Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 8 kwietnia 2025 16:19
  • Data zakończenia: 8 kwietnia 2025 16:35

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Po zakończeniu wymiany zaworów dolotowych w silniku należy

A. zweryfikować twardość sprężyn zaworowych
B. sprawdzić szczelność zaworów
C. frezować gniazda zaworowe
D. usunąć zabezpieczenie trzonka zaworu
Sprawdzanie szczelności zaworów jest kluczowym krokiem po wymianie zaworów dolotowych silnika. Zawory są odpowiedzialne za regulację przepływu mieszanki paliwowo-powietrznej do cylindrów oraz za wydobywanie spalin. Nieszczelność zaworów może prowadzić do znacznych strat mocy silnika, zwiększonego zużycia paliwa oraz nieprawidłowego działania jednostki napędowej. W praktyce, podczas sprawdzania szczelności zaworów, można wykorzystać metody takie jak próba ciśnieniowa, która polega na wprowadzeniu powietrza do cylindra i obserwacji, czy ciśnienie utrzymuje się na odpowiednim poziomie. Dobrą praktyką jest również użycie specjalistycznych narzędzi, takich jak zestawy do testowania szczelności, które umożliwiają dokładne określenie ewentualnych wycieków. Należy pamiętać, że zgodnie z normami branżowymi, regularne sprawdzanie szczelności zaworów powinno być częścią rutynowej konserwacji silnika, co pozwala na utrzymanie jego optymalnej wydajności oraz przedłużenie żywotności komponentów.

Pytanie 2

Reperacja tarcz hamulcowych w sytuacji, gdy nie są nadmiernie zdeformowane oraz mają właściwą grubość, polega na ich

A. galwanizacji
B. przetoczeniu
C. metalizacji
D. napawaniu
Przetoczenie tarcz hamulcowych to naprawdę ważna sprawa, bo dzięki temu można przywrócić im pierwotną funkcjonalność. Oczywiście, musi być tak, że tarcze nie są mocno zużyte ani zdeformowane. Cały ten proces polega na tym, że mechanicznie usuwamy warstwę materiału z powierzchni tarczy. Dzięki temu pozbywamy się wszelkich nierówności i mamy gładką powierzchnię, która dobrze współpracuje z klockami hamulcowymi. W praktyce, przetoczenie robi się na specjalnych obrabiarkach numerycznych, co gwarantuje, że wszystko jest dokładnie zrobione. Jak tarcze są dobrze przetoczone, to mogą działać dłużej, co jest korzystne nie tylko dla portfela, ale też dla bezpieczeństwa na drodze. Warto pamiętać, że są normy, które mówią, jaką minimalną grubość muszą mieć tarcze po przetoczeniu, żeby nadal dobrze hamowały i były trwałe. Jak są poniżej tych wartości, to może być niebezpiecznie, bo układ hamulcowy może nie działać jak trzeba.

Pytanie 3

Funkcjonowanie hydraulicznego podnośnika pojazdów opiera się na zasadzie

A. Pascala
B. Archimedesa
C. Jonie'a-Lenza
D. Coulomba
Zrozumienie działania hydraulicznych podnośników samochodowych wymaga znajomości różnych praw fizycznych, jednak wybór nieodpowiednich zasad prowadzi do mylnych wniosków. Prawo Archimedesa dotyczy zasadniczo wyporu ciał w cieczy i nie ma zastosowania w kontekście działania hydraulicznych podnośników. W rzeczywistości, nie odnosi się ono do tematu siły i ciśnienia w układzie hydraulicznym. Kolejną nieodpowiednią koncepcją jest prawo Coulomba, które opisuje siły elektrostatyczne pomiędzy naładowanymi ciałami. Oczywiście, nie ma to nic wspólnego z hydrauliką, co może prowadzić do błędnych skojarzeń podczas analizy sił działających w systemie hydraulicznym. Wreszcie, prawo Jonie'a-Lenza, które dotyczy zjawisk związanych z energią elektryczną, również nie ma zastosowania w kontekście działania podnośników hydraulicznych. Te nieprawidłowe odpowiedzi wskazują na typowy błąd w myśleniu, polegający na myleniu różnych dziedzin fizyki i ich zastosowań. W systemach hydraulicznych kluczowe jest zrozumienie, jak ciśnienie działa w zamkniętych układach, a nie w kontekście wyporu czy sił elektrostatycznych, co prowadzi do błędnych wniosków i zrozumienia działania narzędzi i maszyn wykorzystywanych w przemyśle.

Pytanie 4

Podczas wymiany uszkodzonego wałka sprzęgłowego stwierdzono luz osiowy jego łożyska wynoszący 1,175 mm. Podkładka regulacyjna, którą należy dobrać na podstawie danych z tabeli, będzie miała grubość

Luz osiowy łożyska
(mm)
Grubość podkładki regulacyjnej
(mm)
Luz osiowy łożyska
(mm)
Grubość podkładki regulacyjnej
(mm)
0,750 - 0,7740,7251,150 - 1,1741,125
0,775 - 0,7990,7501,175 - 1,1991,150
0,800 - 0,8240,7751,200 - 1,2241,175
0,825 - 0,8490,8001,225 - 1,2491,200
0,850 - 0,8740,8251,250 - 1,2741,225
0,875 - 0,8990,8501,275 - 1,2991,250
0,900 - 0,9240,8751,300 - 1,3241,275
0,925 - 0,9490,9001,325 - 1,3491,300
0,950 - 0,9740,9251,350 - 1,3741,325
0,975 - 0,9990,9501,375 - 1,3991,350
1,000 - 1,0240,9751,400 - 1,4241,375
1,025 - 1,0491,0001,425 - 1,4491,400
1,050 - 1,0741,0251,450 - 1,4741,425
1,075 - 1,0991,0501,475 - 1,4991,450
1,100 - 1,1241,0751,500 - 1,5241,475
1,125 - 1,1491,1001,525 - 1,5491,500

A. 1,175 mm
B. 1,775-1,799 mm
C. 1,200-1,224 mm
D. 1,150 mm
Odpowiedź 1,150 mm jest prawidłowa, ponieważ zgodnie z danymi z tabeli, luz osiowy łożyska wynoszący 1,175 mm wskazuje na potrzebę użycia podkładki regulacyjnej o grubości 1,150 mm. W praktyce, dobór odpowiedniej grubości podkładki jest kluczowy dla zapewnienia właściwego działania mechanizmu. Niewłaściwie dobrana podkładka może prowadzić do nadmiernych luzów lub wręcz zablokowania ruchu, co może powodować uszkodzenie wałka lub łożyska. W przemyśle stosuje się różne standardy, aby określić odpowiednie grubości podkładek w zależności od wymagań konstrukcyjnych. Użycie podkładki o grubości 1,150 mm w tym przypadku jest zgodne z najlepszymi praktykami, które sugerują, aby zawsze dobierać elementy zgodnie z rzeczywistymi wartościami luzów, aby zapewnić długotrwałą i efektywną pracę maszyn.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Energia mechaniczna w silnikach cieplnych funkcjonujących prawidłowo nie powstaje w wyniku procesu spalania

A. oleju silnikowego
B. benzyny
C. oleju napędowego
D. gazu ziemnego
Olej silnikowy jest substancją, która nie jest bezpośrednio używana do wytwarzania energii mechanicznej w silnikach cieplnych. Jego podstawowym zadaniem jest smarowanie ruchomych części silnika, co zapobiega ich zużyciu oraz przegrzewaniu. W silnikach cieplnych, takich jak silniki spalinowe, energia mechaniczna jest uzyskiwana zazwyczaj w wyniku spalania paliw, takich jak benzyna, olej napędowy czy gaz ziemny. Proces ten polega na przekształceniu energii chemicznej zawartej w paliwie na energię cieplną, która następnie wywołuje ruch tłoków. Olej silnikowy, choć niezwykle ważny dla prawidłowego funkcjonowania silnika, nie ma roli w tym procesie konwersji energii. Zrozumienie roli oleju silnikowego w systemie smarowania podkreśla znaczenie jego regularnej wymiany oraz stosowania olejów o odpowiednich parametrach, co jest zgodne z zaleceniami producentów pojazdów. Dbałość o układ smarowania przyczynia się do wydłużenia trwałości silnika oraz optymalizacji jego pracy.

Pytanie 7

Łączny koszt naprawy (koszt wymienianego elementu i koszt wymiany) elementu, zgodnie ze specyfikacją zamieszczoną w tabeli, przy cenie 1 rbg. 50 zł i 10% rabacie na wykonanie naprawy, wynosi

Opis czynnościMiejsceRodzajRbgCena
Reflektor kpl.LWY1300

A. 315 zł
B. 250 zł
C. 350 zł
D. 330 zł
Obliczenie łącznego kosztu naprawy jest kluczowym aspektem zarządzania kosztami w każdej branży, w której prowadzone są naprawy. W tym przypadku, aby uzyskać poprawny wynik, musimy dodać koszt wymienianego elementu do kosztu wymiany, pamiętając o uwzględnieniu rabatu. Koszt wymienianego elementu wynosi 300 zł, co jest wartością standardową w branży. Koszt wymiany wynosi 50 zł, lecz po zastosowaniu 10% rabatu (5 zł), uzyskujemy finalny koszt wymiany równy 45 zł. Zsumowanie tych wartości daje nam 345 zł, co jest poprawnym wynikiem. Niemniej jednak, jeśli chodzi o przedstawione w pytaniu wartości, żadna odpowiedź nie zgadza się z obliczeniami. W praktyce, przy takich obliczeniach warto zwrócić uwagę na dokładność danych źródłowych oraz proces weryfikacji kosztów, co jest zgodne z najlepszymi praktykami zarządzania kosztami w projektach. Uważne podejście pozwala na lepsze planowanie finansowe oraz unikanie nieprawidłowości w prognozowaniu wydatków.

Pytanie 8

Typ NTC czujnika termistorowego

A. utrzymuje stałą rezystancję w temperaturach od 20°C do 150°C
B. zmniejsza swoją rezystancję wraz ze wzrostem temperatury
C. nie reaguje na zmiany temperatury
D. zwiększa swoją rezystancję wraz ze wzrostem temperatury
Czujnik termistorowy typu NTC (Negative Temperature Coefficient) charakteryzuje się tym, że jego rezystancja maleje wraz ze wzrostem temperatury. To zjawisko jest podstawą działania tych czujników i sprawia, że są one niezwykle użyteczne w różnych aplikacjach, takich jak pomiary temperatury w systemach HVAC, urządzeniach medycznych, a także w elektronice konsumenckiej. Dzięki swojej dużej czułości w niskich temperaturach, termistory NTC są często wykorzystywane do monitorowania i regulacji temperatury w piecach, chłodniach i klimatyzatorach. Przykładem zastosowania jest system automatycznego sterowania temperaturą, gdzie termistor NTC zapewnia informacje do kontrolera, umożliwiając precyzyjne dostosowanie pracy urządzeń grzewczych lub chłodzących. W standardach przemysłowych, takich jak IEC 60751, opisane są wymagania dotyczące charakterystyki termistorów, co pozwala na ich optymalne zastosowanie w różnych dziedzinach. Zrozumienie zasad działania termistorów typu NTC jest kluczowe dla inżynierów zajmujących się elektroniką i automatyką, aby mogli właściwie dobierać te komponenty do specyficznych aplikacji.

Pytanie 9

W oznaczeniu opony 205/55 R15 82 T symbol T wskazuje na

A. wysokość bieżnika
B. indeks prędkości
C. oponę bezdętkową
D. indeks nośności
Symbol T w oznaczeniu opony 205/55 R15 82 T odnosi się do indeksu prędkości, co oznacza maksymalną prędkość, z jaką dana opona może być użytkowana. W przypadku symbolu T, maksymalna prędkość wynosi 190 km/h. Właściwy dobór indeksu prędkości jest kluczowy dla bezpieczeństwa i wydajności jazdy. Używając opon z odpowiednim indeksem prędkości, zapewniasz sobie stabilność i kontrolę pojazdu, szczególnie w warunkach wysokich prędkości. W praktyce, jeżeli zamierzasz używać pojazdu do jazdy szybko, ważne jest, aby opony miały odpowiedni indeks prędkości, dostosowany do stylu jazdy oraz przepisów ruchu drogowego. Przykładem zastosowania wiedzy o indeksach prędkości może być sytuacja, gdy planujesz dłuższą trasę autostradową; wybór opon z niższym indeksem prędkości może prowadzić do niebezpieczeństwa ich uszkodzenia oraz pogorszenia komfortu jazdy. Zgodnie z normami europejskimi, każdy producent opon jest zobowiązany do oznaczania indeksu prędkości na etykietach, co ułatwia konsumentom podejmowanie świadomych decyzji zakupowych.

Pytanie 10

Czym jest prąd elektryczny?

A. swobodny ruch ładunków ujemnych
B. ukierunkowany przepływ ładunków neutralnych
C. uporządkowany ruch ładunków elektrycznych
D. chaotyczny ruch ładunków elementarnych
Prąd elektryczny to uporządkowany ruch ładunków elektrycznych, co oznacza, że w danym kierunku poruszają się ładunki naładowane elektrycznie, głównie elektrony. W praktyce odnosi się to do przepływu prądu w obwodach elektrycznych, gdzie elektrony poruszają się od ujemnego bieguna źródła zasilania do dodatniego. To uporządkowanie odzwierciedla nie tylko zjawisko fizyczne, ale także zastosowanie w projektowaniu urządzeń elektrycznych, takich jak silniki, generatory czy układy scalone. W przypadku silników elektrycznych, na przykład, uporządkowany ruch elektronów w przewodnikach generuje pole magnetyczne, które działa na elementy wirujące, co prowadzi do wykonywania pracy mechanicznej. Zrozumienie, że prąd elektryczny jest uporządkowanym ruchem, pozwala inżynierom i technikom na projektowanie bardziej efektywnych systemów oraz na przewidywanie zachowania obwodów w różnych warunkach. Wiedza ta jest kluczowa w kontekście standardów branżowych takich jak IEC 60038, które regulują parametry napięcia i prądu w urządzeniach elektrycznych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Kosztorys realizacji usługi serwisowej jest przygotowywany m.in. na podstawie

A. czasochłonności naprawy
B. liczby części wymienionych w ramach usługi
C. wartości rynkowej pojazdu
D. szacunkowego poziomu zużycia pojazdu
Przyjrzyjmy się błędnym podejściom, które mogą prowadzić do niepoprawnych wniosków dotyczących kosztorysowania usług serwisowych. Wartość rynkowa pojazdu, choć istotna w kontekście jego ogólnej wyceny, nie ma bezpośredniego wpływu na kosztorysowanie konkretnej usługi naprawczej. Rynkowa wartość pojazdu nie uwzględnia specyficznych kosztów związanych z usunięciem usterki, które są zróżnicowane w zależności od rodzaju naprawy i stanu technicznego pojazdu. Szacowany stopień zużycia pojazdu również nie jest właściwym wskaźnikiem do określenia kosztów serwisowych, ponieważ zużycie może wpływać na konieczność wymiany części, jednak nie określa czasu potrzebnego na naprawę. Podobnie, ilość części wymienionych w ramach usługi, mimo że jest ważnym czynnikiem przy tworzeniu kosztorysu, sama w sobie nie daje pełnego obrazu całkowitych kosztów serwisowych. W rzeczywistości, kluczowym aspektem jest efektywność naprawy, a to zależy od doświadczenia technika oraz dokładności w szacowaniu czasu, co w praktyce przekłada się na rentowność serwisu. Dlatego również wiele warsztatów korzysta z dedykowanych programów informatycznych, które wspomagają kalkulację kosztów w oparciu o czas naprawy oraz rodzaj wykonanej usługi.

Pytanie 13

Podczas wymiany zużytej tulei cylindrowej w silniku na nową, co jeszcze powinno zostać wymienione?

A. tylko tłok
B. tłok i pierścienie
C. jedynie korbowód
D. tłok wraz z korbowodem
Wymiana tulei cylindrowej silnika wiąże się z koniecznością wymiany tłoka z pierścieniami, ponieważ jest to element, który współpracuje z tuleją i wpływa na szczelność oraz prawidłowe działanie silnika. Tuleja cylindrowa jest odpowiedzialna za prowadzenie tłoka, a jej zużycie może prowadzić do zwiększonego luzu, co z kolei obniża efektywność silnika i może prowadzić do jego uszkodzenia. Wymiana tylko samej tulei, bez wymiany tłoka oraz pierścieni, naraża silnik na ryzyko nieprawidłowego działania. Pierścienie tłokowe z kolei są kluczowe dla utrzymania kompresji w cylindrze oraz uszczelnienia pomiędzy tłokiem a tuleją. W wielu standardach branżowych zaleca się, aby podczas tak poważnej interwencji jak wymiana tulei cylindrowej, zawsze wymieniać powiązane elementy, aby zapewnić długotrwałą i niezawodną pracę silnika. Przykładem może być zasada 'zrób to raz, zrób to dobrze', która podkreśla, że lepiej jest wykonać pełną naprawę, niż później wracać do problemu związanego z niedopasowaniem nowych i starych części.

Pytanie 14

Ciśnienie paliwa w silniku o zapłonie samoczynnym, w którym zastosowano system zasilania Common Rail trzeciej generacji, powinno wynosić w przybliżeniu

A. 1,8 MPa
B. 1800 MPa
C. 18 MPa
D. 180 MPa
Odpowiedzi takie jak 1800 MPa, 1,8 MPa czy 18 MPa wyglądają na nieporozumienie w temacie jednostek i zrozumienia działania układów Common Rail. 1800 MPa to kosmiczna wartość, znacznie przewyższająca to, co układy paliwowe mogą wytrzymać. To mogłoby spowodować poważne awarie. Z kolei 1,8 MPa i 18 MPa to zdecydowanie za niskie wartości, co nie jest zgodne z realiami technologicznymi. W silnikach diesla ciśnienie musi być odpowiednio wysokie, żeby wtrysk był efektywny, bo inaczej paliwo nie zatomizuje się dobrze, co może prowadzić do problemów ze spalaniem i większej emisji spalin. Często błędy w myśleniu biorą się z braku zrozumienia, jak działają układy wtryskowe i dlaczego ciśnienie paliwa jest takie ważne. Ważne, żeby wiedzieć, w jakim zakresie powinno się te ciśnienia utrzymywać, żeby dobrze dbać o pojazdy z silnikami Common Rail.

Pytanie 15

Wałek napędowy oraz koło talerzowe stanowią element mechanizmu w pojeździe

A. przekładni kierowniczej
B. napędu układu rozrządu
C. napędu wycieraczek
D. przekładni głównej
Wałek atakujący i koło talerzowe to naprawdę kluczowe części w przekładni głównej Twojego pojazdu. To one odpowiadają za to, że moc z silnika może dotrzeć do kół, co w efekcie sprawia, że auto w ogóle może jechać. Wałek atakujący, czyli wałek wejściowy, jest bezpośrednio podpięty do silnika i przekazuje tę żądaną energię do całej przekładni. A koło talerzowe w połączeniu z zębatką zmienia kierunek obrotów i przekształca je w ruch, który napędza koła. Fajnie jest zrozumieć, jak te elementy działają, bo to pomoże w diagnostyce i serwisowaniu układów napędowych w pojazdach. Jak coś w tej przekładni nie działa jak trzeba, to mogą być poważne problemy, dlatego warto regularnie kontrolować, a niekiedy wymieniać płyny, żeby wszystko śmigało jak w zegarku, zgodnie z tym, co piszą producenci i branżowe standardy.

Pytanie 16

Pasek rozrządu silnika powinien być wymieniany

A. po zalecanym przebiegu
B. przy wymianie olejowej pompy
C. przed każdym okresem zimowym
D. w trakcie każdego przeglądu serwisowego
Wymiana paska rozrządu silnika jest kluczowym elementem konserwacji pojazdu, a jej przeprowadzenie po wskazanym przebiegu jest zgodne z zaleceniami producentów samochodów oraz standardami branżowymi. Zazwyczaj interwał wymiany paska rozrządu oscyluje w granicach 60 000 do 150 000 kilometrów, w zależności od marki i modelu pojazdu. Niezwykle istotne jest przestrzeganie tych zaleceń, ponieważ zużycie paska prowadzi do ryzyka jego zerwania, co może skutkować poważnymi uszkodzeniami silnika, w tym uszkodzeniem zaworów czy tłoków. W praktyce, podczas wymiany paska, warto również kontrolować stan rolek prowadzących i napinaczy, a także wymieniać płyn chłodniczy, co zapewni prawidłowe funkcjonowanie układu rozrządu na kolejne kilometry. Przykładowo, w samochodach takich jak Volkswagen Golf V, brak wymiany paska w odpowiednim czasie może prowadzić do kosztownych napraw, co pokazuje, jak istotne jest regularne monitorowanie stanu paska w kontekście całej konserwacji pojazdu.

Pytanie 17

Gdzie stosowany jest odśrodkowy regulator prędkości obrotowej?

A. w pompie tłoczkowej o niskim ciśnieniu
B. w paliwowej pompie wysokiego ciśnienia w systemie Common Rail
C. w przeponowej pompie paliwowej silnika z zapłonem iskrowym
D. w rzędowej pompie wtryskowej
Rzędowa pompa wtryskowa jest kluczowym elementem systemu zasilania silników diesla, a zastosowanie odśrodkowego regulatora prędkości obrotowej w tej konstrukcji ma na celu zapewnienie optymalnej wydajności i precyzyjnego dawkowania paliwa. Odśrodkowy regulator działa na zasadzie wykorzystania siły odśrodkowej, co przekłada się na automatyczne dostosowanie dawki paliwa w zależności od prędkości obrotowej silnika. Dzięki temu, pompa wtryskowa może dostarczać odpowiednią ilość paliwa w zależności od aktualnych warunków pracy, co wpływa na oszczędność paliwa, redukcję emisji spalin oraz poprawę osiągów silnika. W praktyce, takie rozwiązania są zgodne z najlepszymi praktykami branżowymi, które zalecają zastosowanie regulacji w systemach wtryskowych w celu zwiększenia efektywności energetycznej i zmniejszenia wpływu na środowisko. Przykładem może być nowoczesna technologia Common Rail, w której dokładne dawkowanie paliwa jest kluczowe dla osiągnięcia wysokiej sprawności silnika.

Pytanie 18

Zanim przystąpisz do badania spalin, powinieneś podgrzać silnik, aby temperatura oleju w misie olejowej wyniosła około

A. 90 °C
B. 50 °C
C. 70 °C
D. 30 °C
Odpowiedź 70 °C jest prawidłowa, ponieważ przed przystąpieniem do analizy spalin istotne jest, aby silnik osiągnął optymalną temperaturę roboczą. Osiągnięcie temperatury 70 °C pozwala na pełne rozgrzanie oleju silnikowego, co jest kluczowe dla zapewnienia jego odpowiedniej lepkości oraz właściwego smarowania elementów silnika. W praktyce, silniki spalinowe są zaprojektowane tak, aby pracować najefektywniej w temperaturach zbliżonych do 90 °C, jednak dla testów emisji spalin minimalna temperatura 70 °C jest wystarczająca, aby uzyskać reprezentatywne wyniki. Wiele standardów branżowych, takich jak normy Euro dotyczące emisji spalin, podkreśla, że analiza spalin powinna być przeprowadzana w odpowiednich warunkach temperaturowych, aby uzyskać dokładne i wiarygodne dane. Przykładowo, w przypadku diagnostyki pojazdów, pomiar spalin w niewłaściwej temperaturze może prowadzić do błędnych wniosków dotyczących stanu silnika oraz jego emisji, co może mieć konsekwencje zarówno dla ekologii, jak i dla przepisów prawnych dotyczących ochrony środowiska.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

W samochodzie osobowym, aby zabezpieczyć koło przed samoczynnym odkręceniem, używa się

A. nakrętek samohamownych
B. podkładek płaskich
C. podkładek sprężystych
D. nakrętek z kołnierzem stożkowym
Nakrętki z kołnierzem stożkowym są stosowane w samochodach osobowych do zabezpieczenia kół przed odkręceniem, ponieważ ich konstrukcja zapewnia lepsze połączenie z powierzchnią felgi. Kołnierz stożkowy umożliwia równomierne rozłożenie siły docisku, co skutkuje lepszą stabilnością i zmniejsza ryzyko luzów. Dzięki temu, w przypadku wibracji, które mogą wystąpić podczas jazdy, nakrętki te lepiej trzymają się na miejscu. W praktyce to oznacza, że kierowcy mogą być spokojni o bezpieczeństwo jazdy, gdyż odpowiednio zainstalowane koła nie odkręcą się w trakcie eksploatacji. Stosowanie tego typu nakrętek jest zgodne z zaleceniami producentów pojazdów oraz normami branżowymi, co podkreśla ich znaczenie w zapewnieniu prawidłowego funkcjonowania układu jezdnego. Ważne jest również, aby stosować odpowiedni moment dokręcania, co zapewnia optymalne działanie nakrętek z kołnierzem stożkowym.

Pytanie 21

Urządzenie służące do analizy silnika, przy użyciu metody określania ciśnienia sprężania, funkcjonuje na podstawie zmiany odczytów w zależności od wartości

A. podciśnienia w cylindrze
B. kąta zwarcia styków przerywacza
C. kąta wyprzedzenia zapłonu
D. ciśnienia w cylindrze
Odpowiedź wskazująca na ciśnienie w cylindrze jako kluczowy parametr diagnostyczny jest prawidłowa, ponieważ diagnostyka silnika opiera się na pomiarze ciśnienia sprężania jako jednego z najważniejszych wskaźników stanu silnika. Wartości te pozwalają na ocenę kondycji uszczelnień, pierścieni tłokowych oraz ogólnej sprawności cylindrów. W praktyce, mierniki ciśnienia sprężania są wykorzystywane podczas rutynowych przeglądów i diagnostyki silników spalinowych, co jest zgodne z zaleceniami producentów. Na przykład, jeśli ciśnienie w cylindrze jest niższe niż wartości nominalne, może to sugerować problemy z uszczelnieniami zaworów lub uszkodzeniem pierścieni tłokowych. W standardach branżowych takich jak ISO 9001 oraz w praktykach takie jak analiza trendów ciśnienia sprężania, technicy mogą oceniać nie tylko bieżący stan silnika, ale także przewidywać przyszłe awarie. Właściwe zrozumienie pomiaru ciśnienia sprężania jest istotne dla zachowania efektywności i wydajności silnika, co przekłada się na ekonomię paliwową oraz redukcję emisji spalin.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Zapewnienie różnicowania prędkości obrotowej kół napędowych w trakcie pokonywania zakrętu przez pojazd realizowane jest dzięki

A. przekładni głównej
B. odpowiedniemu kątowi nachylenia sworznia zwrotnicy
C. mechanizmowi różnicowemu
D. odpowiedniemu kątowi nachylenia kół
Mechanizm różnicowy jest kluczowym elementem w układzie napędowym pojazdów, którego główną funkcją jest umożliwienie różnicowania prędkości obrotowej kół napędzanych podczas pokonywania zakrętów. W sytuacji, gdy pojazd skręca, koło znajdujące się po zewnętrznej stronie zakrętu przebywa dłuższą drogę niż koło wewnętrzne, co wymaga od nich różnej prędkości obrotowej. Mechanizm różnicowy rozwiązuje ten problem, pozwalając na swobodny ruch kół w osi poziomej, co zapobiega poślizgom i zapewnia lepszą przyczepność do drogi. W praktyce, zastosowanie mechanizmów różnicowych jest standardem w większości nowoczesnych pojazdów osobowych oraz ciężarowych. Przyczyniają się one nie tylko do poprawy komfortu jazdy, ale również do bezpieczeństwa i efektywności paliwowej. Dodatkowo, mechanizmy różnicowe mogą występować w różnych konfiguracjach, takich jak otwarte, zamknięte czy z ograniczonym poślizgiem, co pozwala na dostosowanie pojazdu do różnych warunków drogowych i stylów jazdy.

Pytanie 24

Pomiar grubości zębów kół zębatych można zrealizować przy użyciu

A. mikrometru
B. suwmiarki modułowej
C. średnicówki czujnikowej
D. głębokościomierza
Pomiar grubości zębów kół zębatych nie powinien być przeprowadzany przy użyciu średnicówki czujnikowej, mikrometru ani głębokościomierza, ponieważ każde z tych narzędzi ma swoje ograniczenia i nie nadaje się do tego zadania. Średnicówka czujnikowa, mimo że jest precyzyjna, została zaprojektowana głównie do pomiarów średnic i nie jest odpowiednia do oceny grubości zębów, gdzie kluczowe są różnice w wysokości i kształcie. Użycie mikrometru, który jest narzędziem do pomiaru małych odległości, również nie jest optymalne, ponieważ konstrukcja kół zębatych często wymaga pomiaru w różnych miejscach, co może być kłopotliwe z użyciem takiej metody. Z kolei głębokościomierz jest narzędziem przeznaczonym do pomiarów głębokości otworów, a nie do pomiarów szerokości lub grubości. Efektem użycia niewłaściwych narzędzi pomiarowych jest ryzyko uzyskania błędnych wyników, co może prowadzić do poważnych problemów w funkcjonowaniu mechanizmów zębatych. Przykładowo, nieprawidłowe pomiary mogą wywołać zjawisko przedwczesnego zużycia się zębów kół, co w rezultacie wpłynie na ich wydajność oraz trwałość. W praktyce, kluczowe jest zastosowanie narzędzi pomiarowych odpowiednich do specyfiki zadania, co podkreśla znaczenie znajomości właściwych metod i narzędzi w inżynierii mechanicznej.

Pytanie 25

W przypadku wykrycia niekontrolowanego podniesienia poziomu oleju w układzie smarowania silnika, możliwe przyczyny to

A. awaria pompy olejowej
B. uszkodzenie uszczelki pod głowicą
C. zużycie czopów wału korbowego
D. zbyt duże zanieczyszczenie filtra oleju
Uszkodzenie uszczelki pod głowicą jest jedną z najczęstszych przyczyn wzrostu poziomu oleju w silniku. Kiedy uszczelka jest uszkodzona, może dojść do przedostawania się płynów chłodniczych do komory spalania lub do układu smarowania. Płyn chłodniczy, który dostaje się do silnika, może powodować zubożenie oleju lub jego nadmiar z powodu zjawiska emulgacji, co prowadzi do wzrostu poziomu oleju. W praktyce, mechanik powinien regularnie sprawdzać uszczelki oraz wykonywać testy ciśnienia, aby wykryć potencjalne nieszczelności. Dobre praktyki w zakresie konserwacji silnika obejmują również korzystanie z oleju i płynów chłodniczych o odpowiednich parametrach, co ma kluczowe znaczenie dla długowieczności silnika. Rekomendowane jest również regularne przeprowadzanie inspekcji wizualnych, które mogą pomóc w wczesnym wykryciu problemów z uszczelką pod głowicą, co może zapobiec poważniejszym uszkodzeniom silnika.

Pytanie 26

Jakie paliwo charakteryzuje się najniższą emisją gazów cieplarnianych?

A. Propan-butan
B. Wodór
C. Benzyna
D. Olej napędowy
Wodór jest uznawany za paliwo o najmniejszej emisji gazów cieplarnianych, gdyż jego spalanie wytwarza jedynie wodę jako produkt uboczny. W porównaniu do tradycyjnych paliw kopalnych, takich jak benzyna, olej napędowy czy propan-butan, które generują znaczące ilości dwutlenku węgla (CO2) oraz innych zanieczyszczeń, wodór oferuje czystsze rozwiązania energetyczne. W praktyce, wodór może być stosowany w ogniwach paliwowych, które zyskują na znaczeniu jako alternatywa dla silników spalinowych w pojazdach. Dodatkowo, wodór może być produkowany z różnych źródeł, w tym z energii odnawialnej, co sprawia, że jest on kluczowym elementem strategii dekarbonizacji sektora transportowego i energetycznego. Standardy, takie jak ISO 14687, definiują wymagania dotyczące jakości wodoru, co jest niezbędne dla zapewnienia efektywności i bezpieczeństwa jego stosowania. W dążeniu do zminimalizowania wpływu na środowisko, wodór stanowi obiecującą opcję w kontekście zrównoważonego rozwoju oraz globalnych wysiłków na rzecz ograniczenia zmian klimatycznych.

Pytanie 27

Co należy sprawdzić i ewentualnie wymienić, gdy w pojeździe podczas startu występują zauważalne wibracje silnika oraz drgania?

A. opony
B. tarcze hamulcowe
C. tarcze sprzęgła z dociskiem
D. amortyzatory
Odpowiedź dotycząca tarczy sprzęgła z dociskiem jest prawidłowa, ponieważ drgania silnika oraz wibracje podczas ruszania z miejsca mogą być spowodowane niewłaściwym działaniem sprzęgła. Tarcza sprzęgła i docisk są kluczowymi komponentami w układzie przeniesienia napędu, a ich uszkodzenie może prowadzić do nieefektywnego połączenia pomiędzy silnikiem a skrzynią biegów. W przypadku, gdy tarcza jest zużyta lub uszkodzona, może dochodzić do poślizgu, co objawia się widocznymi wibracjami. Zastosowanie sprzęgła o wysokiej jakości oraz regularne kontrole stanu technicznego są zgodne z dobrymi praktykami w motoryzacji. Zaleca się, aby mechanicy regularnie sprawdzali stan sprzęgła, zwłaszcza w pojazdach intensywnie eksploatowanych, by uniknąć poważniejszych uszkodzeń. Wymiana tarczy sprzęgła jest złożonym procesem, który powinien być przeprowadzony przez wykwalifikowanego specjalistę, aby zapewnić niezawodność i bezpieczeństwo pojazdu.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Wał napędowy stanowi komponent

A. wyrównujący prędkości pomiędzy poszczególnymi kołami
B. różnicujący prędkości obrotowe kół jezdnych w zakrętach oraz na nierównych nawierzchniach
C. przenoszący moment obrotowy ze skrzyni biegów na przekładnię główną
D. przenoszący moment obrotowy bezpośrednio z przekładni głównej na koła napędowe
Wał napędowy jest kluczowym komponentem w systemie przeniesienia napędu w pojazdach. Jego główną funkcją jest przenoszenie momentu obrotowego ze skrzyni biegów na przekładnię główną, co pozwala na napędzanie kół pojazdu. W kontekście konstrukcji pojazdów, wał napędowy jest zazwyczaj wykonany z materiałów odpornych na wysokie obciążenia mechaniczne, co zapewnia jego trwałość i niezawodność. Przykładem praktycznego zastosowania wału napędowego jest w samochodach osobowych oraz pojazdach terenowych, gdzie jego działanie jest kluczowe dla prawidłowego funkcjonowania całego układu napędowego. Warto również zauważyć, że w nowoczesnych pojazdach często stosuje się wały przegubowe, które minimalizują drgania i umożliwiają lepsze dopasowanie do ruchów zawieszenia. Dobre praktyki w projektowaniu wałów napędowych obejmują stosowanie odpowiednich materiałów, precyzyjne obliczenia obciążeń oraz regularne konserwacje, co pozwala na zwiększenie efektywności i bezpieczeństwa jazdy.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Aby ocenić efektywność działania hamulców poprzez pomiar siły hamowania, należy wykorzystać

A. drogomierz
B. opóźnieniomierz
C. urządzenie rolkowe
D. płytę najazdową
Urządzenie rolkowe jest narzędziem przeznaczonym do pomiaru siły hamowania w pojazdach. Działa na zasadzie przeprowadzenia testu na hamulcach poprzez symulację warunków drogowych. Podczas testu pojazd jest umieszczany na rolkach, które obracają się w ruchu przeciwnym do kierunku jazdy. W momencie aktywacji hamulców, urządzenie mierzy siłę, z jaką hamulce działają na koła, co pozwala na ocenę ich skuteczności. Oprócz pomiaru siły hamowania, urządzenie rolkowe może również oceniać stabilność hamulców oraz ich równomierność działania na poszczególnych kołach. Stosowanie takich urządzeń jest zgodne z normami branżowymi, takimi jak ISO 3888 czy ECE R13. W praktyce, wykorzystanie urządzeń rolkowych podczas przeglądów technicznych i diagnostyki pojazdów pozwala na precyzyjne dostosowanie układów hamulcowych do wymagań bezpieczeństwa ruchu drogowego, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników dróg.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jakie jest oznaczenie środka używanego do uzupełniania obiegu chłodzenia?

A. L-DAB
B. GL-4
C. G12+
D. WD-40
Wybór płynów chłodniczych jest kluczowym aspektem w utrzymaniu silnika w dobrym stanie, jednak odpowiedzi takie jak GL-4, L-DAB czy WD-40 wskazują na nieporozumienia w zakresie ich zastosowania. GL-4 to norma odnosząca się do olejów przekładniowych, a nie płynów chłodniczych, co oznacza, że nie może być stosowany w układzie chłodzenia silnika. L-DAB natomiast to standard dla olejów silnikowych, szczególnie w kontekście norm dla pojazdów z silnikami wysokoprężnymi, co także wyklucza go z użycia w układzie chłodzenia. WD-40 to środek smarny, który nie jest przeznaczony do użycia w układach chłodzenia; jego główną funkcją jest smarowanie i ochrona przed rdzą, a nie regulacja temperatury silnika. Użycie niewłaściwego płynu chłodniczego może prowadzić do poważnych uszkodzeń silnika, takich jak przegrzanie, korozja, a także może wpłynąć na wydajność układu chłodzenia. Z tego powodu bardzo ważne jest, aby stosować płyny zgodne z zaleceniami producenta, co zapewnia optymalne warunki pracy silnika oraz długotrwałość układu chłodzenia.

Pytanie 35

Czynność, którą można pominąć przed rozpoczęciem badań diagnostycznych, to

A. rozmowa z właścicielem pojazdu
B. oględziny systemów pojazdu
C. jazda próbna
D. demontaż kół pojazdu
Demontaż kół pojazdu nie jest czynnością, która jest konieczna przed przystąpieniem do badań diagnostycznych. W praktyce wiele badań, takich jak analiza stanu układów hamulcowych, zawieszenia czy diagnostyka silnika, można przeprowadzić bez konieczności demontażu kół. Standardy diagnostyczne, takie jak ISO 9001, podkreślają znaczenie przeprowadzania inspekcji w sposób systematyczny i efektywny, co pozwala na zminimalizowanie niepotrzebnych czynności. Dobrym przykładem może być sytuacja, w której diagnostyk, korzystając z urządzeń skanujących, może ocenić stan pojazdu bez potrzeby demontowania kół, co oszczędza czas i zasoby. Ponadto, demontaż kół wiąże się z pewnym ryzykiem uszkodzenia elementów zawieszenia oraz zwiększa możliwość wystąpienia błędów w diagnostyce, co podkreśla, że ta czynność powinna być wykonywana tylko wtedy, gdy jest to absolutnie konieczne i uzasadnione.

Pytanie 36

Podczas zmiany opony na urządzeniu przeznaczonym do demontażu, mechanikowi mogą zagrażać

A. uszkodzenie słuchu
B. poparzenie oczu
C. poparzenie dłoni
D. uszkodzenie ciała energią sprężonego powietrza
Odpowiedź dotycząca uszkodzenia ciała energią sprężonego powietrza jest prawidłowa, ponieważ podczas wymiany opony, szczególnie w warsztatach mechanicznych, używa się narzędzi pneumatycznych, które mogą generować znaczną siłę. Sprężone powietrze, jeśli nie jest stosowane prawidłowo, może powodować niebezpieczne sytuacje, takie jak wystrzał opony czy niekontrolowane uwolnienie energii. Przykładowo, jeśli mechanik nieprawidłowo obsługuje klucze pneumatyczne lub nie stosuje odpowiednich technik zabezpieczających, może dojść do poważnych obrażeń ciała. Dlatego ważne jest stosowanie się do procedur bezpieczeństwa, takich jak używanie odpowiedniego sprzętu ochronnego oraz regularne szkolenie personelu. W branży motoryzacyjnej, normy BHP oraz wytyczne dotyczące korzystania z narzędzi pneumatycznych powinny być przestrzegane, co pozwala minimalizować ryzyko kontuzji związanych z energią sprężonego powietrza.

Pytanie 37

Podejmując się głównej naprawy ciągnika siodłowego, na początku należy

A. zdemontować ciągnik na poszczególne części
B. poddać cały pojazd czyszczeniu
C. odprowadzić płyny eksploatacyjne
D. rozłączyć naczepę z ciągnikiem
Odłączenie naczepy od ciągnika siodłowego jest kluczowym krokiem przed przystąpieniem do naprawy głównej pojazdu. Właściwe procedury bezpieczeństwa nakładają obowiązek na mechaników, aby upewnili się, że pojazd jest stabilny i bezpieczny do pracy. Rozłączenie naczepy minimalizuje ryzyko przypadkowego przewrócenia się lub przesunięcia ciągnika podczas dokonywania napraw. Praktyka ta jest zgodna z ogólnymi standardami BHP w warsztatach mechanicznych, które podkreślają znaczenie zabezpieczenia pojazdu przed nieautoryzowanym ruchem. Dodatkowo, brak naczepy ułatwia dostęp do silnika oraz układów mechanicznych, co jest niezbędne do przeprowadzenia dokładnej inspekcji oraz wymiany podzespołów. Zgodnie z dobrą praktyką, przed rozpoczęciem jakiejkolwiek pracy, mechanik powinien również sprawdzić, czy pojazd jest odpowiednio zablokowany, co dodatkowo zwiększa bezpieczeństwo pracy. Znajomość procedur oraz stosowanie się do nich jest nie tylko zalecane, ale wręcz niezbędne dla zapewnienia efektywności oraz bezpieczeństwa w warsztacie.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Przegub homokinetyczny zapewnia

A. zmienną prędkość obrotową a także kątową wałów napędzającego i napędzanego
B. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów są w tej samej linii
C. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów nie są w tej samej linii
D. stałą prędkość obrotową oraz kątową wałów napędzającego i napędzanego
Przegub równobieżny, czyli przegub homokinetyczny, jest naprawdę ważnym elementem w układach napędowych, szczególnie w autach. Jego największą zaletą jest to, że pozwala na zachowanie stałej prędkości obrotowej, niezależnie od tego, jak są ustawione osie. Dlatego właśnie wykorzystuje się go w autach osobowych i różnych maszynach. Na przykład, w napędach na cztery koła, te przeguby pozwalają na pokonywanie zakrętów bez straty mocy, co wpływa na lepszą stabilność i przyczepność. Przeguby te są też projektowane według branżowych standardów, jak ISO 9001, co daje pewność ich jakości. Gdyby osie obrotu były nierównoległe, inne typy przegubów mogłyby wprowadzać wibracje lub zmieniać prędkość, co mogłoby zaszkodzić systemowi napędowemu.

Pytanie 40

Podczas wizyty w ASO wykonano obsługę okresową w pojeździe. Łączny czas pracy został określony jako 3,5 roboczogodziny. Uwzględniając zawarte w tabeli ceny wykorzystanych części i materiałów eksploatacyjnych oraz koszt wykonanych czynności, wskaż ile klient zapłaci za wykonanie obsługi.

Nazwa części/materiałuWymagana ilośćCena jednostkowa [zł]
Filtr oleju1 szt.19,00
Olej silnikowy4,0 l*30,00
Płyn hamulcowy0,5 l*18,00
Płyn chłodniczy5,5 l*20,00
Koszt jednej roboczogodziny 1,0 rbg = 125,00 zł
*płyny eksploatacyjne są pobierane z opakowań zbiorczych z dokładnością do 0,5 l

A. 695,50 zł
B. 704,50 zł
C. 685,50 zł
D. 705,50 zł
Poprawna odpowiedź to 695,50 zł, co oznacza, że obliczenia zostały przeprowadzone zgodnie z obowiązującymi standardami branżowymi przy wykonywaniu usług serwisowych w pojazdach. W przypadku obsługi okresowej istotne jest uwzględnienie nie tylko kosztów robocizny, ale również cen części zamiennych oraz materiałów eksploatacyjnych. W tym przypadku czas roboczy wynoszący 3,5 godzin przekłada się na określoną stawkę robocizny, która jest ustalana przez warsztat. Po dodaniu tych kosztów do kosztów części i materiałów, otrzymujemy całkowity koszt usługi. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne dla właścicieli pojazdów, którzy powinni być świadomi, jak poszczególne elementy wpływają na całkowity koszt serwisu. Dobrou praktyką jest również porównywanie ofert różnych warsztatów, aby uzyskać najlepszy stosunek ceny do jakości usług. Dzięki umiejętnościom obliczeniowym w zakresie kosztów, klienci mogą lepiej zrozumieć, za co płacą, i podejmować świadome decyzje.