniach wyszło, że zawartość jodku potasu wynosi 99,65%, co jest lepsze niż wymagane 99,5%. To świetny wynik! Poza tym inne parametry, takie jak pH, wilgotność czy substancje nierozpuszczalne w wodzie, też są w normie. Z mojego doświadczenia, spełnianie norm to kluczowa sprawa, zwłaszcza w farmacji czy chemii analitycznej. Świadectwo jakości potwierdza, że produkt jest nie tylko zgodny z normami, ale również można go bezpiecznie używać. W laboratoriach warto regularnie sprawdzać i dokumentować wyniki, żeby mieć pewność, że wszystko jest na czasie z obowiązującymi standardami i zasadami bezpieczeństwa.

Pytanie 4

Po połączeniu 50 cm3 wody z 50 cm3 alkoholu etylowego, objętość otrzymanej mieszanki jest poniżej 100 cm3. Zjawisko to jest spowodowane

A. adsorpcją
B. desorpcją
C. ekstrakcją
D. kontrakcją
Odpowiedzi takie jak adsorpcja, ekstrakcja i desorpcja odnoszą się do różnych procesów chemicznych, które nie mają bezpośredniego związku z zjawiskiem zmniejszenia objętości mieszaniny wody i alkoholu etylowego. Adsorpcja to proces, w którym cząsteczki substancji przyczepiają się do powierzchni innej substancji, co nie jest przypadkiem w mieszaniu obu cieczy, gdyż mówimy tutaj o interakcji molekularnej, a nie o przyczepności na powierzchni. Ekstrakcja natomiast to technika wydobywania substancji z mieszaniny, co również nie odnosi się do opisanego przypadku. Desorpcja jest procesem odwrotnym do adsorpcji, polegającym na uwalnianiu cząsteczek ze powierzchni, co również nie ma zastosowania w kontekście zmiany objętości po zmieszaniu cieczy. Typowym błędem myślowym jest mylenie tych terminów z procesami zachodzącymi podczas mieszania substancji. Aby poprawnie zrozumieć, dlaczego objętość zmieszanej mieszaniny wody i alkoholu etylowego jest mniejsza niż suma ich objętości, należy skupić się na fundamentalnych zasadach fizyko-chemicznych, które rządzą interakcjami między cząsteczkami, a nie na procesach adsorpcji czy ekstrakcji.

Pytanie 5

Jakim kolorem oznacza się instalację gazową w laboratorium analitycznym?

A. żółtym
B. czerwonym
C. niebieskim
D. zielonym
Zastosowanie innych kolorów do oznaczania instalacji gazowych, takich jak czerwony, zielony czy niebieski, może prowadzić do poważnych pomyłek i zagrożeń w laboratoriach analitycznych. Kolor czerwony często utożsamiany jest z oznaczeniami alarmowymi lub wskazującymi na substancje wybuchowe, co może powodować nieporozumienia, gdy zostanie użyty do oznaczenia gazów. Zielony z kolei jest często stosowany do oznaczania instalacji związanych z mediami, które są bezpieczne lub neutralne, co również nie oddaje właściwej klasyfikacji gazów. Użycie niebieskiego, który przeważnie odnosi się do instalacji wodociągowych, może spowodować zafałszowanie informacji i nieporozumienia w zespole. Dlatego istotne jest, aby unikać błędów w oznaczeniach, które mogą prowadzić do niebezpiecznych sytuacji. Kluczowym błędem myślowym w tym kontekście jest niedostateczne zrozumienie funkcji kolorów w systemie oznaczeń, co może być skutkiem braku znajomości norm i standardów branżowych. Każdy kolor ma swoje konkretne znaczenie, a ich mylne użycie może prowadzić do sytuacji awaryjnych. Z tego względu, dla uzyskania wysokich standardów bezpieczeństwa, istotne jest przestrzeganie ustalonych zasad znakowania i stosowanie koloru żółtego w tych kontekstach.

Pytanie 6

Aby oczyścić zwęglone osady w probówce, należy zastosować

A. słabą zasadę
B. mieszaninę chromową
C. słaby kwas
D. rozpuszczalnik organiczny
Rozpuszczalniki organiczne, takie jak etanol czy aceton, są często stosowane do rozpuszczania substancji organicznych, jednak ich skuteczność w usuwaniu zwęglonych osadów jest ograniczona. Zwęglone resztki to w dużej mierze węgiel, który nie reaguje z większością związków organicznych, co czyni je trudnymi do usunięcia za pomocą takich rozpuszczalników. Użycie słabego kwasu, jak kwas octowy, może również okazać się niewystarczające, ponieważ nie posiada on wystarczającej siły do utlenienia zwęglonych osadów, które są bardziej odporne na działanie słabych kwasów. Słabe zasady, takie jak wodorotlenek sodu, mogą pomóc w usuwaniu niektórych zanieczyszczeń, ale podobnie jak kwasy, ich działanie na zwęglone osady jest ograniczone. W praktyce laboratoryjnej, stosowanie tych substancji może prowadzić do mylnych wniosków o ich skuteczności, co może skutkować nieodpowiednim przygotowaniem sprzętu lub próbek do dalszych analiz. Dlatego ważne jest, aby korzystać z odpowiednich, sprawdzonych metod oczyszczania, takich jak stosowanie mieszaniny chromowej, która zapewnia lepsze rezultaty w usuwaniu trudnych do zlikwidowania osadów.

Pytanie 7

W przypadku kontaktu ze stężonym roztworem zasady, co należy zrobić jak najszybciej?

A. polać 3% roztworem wody utlenionej
B. zastosować 5% roztwór wodorowęglanu sodu
C. skorzystać z amoniaku
D. zmyć bieżącą wodą
W przypadku oblania się stężonym roztworem zasady kluczowe jest jak najszybsze zneutralizowanie i usunięcie kontaktu z substancją. Zmycie bieżącą wodą jest najbardziej efektywną i odpowiednią metodą, ponieważ pozwala na rozcieńczenie zasady oraz fizyczne usunięcie jej z powierzchni skóry lub materiału. Woda działa jako rozpuszczalnik, który zmniejsza stężenie zasady, co z kolei minimalizuje ryzyko uszkodzenia tkanek. W praktyce, zaleca się pod bieżącą wodą przepłukać obszar kontaktu przez co najmniej 15 minut, aby zapewnić skuteczne usunięcie substancji. Ponadto, w sytuacjach laboratoryjnych, przestrzega się standardów BHP, które nakładają obowiązek posiadania odpowiednich stacji do płukania oczu i ciała, aby szybko reagować na takie wypadki. Warto również pamiętać o noszeniu odpowiednich środków ochrony osobistej, takich jak rękawice i gogle, co może zminimalizować ryzyko kontaktu z niebezpiecznymi substancjami. Tylko w przypadku, gdy zasada nie jest zmyta, można myśleć o dalszym postępowaniu, jednak zawsze należy wrócić do podstawowej metody usuwania substancji.

Pytanie 8

Jakie urządzenie wykorzystuje się do pomiaru lepkości cieczy?

A. wiskozymetr
B. piknometr
C. kriometr
D. aparat Boetiusa
Piknometr, aparat Boetiusa i kriometr to trochę inna historia, a ludzie często mylą je z pomiarem lepkości, co prowadzi do różnych nieporozumień. Piknometr jest urządzonkiem do mierzenia gęstości cieczy, a to oznacza, że patrzy na masę substancji w porównaniu do jej objętości. Gęstość jest ważna, ale nie ma nic wspólnego z lepkością, która odnosi się do oporu cieczy na przepływ. Aparat Boetiusa z kolei mierzy ciśnienie pary, więc nie ma tu nic do rzeczy, gdy mówimy o lepkości. Kriometr z kolei bada temperaturę zamarzania cieczy i może dać nam jakieś wskazówki co do składu chemicznego, ale z lepkością nie ma nic wspólnego. Rozumienie tych różnic jest naprawdę istotne, gdy wybiera się odpowiednie narzędzia do badań w laboratoriach. Z tego, co zauważyłem, wielu ludzi myli te pojęcia, bo nie rozumie podstawowych różnic między parametrami fizycznymi cieczy oraz ich wpływem na różne procesy technologiczne. Lepkość to tylko jedna z wielu cech fizycznych, a jej pomiar wymaga odpowiedniego sprzętu, jakim jest wiskozymetr.

Pytanie 9

Proces przesiewania próbki prowadzi się za pomocą urządzenia przedstawionego na rysunku

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godzin

A. B.
B. C.
C. D.
D. A.
Wybór odpowiedzi A, B lub D wskazuje na pewne nieporozumienia dotyczące podstawowych zasad przesiewania próbki. Odpowiedzi te mogą sugerować, że użytkownik nie rozumie, że proces przesiewania wymaga zastosowania odpowiednich narzędzi, które są specjalnie zaprojektowane do tego celu. Na przykład, odpowiedzi A i B mogą być mylone z ideą użycia innych metod mechanicznych, takich jak mieszanie czy szarpanie, które nie są właściwe do oddzielania cząstek według ich rozmiaru. W rzeczywistości, metody te nie zapewniają wymaganej precyzji, ponieważ nie segregują one cząstek na podstawie ich właściwości fizycznych. Odpowiedź D sugeruje z kolei inne techniki separacji, takie jak filtracja, która jest stosowana do usuwania większych zanieczyszczeń z cieczy, a nie do przesiewania ciał stałych. Kluczowym błędem myślowym, który może prowadzić do takich odpowiedzi, jest nieporozumienie dotyczące zasad mechaniki ciał stałych i procesów separacji. Przesiewanie i filtracja to dwa różne procesy, które mają swoje specyficzne zastosowania. Zrozumienie tego rozróżnienia jest niezbędne dla prawidłowego podejścia do analizy materiałów sypkich oraz do stosowania norm branżowych, które gwarantują skuteczność i dokładność wyników.

Pytanie 10

Podczas rozkładu chloranu(V) potasu powstają chlorek potasu oraz tlen. Ile gramów tlenu zostanie wydzielonych w trakcie rozkładu 24,5 g chloranu(V) potasu, jeśli jednocześnie uzyskano 14,9 g chlorku potasu? Masy molowe pierwiastków: K = 39 g/mol, Cl = 35,5 g/mol, O=16 g/mol?

A. 39,4 g
B. 9,6 g
C. 14,5 g
D. 24,5 g
Jak nie wyszło, to mogły być różne błędy w myśleniu. Na przykład, jeśli ktoś zaznaczył, że masa tlenu to 24,5 g, to może myślał, że wszystko z chloranu idzie w tlen, a to nieprawda, bo powstaje też chlorek potasu. Natomiast 14,5 g to pewnie wynik złej interpretacji tego, co się dzieje w reakcji. Może była pomyłka z rozumieniem, że masa chlorku ma wpływ na wydzielający się tlen, ale to nie tak działa. A wybór 39,4 g może pokazywać, że ktoś się pomylił przy zamianie jednostek albo nie popatrzył dobrze na masy molowe. Ważne, by rozumieć, jak działają reakcje chemiczne i trzymać się zasady zachowania masy, że to, co mamy na wejściu, musi równać się temu na wyjściu. Te umiejętności obliczeniowe są istotne, szczególnie w chemii, gdzie precyzja jest kluczowa.

Pytanie 11

Oddzielanie płynnej mieszaniny wieloskładnikowej poprzez odparowanie, a następnie skraplanie jej komponentów, to proces

A. koagulacji
B. filtracji
C. destylacji
D. krystalizacji
Destylacja to proces, który polega na rozdzielaniu składników cieczy poprzez ich odparowanie i następne skroplenie. Jest to technika szeroko stosowana w różnych gałęziach przemysłu, takich jak petrochemia, przemysł spożywczy, a także w laboratoriach chemicznych. Przykładem zastosowania destylacji w przemyśle jest produkcja alkoholi, gdzie poprzez destylację fermentowanych surowców uzyskuje się wysokoprocentowe napoje. Proces destylacji wykorzystuje różnice w temperaturach wrzenia poszczególnych składników, co pozwala na ich selektywne odparowanie i kondensację. W praktyce, w destylacji frakcyjnej, stosuje się kolumny destylacyjne, które umożliwiają wielokrotne skraplanie i odparowywanie, co zwiększa efektywność rozdziału. Warto również znać standardy takie jak ASTM D86, które określają metody przeprowadzania destylacji w przemyśle naftowym, gwarantując wysoką jakość oraz powtarzalność procesów.

Pytanie 12

W którym wierszu są zapisane nazwy wyłącznie rozpuszczalników palnych?

Właściwości wybranych rozpuszczalników.
RozpuszczalnikGęstość
[g/cm3]
Temperatura
wrzenia
[°C]
Temperatura
zapłonu
[°C]
Rozpuszczalność
w wodzie
[g/100 cm3]
Eter dietylowy0,7135-457
Heksan0,6660-80-230,01
Aceton0,7957-18
Benzen0,8880-110,07
Chloroform1,4961-0,82
Tetrachlorometan1,5977-0,08
Etanol0,817812
Chlorometan1,3441-2

A. Aceton, etanol, chloroform.
B. Chloroform, chlorometan, tetrachlorometan.
C. Aceton, etanol, benzen.
D. Heksan, benzen, tetrachlorometan.
Odpowiedź "Aceton, etanol, benzen" jest poprawna, ponieważ wszystkie te substancje są klasyfikowane jako łatwopalne rozpuszczalniki. Kluczowym parametrem, który pozwala na ich identyfikację, jest temperatura zapłonu. Aceton, ze swoją temperaturą zapłonu wynoszącą -18°C, etanol z 12°C oraz benzen z -11°C, charakteryzują się niskimi wartościami, co czyni je niebezpiecznymi w kontekście pożaru. W praktyce, znajomość właściwości chemicznych rozpuszczalników jest niezbędna dla bezpieczeństwa w laboratoriach oraz w przemyśle chemicznym. Właściwe magazynowanie tych substancji oraz przestrzeganie norm bezpieczeństwa, takich jak zachowanie odpowiednich odległości od źródeł zapłonu, jest kluczowe dla uniknięcia niebezpieczeństw. Przykładowo, w laboratoriach stosuje się odpowiednie pojemniki i wentylację, aby zminimalizować ryzyko wybuchu. Ponadto, znajomość tych substancji jest istotna w kontekście ochrony środowiska, ponieważ łatwopalne rozpuszczalniki mogą mieć szkodliwy wpływ na atmosferę i zdrowie ludzi, jeśli nie są odpowiednio używane lub utylizowane.

Pytanie 13

Zestaw do filtracji nie zawiera

A. metalowego statywu
B. kolby miarowej
C. szklanej bagietki
D. szklanego lejka
Kolba miarowa nie jest elementem zestawu do sączenia, ponieważ jej główną funkcją jest dokładne pomiarowanie objętości cieczy. W procesach sączenia, szczególnie w laboratoriach chemicznych i biologicznych, kluczowe jest oddzielenie fazy stałej od cieczy, co odbywa się najczęściej z wykorzystaniem lejek szklany, który jest niezbędny do precyzyjnego kierowania cieczy do naczynia zbiorczego. Bagietka szklana służy do przenoszenia lub dozowania niewielkich ilości substancji, a statyw metalowy jest używany do stabilizacji elementów podczas eksperymentów. W kontekście dobrych praktyk laboratoryjnych, ważne jest zrozumienie roli każdego z tych narzędzi, aby efektywnie przeprowadzać procedury analityczne, takie jak filtracja, gdzie kluczowe jest użycie lejka i odpowiednich filtrów, a kolba miarowa nie jest konieczna w tym procesie. Zrozumienie tych różnic pozwala na lepsze planowanie i przeprowadzanie działań laboratoryjnych, co jest niezbędne w pracy każdego chemika.

Pytanie 14

Część partii pobrana w sposób jednorazowy z jednego źródła towaru zapakowanego lub z jednego opakowania jednostkowego określana jest mianem próbki

A. analitycznej
B. ogólnej
C. pierwotnej
D. średniej laboratoryjnej
Wybór innych odpowiedzi może wynikać z nieporozumienia dotyczącego terminologii używanej w analizach prób. Odpowiedź 'ogólnej' sugeruje, że próbka jest reprezentatywna dla całej partii, ale nie odnosi się do konkretnego kontekstu pobierania próbek. W rzeczywistości próbki ogólne są zbierane z różnych miejsc w partii, co może prowadzić do niejednorodności wyników, co jest niezgodne z praktykami pobierania próbek. Z kolei 'średnia laboratoryjna' odnosi się do próbek, które są mieszane z różnych prób pierwotnych, co nie jest właściwym terminem dla pojedynczej próbki pobranej z jednego miejsca. W praktyce średnia laboratoryjna jest używana do uzyskiwania wyników z kilku próbek, co znacznie różni się od pojęcia próbki pierwotnej. Odpowiedź 'analitycznej' może prowadzić do mylnego przekonania, że próbka odnosi się do etapu analizy, kiedy w rzeczywistości próbka analityczna odnosi się do materiału, który jest wykorzystywany do przeprowadzenia analizy, ale może być przygotowywany na podstawie prób pierwotnych. Te błędne koncepcje mogą prowadzić do niewłaściwej interpretacji wyników badań oraz do niskiej jakości danych, co jest istotnym zagrożeniem w kontekście akredytacji laboratoriów i zapewnienia jakości w przemyśle.

Pytanie 15

W laboratoriach roztwór potasu dichromianu(VI) w stężonym kwasie siarkowym(VI) wykorzystuje się do

A. odkamieniania urządzeń wodnych
B. czyszczenia szkła laboratoryjnego
C. roztwarzania różnych stopów
D. wytrącania trudno rozpuszczalnych soli w wodzie
Wybór odpowiedzi na temat wytrącania soli trudno rozpuszczalnych w wodzie jest błędny, ponieważ dichromian(VI) potasu nie jest stosowany w procesie wytrącania soli, lecz głównie w myciu szkła. W kontekście chemii, wytrącanie soli polega na mieszaniu rozpuszczalników i reagentów w takich warunkach, które sprzyjają krystalizacji, co jest procesem chemicznym zupełnie odmiennym od działania dichromianu(VI), który nie powoduje tworzenia osadów. Roztwór dichromianu potasu w stężonym kwasie siarkowym nie jest również odpowiedni do roztwarzania stopów, ponieważ jego działanie utleniające nie przekształca metali w formę rozpuszczalną. Przy roztwarzaniu stopów najczęściej wykorzystuje się kwasy o silniejszym działaniu, takie jak kwas azotowy, które są w stanie rozpuścić metale. Z kolei zastosowanie dichromianu w odkamienianiu łaźni wodnych jest również niepoprawne. W tego rodzaju procesach stosuje się zazwyczaj kwasy takie jak kwas solny, które skutecznie usuwają osady kamienia, a nie utleniacze. Użycie dichromianu w tych kontekstach sugeruje brak zrozumienia podstawowych reakcji chemicznych oraz ich zastosowań, co prowadzi do błędnych wniosków i może skutkować nieefektywnymi lub wręcz niebezpiecznymi praktykami laboratoryjnymi, dlatego ważne jest, aby mieć na uwadze odpowiednie metody oraz dobre praktyki laboratoryjne przy wyborze substancji do określonych zadań.

Pytanie 16

Rozdział składników mieszaniny w chromatografii odbywa się dzięki ich różnym

A. lotności
B. absorpcji
C. adsorpcji
D. rozpuszczalności
Odpowiedzi dotyczące lotności, absorpcji oraz rozpuszczalności nie oddają sedna procesu rozdziału chromatograficznego, który w rzeczywistości opiera się na adsorpcji. Lotność odnosi się do zdolności substancji do przechodzenia w stan gazowy, co nie jest kluczowym czynnikiem w chromatografii, ponieważ proces ten zazwyczaj zachodzi w fazie ciekłej lub stałej. Odpowiedzi takie jak absorpcja mogą być mylone z adsorpcją, jednak obejmują one inny mechanizm, w którym cząsteczki są wchłaniane w objętość substancji, a nie tylko przyczepiają się do jej powierzchni. Rozpuszczalność, choć ważna w kontekście interakcji między fazami, nie jest bezpośrednim czynnikiem determinującym rozdział składników w chromatografii. W praktyce, zrozumienie tych różnic jest kluczowe w procesach analitycznych, ponieważ wybrana metoda rozdziału i fazy mogą znacząco wpłynąć na efektywność i wydajność analizy. Niewłaściwe zrozumienie tych terminów może prowadzić do błędnych wniosków i nieefektywnego rozdziału składników, co jest krytyczne w zastosowaniach przemysłowych oraz laboratoryjnych, takich jak analizy chemiczne czy kontrola jakości produktów.

Pytanie 17

Zawarty fragment instrukcji odnosi się do

Po dodaniu do kolby Kjeldahla próbki analizowanego materiału, kwasu siarkowego(VI) oraz katalizatora, należy delikatnie ogrzewać zawartość kolby za pomocą palnika gazowego. W początkowym etapie ogrzewania zawartość kolby wykazuje pienienie i zmienia kolor na ciemniejszy. W tym czasie należy przeprowadzać ogrzewanie bardzo ostrożnie, a nawet z przerwami, aby uniknąć "wydostania się" czarnobrunatnej masy do szyjki kolby.

A. mineralizacji próbki na sucho
B. wyprażenia próbki do stałej masy
C. mineralizacji próbki na mokro
D. topnienia próbki
Wybór innych odpowiedzi, takich jak mineralizacja próbki na sucho, stapianie próbki czy wyprażenie próbki do stałej masy, jest błędny, ponieważ te metody mają różne cele i procedury. Mineralizacja na sucho polega na poddawaniu próbki wysokotemperaturowemu procesowi bez użycia rozpuszczalników, co w przypadku substancji organicznych może prowadzić do niepełnego rozkładu i utraty cennych informacji analitycznych. Takie podejście jest często stosowane do przygotowania próbek mineralnych, ale nie jest odpowiednie dla materiałów zawierających substancje organiczne. Stapianie próbki to proces charakteryzujący się połączeniem próbek z topnikami i ogrzewaniem w celu ich przetworzenia, co również nie odpowiada opisanej procedurze mineralizacji. Z kolei wyprażenie próbki do stałej masy polega na długotrwałym ogrzewaniu w sytuacji, gdy celem jest uzyskanie surowca o stałej masie, co nie jest tożsame z neutralizowaniem organicznych związków chemicznych w obecności kwasu. Dlatego też, błędne zrozumienie tych metod może prowadzić do nieefektywnych lub wręcz niemożliwych do zrealizowania analiz, co podkreśla znaczenie znajomości odpowiednich metod w kontekście celu badania. W praktyce laboratoryjnej kluczowym jest rozróżnienie tych metod, aby zastosować właściwe podejście do uzyskania wiarygodnych wyników.

Pytanie 18

Aby otrzymać czystą substancję, próbka z nitroaniliną została poddana procesowi krystalizacji. Jaką masę nitroaniliny użyto do krystalizacji, jeśli uzyskano 1,5 g czystego związku, a wydajność krystalizacji wyniosła 75%?

A. 2 g
B. 0,5 g
C. 50 g
D. 0,02 g
Aby obliczyć masę odważki nitroaniliny użytej do krystalizacji, należy zastosować wzór na wydajność krystalizacji, który jest wyrażony jako stosunek masy uzyskanego produktu do masy początkowej próbki, pomnożony przez 100%. W tym przypadku znamy masę czystego związku, która wynosi 1,5 g, oraz wydajność krystalizacji równą 75%. Możemy zatem zastosować równanie: masa próbki = masa czystego związku / (wydajność krystalizacji / 100%). Podstawiając wartości, otrzymujemy masę próbki równą 1,5 g / 0,75, co daje 2 g. To oznacza, że do uzyskania 1,5 g czystej nitroaniliny potrzebna była masa próbki wynosząca 2 g. Jednak pytanie dotyczy masy odważki, którą można obliczyć jako 2 g * 0,75 = 1,5 g, co jest mylące, ponieważ pytanie nie precyzuje, że chodzi o masę próbki w kontekście czystej substancji. W praktyce, krystalizacja jest techniką stosowaną w chemii do oczyszczania substancji, odgrywając kluczową rolę w produkcji farmaceutycznej oraz materiałowej, gdzie czystość substancji jest kluczowa.

Pytanie 19

Z uwagi na higroskopijne właściwości tlenku fosforu(V) powinien on być przechowywany w warunkach bez dostępu

A. powietrza
B. ciepła
C. światła
D. tlenu
Tlenek fosforu(V), czyli P2O5, ma naprawdę mocne właściwości higroskopijne, więc potrafi wciągać wilgoć z otoczenia. Dlatego najlepiej trzymać go w suchym miejscu, z dala od powietrza – to ważne, żeby nie doszło do reakcji z wodą, bo wtedy może stracić swoje właściwości. Jak jest za wilgotno, P2O5 może zacząć tworzyć kwas fosforowy, a to zmienia jego charakterystykę i może być problem, gdy chcesz go używać. Ten związek jest często stosowany w produkcji nawozów fosforowych oraz w chemii organicznej, a także w procesach suszenia. Dlatego w chemii ważne są dobre praktyki przechowywania takich substancji, czyli hermetyczne pakowanie i osuszacze. Wiedza o tym, jak prawidłowo składować tlenek fosforu(V), jest kluczowa, żeby zachować jego jakość i skuteczność w różnych zastosowaniach, zarówno przemysłowych, jak i laboratoryjnych.

Pytanie 20

Fosfor biały, z uwagi na swoje właściwości, powinien być przechowywany

A. w benzenie
B. w nafcie
C. w wodzie
D. w benzynie
Fosfor biały jest substancją niezwykle reaktywną, a jego przechowywanie w wodzie jest kluczowe dla zapewnienia bezpieczeństwa. Woda działa jako medium, które ogranicza dostęp tlenu do fosforu, minimalizując ryzyko jego utlenienia i zapłonu. W przypadku kontaktu z powietrzem, fosfor biały może spontanicznie się zapalić, co czyni go niebezpiecznym w standardowych warunkach przechowywania. Woda nie tylko chroni przed reakcjami chemicznymi, ale także zapewnia fizyczną barierę, która zapobiega rozprzestrzenieniu się ewentualnych dymów fosforowych. Przykładem zastosowania tej metody przechowywania jest przemysł chemiczny, gdzie fosfor biały jest używany w procesach produkcji związków chemicznych, a odpowiednie metody przechowywania są zgodne z normami bezpieczeństwa, takimi jak OSHA (Occupational Safety and Health Administration). Dobrą praktyką w laboratoriach jest także oznaczanie pojemników z fosforem białym, aby zminimalizować ryzyko przypadkowego uwolnienia substancji do atmosfery.

Pytanie 21

Z analizy wykresu wynika, że substancją o najniższej rozpuszczalności w wodzie w temperaturze 100°C jest

A. saletra potasowa
B. sól kamienna
C. cukier
D. siarczan(VI) miedzi(II)
Sól kamienna, czyli chlorek sodu (NaCl), to dość ciekawa substancja, bo ma niską rozpuszczalność w wodzie w porównaniu do takich rzeczy jak cukier czy siarczan(VI) miedzi(II). Z moich doświadczeń wynika, że w temperaturze 100°C sól kamienna rozpuszcza się w ilości około 357 g/l, co jest znacznie mniej niż cukier, który może rozpuścić się do 2000 g/l. Sól kamienna ma wiele zastosowań, od kuchni po przemysł chemiczny. Ważne jest, żeby wiedzieć, że jej słaba rozpuszczalność jest istotna dla procesów, gdzie muszę mieć kontrolę nad stężeniem, na przykład przy tworzeniu roztworów do analiz chemicznych. Dodatkowo, w kontekście ochrony środowiska, warto pamiętać, że za dużo NaCl w wodach gruntowych może zasalać ekosystemy, co nie jest dobre. W sumie, zrozumienie tych właściwości jest kluczowe dla inżynierów chemicznych i technologów, którzy muszą projektować procesy i oceniać ich wpływ na środowisko.

Pytanie 22

Sączków o najmniejszych średnicach, nazywanych "twardymi" i oznaczonych kolorem niebieskim, używa się do filtracji osadów?

A. grubokrystalicznych
B. serowatych
C. galaretowatych
D. drobnokrystalicznych
Sączki o najmniejszych porach, oznaczane kolorem niebieskim, są przeznaczone do sączenia osadów drobnokrystalicznych. Te sączki charakteryzują się wysoką zdolnością do zatrzymywania cząstek stałych o niewielkich rozmiarach, co czyni je idealnym narzędziem w procesach laboratoryjnych i przemysłowych, gdzie wymagana jest wysoka jakość filtracji. Przykładem zastosowania takich sączków może być oczyszczanie roztworów chemicznych w laboratoriach analitycznych, gdzie istotne jest usunięcie wszelkich zanieczyszczeń, które mogą wpłynąć na wyniki pomiarów. Ponadto, w branży farmaceutycznej, sączki te są wykorzystywane do filtracji substancji aktywnych, co zapewnia ich czystość i skuteczność. Stosowanie sączków z odpowiednią porowatością zgodnie z wymaganiami procesu filtracji jest zgodne z normami ISO i innymi standardami branżowymi, co podkreśla znaczenie ich właściwego doboru.

Pytanie 23

Temperatura wrzenia aniliny przy normalnym ciśnieniu wynosi 457,13 K. W trakcie jej oczyszczania metodą destylacji prostej pod ciśnieniem atmosferycznym należy zebrać frakcję wrzącą w przedziale temperatur

A. 181 °C - 185 °C
B. 185 °C - 190 °C
C. 178 °C - 182 °C
D. 175 °C - 179 °C
Wybór zakresów temperatur innych niż 181 °C - 185 °C wynika z kilku nieporozumień związanych z podstawowymi zasadami destylacji. Często zdarza się, że osoby mające do czynienia z destylacją nie uwzględniają dokładnie wartości wrzenia substancji, co prowadzi do błędnych interpretacji. Na przykład, odpowiedzi sugerujące zakresy 185 °C - 190 °C lub 178 °C - 182 °C bazują na niewłaściwych założeniach dotyczących temperatury wrzenia aniliny. W rzeczywistości, jeżeli temperatura wrzenia wynosi 184 °C, wówczas frakcje przed i po tej wartości będą zawierały znaczny procent zanieczyszczeń, co może prowadzić do obniżenia jakości uzyskiwanego destylatu. Innym typowym błędem myślowym jest zakładanie, że temperatura wrzenia jest jedynym czynnikiem decydującym o zakresie zbierania frakcji podczas destylacji. W praktyce, inne czynniki, takie jak ciśnienie atmosferyczne, mogą wpływać na pomiar temperatur. Właściwe dobieranie zakresów zbierania frakcji jest kluczowe, aby uniknąć strat substancji czynnej i zapewnić ich czystość. Kluczowe jest również zrozumienie, że w przypadku substancji chemicznych, takich jak anilina, istotne jest przestrzeganie standardów laboratoryjnych oraz dobrych praktyk w celu uzyskania optymalnych wyników destylacji.

Pytanie 24

Miesięczne zapotrzebowanie laboratorium analitycznego na 2-propanol wynosi 500 cm3. Na jak długo wystarczy ta substancja?

A. 5 miesięcy
B. 1 miesiąc
C. 3 miesiące
D. 7 miesięcy
Odpowiedzi wskazujące na krótszy czas trwania zaopatrzenia w 2-propanol są wynikiem błędnych obliczeń dotyczących zapotrzebowania na tę substancję. Prawidłowe obliczenie czasu, na który wystarczy zapas, wymaga znajomości obu wartości: całkowitej ilości substancji chemicznej oraz miesięcznego zapotrzebowania. Użytkownicy, którzy wskazali okresy takie jak 3, 1 czy 7 miesięcy, nieprawidłowo oszacowali stosunek tych dwóch wartości. Na przykład, założenie, że 2500 cm3 wystarczy na 3 miesiące, sugeruje, że miesięczne zapotrzebowanie wynosiłoby 833,33 cm3, co nie jest zgodne z założonymi wartościami. Innym typowym błędem jest zakładanie, że zapas może trwać dłużej, niż wynika to z rzeczywistego zapotrzebowania, co prowadzi do nieefektywnego zarządzania stanami magazynowymi. W praktyce laboratoryjnej, wiedza o czasie wyczerpania się substancji chemicznej jest kluczowa dla planowania zakupów, aby uniknąć przestojów w pracy oraz zapewnić ciągłość procesów. Dlatego ważne jest, aby dokładnie zrozumieć obliczenia związane z zapotrzebowaniem na materiały i odpowiednio planować ich zakupy.

Pytanie 25

Czego się używa w produkcji z porcelany?

A. naczynia wagowe oraz krystalizatory
B. zlewki oraz bagietki
C. szkiełka zegarkowe oraz szalki Petriego
D. moździerze i parowniczki
Moździerze i parowniczki są przykładami przedmiotów laboratoryjnych wykonanych z porcelany, co wynika z ich właściwości chemicznych oraz strukturalnych. Porcelana jest materiałem odpornym na wysokie temperatury i agresywne chemikalia, co czyni ją idealnym materiałem do produkcji sprzętu laboratoryjnego, który ma kontakt z substancjami chemicznymi. Moździerze służą do rozdrabniania substancji stałych oraz do ich mieszania, a ich gładka powierzchnia pozwala na efektywne przeprowadzanie reakcji chemicznych. Parowniczki, z kolei, są wykorzystywane do odparowywania cieczy, co również wymaga materiału odpornego na działanie wysokiej temperatury oraz na chemikalia. Używanie porcelanowych naczyń w laboratoriach jest zgodne z najlepszymi praktykami, ponieważ minimalizuje ryzyko zanieczyszczenia prób i zapewnia ich wysoką jakość. Dodatkowo, porcelana ma estetyczny wygląd, co może być istotne w laboratoriach, gdzie organizowane są prezentacje lub spotkania naukowe.

Pytanie 26

Jakiego koloru nabierze lakmus w roztworze NaOH?

A. niebieski
B. fioletowy
C. czerwony
D. malinowy
Lakmus jest wskaźnikiem pH, który zmienia kolor w zależności od kwasowości lub zasadowości roztworu. W roztworze sodu wodorotlenku (NaOH), który jest silną zasadą, lakmus zabarwia się na kolor niebieski. To zjawisko jest wynikiem reakcji chemicznych zachodzących w obecności zasad, które zmieniają konfigurację cząsteczek lakmusu. NaOH, jako substancja alkaliczna, podnosi pH roztworu powyżej 7, co skutkuje zmianą koloru wskaźników pH z czerwonego (typowego dla kwasów) na niebieski. W praktyce, lakmus jest często stosowany w laboratoriach i edukacji, aby szybko ocenić pH różnych substancji, co jest niezwykle istotne w chemii analitycznej oraz w przemyśle chemicznym. Zrozumienie reakcji lakmusu z różnymi substancjami jest kluczowe dla wielu procesów, takich jak kontrola jakości wody czy reakcje chemiczne w przemyśle farmaceutycznym.

Pytanie 27

Z podanych w tabeli danych wybierz sprzęt potrzebny do zmontowania zestawu do destylacji z parą wodną.

12345
manometrkociołek miedzianychłodnica powietrznakolba destylacyjnaodbieralnik

A. 1,3,4
B. 2,3,5
C. 2,4,5
D. 1,2,3
Wybierając odpowiedzi inne niż 2,4,5, można natknąć się na szereg koncepcji, które nie są zgodne z podstawowymi zasadami destylacji. Manometr (1) jest instrumentem służącym do pomiaru ciśnienia, co nie jest kluczowe w procesie destylacji z parą wodną, gdyż proces ten odbywa się w warunkach atmosferycznych, a nie pod ciśnieniem. Włączenie manometru do zestawu destylacyjnego może prowadzić do błędnych interpretacji funkcji sprzętu i ich zastosowania. Chłodnica powietrzna (3), choć użyteczna w niektórych procesach, nie jest niezbędna w klasycznej destylacji z parą wodną; wiele procesów wykorzystuje inne typy chłodnic, które są bardziej efektywne w tym kontekście. Wybierając niepoprawne kombinacje elementów, można wprowadzać w błąd co do ich funkcji oraz zastosowania. To podejście wskazuje na typowy błąd myślowy polegający na nadmiernym poleganiu na instrumentach, które nie są kluczowe dla procesu lub na brak zrozumienia podstaw działania destylacji. Kluczowe jest, aby każdy element w zestawie był zrozumiany w kontekście jego funkcji i roli w całym procesie, co jest fundamentalne dla efektywności i bezpieczeństwa operacji chemicznych.

Pytanie 28

Zbiór próbek pierwotnych tworzy próbkę

A. analityczną
B. laboratoryjną
C. jednostkową
D. ogólną
Wybór odpowiedzi analitycznej, laboratoryjnej lub jednostkowej wynika z niepełnego zrozumienia podstawowego pojęcia próbki ogólnej. Próbka analityczna odnosi się do próbki, która jest poddawana szczegółowej analizie w laboratorium, jednak nie jest to tożsame z próbą ogólną, jako że próbka analityczna może być wybrana w sposób subiektywny, co potrafi prowadzić do zniekształcenia wyników. Z kolei próbka laboratoryjna odnosi się do dowolnego materiału, który jest badany w laboratorium; może ona być fragmentem próbki ogólnej, ale nie definiuje całości. Typowe błędne podejście to założenie, że próbka jednostkowa, pobierana z pojedynczego źródła, wystarczająco reprezentuje całość populacji; jednak jest to mylące, gdyż próbka jednostkowa może nie oddać zmienności w szerszym kontekście. Niezrozumienie roli próbek ogólnych w badaniach statystycznych i jakościowych prowadzi do nieefektywnych praktyk. Aby skutecznie ocenić jakość, należy stosować procedury zgodne z wytycznymi branżowymi, które podkreślają znaczenie reprezentatywności próbek. Kluczowym błędem jest także ignorowanie zasady losowości w pobieraniu próbek, co może istotnie wpłynąć na wyniki badań i ich interpretację.

Pytanie 29

Przy przygotowywaniu 100 cm3 roztworu o określonym stężeniu procentowym (m/V) konieczne jest odważenie wyliczonej ilości substancji, a następnie przeniesienie jej do

A. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, przenieść do kolby miarowej, opisać
B. kolby miarowej, dodać 100 cm3 rozpuszczalnika, wymieszać, opisać
C. kolby miarowej, rozpuścić, uzupełnić kolbę rozpuszczalnikiem do kreski, wymieszać, opisać
D. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, opisać, wymieszać bagietką
W procesie przygotowywania roztworów o określonym stężeniu procentowym (m/V) kluczowe jest zastosowanie kolby miarowej. Korzystanie z kolby miarowej pozwala na precyzyjne odmierzenie objętości roztworu. Po odważeniu odpowiedniej ilości substancji, przenosimy ją do kolby miarowej, a następnie dodajemy rozpuszczalnik do kreski. To zapewnia, że całkowita objętość roztworu będzie dokładnie wynosić 100 cm³, co jest niezbędne do osiągnięcia żądanej koncentracji. Po dopełnieniu kolby rozpuszczalnikiem, ważne jest, aby dokładnie wymieszać roztwór, aby zapewnić jednorodność. Opisanie roztworu, tj. podanie jego stężenia, daty oraz innych istotnych informacji, jest częścią dobrej praktyki laboratoryjnej, co ułatwia późniejsze identyfikowanie roztworu oraz zapewnia bezpieczeństwo pracy. Tego typu procedury są zgodne z wytycznymi dotyczącymi bezpieczeństwa chemicznego oraz standardami jakości w laboratoriach badawczych i przemysłowych.

Pytanie 30

Naczynia miarowe, skalibrowane "na wlew" (IN) to:

A. kolby destylacyjne
B. kolby miarowe
C. biurety
D. pipety jednomiarowe o obj. 25 cm3
Kolby miarowe to naczynia kalibrowane na wlew, co oznacza, że ich pojemność jest określona na poziomie, gdy ciecz wlewana jest do oznaczenia na szyjce naczynia. Dzięki temu kolby miarowe zapewniają wysoką dokładność pomiarów objętości. Stosowane są one w chemii analitycznej oraz w laboratoriach do przygotowywania roztworów o dokładnie określonych stężeniach. Przykładem zastosowania kolb miarowych może być przygotowanie roztworu buforowego, gdzie precyzyjne wymieszanie składników jest kluczowe dla uzyskania stabilnych warunków reakcji. Dobrą praktyką jest używanie kolb o różnych pojemnościach, co pozwala na elastyczne dostosowanie objętości do potrzeb konkretnego doświadczenia. Kolby miarowe powinny być używane zgodnie z odpowiednimi standardami, takimi jak ISO 4788, które definiują wymagania dotyczące dokładności i precyzji pomiarów w laboratoriach.

Pytanie 31

W celu uzyskania 500 g mieszaniny oziębiającej o temperaturze -18oC należy zmieszać

Tabela. Mieszaniny oziębiające
Temperatura
mieszaniny [°C]
Skład mieszaninyStosunek
masowy
-2Woda + chlorek amonu10 : 3
-15Woda + rodanek amonu10 : 13
-18Lód + chlorek amonu10 : 3
-21Lód + chlorek sodu3 : 1
-22Lód + chlorek amonu + azotan(V) amonu25 : 5 : 11
-25Lód + azotan(V) amonu1 : 1

A. 384,6 g wody i 115,4 g chlorku amonu.
B. 384,6 g lodu i 115,4 g chlorku amonu.
C. 250,0 g wody i 250,0 g rodanku amonu.
D. 375,0 g lodu i 125,0 g chlorku sodu.
Aby uzyskać mieszaninę oziębiającą o temperaturze -18°C, kluczowe jest zrozumienie zasad termodynamiki i reakcji chemicznych zachodzących podczas mieszania substancji. W przypadku lodu i chlorku amonu, lód służy jako substancja o niskiej temperaturze, a chlorek amonu działa jako solwat, który wpływa na obniżenie temperatury roztworu. Stosunek masowy 10:3, w którym należy zmieszać te dwie substancje, zapewnia optymalne warunki do osiągnięcia pożądanej temperatury. Z przeprowadzonych obliczeń wynika, że mieszanka 384,6 g lodu i 115,4 g chlorku amonu pozwala uzyskać 500 g mieszaniny o odpowiedniej temperaturze. Praktyczne zastosowanie tej wiedzy można znaleźć w wielu dziedzinach, takich jak chłodnictwo i przemysł spożywczy, gdzie kontrola temperatury jest kluczowa. Stosowanie odpowiednich proporcji substancji chemicznych jest zgodne z najlepszymi praktykami w laboratoriach chemicznych oraz przemyśle, co pozwala na skuteczne i bezpieczne uzyskiwanie pożądanych efektów.

Pytanie 32

W trakcie określania miana roztworu NaOH, do zmiareczkowania 25,0 cm3 tego roztworu, użyto 30,0 cm3 roztworu HCl o stężeniu 0,1000 mol/dm3. Jakie miało miano zasady?

A. 0,1000 mol/dm3
B. 0,2000 mol/dm3
C. 0,1200 mol/dm3
D. 0,1500 mol/dm3
Miano zasady NaOH oblicza się na podstawie reakcji zobojętnienia z kwasem HCl, w której stosunek molowy NaOH do HCl wynosi 1:1. Ustalając miano roztworu NaOH, wykorzystujemy wzór na miano: c(NaOH) = (c(HCl) * V(HCl)) / V(NaOH), gdzie c oznacza stężenie, a V objętość. W naszym przypadku mamy c(HCl) = 0,1000 mol/dm³ oraz V(HCl) = 30,0 cm³ (0,030 dm³) i V(NaOH) = 25,0 cm³ (0,025 dm³). Podstawiając wartości do wzoru, uzyskujemy: c(NaOH) = (0,1000 mol/dm³ * 0,030 dm³) / 0,025 dm³ = 0,1200 mol/dm³. Przykład ten ilustruje, jak ważne jest odpowiednie wyważenie ilości reagentów w reakcjach chemicznych, co jest kluczowe w laboratoriach chemicznych i przemyśle, gdzie precyzyjne stężenia roztworów mają istotne znaczenie dla efektywności procesów chemicznych oraz jakości końcowego produktu. Standardy analityczne podkreślają konieczność dokładności w pomiarach, co ma wpływ na wiarygodność uzyskanych wyników.

Pytanie 33

Wskaż metodę rozdzielenia układu, w którym fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz.

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały

A. Sedymentacja.
B. Filtracja.
C. Dekantacja.
D. Destylacja.
Sedymentacja, destylacja i dekantacja to techniki rozdzielania, które nie są odpowiednie dla układów, w których fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz. Sedymentacja polega na opadaniu cząstek stałych na dno cieczy pod wpływem siły grawitacji, co sprawia, że jest efektywna w przypadku układów stały-ciecz, ale nie sprawdza się w sytuacjach, gdy jedna z faz jest gazem. Destylacja, z kolei, jest procesem polegającym na odparowaniu cieczy i jej skropleniu, co jest efektywną metodą rozdzielania cieczy na podstawie różnicy temperatur wrzenia, jednak nie ma zastosowania w układach stały-gaz. Dekantacja to technika, która polega na oddzielaniu cieczy od osadu, ale również odnosi się głównie do układów ciecz-ciecz lub ciecz-stała. Przy wyborze metody rozdzielania, ważne jest zrozumienie, że każda technika ma swoje specyficzne zastosowania i ograniczenia. Typowe błędy myślowe mogą prowadzić do nieprawidłowych wniosków, takie jak błędne założenie, że każda technika rozdzielania jest uniwersalna i stosowana w każdej sytuacji. Kluczowe jest, aby dostosować metodę do charakterystyki faz, które są rozdzielane, co ma istotne znaczenie w praktykach laboratoryjnych i przemysłowych.

Pytanie 34

Aby otrzymać 200 g roztworu siarczanu(VI) sodu o stężeniu 12%, należy wykorzystać

(Na – 23 g/mol; S – 32 g/mol; H – 1 g/mol; O – 16 g/mol)

A. 56,6 g Na2SO4·10H2O i 143,4 g H2O
B. 22,4 g Na2SO4·10H2O i 177,6 g H2O
C. 68,5 g Na2SO4·10H2O i 131,5 g H2O
D. 54,4 g Na2SO4·10H2O i 145,6 g H2O
Wiele osób ma problem z takimi obliczeniami, co może prowadzić do błędnych odpowiedzi. Często zdarza się, że mylą się w rozumieniu, że 12% to nie masa siarczanu(VI) sodu, tylko masa całego roztworu. Niektóre odpowiedzi, które podają inne masy Na2SO4·10H2O, mogą wynikać z nieprawidłowych wyliczeń lub błędnych założeń co do stężeń. Ważne, żeby pamiętać, że masa molowa Na2SO4·10H2O jest 322 g/mol – to bardzo ważne w tych kalkulacjach. Wiesz, czasem mały błąd przy liczeniu może zrujnować wyniki, więc warto być uważnym i nie spieszyć się. Z mojego doświadczenia, to proste rzeczy, a jednak łatwo je przeoczyć. Dlatego zrozumienie jak przygotować roztwór i umiejętność przeliczania mas molowych to klucz do sukcesu w naszej pracy laboratoryjnej.

Pytanie 35

Destylacja to metoda

A. zmiany ze stanu stałego w stan gazowy, omijając stan ciekły
B. oddzielania płynnej mieszanki poprzez odparowanie i kondensację jej składników
C. transformacji ciała z formy ciekłej w stałą
D. syntezy substancji zachodząca w obecności katalizatora
Destylacja jest procesem, który często bywa mylony z innymi rodzajami przekształceń materii, co prowadzi do nieporozumień w zakresie jej definicji i zastosowania. Na przykład, synteza substancji pod wpływem katalizatora to zupełnie inny proces chemiczny, ukierunkowany na tworzenie nowych związków chemicznych, a nie na ich separację. W przeciwieństwie do destylacji, która polega na rozdzielaniu składników mieszaniny na podstawie różnic w temperaturach wrzenia, synteza nie wymaga odparowania i skraplania. Kolejnym błędnym podejściem jest utożsamianie destylacji z przejściem ze stanu stałego w stan gazowy, co dotyczy sublimacji, a nie destylacji. Procesy te różnią się fundamentalnie; sublimacja pomija stan ciekły, co nie jest charakterystyczne dla destylacji. Również przechodzenie ciała ze stanu ciekłego w stan stały, czyli krystalizacja, nie ma związku z destylacją, której celem jest selektywne odseparowanie składników na podstawie ich właściwości fizycznych. Powszechny błąd myślowy polega na myleniu tych procesów z uwagi na ich podobieństwa w kontekście zmian fazowych. W przemyśle i laboratoriach ważne jest, aby zrozumieć te różnice, ponieważ niewłaściwe zrozumienie procesu może prowadzić do nieefektywnych metod separacji, a tym samym do obniżenia jakości uzyskanych produktów lub wydajności procesów technologicznych.

Pytanie 36

Podstawowa substancja w analizie miareczkowej charakteryzuje się następującymi właściwościami:

A. czysta, niehigroskopijna, ściśle odpowiadająca swojemu wzorowi
B. stała, czysta, której przebieg reakcji niekoniecznie musi być ściśle stechiometryczny
C. ciekła, czysta, niehigroskopijna
D. czysta, higroskopijna, przebieg reakcji ściśle zgodny ze stechiometrią
Wiele z niepoprawnych odpowiedzi bazuje na niepełnym zrozumieniu istoty substancji podstawowych w analizie miareczkowej. Odpowiedzi wskazujące na substancje higroskopijne wskazują na fundamentalny błąd w rozumieniu, ponieważ substancje te mogą absorbować wilgoć z otoczenia, co prowadzi do zmiany ich masy oraz stężenia. Taka zmiana wpływa na rezultaty miareczkowania, wprowadzając niepewność i potencjalne błędy pomiarowe. Dlatego w praktyce laboratoryjnej stosuje się substancje, które są niehigroskopijne, aby uniknąć tych problemów. Dodatkowo, stwierdzenie, że przebieg reakcji nie musi być ściśle stechiometryczny, jest mylące i niepoprawne. Dokładna znajomość stechiometrii reakcji chemicznych jest kluczowa dla uzyskania rzetelnych wyników. W miareczkowaniu każdy mol reagentu reaguje ze ściśle określoną ilością drugiego reagenta, co jest podstawą obliczeń miareczkowych. Stąd, stwierdzenie, że reakcje mogą nie przebiegać w sposób stechiometryczny, jest fałszywe i może prowadzić do nieprawidłowych wniosków. W każdej analizie chemicznej kluczowe znaczenie ma zapewnienie precyzyjności i powtarzalności, co wyklucza użycie substancji, które nie spełniają rygorystycznych norm czystości oraz stabilności.

Pytanie 37

Aby uzyskać roztwór CuSO4 o stężeniu 15%, w jakim stosunku należy połączyć roztwory 10% oraz 20%?

A. 3:2
B. 2:1
C. 1:1
D. 2:3
Stosowanie niepoprawnych odpowiedzi na pytanie o mieszanie roztworów stężonych prowadzi do błędnych wniosków dotyczących proporcji, które są niezbędne do uzyskania określonego stężenia. Na przykład, odpowiedź 2:3 sugeruje, że w bardziej stężonym roztworze (20%) powinno być więcej, co jednak nie jest zgodne z zasadą mieszania stężeń. Przy tej proporcji stężenie końcowe przekroczyłoby 15%, co jest niepożądane. Podobnie, odpowiedzi 3:2 i 1:1 sugerują niewłaściwe rozkłady, które również prowadzą do niemożności osiągnięcia zamierzonego stężenia. W przypadku roztworów o różnych stężeniach kluczowe jest zrozumienie, że roztwór o niższym stężeniu (10%) musi być obecny w większej ilości w celu zredukowania średniego stężenia. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych wniosków, to ignorowanie zasady zachowania masy oraz niewłaściwe stosowanie matematyki do obliczeń stężenia. W praktyce chemicznej istotne jest przestrzeganie reguły, że dla uzyskania roztworu o pożądanym stężeniu należy stosować równania do obliczeń, co jest zgodne z dobrymi praktykami w laboratoriach chemicznych.

Pytanie 38

Na podstawie zamieszczonych w tabeli opisów metod rozdzielania mieszanin, dobierz odpowiadające im nazwy.

Tabela. Metody rozdzielania mieszanin
Lp.Opis metody
I.Zlewanie cieczy znad osadu.
II.Przeprowadzenie ciekłego rozpuszczalnika w stan pary.
III.Wyodrębnianie z mieszaniny ciał stałych lub cieczy składnika przy pomocy rozpuszczalnika tak dobranego, aby rozpuszczał żądany związek chemiczny.
IV.Powolne opadanie cząstek substancji stałej w cieczy pod wpływem własnego ciężaru.

A. I – dekantacja, II – sublimacja, III – filtracja, IV – sedymentacja.
B. I – sedymentacja II– krystalizacja, III – ekstrakcja, IV – dekantacja.
C. I – sedymentacja, II – sublimacja, III – destylacja, IV – dekantacja.
D. I – dekantacja, II – odparowanie, III – ekstrakcja, IV – sedymentacja.
Wybór niepoprawnej odpowiedzi może wynikać z nieprawidłowego zrozumienia metod separacji mieszanin. Dekantacja to nie tylko proste zlewanie cieczy, lecz także bardziej zaawansowany proces, który wymaga znajomości odpowiednich technik, aby skutecznie oddzielić ciecz od osadu. Z kolei sublimacja, jako proces przejścia substancji z fazy stałej w gazową, ma swoje szczególne zastosowanie, ale nie jest stosowana do oddzielania mieszanych substancji w sposób opisany w pytaniu. Krystalizacja i ekstrakcja to również różne metody separacji, które mają swoje unikalne zastosowania, jednak ich definicje zostały pomieszane. Odparowanie jest procesem, który dokonuje się przez podgrzanie cieczy, a nie poprzez prostą separację. Dodatkowo, sedymentacja jako proces opadania cząstek ciał stałych pod wpływem grawitacji, nie może być mylona z innymi metodami. Kluczowe jest, aby nie mylić terminologii oraz zasad działania tych metod, gdyż każda z nich ma swoje specyficzne zastosowanie w różnych dziedzinach nauki i przemysłu. Zrozumienie różnic między tymi procesami jest niezbędne do ich prawidłowego stosowania i efektywnej pracy w laboratoriach czy zakładach przemysłowych.

Pytanie 39

Substancje pomocnicze wykorzystywane do realizacji podstawowych analiz jakościowych i ilościowych, które nie wymagają wysokiej czystości, są oznaczane na opakowaniach symbolem

A. cz.ch.
B. cz.d.a.
C. cz.
D. techn.
Odpowiedzi "cz.ch.", "techn." oraz "cz.d.a." są błędne w kontekście pytania, ponieważ każda z tych terminologii odnosi się do innych klas substancji. Termin "cz.ch." odnosi się do substancji czystych chemicznie, które muszą spełniać wysokie standardy czystości i są używane w bardziej wymagających analizach, gdzie nawet najmniejsze zanieczyszczenia mogą wpływać na wyniki. W kontekście analiz jakościowych i ilościowych, wybór substancji czystych chemicznie w sytuacjach, gdy nie jest to wymagane, nie tylko zwiększa koszty, ale również komplikuje procedury laboratoryjne. Z kolei "techn." odnosi się do substancji technicznych, które mogą być używane w procesach przemysłowych, ale ich standardy czystości również mogą nie być odpowiednie dla analiz laboratoryjnych. Używanie takich substancji w analizach może prowadzić do zafałszowań wyników, co jest absolutnie niedopuszczalne w kontekście rzetelnych badań. Termin "cz.d.a." odnosi się do czystości dla analizy, co również oznacza wyższe wymagania dotyczące czystości, a więc nie pasuje do koncepcji substancji pomocniczych, które nie muszą spełniać tych standardów. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to niepełne zrozumienie różnic w wymaganiach czystości oraz niewłaściwe przypisywanie terminów do kontekstu ich zastosowania w analizach chemicznych.

Pytanie 40

Poniżej jest równanie reakcji prażenia węglanu wapnia. 200 g węglanu wapnia zawierającego 10% zanieczyszczeń poddano prażeniu. Masa otrzymanego tlenku wapnia wyniosła

CaCO3 → CaO + CO2
(MCaCO3 = 100 g/mol, MCaO = 56 g/mol, MCO2 = 44 g/mol)

A. 100,8 g
B. 28,0 g
C. 31,1 g
D. 112,0 g
Odpowiedzi 112,0 g, 31,1 g oraz 28,0 g opierają się na nieprawidłowym rozumieniu zachodzących procesów chemicznych oraz błędnych obliczeniach. W przypadku pierwszej z tych odpowiedzi, mogąca wynikać z pominięcia etapu obliczania masy czystego węglanu wapnia, prowadzi do zawyżonego wyniku. Użytkownicy często zapominają, że zanieczyszczenia wpływają na efektywną ilość materiału reagującego, co jest kluczowe w obliczeniach związanych z reakcjami chemicznymi. Z kolei odpowiedź 31,1 g i 28,0 g mogą wynikać z błędnego stosunku mas molowych lub niewłaściwego zrozumienia reakcji chemicznej. Użytkownicy mogą mylnie zakładać, że masa otrzymanego tlenku wapnia powinna być znacznie mniejsza, co może wynikać z braku zrozumienia, że w procesie prażenia, mimo wydzielania dwutlenku węgla, masa pozostałego tlenku wapnia jest wciąż znaczna. W praktyce, poprawne podejście do rozwiązywania takich problemów wymaga ścisłego stosowania zasad chemii, uwzględniając zarówno masy molowe, jak i wpływ zanieczyszczeń w materiałach. Dlatego też przy pracy z reakcjami chemicznymi ważne jest, aby zawsze brać pod uwagę zarówno masę początkową, jak i czystość reagentów, co jest standardem w laboratoriach chemicznych.