Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 30 maja 2025 12:40
  • Data zakończenia: 30 maja 2025 12:52

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyłącznik nadprądowy dwubiegunowy.
B. Czujnik zaniku i kolejności faz.
C. Ogranicznik przepięć.
D. Wyłącznik różnicowoprądowy z członem nadprądowym.
Wyłącznik różnicowoprądowy z członem nadprądowym to urządzenie o kluczowym znaczeniu w systemach elektroenergetycznych, które zapewnia zarówno ochronę przed przeciążeniem, jak i przed porażeniem prądem elektrycznym. Jego charakterystyczne oznaczenia i symbole na obudowie pozwalają na łatwe zidentyfikowanie go wśród innych urządzeń elektrycznych. W praktyce, wyłączniki różnicowoprądowe z członem nadprądowym są często stosowane w instalacjach domowych oraz przemysłowych, gdzie zabezpieczają przed skutkami zwarć i przeciążeń. Zgodnie z normami PN-EN 61008 oraz PN-EN 60947, urządzenia te powinny być stosowane w obwodach, gdzie istnieje ryzyko porażenia prądem, zwłaszcza w pomieszczeniach wilgotnych, jak łazienki czy kuchnie. Regularne testowanie tych wyłączników jest kluczowe dla zapewnienia ich skuteczności. Dobrą praktyką jest również ich instalacja w obwodach, gdzie zasilane są urządzenia o dużym poborze mocy, co minimalizuje ryzyko uszkodzenia sprzętu i zapewnia bezpieczeństwo użytkowników.

Pytanie 2

Jakie czynności nie są częścią przeglądów instalacji elektrycznej?

A. pomiarów napięcia oraz rezystancji izolacji
B. oględzin
C. przyjęcia do eksploatacji
D. przeprowadzania konserwacji i napraw
Odpowiedzi dotyczące pomiarów napięć i rezystancji izolacji, konserwacji i napraw oraz oględzin wskazują na istotne aspekty przeglądów instalacji elektrycznej. Przeglądy te mają na celu ocenę stanu technicznego instalacji oraz wykrywanie potencjalnych problemów, które mogą zagrażać bezpieczeństwu użytkowania. Pomiar napięć jest kluczowy, ponieważ pozwala na ocenę poprawności działania instalacji oraz identyfikację ewentualnych spadków napięcia, które mogą wpływać na efektywność działania urządzeń elektrycznych. Rezystancja izolacji jest równie ważna, gdyż niska wartość tego parametru może wskazywać na uszkodzenia izolacji, co z kolei zwiększa ryzyko porażenia prądem elektrycznym. Konserwacja i naprawa instalacji to działania, które są integralną częścią jej eksploatacji, zapewniającą długoterminowe działanie oraz bezpieczeństwo. Oględziny wizualne pozwalają na szybką identyfikację uszkodzeń, co jest kluczowe dla zapobiegania poważniejszym awariom. Często pojawia się mylne przekonanie, że przyjęcie do eksploatacji jest częścią rutynowych przeglądów, podczas gdy w rzeczywistości jest to oddzielny proces związany z zakończeniem budowy i uruchomieniem nowej instalacji. Różnice te są kluczowe dla zrozumienia cyklu życia instalacji elektrycznej oraz dla zapewnienia, że wszystkie działania są wykonywane zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 3

Korzystając z tabeli obciążalności prądowej przewodów, dobierz przewód o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B20.

Tabela obciążalności prądowej przewodów
Przekrój przewodu mm2Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233

A. YDY 5x2,5 mm2
B. YDY 5x1,5 mm2
C. YADY 5x6 mm2
D. YADY 5x4 mm2
Wybór przewodu YDY 5x2,5 mm2 do trójfazowej instalacji wtynkowej z wyłącznikiem B20 to dobry ruch. Ten przewód ma obciążalność prądową 26A, co spokojnie wystarcza na te 20A, które wymaga zabezpieczenie B20. W praktyce oznacza to, że nie ma ryzyka, że przewód się przegrzeje, a to jest kluczowe dla bezpieczeństwa. Kiedy dobierasz przewody, pamiętaj, żeby zawsze myśleć o maksymalnym obciążeniu, bo to ważne. W trójfazowych instalacjach dobór przewodów musi być starannie przemyślany, żeby zrównoważyć obciążenia na poszczególnych fazach. Fajnie, że bierzesz pod uwagę normy, jak PN-IEC 60364 – to pokazuje, że robisz to odpowiedzialnie. Zwróć też uwagę na czynniki zewnętrzne, takie jak temperatura czy położenie przewodów – mogą one wpłynąć na ich obciążalność.

Pytanie 4

Czy na obudowie urządzenia elektrycznego oznaczenie IP00 wskazuje na

A. najwyższy poziom ochronności
B. zerową klasę ochrony przed porażeniem
C. brak zabezpieczenia przed kurzem i wilgocią
D. stosowanie separacji ochronnej
Wybór odpowiedzi dotyczących separacji ochronnej, zerowej klasy ochronności oraz najwyższego stopnia ochronności oparty jest na mylnym zrozumieniu klasyfikacji IP i jej zastosowania. Separacja ochronna odnosi się do metod stosowanych w budowie urządzeń w celu zapewnienia bezpieczeństwa użytkownika poprzez oddzielenie części pod napięciem od części dostępnych dla użytkownika. W przypadku oznaczenia IP00 nie ma mowy o jakiejkolwiek separacji, gdyż brak jakiejkolwiek ochrony przed pyłem i wodą oznacza, że użytkownik narażony jest na bezpośredni kontakt z potencjalnie niebezpiecznymi komponentami. Zerowa klasa ochronności przed porażeniem to również niepoprawna interpretacja – IP00 nie odnosi się bezpośrednio do porażenia prądem, ale do ochrony mechanicznej i wodnej. W rzeczywistości klasa ochronności przed porażeniem elektrycznym wyrażana jest innymi symbolami, takimi jak klasy I, II, III, które definiują różne poziomy ochrony. Wreszcie, najwyższy stopień ochronności odnosiłby się do oznaczenia IP68 lub wyższego, które wskazuje na wysoką odporność na zanurzenie w wodzie i pył. Pojmowanie oznaczeń IP jest fundamentalne w kontekście bezpieczeństwa i trwałości urządzeń, a błędne interpretacje mogą prowadzić do niewłaściwego użytkowania i poważnych zagrożeń.

Pytanie 5

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SZR
B. SPZ
C. SRN
D. SCO
Odpowiedź SZR (System Zasilania Rezerwowego) jest prawidłowa, ponieważ ten układ jest zaprojektowany do automatycznego przełączania źródeł zasilania w przypadku zaniku zasilania z głównego źródła. Działa on na zasadzie monitorowania napięcia w sieci zasilającej; w momencie wykrycia spadku napięcia lub całkowitego braku zasilania, SZR automatycznie uruchamia rezerwowe źródło zasilania, co zapewnia ciągłość pracy ważnych odbiorników niskiego napięcia, takich jak systemy alarmowe, oświetlenie awaryjne czy urządzenia medyczne. Przykładowo, w szpitalach i centrach danych, gdzie nieprzerwane zasilanie jest kluczowe, SZR eliminuje ryzyko przestojów. Stosowanie SZR jest zgodne z normami PN-EN 50171 oraz PN-EN 62040, które określają wymagania dotyczące systemów zasilania awaryjnego oraz UPS. Dzięki temu, instalacje z SZR nie tylko zwiększają bezpieczeństwo, ale też poprawiają efektywność operacyjną, co jest niezbędne w obiektach o krytycznym znaczeniu.

Pytanie 6

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225

A. 1 - sprawny, 2 - niesprawny.
B. Oba niesprawne.
C. 1 - niesprawny, 2 - sprawny.
D. Oba sprawne.
Oba wyłączniki różnicowoprądowe EFI-2-25/003 są uznawane za sprawne, ponieważ zmierzone prądy różnicowe wynoszą odpowiednio 15 mA oraz 25 mA, co mieści się w zakresie 0,5 ÷ 1 IΔN, gdzie IΔN wynosi 30 mA. Oznacza to, że obydwa wyłączniki działają prawidłowo, co jest zgodne z normami bezpieczeństwa, które zalecają, aby różnicowe prądy zadziałania były w tym zakresie. Przykładem praktycznego zastosowania tych wyłączników może być ochrona ludzi przed porażeniem prądem oraz zabezpieczenie instalacji elektrycznych przed skutkami upływu prądu. Warto również zaznaczyć, że zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe powinny być regularnie testowane, aby zapewnić ich niezawodność, a pomiary powinny być wykonywane przez wykwalifikowany personel. Odpowiednie testowanie pozwala na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznych.

Pytanie 7

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego grzejnika rezystancyjnego o danych znamionowych: Pn = 3 kW, Un = 230 V?

A. gB 20 A
B. gG 16 A
C. aM 20 A
D. aR 16 A
Wkładka topikowa gG 16 A jest odpowiednia dla obwodu jednofazowego grzejnika rezystancyjnego o mocy 3 kW przy napięciu znamionowym 230 V. Obliczając wartość prądu znamionowego, stosujemy wzór: I = P / U, gdzie P to moc, a U to napięcie. W tym przypadku: I = 3000 W / 230 V ≈ 13 A. Wybór wkładki gG 16 A jest uzasadniony, ponieważ jest ona przeznaczona do zabezpieczania obwodów przed przeciążeniem oraz zwarciem, a jej wartość znamionowa (16 A) zapewnia odpowiednią margines dla ewentualnych chwilowych wzrostów prądu, które mogą wystąpić przy rozruchu grzejnika. Zastosowanie wkładek gG w instalacjach domowych jest zgodne z normami IEC 60269, które podkreślają ich właściwości ochronne i dostosowanie do obciążeń rezystancyjnych. W praktyce wkładki gG są często stosowane w systemach zasilania urządzeń grzewczych, co czyni je idealnym wyborem w tym przypadku.

Pytanie 8

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 250 V
B. 2 500 V
C. 500 V
D. 1 000 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 9

Jaką liczbę klawiszy oraz zacisków ma typowy pojedynczy łącznik schodowy?

A. Dwa klawisze i cztery zaciski
B. Dwa klawisze i trzy zaciski
C. Jeden klawisz i cztery zaciski
D. Jeden klawisz i trzy zaciski
Klasyczny pojedynczy łącznik schodowy to urządzenie elektryczne, które służy do włączania i wyłączania oświetlenia w pomieszczeniach. Posiada jeden klawisz, który umożliwia obsługę światła oraz trzy zaciski. Zaciski te są niezbędne do prawidłowego podłączenia łącznika w obwodzie elektrycznym. W typowej konfiguracji, jeden z zacisków jest podłączony do źródła zasilania, a dwa pozostałe do obwodów oświetleniowych, co umożliwia kontrolę oświetlenia z jednego miejsca. Przykładowe zastosowanie to montaż łącznika w korytarzu, gdzie można włączać i wyłączać światło centralne. Zgodnie z normą PN-IEC 60669, stosowanie łączników schodowych powinno zapewniać bezpieczeństwo oraz wygodę użytkowania. Właściwe zrozumienie budowy łącznika pozwala na jego efektywne wykorzystanie w instalacjach elektrycznych, co jest kluczowe dla zapewnienia prawidłowego działania systemów oświetleniowych.

Pytanie 10

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 2,3 Ω
B. 4,0 Ω
C. 3,8 Ω
D. 6,6 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 11

Jakie urządzenie powinno zastąpić bezpieczniki topikowe 25 A, które chronią obwody silnika trójfazowego?

A. S191B25
B. S193C25
C. S191C25
D. S193B25
Wybór wyłączników S193B25, S191C25 oraz S191B25 do zastąpienia bezpieczników topikowych 25 A w obwodach silnika trójfazowego jest niewłaściwy z kilku powodów. Wyłącznik S193B25, mimo że posiada odpowiedni prąd nominalny, charakteryzuje się inną charakterystyką, co może prowadzić do niewłaściwej reakcji na przeciążenia i zwarcia, nie zapewniając odpowiedniej ochrony dla silnika. Z kolei S191C25 i S191B25 to wyłączniki o charakterystyce B, co oznacza, że ich reakcja na przeciążenia jest zbyt wolna w porównaniu do wymagań dla silników trójfazowych. Silniki te mogą w momencie rozruchu pobierać znacznie wyższy prąd, co powoduje, że wyłączniki o charakterystyce B mogą nie zadziałać w odpowiednim czasie, co prowadzi do ich uszkodzenia. Ponadto, zastosowanie wyłączników o niewłaściwych charakterystykach może skutkować niebezpiecznymi sytuacjami, w tym pożarami lub uszkodzeniem instalacji elektrycznej. Istotnym aspektem jest również fakt, że niektóre z tych wyłączników mogą nie spełniać norm IEC dotyczących ochrony obwodów silnikowych, co zwiększa ryzyko eksploatacyjne. Ważne jest, aby przy wyborze wyłączników kierować się nie tylko prądem nominalnym, ale także ich charakterystyką oraz przeznaczeniem do konkretnego zastosowania, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 12

Jakim z podanych rodzajów przewodów powinno się zasilić jednofazowy ruchomy odbiornik?

A. YDYt 3×1,5 mm2
B. YDY 3×1,5 mm2
C. LGu 3×1,5 mm2
D. OMYp 3×1,5 mm2
OMYp 3×1,5 mm2 to odpowiedni typ przewodu do zasilania jednofazowego odbiornika ruchomego, ponieważ charakteryzuje się on wysoką elastycznością oraz odpornością na uszkodzenia mechaniczne. Przewód OMYp jest stosowany głównie w instalacjach tymczasowych oraz w miejscach, gdzie przewody mogą być narażone na różne warunki atmosferyczne i mechaniczne. Zastosowanie przewodu z gumowym izolowaniem sprawia, że jest on odporny na działanie olejów, smarów oraz substancji chemicznych, co czyni go idealnym rozwiązaniem w przemyśle oraz w różnych aplikacjach budowlanych. W praktyce, przewody OMYp są stosowane w zasilaniu maszyn, urządzeń elektrycznych oraz narzędzi, które są używane w ruchu. Dodatkowo, zgodnie z normą PN-EN 50525-2-21, przewody te muszą spełniać określone wymagania dotyczące bezpieczeństwa i funkcjonalności, co podkreśla ich niezawodność w zastosowaniach wymagających mobilności.

Pytanie 13

Do czynności związanych z oględzinami instalacji elektrycznej nie należy

A. ocena dostępności urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
B. pomiar rezystancji uziemienia
C. sprawdzenie prawidłowości oznaczeń przewodów neutralnych oraz ochronnych
D. weryfikacja oznaczeń obwodów oraz zabezpieczeń
Pomiar rezystancji uziemienia jest kluczowym procesem, który ma na celu zapewnienie odpowiedniej ochrony przed skutkami piorunów i zakłóceń elektrycznych. Uziemienie jest istotnym elementem w instalacjach elektrycznych, który chroni urządzenia oraz osoby przed niebezpieczeństwami związanymi z przepięciami oraz zwarciami. Odpowiednia rezystancja uziemienia powinna być zgodna z normami, takimi jak PN-IEC 60364, które zalecają, aby wartość rezystancji uziemienia nie przekraczała 10 Ω dla urządzeń w warunkach normalnych. W praktyce, pomiar ten może być przeprowadzany przy użyciu specjalistycznych urządzeń, takich jak mierniki rezystancji uziemienia, które pozwalają na szybkie i dokładne określenie wartości rezystancji. Właściwe wykonanie tego pomiaru jest niezbędne do zapewnienia bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznej. Przykładowo, w budynkach użyteczności publicznej, takich jak szpitale czy szkoły, regularne pomiary rezystancji uziemienia są wymagane przynajmniej raz w roku w celu spełnienia norm bezpieczeństwa.

Pytanie 14

Jakiego łącznika używa się do zarządzania oświetleniem w klatce schodowej przy zastosowaniu automatu schodowego?

A. Hotelowego
B. Krzyżowego
C. Dzwonkowego
D. Schodowego
Wybór innych łączników do sterowania oświetleniem w klatkach schodowych może prowadzić do nieefektywnych i niewygodnych rozwiązań. Łącznik krzyżowy jest stosowany do sterowania jednym źródłem światła z wielu lokalizacji, co w kontekście klatki schodowej może być w niektórych przypadkach niewłaściwe, jeśli nie ma potrzeby włączania i wyłączania światła w różnych punktach. Użycie łącznika krzyżowego bez odpowiedniego zaplanowania może prowadzić do komplikacji w obwodzie i potencjalnych problemów z działaniem. Łącznik hotelowy, z kolei, jest przeznaczony do specyficznych instalacji w hotelach, gdzie goście mogą korzystać z różnych źródeł światła w pokojach, bez możliwości sterowania ogólnym oświetleniem korytarza. Taki system nie jest dedykowany do standardowego użytku w domach lub budynkach mieszkalnych, co czyni go mniej praktycznym wyborem dla klatki schodowej. Warto również zauważyć, że łącznik dzwonkowy charakteryzuje się inną funkcjonalnością i skutecznością, co jest kluczowe w sytuacjach, gdzie oświetlenie powinno być włączane i wyłączane szybko i efektywnie, np. podczas wchodzenia lub wychodzenia z klatki schodowej. Myląc zastosowanie tych łączników, można łatwo stworzyć nieprzyjazne i niepraktyczne warunki użytkowania, co z pewnością wpłynie na komfort i bezpieczeństwo użytkowników.

Pytanie 15

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. przeciążenie
B. przepięcie
C. uszkodzenie przewodu
D. upływ prądu
Przyciśnięcie przycisku TEST na wyłączniku różnicowoprądowym nie symuluje przeciążenia, ponieważ przeciążenie związane jest z sytuacją, w której obciążenie prądowe przewyższa maksymalne dopuszczalne wartości dla danego obwodu. W takich sytuacjach działają zabezpieczenia nadprądowe, takie jak bezpieczniki lub wyłączniki automatyczne, które mają za zadanie przerwać obwód, aby zapobiec przegrzaniu przewodów i potencjalnym pożarom. Wciśniecie przycisku TEST nie dotyczy również przepięcia, które jest skutkiem nagłych wzrostów napięcia, na przykład podczas wyładowań atmosferycznych. Przepięcia są zazwyczaj niwelowane przez urządzenia ochronne, takie jak ograniczniki przepięć, a nie przez wyłączniki różnicowoprądowe. Wreszcie, wciśnięcie przycisku TEST nie dotyczy przerwy przewodu, co jest sytuacją, w której prąd nie przepływa w obwodzie z powodu uszkodzenia przewodu. Tego rodzaju problem nie jest związany z funkcją różnicowoprądową, ponieważ RCD działa na podstawie różnicy prądów między przewodami fazowymi a neutralnym, a nie na podstawie ich ciągłości. Zrozumienie tych różnic jest kluczowe dla prawidłowego użytkowania i ochrony instalacji elektrycznych.

Pytanie 16

Co powoduje zwęglenie izolacji na końcu przewodu fazowego blisko zacisku w puszce rozgałęźnej?

A. Zbyt mały przekrój użytego przewodu
B. Wzrost napięcia zasilającego spowodowany przepięciem
C. Zbyt wysoka wartość prądu długotrwałego
D. Poluzowanie śruby mocującej w puszce
Zbyt duża wartość prądu długotrwałego jest często mylnie postrzegana jako główna przyczyna uszkodzeń instalacji elektrycznych. W rzeczywistości, przewody są projektowane z odpowiednimi normami i tolerancjami, które uwzględniają różne wartości prądu, a ich nadmierne obciążenie występuje w przypadkach, gdy przewody są nieodpowiednio dobrane do zastosowania. Kolejnym błędnym wnioskiem jest za mały przekrój zastosowanego przewodu. W przypadku, gdy przewód jest zbyt cienki, nie jest to jedyna przyczyna uszkodzenia izolacji. W rzeczywistości, nawet przewody o odpowiednim przekroju mogą ulegać uszkodzeniom, jeśli nie są prawidłowo zamocowane lub jeżeli występują inne problemy techniczne. Wzrost napięcia zasilającego spowodowany przepięciem również jest rzadziej przyczyną zwęglenia, ponieważ większość instalacji jest wyposażona w odpowiednie zabezpieczenia, które mają na celu ochronę przed takimi sytuacjami. Zrozumienie właściwego kontekstu dla tych problemów jest kluczowe w zapobieganiu ich występowaniu. Często błędne wnioski opierają się na braku zrozumienia zasad działania instalacji elektrycznych oraz ich projektowania zgodnie z normami. Dlatego istotne jest, aby osoby zajmujące się instalacjami elektrycznymi były dobrze wykształcone i miały świadomość znaczenia odpowiednich praktyk w ich pracy.

Pytanie 17

Który element stosowany do sterowania w domowej instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Regulator oświetlenia.
B. Przekaźnik priorytetowy.
C. Przekaźnik bistabilny.
D. Sterownik rolet.
Przekaźnik priorytetowy, który został przedstawiony na rysunku, jest kluczowym elementem w nowoczesnych systemach automatyki budynkowej. Oznaczenie "PR-612" jednoznacznie wskazuje na ten typ urządzenia, które jest zaprojektowane do zarządzania priorytetami w zasilaniu różnych obwodów elektrycznych. W praktyce przekaźniki priorytetowe są wykorzystywane w sytuacjach, gdzie istnieje potrzeba zarządzania zasilaniem w sposób inteligentny, na przykład w przypadku awarii zasilania lub w celu oszczędności energii. Działają one na zasadzie automatycznego przełączania źródła zasilania na urządzenia o wyższym priorytecie, co zapewnia ciągłość pracy najważniejszych systemów w budynku. Zastosowanie przekaźników priorytetowych jest zgodne z normami EN 61000-3-2 dotyczącymi ograniczeń emisji harmonicznych dla urządzeń elektrycznych oraz IEC 61131-2, która reguluje normy dla urządzeń automatyki. Dzięki zastosowaniu tych elementów, można tworzyć bardziej efektywne i bezpieczne systemy zarządzania energią w budynkach.

Pytanie 18

Do czego przeznaczone są kleszcze przedstawione na ilustracji?

Ilustracja do pytania
A. Do montażu zacisków zakleszczających.
B. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
C. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
D. Do formowania oczek na końcach żył jednodrutowych.
Te kleszcze, co są na obrazku, to narzędzie do robienia oczek na końcach żyłek, które mają tylko jeden drut. Mają takie stożkowe szczęki, które fajnie pozwalają wyprofilować drut, żeby dobrze się łączył z innymi częściami instalacji elektrycznej. Można je zobaczyć w akcji tam, gdzie trzeba zrobić mocne i trwałe połączenia, co jest ważne zarówno w przemyśle, jak i w domach. Te oczka pomagają przyczepić przewody do zacisków, a to jest zgodne z normami, które mówią, jak to wszystko powinno być robione, żeby było bezpiecznie i trwale. Dobrze używać takich narzędzi, bo w przeciwnym razie można łatwo uszkodzić drut. Gdy dobrze uformujemy drut kleszczami, zmniejszamy ryzyko zwarć i innych problemów technicznych, co ma duże znaczenie, gdy pracuje się z elektryką.

Pytanie 19

W trakcie korzystania z instalacji elektrycznej często dochodzi do zadziałania wyłącznika różnicowoprądowego. Jakie mogą być przyczyny tej usterki?

A. Częściowe zwarcie w instalacji elektrycznej pomiędzy przewodem L a PE
B. Zwarcie w instalacji elektrycznej pomiędzy przewodem L a N
C. Użycie wyłącznika o zbyt długim czasie reakcji
D. Wykorzystywanie urządzeń o zbyt dużej mocy
Długi czas działania wyłącznika nie jest główną przyczyną częstego zadziałania RCD. Wyłączniki różnicowoprądowe są tak skonstruowane, żeby działały w określonym czasie, kiedy wykryją problemy z prądem upływowym. Więc długi czas zadziałania bardziej może dotyczyć innych zabezpieczeń, jak wyłączniki nadprądowe, które mają swoje własne parametry. Zwarcie między przewodem L a N w ogóle nie powoduje zadziałania RCD, bo nie wytwarza prądu upływowego do ziemi, co jest kluczowe do aktywacji RCD. Również używanie urządzeń o zbyt dużej mocy nie ma związku, bo RCD nie reaguje na przeciążenie, tylko na różnice w prądzie. Często błędne rozumowanie prowadzi do mylenia funkcji różnych zabezpieczeń elektrycznych i braku połączenia między rodzajem zwarcia a reakcją RCD, co może prowadzić do niewłaściwej diagnostyki i realnych zagrożeń.

Pytanie 20

W jakiej jednostce miary określa się moment obrotowy, który należy zastosować przy dokręcaniu śrub w urządzeniach elektrycznych?

A. Nˑm
B. Pa
C. kg
D. kgˑm2
Moment siły, znany również jako moment obrotowy, jest miarą siły, która powoduje obrót ciała wokół osi. Jednostką momentu siły w międzynarodowym układzie jednostek SI jest niutonometr (N·m). W kontekście dokręcania zacisków śrubowych aparatów elektrycznych, używanie odpowiedniego momentu siły jest kluczowe, aby zapewnić prawidłowe i bezpieczne połączenie elektryczne. Zbyt mały moment może prowadzić do luzów, co z kolei może skutkować przerwaniem kontaktu elektrycznego, a zbyt duży moment może spowodować uszkodzenie śrub lub elementów, które są łączone. W praktyce, producenci sprzętu często podają zalecany moment dokręcania w instrukcjach obsługi, co może być wzorem do naśladowania w codziennym użytkowaniu. Stosowanie momentu siły w N·m jest również zgodne z normami branżowymi, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa i niezawodności w instalacjach elektrycznych.

Pytanie 21

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. omomierza oraz woltomierza
B. woltomierza i amperomierza
C. omomierza i amperomierza
D. watomierza oraz woltomierza
Podczas analizy błędnych odpowiedzi warto zauważyć, że pomiar rezystancji nie może być prawidłowo przeprowadzony wyłącznie za pomocą omomierza i woltomierza, ani tym bardziej wykorzystując watomierz. Omomierz jest narzędziem specjalistycznym przeznaczonym do bezpośredniego pomiaru rezystancji, jednak nie jest on wystarczający, aby uzyskać dokładne wyniki w przypadku bardziej skomplikowanych układów elektrycznych, gdzie istotne są zarówno napięcie, jak i prąd. Z kolei amperomierz sam w sobie nie mierzy rezystancji, lecz natężenie prądu, co w praktyce nie pozwala na bezpośrednie określenie wartości rezystancji bez znajomości napięcia. Wykorzystanie watomierza, który mierzy moc, również nie ma zastosowania w kontekście pomiarów rezystancji, ponieważ nie umożliwia obliczenia wartości R. Typowym błędem myślowym jest przeświadczenie, że jakiekolwiek urządzenie pomiarowe związane z elektrycznością może być użyteczne do pomiaru rezystancji, co jest mylnym rozumieniem zasady działania tych narzędzi. Aby uzyskać prawidłowe wyniki, niezbędne jest zrozumienie podstawowych zasad dotyczących relacji między napięciem, prądem i rezystancją oraz znajomość odpowiednich narzędzi do ich pomiaru.

Pytanie 22

Zgodnie z PN-IEC 60364-4-41:2000, maksymalny dozwolony czas wyłączenia w systemach typu TN przy napięciu zasilania 230 V wynosi

A. 0,2 s
B. 0,1 s
C. 0,8 s
D. 0,4 s
Wielu specjalistów może mieć trudności z ustaleniem prawidłowego maksymalnego czasu wyłączenia w układach sieci typu TN, co prowadzi do wyboru nieodpowiednich odpowiedzi. Na przykład, wybór 0,1 s jako maksymalnego czasu wyłączenia może wynikać z nieporozumienia dotyczącego typowych wartości stosowanych w różnych instalacjach elektrycznych. W rzeczywistości, czas ten jest zbyt krótki, by mógł być stosowany w standardowych warunkach użytkowych. Zbyt szybkie wyłączenie może nie pozwolić na prawidłowe działanie urządzeń zabezpieczających, co z kolei naraża na ryzyko zarówno użytkowników, jak i same instalacje. Z kolei 0,2 s oraz 0,8 s również są błędnymi wartościami, ponieważ nie odpowiadają wymaganiom normy, która została opracowana na podstawie analiz ryzyka i doświadczeń w zakresie ochrony przed porażeniem prądem elektrycznym. Czas 0,2 s może prowadzić do sytuacji, w których niebezpieczne napięcie utrzymuje się zbyt długo, a 0,8 s nie zapewnia wystarczającej ochrony. W praktyce, wartością 0,4 s uznano kompromis pomiędzy efektywnością działania zabezpieczeń a bezpieczeństwem użytkowników, co czyni tę wiedzę kluczową dla osób zajmujących się projektowaniem i nadzorem nad instalacjami elektrycznymi.

Pytanie 23

Jaka jest znamionowa efektywność silnika trójfazowego, jeśli P = 2,2 kW (mocy mechanicznej), UN = 400 V, IN = 4,6 A oraz cos φ = 0,82?

A. 0,84
B. 0,69
C. 0,39
D. 0,49
Znamionowa sprawność silnika trójfazowego obliczana jest na podstawie stosunku mocy mechanicznej do mocy czynnej dostarczonej do silnika. W tym przypadku, moc mechaniczna wynosi 2,2 kW, a moc czynna można obliczyć z wzoru: P = U * I * √3 * cos φ, gdzie U to napięcie, I to prąd, a cos φ to współczynnik mocy. Podstawiając dane: P = 400 V * 4,6 A * √3 * 0,82, otrzymujemy moc czynną równą około 2,63 kW. Następnie sprawność obliczamy jako: η = P_moc / P_czynna = 2,2 kW / 2,63 kW, co daje wartość około 0,84. W praktyce, znajomość sprawności silników elektrycznych jest kluczowa w doborze odpowiednich jednostek napędowych do maszyn i urządzeń, a także w ocenie efektywności energetycznej systemów. Standardy takie jak IEC 60034-30 definiują klasy sprawności dla silników elektrycznych, co pozwala na ich porównywanie i wybór najbardziej efektywnych rozwiązań.

Pytanie 24

Kierunek rotacji wirnika silnika elektrycznego ustala się, obserwując jego wał z perspektywy

A. czopu
B. tabliczki znamionowej
C. wprowadzenia przewodu zasilającego
D. przewietrznika
Kierunek obrotów wirnika silnika elektrycznego określa się patrząc na jego wał od strony czopu, ponieważ jest to standardowa praktyka w inżynierii elektrycznej. Patrzenie z tej strony pozwala na jednoznaczne ustalenie, czy wirnik obraca się w prawo czy w lewo. W przypadku urządzeń napędzanych elektrycznie, znanie kierunku obrotów wirnika jest kluczowe dla prawidłowego działania systemu, ponieważ wpływa na wydajność i bezpieczeństwo całej instalacji. Wiele urządzeń, takich jak pompy czy wentylatory, jest zaprojektowanych do działania w określonym kierunku, a ich niewłaściwe zainstalowanie może prowadzić do uszkodzeń czy zmniejszenia efektywności. Dobrym przykładem jest zastosowanie silników w aplikacjach przemysłowych, gdzie niewłaściwy kierunek obrotów może skutkować nieprawidłowym działaniem maszyn. W związku z tym, podczas instalacji i konserwacji urządzeń elektrycznych, istotne jest przypilnowanie, aby kierunek obrotów był sprawdzany w odpowiedni sposób, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 25

Który z podanych materiałów charakteryzuje się najniższą rezystywnością?

A. Aluminium
B. Nichrom
C. Stal
D. Miedź
Miedź to materiał o wyjątkowo niskiej rezystywności, wynoszącej około 1.68 µΩ·m w temperaturze 20°C. Dzięki temu jest szeroko stosowana w aplikacjach elektrycznych, takich jak przewody, złączki i komponenty elektroniczne. Wysoka przewodność miedzi sprawia, że jest idealnym wyborem w sytuacjach, gdzie minimalizacja strat energii jest kluczowa. Przykładem może być wykorzystanie miedzi w instalacjach elektrycznych w budynkach mieszkalnych oraz w przemyśle motoryzacyjnym, gdzie przewody miedziane są standardem. Inne materiały, takie jak aluminium, mają wyższą rezystywność, co wpływa na zwiększenie strat energii w systemach elektrycznych. W praktyce, miedź jest również preferowana w zastosowaniach wymagających dużej odporności na korozję oraz wysokiej trwałości, co czyni ją materiałem pierwszego wyboru w wielu normach branżowych dotyczących elektryczności i elektroniki.

Pytanie 26

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
B. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
C. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
D. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 27

Jaką maksymalną wartość impedancji pętli zwarcia powinien mieć obwód o napięciu 230/400 V, aby wyłącznik instalacyjny nadprądowy C10 mógł skutecznie zapewnić ochronę przed porażeniem?

A. 4,6 Ω
B. 0,4 Ω
C. 2,3 Ω
D. 7,7 Ω
Jeśli chodzi o odpowiedzi, które mówią, że maksymalna wartość impedancji pętli zwarcia to 0,4 Ω, 7,7 Ω czy 4,6 Ω, to niestety, to nie jest dobre podejście. Ta pierwsza wartość, 0,4 Ω, jest zdecydowanie za mała. W praktyce, tak niski poziom nie jest potrzebny dla systemów z wyłącznikami nadprądowymi. Taki wynik by znaczył, że nawet niewielkie napięcie mogłoby wyzwolić zabezpieczenia, a to nie jest ani realne, ani praktyczne. Potem mamy 7,7 Ω i 4,6 Ω, które są już poza dopuszczalnym poziomem. To przekłada się na to, że wyłącznik będzie działał za wolno, a przy poważnych zwarciach może być naprawdę niebezpiecznie. Ważne jest, żeby zrozumieć, że wyłączniki nadprądowe trzeba zaprojektować tak, by reagowały w określonym czasie, a to jest ściśle związane z impedancją pętli zwarcia. Jak ta wartość jest za wysoka, to ochrona przed porażeniem elektrycznym jest słaba, a to niezgodne z zasadami bezpieczeństwa. Taka sytuacja może sprawić, że system nie zadziała jak trzeba w razie zagrożenia elektrycznego, a to zdecydowanie nie jest dobra praktyka.

Pytanie 28

Jakie narzędzia powinny być zastosowane przy trasowaniu instalacji elektrycznej w ścianach w pomieszczeniach mieszkalnych?

A. Ołówek, miarka taśmowa, kleszcze monterskie, młotek
B. Poziomnica, kleszcze monterskie, zestaw wkrętaków, młotek
C. Ołówek, poziomnica, miarka taśmowa, sznurek traserski
D. Zestaw wkrętaków, kleszcze monterskie, sznurek traserski, młotek
Każda z alternatywnych odpowiedzi zawiera narzędzia, które w pewnym zakresie mogą być pomocne w pracach budowlanych, jednak nie są one odpowiednimi wyborami do trasowania instalacji elektrycznej podtynkowej. Poziomnica i przymiar taśmowy to narzędzia, które umożliwiają precyzyjne pomiary i kontrolę poziomu, jednak w zestawie, który nie zawiera ołówka i sznurka traserskiego, brakuje kluczowych narzędzi do efektywnego trasowania. Użycie kleszczy monterskich oraz młotka, choć istotnych w innych aspektach montażu, nie jest przydatne w procesie trasowania, gdzie wymagana jest precyzja i dokładność. Wybierając zestaw narzędzi, ważne jest, aby unikać narzędzi, które nie wpisują się w specyfikę danego zadania, na przykład młotek, który w kontekście trasowania może prowadzić do uszkodzeń ścian i nieprecyzyjnych oznaczeń. Często pojawia się mylne przekonanie, że bardziej złożony zestaw narzędzi z większą ilością funkcji będzie lepszy, podczas gdy kluczem do sukcesu w trasowaniu jest prostota i precyzja. Wybierając odpowiednie narzędzia, należy kierować się ich funkcją i zastosowaniem w konkretnych zadaniach, aby zapewnić efektywność i bezpieczeństwo wykonywanych prac.

Pytanie 29

Która z podanych czynności jest częścią inspekcji wirnika maszyny komutatorowej?

A. Weryfikacja stanu szczelin komutatora
B. Kontrola braku zwarć międzyzwojowych
C. Wyważenie
D. Pomiar oporu izolacji
Sprawdzenie stanu wycinków komutatora jest kluczowym elementem oględzin wirnika maszyny komutatorowej. Wycinki komutatora, które są wykonane najczęściej z miedzi, muszą być w dobrym stanie, aby zapewnić prawidłowe przewodzenie prądu i minimalizować straty energii. Ich uszkodzenie, zarysowania czy pęknięcia mogą prowadzić do poważnych problemów, takich jak przegrzewanie się wirnika, co z kolei może skutkować uszkodzeniem całej maszyny. W praktyce należy zwrócić uwagę na bliskość wycinków, ich stopień zużycia oraz jakiekolwiek osady czy zanieczyszczenia, które mogą wpływać na działanie komutatora. Regularne oględziny stanu wycinków komutatora są zalecane w ramach okresowych przeglądów technicznych, co jest zgodne z dobrą praktyką w utrzymaniu ruchu i zaleceniami producentów. Dzięki tym kontrolom można zapobiec awariom, które mogą prowadzić do przestojów w pracy maszyny oraz generować dodatkowe koszty związane z naprawami i utratą wydajności.

Pytanie 30

Która z poniższych zasad nie jest zawsze obligatoryjna w trakcie serwisowania i konserwacji instalacji elektrycznych o napięciu do 1 kV?

A. Każde prace remontowe powinny być prowadzone po odłączeniu napięcia
B. Wszelkie prace można wykonywać jedynie w obecności osoby asekurującej
C. Pod napięciem wolno wymieniać tylko bezpieczniki lub żarówki (świetlówki) w nienaruszonej oprawie
D. Pomiary i próby można realizować bez wyłączania napięcia, o ile zastosuje się odpowiednie środki ochrony
Odpowiedź wskazująca, że wszelkie prace można wykonywać tylko w obecności osoby asekurującej, jest poprawna, ponieważ nie jest to zasada bezwzględnie obowiązująca w przypadku instalacji elektrycznych o napięciu znamionowym do 1 kV. Prace konserwacyjne i naprawcze mogą być wykonywane samodzielnie, pod warunkiem, że zastosowane zostaną odpowiednie środki zabezpieczające, takie jak stosowanie narzędzi izolowanych, odzieży ochronnej i przestrzeganie procedur bezpieczeństwa. Rola osoby asekurującej staje się kluczowa w bardziej niebezpiecznych warunkach, na przykład podczas pracy na wysokości, ale dla prostych prac w obrębie instalacji, nie jest to wymóg. W praktyce, przy zachowaniu ostrożności i zastosowaniu właściwych środków, technicy mogą wykonywać podstawowe naprawy, takie jak wymiana bezpieczników czy żarówek, bez nadzoru innej osoby, co przyspiesza procesy naprawcze i zwiększa efektywność pracy. Ważne jest, aby przed przystąpieniem do jakichkolwiek prac upewnić się, że zna się zasady BHP oraz normy PN-IEC 60364 dotyczące instalacji elektrycznych. Właściwe podejście do bezpieczeństwa i eksploatacji instalacji elektrycznych ma kluczowe znaczenie dla minimalizacji ryzyka wypadków.

Pytanie 31

Jaką z poniższych wkładek bezpiecznikowych powinno się zastosować w celu zabezpieczenia przewodów przed skutkami zwarć oraz przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aM 20 A
B. aM 16 A
C. gG 16 A
D. gG 20 A
Wybór wkładki bezpiecznikowej gG 16 A do zabezpieczenia obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V jest uzasadniony z kilku powodów. Po pierwsze, moc bojlera wynosząca 3 kW przy 230 V generuje prąd znamionowy równy około 13 A (obliczane według wzoru I = P/U). W tym przypadku wkładka gG, zaprojektowana do ochrony przewodów przed przeciążeniem i zwarciem, jest odpowiednia, gdyż może wytrzymać chwilowe przeciążenia, jakie mogą wystąpić podczas rozruchu bojlera. Ponadto, wkładki gG mają charakterystykę czasowo-prądową, co oznacza, że mogą tolerować krótkotrwałe przeciążenia, co czyni je idealnym wyborem w aplikacjach, gdzie występują takie zjawiska. Stosowanie wkładek aM, które są bardziej przystosowane do ochrony obwodów silnikowych, nie jest wskazane w tym przypadku, ponieważ ich charakterystyka nie jest optymalna do zabezpieczenia obwodu grzewczego. W praktyce, dobór wkładek bezpiecznikowych powinien opierać się na analizie specyfiki obciążenia oraz na standardach takich jak PN-EN 60269, które definiują wymagania dla wkładek bezpiecznikowych. Dlatego wkładka gG 16 A jest najlepszym wyborem dla tego zastosowania.

Pytanie 32

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. brak podłączenia dwóch faz
B. brak podłączenia jednej fazy
C. zamiana dwóch faz miejscami
D. zamiana jednej fazy z przewodem neutralnym
Zamiana dwóch faz między sobą jest kluczowym zjawiskiem w trójfazowych układach zasilania, które wpływa na kierunek obrotów silników asynchronicznych. W przypadku silników trójfazowych, kierunek ich obrotów można zmieniać poprzez zamianę miejscami dwóch dowolnych faz zasilających. W praktyce, jeśli podłączymy fazy w inny sposób, silnik zacznie obracać się w przeciwną stronę, co można zaobserwować w przypadku hydroforów, które są często używane do pompowania wody w różnych aplikacjach domowych. W takiej sytuacji, ważne jest, aby zwracać uwagę na prawidłowe oznaczenia faz oraz standardy instalacyjne, które powinny być przestrzegane dla zapewnienia prawidłowego działania urządzeń. Przykładem zastosowania tej wiedzy jest również sytuacja, gdy wykonujemy konserwację instalacji elektrycznej, w której zmieniamy przyłącze, co może prowadzić do niezamierzonych skutków, takich jak zmiana kierunku obrotów silnika. Dlatego ważne jest, aby zawsze upewnić się, że połączenia faz są zgodne z dokumentacją oraz zaleceniami producentów urządzeń.

Pytanie 33

Zakres działania wyzwalaczy elektromagnetycznych w instalacyjnych wyłącznikach nadprądowych dla charakterystyki C mieści się w przedziale

A. 3-5 krotności prądu znamionowego
B. 1-20 krotności prądu znamionowego
C. 5-10 krotności prądu znamionowego
D. 20-30 krotności prądu znamionowego
Pytanie dotyczące zakresu działania wyzwalaczy elektromagnetycznych wyłączników instalacyjnych nadprądowych dla charakterystyki C jest istotne dla zrozumienia właściwości tych urządzeń. Odpowiedzi, które sugerują zakresy takie jak "20-30 krotności prądu znamionowego", "3-5 krotności prądu znamionowego" oraz "1-20 krotności prądu znamionowego", nie są zgodne z rzeczywistymi charakterystykami tych wyłączników. Wyłączniki nadprądowe charakteryzujące się charakterystyką C są stworzone do ochrony przed krótkimi spięciami oraz przeciążeniami, które mogą wystąpić w typowych aplikacjach, takich jak silniki elektryczne. Zakres 20-30 krotności jest zbyt wysoki i nieodpowiedni dla standardowych aplikacji, co może prowadzić do niepożądanych skutków, takich jak opóźniona reakcja na rzeczywiste zagrożenia. Odpowiedzi 3-5 krotności oraz 1-20 krotności również nie są właściwe, gdyż wyłączniki C są zaprojektowane do działania w bardziej specyficznym zakresie, który gwarantuje zarówno odpowiednią ochronę, jak i możliwość pracy w warunkach normalnych. W praktyce, wybór niewłaściwego zakresu może skutkować nieefektywną ochroną instalacji, co w skrajnych przypadkach prowadzi do uszkodzenia urządzeń lub nawet pożaru. Dlatego kluczowe jest, aby przy wyborze wyłączników nadprądowych kierować się dokładnymi danymi technicznymi oraz standardami branżowymi, takimi jak PN-EN 60898, które określają wymagania i klasyfikacje dla sprzętu ochronnego w instalacjach elektrycznych.

Pytanie 34

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Izolator przepustowy wysokiego napięcia.
B. Wkładkę topikową bezpiecznika mocy.
C. Bezpiecznik aparatowy.
D. Izolator wsporczy.
Wkładka topikowa bezpiecznika mocy to kluczowy element zabezpieczający w obwodach elektrycznych, który chroni przed przeciążeniami i zwarciami. Na ilustracji widać charakterystyczne cechy tego komponentu, takie jak metalowe końcówki, które zapewniają dobrą przewodność elektryczną, oraz oznaczenia techniczne, które wskazują na parametry znamionowe wkładki. Wkładki topikowe są stosowane głównie w instalacjach przemysłowych i komercyjnych, gdzie występuje duże ryzyko przeciążeń. Zgodnie z normą IEC 60269, wkładki te powinny być dobierane na podstawie maksymalnego prądu, który może przepływać przez dany obwód, co wymaga precyzyjnego obliczenia. Przykłady zastosowania wkładek topikowych to ochrona silników elektrycznych, transformatorów oraz innych urządzeń, które mogą być narażone na nagłe skoki prądu. Użycie odpowiednich wkładek topikowych jest niezbędne dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych.

Pytanie 35

Którą z wymienionych funkcji posiada przyrząd przedstawiony na ilustracji?

Ilustracja do pytania
A. Sprawdzanie wyłączników różnicowoprądowych.
B. Lokalizacja przewodów pod tynkiem.
C. Pomiar rezystancji uziemienia.
D. Badanie kolejności faz.
Tester wyłączników różnicowoprądowych, który widzisz na ilustracji, odgrywa kluczową rolę w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Jego główną funkcją jest sprawdzanie poprawności działania wyłączników różnicowoprądowych. Te urządzenia zabezpieczające mają na celu ochronę ludzi przed porażeniem prądem elektrycznym, wykrywając nieprawidłowości w przepływie prądu. Tester symuluje różne warunki, takie jak prąd upływowy, co pozwala na weryfikację, czy wyłącznik prawidłowo zareaguje na zagrożenie. W praktyce, regularne testowanie wyłączników różnicowoprądowych jest zalecane zgodnie z normami PN-EN 61010-1 i PN-EN 60947-2, co pomaga w utrzymaniu wysokiego poziomu bezpieczeństwa elektrycznego w budynkach. Warto również pamiętać, że nieprzeprowadzanie takich testów może prowadzić do niebezpiecznych sytuacji, w których uszkodzone lub wadliwe wyłączniki nie zadziałają w przypadku awarii, co stwarza ryzyko porażenia prądem lub pożaru.

Pytanie 36

Elementem końcowym sieci zasilającej, a także punktem początkowym instalacji elektrycznej budynku jest

A. złącze
B. przyłącze
C. rozdzielnica główna
D. wewnętrzna linia zasilająca
Przyłącze jest końcowym elementem sieci zasilającej, który zapewnia połączenie między siecią elektroenergetyczną a instalacją elektryczną obiektu budowlanego. To właśnie przyłącze dostarcza energię elektryczną do budynku, co czyni je kluczowym elementem całej infrastruktury zasilającej. W ramach przyłącza odbywa się nie tylko wprowadzenie energii, ale także realizacja podstawowych funkcji zabezpieczających, takich jak wyłączniki nadprądowe, które chronią instalację przed przeciążeniem. Przykładowo, w budynkach jednorodzinnych przyłącze zazwyczaj składa się z kabla przyłączeniowego, złącza oraz rozdzielnicy, która odpowiada za dalsze rozdzielenie energii do poszczególnych obwodów. W kontekście przepisów, przyłącze musi spełniać normy określone w dokumentach takich jak PN-IEC 60364, które regulują zasady projektowania i wykonania instalacji elektrycznych. Zrozumienie roli przyłącza jest kluczowe dla inżynierów oraz techników zajmujących się projektowaniem i wykonywaniem instalacji elektrycznych.

Pytanie 37

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Oprawkę źródła światła.
B. Wkładkę topikową bezpiecznika.
C. Gniazdo zapłonnika.
D. Wkładkę kalibrową.
Oprawka źródła światła jest kluczowym elementem w instalacjach elektrycznych, umożliwiającym prawidłowe podłączenie i utrzymanie źródła światła, takiego jak żarówka. Jej główną funkcją jest nie tylko mechaniczne wsparcie, ale także zapewnienie odpowiedniej izolacji elektrycznej. Oprawki są projektowane zgodnie z normami, takimi jak PN-EN 60238, które określają wymagania techniczne dla oprawek żarówek. Przykłady zastosowania obejmują różnorodne instalacje oświetleniowe w domach, biurach i zakładach przemysłowych. Warto również zauważyć, że odpowiedni dobór oprawki ma znaczenie dla efektywności energetycznej systemu oświetleniowego, co jest kluczowe w kontekście nowoczesnych standardów zrównoważonego rozwoju. Właściwa instalacja i użytkowanie oprawki przyczyniają się do dłuższej żywotności źródła światła oraz minimalizują ryzyko awarii, co jest istotne w kontekście bezpieczeństwa użytkowników oraz ochrony mienia.

Pytanie 38

Jakiego pomiaru w instalacji należy dokonać, aby zweryfikować podstawową ochronę przed porażeniem prądem?

A. Rezystancji uziemienia
B. Rezystancji izolacji
C. Prądu zadziałania wyłącznika RCD
D. Czasu działania wyłącznika RCD
Mierzenie prądu zadziałania wyłącznika RCD oraz czasu jego zadziałania są istotnymi czynnikami w kontekście ochrony przeciwporażeniowej, ale nie są bezpośrednio związane z pomiarem izolacji. RCD, czyli wyłącznik różnicowoprądowy, ma na celu wykrywanie prądów upływowych, które mogą prowadzić do porażenia prądem, jednak jego skuteczność nie zastępuje pomiaru rezystancji izolacji. Mierzenie rezystancji uziemienia jest również ważne, ponieważ zapewnia dobrą drogę powrotną dla prądu w sytuacji awaryjnej, ale nie dostarcza informacji o stanie izolacji przewodów. Typowym błędem myślowym jest mylenie różnych aspektów ochrony elektrycznej i skupienie się wyłącznie na funkcjonowaniu RCD, co może prowadzić do niepełnego zrozumienia zagadnienia ochrony przeciwporażeniowej. Aby zapewnić pełne bezpieczeństwo, konieczne jest jednoczesne uwzględnienie różnych parametrów instalacji, a nie ograniczanie się tylko do jednego z nich. Dlatego kluczowe jest, aby nie tylko polegać na pomiarach RCD, ale również regularnie kontrolować rezystancję izolacji, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 39

Które z poniższych elementów nie są częścią dokumentacji technicznej urządzeń elektrycznych?

A. Instrukcja obsługi urządzenia
B. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
C. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
D. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
Szczegółowe rysunki techniczne poszczególnych elementów urządzenia nie są częścią dokumentacji technicznej zgodnej z normami branżowymi, które definiują zakres wymaganej dokumentacji. Właściwa dokumentacja techniczna urządzeń elektrycznych powinna obejmować rysunki ogólne oraz schematy obwodów zasilania, które ilustrują ogólną architekturę i funkcjonalność urządzenia. Dodatkowo, instrukcja obsługi jest kluczowym elementem, który zapewnia użytkownikom informacje na temat prawidłowego użytkowania i konserwacji urządzenia. Opis metod eliminacji zagrożeń jest również istotny, ponieważ odnosi się do bezpieczeństwa użytkowania urządzenia oraz spełnienia norm bezpieczeństwa, takich jak dyrektywy CE czy normy IEC. W praktyce, posiadanie kompleksowej dokumentacji technicznej jest niezbędne dla zapewnienia efektywnego zarządzania cyklem życia urządzenia, od projektowania po serwisowanie, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 40

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. uszkodzenia podłączonego urządzenia elektrycznego
B. zagrożenia porażeniem prądem elektrycznym
C. zwarcia w obwodzie elektrycznym
D. przeciążenia obwodu elektrycznego
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.