Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 10 maja 2025 21:43
  • Data zakończenia: 10 maja 2025 22:10

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jaką częścią łączy się wał korbowy z tłokiem?

A. popychacza
B. zaworu
C. korbowodu
D. sworznia
Wiesz, odpowiedź, którą zaznaczyłeś, to korbowód. To naprawdę ważny element w silnikach spalinowych i innych mechanizmach. Jego zadaniem jest przekształcanie ruchu posuwistego tłoka na ruch obrotowy wału korbowego. Bez korbowodu wszystko by się rozjechało. Ciekawostka: korbowody są zwykle wykonane z materiałów takich jak stal czy aluminium wzmocnione kompozytami, bo muszą wytrzymać naprawdę duże obciążenia. Mówiąc o silnikach samochodowych, to jego działanie jest kluczowe dla wydajności całego silnika. W projektowaniu korbowodów zwraca się też uwagę na to, żeby były jak najlżejsze, ale nadal wystarczająco mocne. To ma ogromne znaczenie zwłaszcza w sportach motorowych.

Pytanie 3

Aby ocenić użyteczność eksploatacyjną płynu hamulcowego, konieczne jest zmierzenie jego temperatury

A. krzepnięcia
B. odparowywania
C. zamarzania
D. wrzenia
Pomiar temperatury wrzenia płynu hamulcowego jest kluczowym aspektem oceny jego przydatności eksploatacyjnej. Płyny hamulcowe, w szczególności te na bazie glikolu, charakteryzują się określoną temperaturą wrzenia, która wpływa na ich skuteczność i bezpieczeństwo. W momencie, gdy temperatura wrzenia płynu hamulcowego spada poniżej zalecanych wartości, może dojść do zjawiska wrzenia w układzie hamulcowym, co prowadzi do poważnych problemów z hamowaniem. W praktyce, zbyt wysoka temperatura pracy układu hamulcowego, na przykład podczas intensywnego użytkowania pojazdu, może powodować degradację płynu, co skutkuje obniżeniem jego temperatury wrzenia. Regularne pomiary tej temperatury, realizowane zgodnie z normami takimi jak DOT (Department of Transportation) czy SAE (Society of Automotive Engineers), pozwalają na wczesne wykrycie problemów i wymianę płynu hamulcowego, co jest kluczowe dla zapewnienia bezpieczeństwa na drodze. Przykładowo, w pojazdach sportowych, gdzie intensywne hamowanie jest na porządku dziennym, monitorowanie temperatury wrzenia płynu hamulcowego powinno być standardową praktyką serwisową.

Pytanie 4

Podczas wizyty w ASO wykonano obsługę okresową w pojeździe. Łączny czas pracy został określony jako 3,5 roboczogodziny. Uwzględniając zawarte w tabeli ceny wykorzystanych części i materiałów eksploatacyjnych oraz koszt wykonanych czynności, wskaż ile klient zapłaci za wykonanie obsługi.

Nazwa części/materiałuWymagana ilośćCena jednostkowa [zł]
Filtr oleju1 szt.19,00
Olej silnikowy4,0 l*30,00
Płyn hamulcowy0,5 l*18,00
Płyn chłodniczy5,5 l*20,00
Koszt jednej roboczogodziny 1,0 rbg = 125,00 zł
*płyny eksploatacyjne są pobierane z opakowań zbiorczych z dokładnością do 0,5 l

A. 705,50 zł
B. 695,50 zł
C. 685,50 zł
D. 704,50 zł
Poprawna odpowiedź to 695,50 zł, co oznacza, że obliczenia zostały przeprowadzone zgodnie z obowiązującymi standardami branżowymi przy wykonywaniu usług serwisowych w pojazdach. W przypadku obsługi okresowej istotne jest uwzględnienie nie tylko kosztów robocizny, ale również cen części zamiennych oraz materiałów eksploatacyjnych. W tym przypadku czas roboczy wynoszący 3,5 godzin przekłada się na określoną stawkę robocizny, która jest ustalana przez warsztat. Po dodaniu tych kosztów do kosztów części i materiałów, otrzymujemy całkowity koszt usługi. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne dla właścicieli pojazdów, którzy powinni być świadomi, jak poszczególne elementy wpływają na całkowity koszt serwisu. Dobrou praktyką jest również porównywanie ofert różnych warsztatów, aby uzyskać najlepszy stosunek ceny do jakości usług. Dzięki umiejętnościom obliczeniowym w zakresie kosztów, klienci mogą lepiej zrozumieć, za co płacą, i podejmować świadome decyzje.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jakim narzędziem dokonuje się pomiaru zużycia otworu tulei cylindrowej?

A. suwmiarką
B. szczelinomierzem
C. średnicówką mikrometryczną
D. liniałem krawędziowym
Średnicówka mikrometryczna jest narzędziem pomiarowym o wysokiej precyzji, które służy do pomiaru średnic otworów, tulei cylindrowych oraz innych elementów mechanicznych. Jej konstrukcja pozwala na dokonanie pomiarów z dokładnością do setnych lub nawet tysięcznych części milimetra. W przypadku tulei cylindrowej, gdzie precyzyjne dopasowanie elementów jest kluczowe dla prawidłowego funkcjonowania maszyny, zastosowanie średnicówki mikrometrycznej jest najlepszym wyborem. Przykładowo, w produkcji silników samochodowych, gdzie tuleje cylindrowe muszą spełniać rygorystyczne normy, pomiar przy użyciu średnicówki mikrometrycznej zapewnia odpowiednią jakość i trwałość podzespołów. Dodatkowo, zgodnie z normami ISO, precyzyjne pomiary i sprawdzanie tolerancji wymiarowych są integralną częścią procesu kontrolnego w inżynierii mechanicznej, co podkreśla znaczenie stosowania odpowiednich narzędzi do pomiaru.

Pytanie 7

Jakim narzędziem dokonuje się pomiaru średnicy cylindrów po zakończonej naprawie silnika?

A. średnicówki mikrometrycznej
B. mikrometra
C. średnicówki zegarowej
D. suwmiarki
Użycie suwmiarki do pomiaru średnicy cylindrów po naprawie silnika może wydawać się logiczne, jednak ten przyrząd nie zapewnia wystarczającej precyzji. Suwmiarki, choć wszechstronne, mają ograniczenia związane z dokładnością pomiaru, co w kontekście wymagań dotyczących cylindrów silnika, które muszą mieścić się w ściśle określonych tolerancjach, może prowadzić do błędnych wyników. Przykładowo, w przypadku pomiaru średnicy cylindrów, nawet niewielkie błędy mogą skutkować niewłaściwym dopasowaniem tłoków, co z kolei wpłynie na wydajność i trwałość silnika. Mikrometr, mimo że jest bardziej precyzyjny niż suwmiarka, nadal nie jest najlepszym wyborem do pomiaru średnic cylindrów, ponieważ nie pozwala na łatwe mierzenie przestrzeni wewnętrznych w cylindrze, co jest niezbędne do uzyskania dokładnych wymiarów. Średnicówka mikrometryczna, chociaż użyteczna do pomiarów zewnętrznych, również nie jest idealna do pomiarów cylindrów silnika, gdyż nie jest przystosowana do pomiarów wewnętrznych o skomplikowanej geometrii. Właściwym podejściem w profesjonalnych warsztatach mechanicznych jest korzystanie z narzędzi, które zostały zaprojektowane specjalnie do tej funkcji, jak średnicówki zegarowe, które dzięki swojej budowie pozwalają na dokładne i szybkie pomiary bez ryzyka wprowadzenia błędów, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 8

Do zadań sondy lambda zainstalowanej tuż za katalizatorem należy

A. korekcja kąta wyprzedzenia zapłonu
B. kontrola składu mieszanki paliwowo-powietrznej
C. mierzenie poziomu tlenu w spalinach, które wydobywają się z katalizatora
D. mierzenie poziomu tlenu w spalinach, które opuszczają silnik
Odpowiedzi dotyczące pomiaru poziomu tlenu w spalinach opuszczających silnik, regulacji składu mieszanki paliwowo-powietrznej czy korekcji kąta wyprzedzenia zapłonu są nieprawidłowe, ponieważ nie odzwierciedlają rzeczywistych funkcji sondy lambda umieszczonej za katalizatorem. Pomiar tlenu w spalinach opuszczających silnik miałby zastosowanie w teorii, ale w praktyce sonda lambda za katalizatorem służy do monitorowania stanu spalin po ich przejściu przez proces katalityczny. To właśnie w tym miejscu można ocenić skuteczność działania katalizatora, ponieważ sonda rejestruje zmiany w składzie spalin, co jest krytyczne dla zarządzania emisjami. Regulacja składu mieszanki paliwowo-powietrznej również nie jest bezpośrednią funkcją sondy lambda, która dostarcza sygnał do jednostki sterującej, ale sama nie dokonuje modyfikacji składu mieszanki. Kąt wyprzedzenia zapłonu jest kolejnym parametrem, który nie jest kontrolowany przez sondę lambda. W rzeczywistości, błędne zrozumienie ról różnych komponentów systemu zarządzania silnikiem może prowadzić do nieefektywnego działania silnika oraz zwiększonej emisji zanieczyszczeń. Zrozumienie, że sonda lambda działa jako czujnik, a nie jako bezpośredni kontroler, jest kluczowe dla prawidłowej diagnozy i konserwacji nowoczesnych układów wydechowych.

Pytanie 9

Z fragmentu taryfikatora czasu napraw wynika, że całkowity czas wymiany uszczelnień tłoczków hamulcowych we wszystkich czterech zaciskach hamulcowych oraz odpowietrzenia układu w samochodzie Polonez 1500 wynosi

Taryfikator czasochłonności napraw
Rodzaj naprawyTyp pojazdu
Polonez 1500Polonez Atu Plus
Czas naprawy
Wymiana uszczelinień tłoczków hamulcowych przód1,5 h1,5 h
Wymiana uszczelinień tłoczków hamulcowych tył2 h-----
Wymiana uszczelinień cylinderków hamulcowych tył-----2,5 h
Odpowietrzenie układu hamulcowego1 h1 h

A. 3,5 h
B. 4,5 h
C. 4,0 h
D. 5,0 h
Odpowiedź 4,5 h jest poprawna, ponieważ czas wymiany uszczelnień tłoczków hamulcowych w samochodzie Polonez 1500 został dokładnie określony w taryfikatorze czasochłonności napraw. Wymiana uszczelnień tłoczków hamulcowych z przodu zajmuje 1,5 h, a z tyłu 2 h, co razem daje 3,5 h. Dodatkowo, odpowietrzenie układu hamulcowego to kolejny proces, który wymaga dodatkowej godziny. Sumując te czasy, otrzymujemy całkowity czas naprawy wynoszący 4,5 h. W praktyce, właściwe oszacowanie czasu naprawy jest kluczowe dla efektywności pracy warsztatu, umożliwiając lepsze planowanie zadań oraz obliczanie kosztów usług. Zrozumienie taryfikatorów oraz umiejętność ich stosowania w codziennej praktyce jest niezbędne dla mechaników, by móc świadczyć usługi zgodnie z przyjętymi standardami branżowymi.

Pytanie 10

Podczas serwisowania silnika wymieniono 4 wtryskiwacze o łącznym koszcie 1750,00 zł netto oraz turbinę w cenie 1900,00 zł netto. Całkowity czas serwisowania wyniósł 5,5 roboczogodziny, a stawka za jedną roboczogodzinę to 120,00 zł brutto. Części samochodowe podlegają opodatkowaniu VAT w wysokości 23%. Jaki jest całkowity koszt serwisowania brutto?

A. 5 149,50 zł
B. 4 489,50 zł
C. 4 310,00 zł
D. 5 301,30 zł
Aby obliczyć łączny koszt naprawy brutto, należy uwzględnić zarówno koszty części, jak i robocizny oraz odpowiednie stawki VAT. W naszym przypadku wtryskiwacze kosztowały 1750,00 zł netto, co po dodaniu 23% VAT daje 2152,50 zł. Turbina kosztowała 1900,00 zł netto, co z VAT wynosi 2337,00 zł. Koszt robocizny to 5,5 roboczogodziny mnożone przez 120,00 zł brutto, co daje 660,00 zł. Teraz sumujemy wszystkie te wartości: 2152,50 zł (wtryskiwacze) + 2337,00 zł (turbina) + 660,00 zł (robocizna) = 5150,50 zł. Dodając VAT (23%), całkowity koszt naprawy brutto wynosi 5 149,50 zł. Taki sposób kalkulacji jest zgodny z obowiązującymi standardami rachunkowości oraz praktykami w branży motoryzacyjnej, gdzie każda część oraz usługa są fakturowane z uwzględnieniem podatku VAT.

Pytanie 11

Przed dokonaniem pomiaru geometrii kół przednich w samochodzie osobowym, pojazd powinien być ustawiony tak, aby koła

A. przedniej osi były na obrotnicach, a tylnej na płytach odciążających
B. przedniej i tylnej osi spoczywały na płytach odciążających
C. przedniej i tylnej osi znajdowały się na obrotnicach
D. przedniej osi były na płytach odciążających, a tylnej na obrotnicach
Prawidłowa odpowiedź polega na ustawieniu przedniej osi na obrotnicach, a tylnej na płytach odciążających, co jest kluczowe dla dokładności pomiarów geometrii kół. Tego rodzaju ustawienie zapewnia stabilność pojazdu, eliminując jakiekolwiek ruchy, które mogłyby wpłynąć na wyniki pomiarów. Obrotnice umożliwiają swobodne obracanie kół przednich, co jest niezbędne do oceny i regulacji kątów geometrii, takich jak zbieżność, kąt pochylenia i kąt wyprzedzenia. Płyty odciążające zaś pozwalają na dokładne odwzorowanie warunków, w jakich koła są obciążone podczas normalnej jazdy. Tego rodzaju praktyki są zgodne z zaleceniami producentów i technikami stosowanymi w profesjonalnych warsztatach samochodowych. Dlatego ustawienie pojazdu w opisywany sposób zapewnia nie tylko bezpieczeństwo, ale również precyzyjne wyniki, co jest kluczowe dla utrzymania prawidłowego działania układu kierowniczego oraz ogólnej wydajności pojazdu.

Pytanie 12

Na tarczy hamulcowej pojawiło się widoczne uszkodzenie. Jaką metodę naprawy wybierzesz?

A. Szlifowanie na wymiar naprawczy
B. Regeneracja poprzez chromowanie
C. Wymiana dwóch tarcz na nowe
D. Regeneracja poprzez napawanie
Wymiana dwóch tarcz hamulcowych na nowe jest najbardziej zalecaną praktyką w przypadku, gdy na tarczy powstało widoczne pęknięcie. Pęknięcia w tarczach hamulcowych mogą prowadzić do poważnych problemów z bezpieczeństwem, w tym do utraty efektywności hamowania oraz zwiększonego ryzyka awarii. Nowe tarcze zapewniają integralność materiału oraz optymalne parametry pracy, co przyczynia się do lepszego rozpraszania ciepła i minimalizacji odkształceń. Dodatkowo, wymiana tarcz zapewnia zgodność z normami i standardami branżowymi, takimi jak dyrektywy ECE R90, które wymagają, aby zamiennikiach części hamulcowych miały porównywalne parametry do oryginalnych części. Wymiana dwóch tarcz jednocześnie jest także zalecana, aby uniknąć nierównomiernego zużycia i potencjalnych problemów z stabilnością hamowania w przyszłości. W praktyce, jeśli jedna tarcza uległa uszkodzeniu, warto rozważyć wymianę obu, aby zapewnić jednorodność i pełną efektywność systemu hamulcowego.

Pytanie 13

Jednym z powodów, dla których nie następuje ładowanie (włączona czerwona lampka kontrolna ładowania akumulatora) przy pracującym silniku, może być

A. zacięta szczotka w szczotkotrzymaczu alternatora
B. kompletnie naładowany akumulator
C. zwarcie w obwodzie sygnałowym akustycznym
D. spalona żarówka świateł mijania
Zawieszona szczotka w szczotkotrzymaczu alternatora to jedna z najczęstszych przyczyn problemów z ładowaniem akumulatora. Te szczotki mają za zadanie przesyłać prąd do wirnika, więc muszą działać poprawnie, żeby alternator mógł generować energię. Jak szczotka jest zablokowana, to nie ma pełnego kontaktu z wirnikiem, przez co energia się nie wytwarza jak powinna. Zwykle objawia się to tym, że kontrolka ładowania akumulatora świeci na czerwono, co wskazuje na kłopoty z ładowaniem. Żeby to sprawdzić, zazwyczaj trzeba zajrzeć do alternatora i zmierzyć napięcie wyjściowe. W branży mówi się, że dobrze jest regularnie kontrolować stan szczotek, szczególnie w starszych autach, które mogą mieć spore zużycie. No i jak zauważysz jakiekolwiek problemy z ładowaniem, lepiej działać szybko, bo inaczej możesz uszkodzić akumulator lub inne elektryczne części w samochodzie.

Pytanie 14

Kiedy następuje wymiana oleju w przekładni głównej?

A. co 12 miesięcy
B. zgodnie z wytycznymi producenta
C. po przejechaniu 60 tys. km
D. co dekadę
Odpowiedź 'zgodnie z instrukcją producenta' jest prawidłowa, ponieważ wymiana oleju w przekładni głównej powinna być przeprowadzana według specyfikacji dostarczonych przez producenta pojazdu. Instrukcje te zawierają istotne informacje dotyczące rodzaju oleju, jego lepkości oraz interwałów wymiany, które są dostosowane do konkretnego modelu i warunków eksploatacji. Na przykład, w niektórych pojazdach, olej w przekładni głównej może wymagać wymiany co 30 tys. km, podczas gdy w innych może to być 100 tys. km lub dłużej. Ignorowanie tych zaleceń może prowadzić do awarii przekładni, co często wiąże się z kosztownymi naprawami. W praktyce, regularne sprawdzanie poziomu i jakości oleju oraz jego wymiana w odpowiednich interwałach zalecanych przez producenta, zapewnia dłuższą żywotność układu napędowego oraz optymalne osiągi pojazdu. Warto również pamiętać, że stosowanie oleju o niewłaściwych parametrach może prowadzić do zwiększonego zużycia paliwa oraz obniżenia efektywności pracy przekładni.

Pytanie 15

Refraktometr stosowany w motoryzacji nie nadaje się do wykonania pomiaru

A. temperatury wrzenia płynu hamulcowego
B. temperatury krzepnięcia płynu do spryskiwacza
C. temperatury krzepnięcia płynu chłodzącego
D. gęstości elektrolitu w akumulatorze
Pomiar temperatury zamarzania płynu do spryskiwacza, gęstości elektrolitu akumulatora oraz temperatury zamarzania płynu chłodzącego są zadaniami, które mogą być wykonane przy użyciu refraktometru, jednakże nie są one w pełni reprezentatywne dla zastosowań w kontekście płynu hamulcowego. Płyn do spryskiwaczy, na przykład, jest zwykle wodnym roztworem z dodatkiem alkoholu i substancji chemicznych, co sprawia, że jego temperatura zamarzania można skutecznie zmierzyć refraktometrem, ponieważ zmierzony indeks załamania światła w tym przypadku zmienia się w zależności od zawartości składników w roztworze. Gęstość elektrolitu akumulatora również może być ustalona na podstawie zmiany współczynnika refrakcji, co jest standardową praktyką w diagnostyce akumulatorów. Z kolei temperatura zamarzania płynu chłodzącego, który często zawiera glikol etylenowy, również podlega pomiarowi z użyciem refraktometru, co jest powszechne w serwisach samochodowych. Warto zauważyć, że powszechne myślenie, że refraktometr jest narzędziem uniwersalnym do pomiaru wszystkich właściwości fizycznych cieczy w motoryzacji, może prowadzić do błędnych wniosków. Dlatego kluczowe jest zrozumienie, że różne substancje wymagają różnych metod pomiarowych, a w przypadku płynu hamulcowego, ze względu na jego specyfikę i wymagania bezpieczeństwa, konieczne jest stosowanie odpowiednich narzędzi i procedur. Pomocne może być zapoznanie się z dokumentacją producenta i standardami branżowymi, które precyzują metody oceny jakości płynów hamulcowych, aby uniknąć zagrożeń związanych z niewłaściwym pomiarem.

Pytanie 16

Jak dokonuje się bezkontaktowego pomiaru temperatury elementów silnika?

A. multimetrem
B. refraktometrem
C. stroboskopem
D. pirometrem
Pirometr to urządzenie, które umożliwia bezdotykowy pomiar temperatury obiektów, co czyni go idealnym narzędziem w kontekście monitorowania elementów silnika. Działa na zasadzie pomiaru promieniowania podczerwonego emitowanego przez obiekty, co pozwala na ocenę ich temperatury bez fizycznego kontaktu. Przykładowo, w silnikach spalinowych, pirometry wykorzystywane są do kontrolowania temperatury głowicy cylindrów oraz układu wydechowego, co jest kluczowe dla optymalizacji wydajności silnika oraz zapobiegania uszkodzeniom spowodowanym przegrzaniem. Obecnie pirometry są standardem w diagnostyce silników, ponieważ pozwalają na szybkie i dokładne pomiary, eliminując ryzyko uszkodzenia komponentów. W przemyśle motoryzacyjnym, stosowanie pirometrów zgodnie z zaleceniami producentów i normami branżowymi, takimi jak ISO 9001, zapewnia nie tylko wysoką jakość procesów, ale także bezpieczeństwo operacyjne. Dodatkowo, nowoczesne pirometry często wyposażone są w funkcje umożliwiające rejestrowanie i analizowanie danych, co wspiera procesy predykcyjnego utrzymania ruchu, zmniejszając koszty eksploatacji.

Pytanie 17

Hybrydowy napęd to wykorzystanie w pojeździe jednostki napędowej

A. wysokoprężnej
B. spalinowej z elektryczną
C. elektrycznej
D. z zapłonem iskrowym
Napęd hybrydowy w pojazdach oznacza zastosowanie zarówno silnika spalinowego, jak i elektrycznego w celu optymalizacji efektywności energetycznej oraz zmniejszenia emisji spalin. W praktyce oznacza to, że pojazdy hybrydowe mogą korzystać z mocy silnika spalinowego podczas jazdy na autostradzie, gdzie wymagana jest większa moc, natomiast w warunkach miejskich, gdzie prędkości są niższe, silnik elektryczny może działać samodzielnie. Taki system przyczynia się do znacznego obniżenia zużycia paliwa i redukcji emisji CO2, co jest zgodne z globalnymi standardami w zakresie ochrony środowiska. Przykłady zastosowania obejmują popularne modele samochodów takie jak Toyota Prius czy Honda Insight, które udowodniły, że hybrydowe napędy są nie tylko technologicznie zaawansowane, ale również ekonomicznie opłacalne dla użytkowników. Standardy dotyczące emisji spalin, takie jak Euro 6, kładą nacisk na rozwój technologii hybrydowych, co potwierdza ich rosnące znaczenie w branży motoryzacyjnej.

Pytanie 18

Aby zweryfikować poprawność przeprowadzonej naprawy układu kierowniczego, należy zrealizować

A. sprawdzenie luzu elementów układu zawieszenia
B. badanie na stanowisku rolkowym
C. pomiar siły hamowania
D. jazdę próbną
Jazda próbna jest kluczowym etapem weryfikacji poprawności wykonanej naprawy układu kierowniczego, ponieważ pozwala na bezpośrednią ocenę zachowania pojazdu w czasie rzeczywistym. Podczas jazdy próbnej można zauważyć wszelkie nieprawidłowości w pracy układu kierowniczego, takie jak luzy, nieprecyzyjne skręcanie, czy zjawiska takie jak drżenie kierownicy. Praktyka pokazuje, że dopiero rzeczywiste warunki drogowe ujawniają potencjalne problemy, które mogą nie być widoczne podczas statycznych testów. Ponadto jazda próbna umożliwia również sprawdzenie, czy naprawa nie wpłynęła negatywnie na inne układy pojazdu, takie jak zawieszenie czy hamulce. Standardy branżowe, takie jak normy ISO dotyczące bezpieczeństwa pojazdów, podkreślają znaczenie tego etapu w procesie naprawy i konserwacji pojazdów. Dlatego każdy warsztat samochodowy powinien wdrożyć procedury jazdy próbnej jako integralną część procesu weryfikacji napraw.

Pytanie 19

Jeśli przekładnia w skrzyni biegów wynosi ib=1,0, a przekładnia tylnego mostu to it=4,1, jakie jest całkowite przełożenie układu napędowego?

A. 3,1
B. 4,1
C. 1,0
D. 5,1
Wybór błędnej odpowiedzi na pytanie dotyczące przełożenia całkowitego układu napędowego najczęściej wynika z nieporozumień związanych z zasadami obliczania przełożeń w kontekście skrzyń biegów i tylnych mostów. Warto zauważyć, że przełożenie całkowite nie jest sumą jednostkowych przełożeń, co sugeruje wybór odpowiedzi wskazujący na 5,1. Tego typu błąd myślowy może wynikać z mylnego przyjęcia teorii, że im więcej biegów lub wyższe przełożenie z przodu i z tyłu, tym większy rezultat. W rzeczywistości, całkowite przełożenie oblicza się poprzez mnożenie, co ilustruje prosta zasada dotycząca przenoszenia ruchu obrotowego przez różne elementy napędowe. Przełożenie 1,0 oznacza, że skrzynia biegów nie wprowadza żadnych zmian w obrotach silnika, podczas gdy przełożenie 4,1 w tylnym moście wskazuje na czterokrotne zwiększenie momentu obrotowego na kołach. Z tego względu, całkowite przełożenie wynosi zaledwie 4,1, co jest kluczowe dla zrozumienia, jak działa napęd w pojazdach. Odpowiedzi 3,1 i 1,0 również wynikają z uproszczonego podejścia do obliczeń; błędne zrozumienie mechaniki przełożenia prowadzi do niepoprawnych wniosków. W praktyce znajomość tych zasad wpływa na właściwe dobieranie przełożeń, co ma znaczenie dla efektywności i osiągów pojazdów, a także ich zastosowania w różnych warunkach drogowych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jak wiele znaków zawiera numer VIN?

A. 17 znaków
B. 13 znaków
C. 11 znaków
D. 15 znaków
Numer identyfikacyjny pojazdu, znany jako VIN (Vehicle Identification Number), składa się z 17 znaków, co czyni go unikalnym dla każdego pojazdu. VIN został wprowadzony, aby zapewnić jednoznaczną identyfikację pojazdów na całym świecie. Składa się z kombinacji liter i cyfr, które zawierają istotne informacje, takie jak producent, rok produkcji, miejsce produkcji oraz unikalny numer seryjny pojazdu. Przykładowo, pierwsze trzy znaki VIN to tzw. WMI (World Manufacturer Identifier), które identyfikują producenta. Wiedza na temat VIN jest kluczowa dla takich procesów jak rejestracja pojazdu, ubezpieczenia, a także przy transakcjach sprzedaży, ponieważ pozwala na szybkie sprawdzenie historii pojazdu oraz jego stanu prawnego. Zgodnie z międzynarodowymi standardami ISO 3779, długość VIN powinna być stała, co ułatwia zarówno producentom, jak i użytkownikom identyfikację i śledzenie pojazdów.

Pytanie 22

Podczas diagnostyki układu chłodzenia zaobserwowano ciągły wzrost temperatury silnika. Jaka może być tego przyczyna?

A. Uszkodzony alternator
B. Niski poziom oleju w silniku
C. Zbyt wysokie ciśnienie w oponach
D. Niedziałający wentylator chłodnicy
Niedziałający wentylator chłodnicy to jedna z najbardziej oczywistych przyczyn ciągłego wzrostu temperatury silnika. Układ chłodzenia w pojazdach ma za zadanie utrzymanie optymalnej temperatury pracy silnika, co jest kluczowe dla jego efektywności i trwałości. Wentylator chłodnicy wspomaga przepływ powietrza przez chłodnicę, szczególnie podczas postoju lub jazdy w niskiej prędkości, kiedy naturalny nawiew powietrza jest niewystarczający. Jeśli wentylator nie działa, chłodnica nie jest w stanie skutecznie obniżać temperatury płynu chłodzącego, co prowadzi do przegrzewania się silnika. Z mojego doświadczenia, regularne sprawdzanie stanu wentylatora oraz jego układu sterowania jest niezbędne w ramach konserwacji pojazdu. Często problem leży w zepsutym przekaźniku, bezpieczniku lub uszkodzonym silniku wentylatora. Warto również dodać, że nadmierna temperatura silnika może prowadzić do poważnych uszkodzeń, takich jak pęknięcie głowicy lub uszczelki pod głowicą, co wiąże się z kosztownymi naprawami. Dlatego szybka i trafna diagnoza problemu z wentylatorem jest kluczowa.

Pytanie 23

Czym jest prąd elektryczny?

A. uporządkowany ruch ładunków elektrycznych
B. ukierunkowany przepływ ładunków neutralnych
C. chaotyczny ruch ładunków elementarnych
D. swobodny ruch ładunków ujemnych
Prąd elektryczny to uporządkowany ruch ładunków elektrycznych, co oznacza, że w danym kierunku poruszają się ładunki naładowane elektrycznie, głównie elektrony. W praktyce odnosi się to do przepływu prądu w obwodach elektrycznych, gdzie elektrony poruszają się od ujemnego bieguna źródła zasilania do dodatniego. To uporządkowanie odzwierciedla nie tylko zjawisko fizyczne, ale także zastosowanie w projektowaniu urządzeń elektrycznych, takich jak silniki, generatory czy układy scalone. W przypadku silników elektrycznych, na przykład, uporządkowany ruch elektronów w przewodnikach generuje pole magnetyczne, które działa na elementy wirujące, co prowadzi do wykonywania pracy mechanicznej. Zrozumienie, że prąd elektryczny jest uporządkowanym ruchem, pozwala inżynierom i technikom na projektowanie bardziej efektywnych systemów oraz na przewidywanie zachowania obwodów w różnych warunkach. Wiedza ta jest kluczowa w kontekście standardów branżowych takich jak IEC 60038, które regulują parametry napięcia i prądu w urządzeniach elektrycznych.

Pytanie 24

Aby zmierzyć luz w zamku pierścienia tłokowego, jakie narzędzie powinno się zastosować?

A. szczelinomierza
B. suwmiarki
C. średnicówki mikrometrycznej
D. czujnika zegarowego
Szczelinomierz jest narzędziem pomiarowym, które doskonale nadaje się do pomiaru luzów w zamkach pierścieni tłokowych, ponieważ pozwala na precyzyjne określenie odległości między powierzchniami. Luz w zamku pierścienia tłokowego odgrywa kluczową rolę w prawidłowym funkcjonowaniu silnika, gdyż zbyt duży luz może prowadzić do nieefektywnego spalania, a w konsekwencji do zwiększonego zużycia paliwa i emisji spalin. Dobór odpowiedniego szczelinomierza, którego zakres pomiarowy odpowiada wymaganemu luzowi, umożliwia zachowanie optymalnych parametrów silnika. W praktyce, szczelinomierz wstawia się w szczelinę, a jego odczyt pozwala na szybkie i precyzyjne określenie wymiarów. W warunkach przemysłowych i warsztatowych, stosowanie szczelinomierzy jest normą, a ich wykorzystanie w zgodzie z wytycznymi producentów silników i komponentów mechanicznych jest zalecane dla zapewnienia jakości i niezawodności. Incorporacja tego narzędzia w rutynowych przeglądach i serwisach silników pozwala na wczesne wykrywanie problemów i podejmowanie odpowiednich działań serwisowych.

Pytanie 25

Urządzenia do pomiaru grubości powłok lakierniczych, które funkcjonują na zasadzie indukcji magnetycznej, stosuje się do weryfikacji powłok na elementach

A. z aluminium
B. z ceramiki
C. z drewna
D. ze stali
Pomiar grubości powłok lakierniczych za pomocą indukcji magnetycznej jest techniką stosowaną głównie w przypadku materiałów ferromagnetycznych, takich jak stal. Zasada działania tego przyrządu opiera się na zmianie pola magnetycznego wytwarzanego przez magnes umieszczony w przyrządzie, co prowadzi do powstania sygnału, który jest proporcjonalny do grubości powłoki lakierniczej. Przykładowo, w przemyśle motoryzacyjnym, gdzie stalowe elementy karoserii są pokrywane warstwami lakieru, operatorzy używają takich mierników do monitorowania jakości lakierowania. Właściwa grubość powłoki jest kluczowa dla zapewnienia trwałości i estetyki, dlatego regularne pomiary pomagają w utrzymaniu standardów jakości. Istnieją normy, takie jak ISO 2808, które określają metody pomiaru grubości powłok, co potwierdza znaczenie stosowania technologii indukcyjnej w procesach kontroli jakości w branżach, gdzie stal jest dominującym materiałem.

Pytanie 26

Termostat stanowi część systemu

A. chłodzenia
B. wylotowego
C. hamulcowego
D. dolotowego
Termostat to naprawdę ważna część układu chłodzenia w samochodach. Jego główne zadanie to regulowanie temperatury silnika, a robi to przez otwieranie i zamykanie przepływu płynu chłodzącego, w zależności od tego, jak gorąco jest w silniku. Jak jest zimno, termostat jest zamknięty, co pozwala silnikowi szybciej osiągnąć odpowiednią temperaturę pracy. Kiedy silnik się nagrzeje, termostat się otwiera i płyn chłodzący może przepływać, co utrzymuje temperaturę na odpowiednim poziomie. Używanie sprawnego termostatu ma duży wpływ na efektywność paliwową i zmniejsza emisję spalin. Warto regularnie sprawdzać termostat, bo to dobra praktyka, którą polecają producenci, żeby mieć pewność, że silnik działa jak należy.

Pytanie 27

Zasilanie silnika z nadmiernie bogatą mieszanką paliwowo-powietrzną skutkuje pokryciem izolatora świecy zapłonowej osadem o kolorze

A. błękitnym
B. czarnym
C. białoszarym
D. brunatnym
Zasilanie silnika zbyt bogatą mieszanką paliwowo-powietrzną prowadzi do powstawania charakterystycznego osadu na izolatorze świecy zapłonowej, który przyjmuje kolor czarny. Taki stan rzeczy wynika z niepełnego spalania paliwa, co prowadzi do wzrostu ilości węgla i innych zanieczyszczeń. Gdy silnik nie otrzymuje odpowiedniej proporcji powietrza w stosunku do paliwa, efektywność spalania maleje, a nadmiar paliwa ulega rozkładowi, tworząc osad. Osad czarny na świecy zapłonowej może wskazywać na problemy z silnikiem, takie jak nieszczelności w układzie dolotowym, zanieczyszczone filtry powietrza lub zły stan wtryskiwaczy. W praktyce, aby poprawić efektywność pracy silnika, zaleca się regularne monitorowanie składu mieszanki paliwowo-powietrznej oraz stosowanie odpowiednich procedur diagnostycznych, takich jak analiza spalin czy inspekcja układów wtryskowych, zgodnie z normami Euro i wytycznymi producentów pojazdów.

Pytanie 28

Jakie jest znaczenie liczby cetanowej?

A. petrolu do samochodów
B. gazu LPG
C. oleju napędowego
D. oleju do silników
Liczba cetanowa jest kluczowym parametrem, który odnosi się do jakości oleju napędowego, czyli paliwa wykorzystywanego w silnikach diesla. Wartość ta wskazuje na zdolność paliwa do samoczynnego zapłonu w komorze spalania silnika. Im wyższa liczba cetanowa, tym krótszy czas, jaki upływa od momentu wtrysku paliwa do zapłonu. Jest to istotne dla efektywności pracy silnika, ponieważ paliwa o niskiej liczbie cetanowej mogą prowadzić do problemów takich jak trudności z uruchomieniem silnika, niestabilna praca i zwiększone emisje spalin. Standardy branżowe, takie jak normy EN 590, określają minimalną wartość liczby cetanowej, która powinna wynosić przynajmniej 51 dla oleju napędowego w Europie. Praktycznym przykładem zastosowania wiedzy o liczbie cetanowej jest dobór odpowiedniego paliwa w zależności od warunków eksploatacji pojazdu, co pozwala na optymalizację osiągów silnika oraz redukcję jego zużycia paliwa.

Pytanie 29

Kiedy wał korbowy silnika czterosuwowego obraca się z prędkością 4000 obr/min, to prędkość obrotowa wałka rozrządu wynosi jaką wartość?

A. 1000 obr/min
B. 8000 obr/min
C. 2000 obr/min
D. 4000 obr/min
Zrozumienie prędkości obrotowej wałka rozrządu w silniku 4-suwowym wymaga analizy podstawowych zasad działania tego typu silników. Wał korbowy wykonuje dwa pełne obroty w czasie, gdy wałek rozrządu dokonuje jednego pełnego obrotu. Z tego wynika, że prędkość obrotowa wałka rozrządu jest zawsze o połowę niższa od prędkości obrotowej wału korbowego. Odpowiedzi sugerujące prędkości 4000 obr/min, 1000 obr/min czy 8000 obr/min są błędne, ponieważ nie uwzględniają tej kluczowej zasady mechaniki silników. Na przykład, odpowiedź 4000 obr/min sugeruje, że wałek rozrządu obraca się z taką samą prędkością jak wał korbowy, co jest sprzeczne z zasadami działania silnika czterosuwowego. Z kolei 1000 obr/min sugeruje, że wałek rozrządu obraca się z prędkością mniejszą, ale nieprawidłowo obrazuje proporcje, ponieważ ta wartość powinna być dokładnie połową prędkości wału korbowego. Odpowiedź 8000 obr/min jest również nieprawidłowa, gdyż wskazuje na nierealistycznie wysoką prędkość wałka rozrządu, która nie może wystąpić w normalnych warunkach pracy silnika 4-suwowego. Wszelkie nieporozumienia w tej kwestii mogą prowadzić do błędnych diagnoz podczas serwisowania silników oraz projektowania układów rozrządu, co może zagrażać efektywności i niezawodności pracy silnika. Dlatego kluczowe jest zrozumienie tej zasady oraz jej praktycznego zastosowania w inżynierii mechanicznej.

Pytanie 30

W przypadku, gdy pomimo kręcenia wałem korbowym za pomocą rozrusznika silnik nie uruchamia się, nie wymaga sprawdzenia

A. ustawienie rozrządu silnika
B. druga sonda lambda
C. pompa paliwa
D. ciśnienie sprężania
Druga sonda lambda jest odpowiedzialna za pomiar stężenia tlenu w spalinach, co wpływa na optymalizację pracy silnika w warunkach pracy na pełnym obciążeniu lub w trybie wydechowym. Jeśli silnik nie uruchamia się pomimo obracania wału korbowego, sugeruje to problem z dostarczeniem paliwa, z ustawieniem rozrządu lub ciśnieniem sprężania, a nie z sondą lambda. Ważne jest, aby zrozumieć, że sonda lambda kontroluje emisję spalin oraz efektywność spalania, ale nie jest krytycznym elementem potrzebnym do samego uruchomienia silnika. W praktyce, przed sprawdzeniem sondy lambda, należy upewnić się, że system paliwowy funkcjonuje poprawnie, rozrząd jest odpowiednio ustawiony, a ciśnienie sprężania znajduje się w zalecanych granicach. W związku z tym, w sytuacji, gdy silnik nie uruchamia się, w pierwszej kolejności należy skupić się na diagnostyce pozostałych komponentów silnika, co jest zgodne z podejściem diagnostycznym opartym na normach branżowych.

Pytanie 31

Aby odkręcić zapieczoną nakrętkę w układzie zawieszenia, należy użyć

A. młotka
B. rurhaka
C. podgrzewacza indukcyjnego
D. szlifierki kątowej
Użycie młotka do poluzowania zapieczonej nakrętki w układzie zawieszenia jest podejściem, które może prowadzić do poważnych uszkodzeń. Młotek generuje siłę udarową, co może spowodować nieodwracalne deformacje nakrętki lub śruby, a także uszkodzenie otaczających komponentów, co z kolei może prowadzić do konieczności wymiany całego elementu zawieszenia. W kontekście mechaniki pojazdowej, takie nieostrożne podejście jest niezgodne z zaleceniami producentów oraz normami branżowymi, które podkreślają konieczność zapobiegania uszkodzeniom podczas napraw. Rurhak jest narzędziem wykorzystywanym w niektórych zastosowaniach, ale jego działanie opiera się na przekładni dźwigni, co w przypadku zapieczonej nakrętki może okazać się niewystarczające. Przy dużym oporze, rurhak może nie tylko nie przynieść oczekiwanych rezultatów, lecz także narazić użytkownika na kontuzje. Z kolei szlifierka kątowa, chociaż skuteczna w cięciu lub szlifowaniu, może prowadzić do generowania dużych ilości ciepła, co zagraża integralności metalowych elementów oraz może wywołać pożar. Każdy z tych błędów myślowych wynika z niedostatecznego zrozumienia mechaniki materiałów oraz zastosowania odpowiednich metod w pracy z elementami konstrukcyjnymi.

Pytanie 32

Aby wyciągnąć i zainstalować tłoki w silniku ZI o czterech cylindrach w układzie rzędowym bez demontażu całego silnika, należy zdemontować

A. pokrywy korbowodów oraz wał korbowy
B. pokrywy korbowodów
C. głowicę, pokrywy korbowodów oraz wał korbowy
D. głowicę i pokrywy korbowodów
Aby wymontować i zamontować tłoki w czterocylindrowym rzędowym silniku ZI, konieczne jest zdemontowanie zarówno głowicy, jak i pokryw korbowodów. Głowica silnika jest kluczowym elementem, który zapewnia szczelność komory spalania oraz umożliwia montaż zaworów. Zdemontowanie głowicy daje dostęp do cylindrów, co jest niezbędne do dostępu do tłoków. Pokrywy korbowodów natomiast ukrywają układ korbowy, który łączy tłoki z wałem korbowym. Usunięcie tych elementów pozwala na swobodny dostęp do tłoków oraz ich demontaż bez całkowitego rozbierania silnika. Tego typu procedury są zgodne z zasadami dobrego serwisowania silników, co jest kluczowe dla ich długowieczności oraz prawidłowego funkcjonowania. Przykładem zastosowania tej wiedzy może być naprawa silnika w warsztacie motoryzacyjnym, gdzie zachowanie odpowiednich standardów montażu i demontażu jest niezbędne dla zachowania bezpieczeństwa i efektywności pracy.

Pytanie 33

Wartość sprężania w silnikach z zapłonem iskrowym w porównaniu do silników z zapłonem samoczynnym jest

A. zawsze identyczna.
B. zawsze wyższa.
C. nie do porównania.
D. niższa.
Silniki z zapłonem iskrowym, takie jak silniki benzynowe, charakteryzują się niższym stopniem sprężania w porównaniu do silników z zapłonem samoczynnym (silników Diesla). Zazwyczaj stopień sprężania w silnikach benzynowych wynosi od 8 do 12, podczas gdy w silnikach Diesla wartość ta może wynosić od 14 do 25. Niższy stopień sprężania w silnikach z zapłonem iskrowym pozwala na uniknięcie zjawiska klekotania, które jest bardziej powszechne przy wyższych wartościach sprężania. W praktyce oznacza to, że silniki z zapłonem iskrowym mogą być łatwiej uruchamiane w różnych warunkach oraz mają mniejsze wymagania dotyczące jakości paliwa, co czyni je bardziej elastycznymi. Ponadto, niższy stopień sprężania wpływa na efektywność spalania i moc silnika, co może być istotne w kontekście osiągów i ekonomiki jazdy. W związku z tym, zrozumienie różnic w stopniach sprężania między tymi dwoma typami silników jest kluczowe dla inżynierów i projektantów pojazdów, którzy muszą dostosować parametry silników do ich zamierzonych zastosowań.

Pytanie 34

Jakie substancje wykorzystuje się do konserwacji przegubów krzyżakowych?

A. silikonu
B. oleju silnikowego
C. oleju przekładniowego
D. smaru stałego
Smar stały jest najczęściej stosowanym środkiem do konserwacji przegubów krzyżakowych ze względu na jego zdolność do długotrwałego smarowania oraz skutecznej ochrony przed zużyciem i korozją. Przeguby krzyżakowe, które są kluczowymi elementami układów napędowych w pojazdach i maszynach, wymagają regularnego smarowania, aby zapewnić ich prawidłowe funkcjonowanie i wydajność. Smary stałe, zwłaszcza te o wysokiej lepkości i odporności na wysokie temperatury, doskonale sprawdzają się w trudnych warunkach pracy, redukując tarcie i minimalizując ryzyko uszkodzenia. W praktyce użycie smaru stałego w przegubach krzyżakowych polega na jego aplikacji w sposób zapewniający równomierne pokrycie oraz dotarcie do wszystkich ruchomych części. Zgodnie z normami branżowymi, takimi jak ISO 6743, ważne jest, aby dobierać smar odpowiedni do specyfikacji producenta, co wpływa na żywotność i efektywność pracy przegubów.

Pytanie 35

Jakie ciśnienie oleju w systemie smarowania silnika jest prawidłowe, gdy obroty mieszczą się w zakresie od 2000 do 3000 obr/min?

A. 0,1 MPa
B. 0,4 MPa
C. 4,0 MPa
D. 2,0 MPa
Chociaż wybór 2,0 MPa, 4,0 MPa lub 0,1 MPa może wydawać się logiczny, każda z tych wartości jest niewłaściwa w kontekście ciśnienia oleju w silniku w przedziale prędkości obrotowych 2000-3000 obr/min. Wybór 2,0 MPa przekracza górną granicę optymalnego ciśnienia, co może prowadzić do niekorzystnych warunków pracy pompy olejowej. Zbyt wysokie ciśnienie oleju może wynikać z zatorów w układzie smarowania lub niewłaściwego doboru oleju, co może skutkować uszkodzeniami uszczelek czy przewodów olejowych, a także prowadzić do nadmiernego zużycia pompy. Podobnie, 4,0 MPa jest wartością ekstremalnie wysoką, która w praktyce może powodować uszkodzenia mechaniczne w układzie smarowania. Zbyt niskie ciśnienie, jak w przypadku 0,1 MPa, jest równie niebezpieczne, ponieważ nie zapewnia odpowiedniego smarowania elementów silnika, co może prowadzić do ich przegrzania lub zatarcia. Przedziały ciśnienia oleju są ściśle określane w specyfikacjach technicznych silników, a ich ignorowanie może prowadzić do poważnych awarii. Wartości te można znaleźć w dokumentacji producentów, co podkreśla znaczenie znajomości tych norm dla każdego mechanika i właściciela pojazdu.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Podczas spalania mieszanki paliwa z powietrzem w silniku ZI maksymalna temperatura w cylindrze osiąga wartość

A. 300°C
B. 220°C
C. 800°C
D. 2 500°C
Odpowiedzi 800°C, 300°C i 220°C nie odzwierciedlają rzeczywistych warunków panujących w cylindrze silnika ZI. Odpowiedź 800°C może być mylnie postrzegana jako maksymalna temperatura, ale dotyczy raczej temperatury spalin, które są znacznie niższe niż maksymalne temperatury występujące wewnątrz cylindra podczas spalania. W rzeczywistości, takie wartości są zbyt niskie, aby mogły wspierać kompletny proces spalania, w którym istotne jest osiągnięcie wysokiej temperatury dla pełnego utlenienia paliwa. 300°C i 220°C to wartości, które praktycznie nie mogą występować w czasie rzeczywistego spalania w silniku ZI, ponieważ są to wartości znacznie poniżej temperatury wymaganej do zapłonu mieszanki paliwowo-powietrznej. Niska temperatura w cylindrze prowadzi do nieefektywnego spalania, co skutkuje zwiększeniem emisji spalin oraz obniżeniem mocy silnika. W praktyce, efektywne zarządzanie temperaturą jest kluczowe dla zapewnienia odpowiedniej wydajności i minimalizacji wpływu na środowisko, zatem zrozumienie procesów zachodzących w silniku jest fundamentalne dla inżynierów i techników zajmujących się projektowaniem i optymalizacją układów napędowych.

Pytanie 38

W jakiej sekwencji powinno się dokręcać śruby trzymające głowicę silnika?

A. Kolejno, zaczynając od strony rozrządu
B. Od lewej do prawej
C. W dowolnej sekwencji
D. Zgodnie z instrukcjami producenta silnika
Dokręcanie śrub mocujących głowicę silnika zgodnie z zaleceniami producenta jest kluczowe dla zapewnienia odpowiedniej szczelności i stabilności jednostki napędowej. Każdy silnik może mieć specyficzne wymagania dotyczące momentu obrotowego oraz kolejności dokręcania, co jest zazwyczaj określone w dokumentacji technicznej. Zastosowanie się do tych zaleceń pozwala na równomierne rozłożenie naprężeń na śrubach, co zminimalizuje ryzyko ich uszkodzenia oraz ewentualnych nieszczelności. Przykładowo, w silnikach z głowicą aluminiową często stosuje się sekwencyjne dokręcanie, aby uniknąć odkształceń materiału. Ignorowanie tych zasad może prowadzić do poważnych awarii, takich jak uszkodzenie uszczelki pod głowicą, co z kolei generuje wysokie koszty naprawy. Dlatego zawsze należy konsultować się z instrukcją serwisową i stosować odpowiednie narzędzia, aby zapewnić, że śruby są dokręcone zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 39

Termin DOHC odnosi się do układu

A. dolnozaworowego z jednym wałkiem rozrządu w kadłubie
B. górnozaworowego z pojedynczym wałkiem rozrządu w głowicy
C. górnozaworowego z jednym wałkiem rozrządu umieszczonym w kadłubie
D. górnozaworowego z dwoma wałkami rozrządu zainstalowanymi w głowicy
Odpowiedź, że DOHC oznacza górnozaworowy układ z dwoma wałkami rozrządu w głowicy, jest prawidłowa. Skrót DOHC pochodzi od angielskiego 'Dual Overhead Camshaft', co dosłownie oznacza 'podwójny wałek rozrządu w górze'. Taki układ rozrządu pozwala na bardziej precyzyjne sterowanie procesem otwierania i zamykania zaworów, co wpływa na lepsze osiągi silnika, zarówno w zakresie mocy, jak i efektywności paliwowej. Zastosowanie dwóch wałków rozrządu umożliwia jednoczesne działanie na zawory dolotowe i wydechowe, co zwiększa przepływ powietrza do komory spalania oraz poprawia odprowadzanie spalin. Przykładem zastosowania DOHC są silniki w samochodach sportowych i wyższej klasy, gdzie optymalizacja osiągów silnika jest kluczowa. W branży motoryzacyjnej standardem staje się także wzbogacenie układów rozrządu o systemy zmiennych faz rozrządu, co further enhances the performance of DOHC engines in practical applications, emphasizing their growing importance in modern automotive engineering.

Pytanie 40

Producent wskazuje, że luz zaworowy powinien wynosić:
- zawory dolotowe 0,2á3,25 mm
- zawory wylotowe 0,25á0,3 mm
W trakcie inspekcji układu rozrządu uzyskano następujące wyniki pomiaru luzu zaworowego:
- zawory dolotowe 0,15á0,40 mm
- zawory wylotowe 0,1á0,3 mm

Uzyskane wyniki sugerują, że

A. luz zaworów dolotowych oraz wylotowych jest nieprawidłowy
B. luz jedynie zaworów wylotowych jest prawidłowy
C. luz jedynie zaworów dolotowych jest prawidłowy
D. luz zaworów dolotowych oraz wylotowych jest prawidłowy
Odpowiedź jest prawidłowa, ponieważ luz zaworowy zarówno dla zaworów dolotowych, jak i wylotowych nie mieści się w określonych przez producenta normach. Producent zaleca luz dolotowy w przedziale 0,2-3,25 mm oraz luz wylotowy w zakresie 0,25-0,3 mm. Mierząc luz dolotowy, uzyskano wartości od 0,15 do 0,40 mm, co wskazuje, że w jednym z pomiarów luz jest zbyt niski, a w drugim zbyt wysoki. W przypadku zaworów wylotowych, wartości od 0,1 do 0,3 mm również nie są zgodne z zaleceniem, ponieważ jeden z pomiarów wskazuje na luz poniżej wymaganego minimum. Niewłaściwe wartości luzu mogą prowadzić do problemów z pracą silnika, w tym do spadku mocy, wzrostu zużycia paliwa, a nawet uszkodzenia komponentów układu rozrządu. Dlatego kluczowe jest regularne kontrolowanie luzu zaworowego, aby zapewnić prawidłową pracę silnika oraz jego długowieczność.