Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 17 czerwca 2025 13:29
  • Data zakończenia: 17 czerwca 2025 13:49

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby zrealizować nierozłączne połączenie włókien światłowodowych, jakie urządzenie jest niezbędne?

A. lutownica.
B. spawarka.
C. zgrzewarka.
D. klamry.
Spawarka jest kluczowym narzędziem używanym do wykonania nierozłącznych połączeń włókien światłowodowych. Proces spawania polega na precyzyjnym połączeniu końcówek włókien za pomocą wysokotemperaturowego łuku elektrycznego, co pozwala na uzyskanie minimalnych strat sygnału i maksymalnej integralności optycznej. Użycie spawarki zapewnia, że włókna są idealnie wyrównane i połączone, co jest niezbędne dla zachowania jakości transmisji danych. Przykłady zastosowania spawarki obejmują instalacje sieci telekomunikacyjnych, systemy CCTV oraz wszelkie inne aplikacje, gdzie niezawodność i jakość połączeń są kluczowe. Zgodnie z normami IEC 61300-3-34, które definiują metody testowania i oceny połączeń włókien, należy stosować techniki spawania w celu osiągnięcia wysokiej wydajności systemu. Dobrze przeprowadzony proces spawania nie tylko eliminuje błąd w transmisji sygnału, ale także zwiększa odporność na czynniki zewnętrzne, co jest niezbędne w trudnych warunkach eksploatacyjnych.

Pytanie 2

Stabilność systemu automatycznej regulacji to umiejętność systemu do

A. utrzymywania stabilnych parametrów obiektu po ustaniu sygnału zakłócającego
B. działania pod dużymi obciążeniami
C. minimalizowania zakłóceń wpływających na obiekt regulacji
D. działania w skrajnie niskich lub skrajnie wysokich temperaturach
Mówiąc o automatycznej regulacji, kluczowym punktem jest chyba to, że układ musi utrzymywać parametry obiektu po zaniku zakłócenia, dlatego inne odpowiedzi mogą być mylące. Jasne, praca przy dużych obciążeniach ma znaczenie dla wydajności, ale niekoniecznie dla stabilności układu. Chociaż system pod dużym obciążeniem może działać mniej efektywnie, to jednak stabilność może być zachowana, jeśli jest odpowiednio zaprojektowany. Ekstremalne temperatury też nie mają bezpośredniego wpływu na stabilność, bardziej chodzi o to, jak system radzi sobie z trudnymi warunkami. Wiadomo, że systemy, które mają problemy w takich warunkach, są uznawane za mniej niezawodne, ale ich stabilność może być w porządku w normalnych warunkach. Zmniejszanie zakłóceń to ważna kwestia w projektowaniu, ale to nie jest dokładnie to samo co utrzymanie stabilności. Chodzi o to, żeby system nie tylko tłumił zakłócenia, ale także wracał do normy po ich ustąpieniu. Źle zrozumiane kwestie mogą prowadzić do projektów, które może i są odporne na zakłócenia, ale nie potrafią dobrze reagować, gdy te zakłócenia ustępują, co obniża ich długoterminową efektywność.

Pytanie 3

Na podstawie dołączonej tabeli określ, ile powinno wynosić natężenie oświetlenia na stanowisku pracy przy wykonywaniu precyzyjnych czynności montażowych układów mikroelektronicznych.

Działalność przemysłowa i rzemieślnicza –
Przemysł elektrotechniczny i elektroniczny
Typ obszaru, zadanie lub działalnośćWymagane natężenie oświetlenia, lx
Produkcja kabli i przewodów300
Uzwojenie:
– duże cewki
– średnie cewki
– małe cewki

300
500
750
Impregnacja cewek300
Galwanizowanie300
Montaż:
– zgrubny, np. duże transformatory,
– średni, np. tablice rozdzielcze
– dokładny, np. telefony, radia, sprzęt IT (komputery)
– precyzyjny, np. sprzęt pomiarowy, płytki obwodów drukowanych

300
500
750
1000
Warsztaty elektroniczne, sprawdzanie, regulacja1500

A. 1000 lx
B. 750 lx
C. 1500 lx
D. 500 lx
Wybór innych wartości natężenia oświetlenia, jak 750 lx, 1500 lx czy 500 lx, wskazuje na niepełne zrozumienie wymagań dotyczących oświetlenia w kontekście precyzyjnych prac montażowych. Natężenie 750 lx jest niewystarczające dla zadań wymagających wysokiej dokładności, ponieważ standardy wskazują, że dla takich czynności, jak montaż układów mikroelektronicznych, wymagane jest oświetlenie o natężeniu co najmniej 1000 lx. Przy tej wartości możliwe jest lepsze rozróżnianie szczegółów, co jest kluczowe w kontekście montażu delikatnych komponentów elektronicznych. Natomiast 1500 lx, choć na pierwszy rzut oka wydaje się być korzystne, może prowadzić do nadmiaru światła, co w konsekwencji zwiększa uczucie zmęczenia wzroku i może wpływać na komfort i wydajność pracy. Z kolei 500 lx jest zdecydowanie zbyt niskie, co może prowadzić do poważnych pomyłek i obniżenia jakości wykonania montażu. Aby efektywnie pracować przy precyzyjnych zadaniach, istotne jest przestrzeganie norm i standardów dotyczących oświetlenia, które nie tylko poprawiają bezpieczeństwo pracy, ale i jakość końcowego produktu.

Pytanie 4

Który z poniższych elementów elektronicznych jest najbardziej podatny na uszkodzenia w trakcie wymiany, jeśli osoba wymieniająca nie użyje opaski uziemiającej?

A. Dioda prostownicza
B. Tranzystor z izolowaną bramką
C. Tranzystor bipolarny
D. Rezystor mocy
Rezystory mocy, diody prostownicze i tranzystory bipolarne są mniej wrażliwe na uszkodzenia spowodowane wyładowaniami elektrostatycznymi w porównaniu do tranzystorów z izolowaną bramką. Rezystory mocy są zaprojektowane do rozpraszania dużych ilości energii i nie mają złożonej struktury elektronicznej jak IGBT, dlatego ich uszkodzenie wskutek ESD jest mniej prawdopodobne. Dioda prostownicza, choć również istotna w obwodach, ma prostą budowę i jest odporna na uszkodzenia statyczne, co czyni ją bardziej odporną na przypadkowe uszkodzenia podczas wymiany. Tranzystory bipolarne, mimo że mogą być uszkodzone przez ESD, nie są tak wrażliwe jak IGBT, ponieważ mają mniej skomplikowane struktury. Warto jednak pamiętać, że brak odpowiednich środków ochrony, takich jak opaski uziemiające, oznacza ryzyko uszkodzeń dla wszystkich komponentów elektronicznych. Użytkownicy powinni być świadomi znaczenia ESD i stosować odpowiednie procedury ochronne, aby uniknąć przypadkowych uszkodzeń, co jest zgodne z najlepszymi praktykami w branży elektronicznej.

Pytanie 5

Przed wymianą urządzenia w systemie elektronicznym, konieczne jest odłączenie przewodu zasilającego?

A. po zakończeniu montażu
B. w trakcie instalacji nowego sprzętu
C. po usunięciu starego urządzenia
D. zanim rozpoczną się prace demontażowe
Odpowiedź "przed rozpoczęciem prac demontażowych" jest prawidłowa, ponieważ bezpieczeństwo jest kluczowym aspektem w pracy z instalacjami elektronicznymi. Przed przystąpieniem do jakichkolwiek działań związanych z wymianą urządzenia, kluczowe jest odłączenie przewodu zasilającego. To działanie minimalizuje ryzyko porażenia prądem oraz uszkodzenia sprzętu. W praktyce, każdy technik powinien stosować się do procedur zawartych w normach bezpieczeństwa, takich jak PN-EN 50110-1, które nakładają obowiązek odłączenia zasilania przed przystąpieniem do pracy. Dodatkowo, w przypadku wymiany urządzeń, zawsze warto stosować się do zasad dotyczących oznaczania i dokumentacji prac, aby mieć pewność, że wszystkie etapy demontażu i montażu są odpowiednio udokumentowane. Przykładem może być sytuacja, gdy technik wymienia starą lampę na nową; przed przystąpieniem do demontażu lampy, powinien najpierw wyłączyć zasilanie, co zapewnia bezpieczeństwo zarówno jego, jak i osób znajdujących się w pobliżu.

Pytanie 6

Na którym zakresie pomiarowym należy wykonywać precyzyjny pomiar napięcia po stronie wtórnej transformatora, którego parametry podano w tabeli?

Napięcie pierwotne230 V
Napięcie wtórne12 V
Prąd uzwojenia wtórnego2 A
Moc25 VA

A. 20 V AC
B. 200 V AC
C. 200 V DC
D. 20 V DC
Wybór odpowiedzi, która wskazuje na 20 V DC lub 200 V AC, nie jest właściwy z kilku powodów. Po pierwsze, napięcie wtórne transformatora wynosi 12 V, co oznacza, że pomiary powinny odbywać się w zakresie, który jest najbliższy tej wartości. Wybierając 20 V DC, pomijamy kluczowy aspekt, jakim jest charakterystyka napięcia. Transformator pracuje na prądzie przemiennym (AC), co sprawia, że pomiar napięcia stałego (DC) jest całkowicie nieodpowiedni. Dodatkowo, wybór 200 V AC przekracza nominalne napięcie wtórne, co może prowadzić do nieprecyzyjnych odczytów i w rezultacie do błędnych interpretacji wyników. Taka praktyka może zagrażać bezpieczeństwu użytkownika oraz sprzętu, ponieważ przyrządy pomiarowe mogą nie być przystosowane do takich wartości. Odpowiednie dobieranie zakresów pomiarowych jest kluczowe, gdyż nie tylko wpływa na dokładność wyników, ale również na bezpieczeństwo pracy z urządzeniami elektrycznymi. W inżynierii elektrycznej jakościowe pomiary są podstawą wszelkich analiz i zapewnienia sprawności systemu zasilania. Należy zatem unikać sytuacji, w których standardowe procedury pomiarowe są ignorowane, ponieważ prowadzi to do niepotrzebnych komplikacji oraz potencjalnych uszkodzeń sprzętu. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera oraz technika zajmującego się elektryką.

Pytanie 7

Zamiana uszkodzonego tranzystora w końcowej fazie przetwornicy napięcia wymaga

A. podłączenia obciążenia sztucznego
B. usunęcia kondensatora filtrującego
C. odłączenia układu od zasilania
D. zwarcia wejścia układu
Odłączenie układu od zasilania przed przystąpieniem do wymiany uszkodzonego tranzystora stopnia końcowego przetwornicy napięcia jest kluczowym krokiem zapewniającym bezpieczeństwo oraz ochronę sprzętu. Przed rozpoczęciem jakichkolwiek prac serwisowych, zawsze należy zidentyfikować źródło zasilania i je odłączyć, aby uniknąć porażenia prądem oraz uszkodzenia komponentów. Dobre praktyki inżynieryjne w elektronice nakazują stosowanie takich protokołów, aby zapewnić, że wszelkie potencjalnie niebezpieczne napięcia są wyeliminowane. W przypadku przetwornic napięcia, które często operują przy wysokich napięciach i prądach, jest to szczególnie istotne. Po odłączeniu zasilania, można bezpiecznie wymontować uszkodzony tranzystor, a następnie zainstalować nowy, mając pewność, że nie ma ryzyka dla technika ani dla innych elementów układu. Należy również pamiętać o odpowiednim wyładowaniu wszelkich kondensatorów, które mogą przechowywać ładunek elektryczny, co również jest częścią standardowych procedur konserwacyjnych.

Pytanie 8

Który z elementów atmosferycznych wpływa na jakość sygnału telewizyjnego w standardzie DVB-T?

A. Duża wilgotność powietrza
B. Intensywny opad atmosferyczny
C. Wysoka temperatura powietrza
D. Porywisty podmuch wiatru
Czynniki atmosferyczne, takie jak wysoka temperatura powietrza, duża wilgotność oraz porywisty podmuch wiatru, mogą wpływać na wrażenia odbiorcze, lecz w inny sposób niż intensywne opady deszczu. Wysoka temperatura powietrza nie ma bezpośredniego wpływu na sygnał DVB-T, chociaż może wpływać na działanie sprzętu, takiego jak anteny i dekodery. Z kolei duża wilgotność powietrza, mimo że może prowadzić do pewnego stopnia tłumienia sygnału, nie jest tak znaczącym czynnikiem jak opady deszczu, które intensywnie absorbują i rozpraszają fale radiowe. Porywisty wiatr również nie jest czynnikiem determinującym jakość sygnału, aczkolwiek może wpływać na stabilność anteny, zwłaszcza jeśli nie jest odpowiednio zamocowana. Typowy błąd myślowy polega na utożsamianiu ogólnych warunków atmosferycznych z ich wpływem na sygnał telewizyjny, co prowadzi do nieprawidłowych wniosków. Dlatego kluczowe jest zrozumienie, że różne zjawiska atmosferyczne oddziałują na jakość sygnału w odmienny sposób, a w przypadku DVB-T intensywne opady deszczu są najważniejszym czynnikiem wpływającym na jego odbiór.

Pytanie 9

Który z podanych rezultatów pomiarów jest poprawny dla sygnałów telewizyjnych z nadajników naziemnych?

A. Poziom 29 dBµV, MER 14 dB
B. Poziom 65 dBµV, MER 12 dB
C. Poziom 55 dBµV, MER 24 dB
D. Poziom 25 dBµV, MER 29 dB
Wartości poziomu sygnału i MER są kluczowymi wskaźnikami dla oceny jakości sygnału telewizyjnego. W przypadku poziomu 65 dBµV oraz MER 12 dB, pomimo że poziom sygnału jest na wyższym poziomie, MER jest zbyt niski, co sugeruje znaczne zakłócenia w sygnale. Wysoki poziom sygnału nie zawsze przekłada się na dobrą jakość odbioru. W rzeczywistości, zbyt wysoki poziom sygnału w połączeniu z niskim MER może prowadzić do przesterowania odbiornika, co skutkuje niestabilnym obrazem lub jego całkowitym brakiem. Z kolei poziom 25 dBµV z MER 29 dB wydaje się być dobry pod względem jakości, jednak poziom sygnału jest zdecydowanie za niski dla stabilnego odbioru telewizji naziemnej. Odbiorniki telewizyjne wymagają minimalnego poziomu sygnału, aby mogły prawidłowo przetwarzać dane. Podobnie, poziom 29 dBµV z MER 14 dB jest również nieodpowiedni. Niski MER przy jednocześnie niskim poziomie sygnału wskazuje na poważne problemy z zakłóceniami, co również prowadzi do nieprzewidywalnych efektów w odbiorze. W kontekście praktycznym, dla zapewnienia odpowiedniej jakości sygnału, istotne jest, aby zarówno poziom sygnału, jak i MER były zgodne z najlepszymi praktykami branżowymi. Użytkownicy często mylą te wskaźniki, sądząc, że wyższy poziom sygnału zawsze oznacza lepszą jakość, co w rzeczywistości nie jest prawdą. Z tego względu, kluczowe jest zrozumienie synergii pomiędzy poziomem sygnału a jakością odbioru oraz dostosowanie instalacji do tych wymagań.

Pytanie 10

Gdy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski, co należy zrobić?

A. dostosować poziom głośności w unifonie
B. zwiększyć napięcie zasilania elektrozaczepu
C. zwiększyć poziom głośności w panelu
D. dostosować napięcie w kasecie rozmownej
Wyregulowanie poziomu głośności w unifonie jest kluczowym krokiem w sytuacji, gdy po podłączeniu domofonu pojawiają się niepożądane piski. Tego rodzaju odgłosy często są wynikiem ustawienia zbyt wysokiego poziomu głośności, co prowadzi do zjawiska zwane sprzężeniem akustycznym. Poprawne dostosowanie głośności może znacznie poprawić komfort użytkowania systemu domofonowego. W praktyce, odpowiednia regulacja głośności może obejmować zarówno zmniejszenie poziomu dźwięku w unifonie, jak i dostosowanie ustawień w kasecie rozmownej. Warto również sprawdzić, czy nie występują inne źródła zakłóceń, takie jak kiepskiej jakości przewody lub nieodpowiednie połączenia. Ważne jest, aby przed przystąpieniem do regulacji głośności, zapoznać się z instrukcją obsługi urządzenia, aby zrozumieć, gdzie znajduje się potencjometr lub przycisk głośności. W kontekście norm branżowych, właściwe ustawienie głośności w urządzeniach audio powinno być zgodne z zaleceniami producenta, co zapewnia optymalną jakość dźwięku i minimalizuje ryzyko wystąpienia nieprzyjemnych odgłosów.

Pytanie 11

Do podłączenia elementów systemu alarmowego używa się kabla

A. YTKSY
B. YTDY
C. OMY
D. UTP
Przewód YTDY jest odpowiedni do łączenia elementów systemu alarmowego ze względu na swoje właściwości. Posiada on podwójne ekranowanie, co zapewnia wysoką odporność na zakłócenia elektromagnetyczne, co jest kluczowe w systemach zabezpieczeń, gdzie jakość sygnału jest kluczowa dla prawidłowego działania. Dzięki zastosowaniu odpowiedniej izolacji przewodów, YTDY skutecznie minimalizuje ryzyko fałszywych alarmów spowodowanych zakłóceniami z innych urządzeń. W praktyce, zastosowanie tego typu przewodów w instalacjach alarmowych pozwala na długodystansowe połączenia, co jest istotne w większych obiektach. Przewody YTDY są również zgodne z normami branżowymi, co czyni je preferowanym wyborem w projektowaniu i wykonawstwie systemów alarmowych. Dzięki zastosowaniu tego typu przewodów, instalacje stają się bardziej niezawodne i efektywne.

Pytanie 12

Czego nie uwzględnia się w dokumentacji dotyczącej montażu elektronicznego?

A. dokumentacji techniczno-ruchowej (DTR)
B. współrzędnych podzespołów (pick&place)
C. zestawu rysunków montażowych (odnoszących się do wszystkich faz produkcji)
D. pełnej listy materiałowej (BOM)
Dokumentacja techniczno-ruchowa (DTR) nie jest częścią dokumentacji montażu elektronicznego, ponieważ skupia się na eksploatacji i konserwacji urządzeń, a nie na ich produkcji czy montażu. DTR zawiera informacje dotyczące charakterystyki technicznej, działania oraz instrukcje serwisowe, co jest kluczowe w późniejszych fazach użytkowania sprzętu. W kontekście montażu elektronicznego, dokumentacja ta nie jest używana do procesów wytwarzania, co sprawia, że nie zalicza się do podstawowych materiałów niezbędnych na etapie produkcji. Przykład zastosowania to wprowadzenie procedur serwisowych dla urządzenia po jego zmontowaniu; DTR może być wykorzystywana przez techników serwisowych, którzy muszą znać specyfikacje oraz procedury konserwacji, ale nie jest bezpośrednio używana podczas samego montażu. Zgodnie z praktykami branżowymi, dokumentacja montażowa powinna zawierać rysunki montażowe, współrzędne elementów oraz listy materiałów, co jest zgodne z normami IPC (Institute for Printed Circuits) i innymi standardami branżowymi.

Pytanie 13

Zanim rozpoczniesz konserwację jednostki centralnej komputera stacjonarnego, co należy wykonać?

A. wymontować pamięci RAM
B. uziemić metalowe elementy obudowy
C. odłączyć przewód zasilający
D. wymontować dysk twardy
Odłączenie przewodu zasilającego przed rozpoczęciem konserwacji jednostki centralnej komputera stacjonarnego to naprawdę ważna sprawa. Dzięki temu zarówno sprzęt, jak i osoba, która to robi, są w większym bezpieczeństwie. Przewód zasilający daje prąd do jednostki, więc jego odpięcie zmniejsza ryzyko porażenia prądem i oszczędza podzespoły przed uszkodzeniami, których można uniknąć. W sumie, wielu pasjonatów napraw komputerów stosuje tę zasadę jak mantra. W moim doświadczeniu zawsze lepiej jest być ostrożnym. Przydaje się też położenie maty antystatycznej, żeby nie narobić bałaganu z ładunkami elektrostatycznymi. A w sytuacjach, kiedy pracujemy na serwerach czy innych bardziej skomplikowanych komputerach, pamiętajmy, że czasem trzeba użyć wyłącznika zasilania. Lepiej dmuchać na zimne, szczególnie kiedy chodzi o drogie komponenty.

Pytanie 14

Jakie złącza powinny być wykorzystane dla kabli koncentrycznych w systemie monitoringu telewizyjnego?

A. DIN
B. SCART
C. BNC
D. HDMI
Złącza DIN, SCART i HDMI, mimo że są szeroko stosowane w różnych dziedzinach elektroniki, nie są odpowiednie do kabli koncentrycznych w systemach telewizji dozorowej. Złącza DIN stosowane są głównie w starszych urządzeniach audio i MIDI, a ich konstrukcja nie zapewnia optymalnych parametrów dla przesyłania sygnałów wideo. W kontekście telewizji dozorowej, ich użycie mogłoby prowadzić do degradacji jakości sygnału ze względu na niekompatybilność z typowym przewodem koncentrycznym. Z kolei złącza SCART, popularne w telewizorach i odtwarzaczach wideo, są projektowane do przesyłania sygnałów analogowych oraz cyfrowych, jednak ich zastosowanie w systemach CCTV jest ograniczone, ponieważ nie obsługują standardowych kabli koncentrycznych. HDMI, mimo że jest nowoczesnym złączem, które obsługuje wysoką jakość obrazu i dźwięku, również nie jest przeznaczone do pracy z kablami koncentrycznymi. HDMI wymaga zastosowania specjalnych przewodów, które nie są zgodne z konwencjonalnymi systemami CCTV. Wybierając złącza do systemu monitoringu, należy unikać typowych błędów myślowych, które mogą prowadzić do wyboru niewłaściwych komponentów, co może skutkować problemami z jakością obrazu oraz awariami systemu.

Pytanie 15

Podczas montażu komponentów elektronicznych metodą lutu miękkiego nie powinno się

A. przenosić lutowia na końcówce grota
B. dostosowywać temperatury lutowania do konkretnej lokalizacji na płytce
C. zajmować się czystością grota
D. ustalać czasu lutowania do poszczególnych miejsc na płytce
Dbanie o czystość grota lutownicy, dobieranie temperatury oraz czasu grzania do konkretnego miejsca na płytce to kluczowe elementy prawidłowego procesu lutowania, które zapewniają wysoką jakość wykonania. Czystość grota lutownicy ma bezpośredni wpływ na efektywność przenoszenia ciepła oraz przyczepność lutowia do podłoża. Zanieczyszczony grot może prowadzić do nieefektywnego lutowania, a w skrajnych przypadkach nawet do uszkodzenia elementów elektronicznych. Odpowiednia temperatura grzania jest niezbędna, aby uniknąć zarówno niedogrzania, które skutkuje słabym spoiwem, jak i przegrzania, które może uszkodzić delikatne komponenty. Ponadto, czas grzania powinien być dostosowany do rodzaju materiałów, z którymi pracujemy, co jest istotne w kontekście uniknięcia deformacji elementów oraz zapewnienia ich trwałości. Brak uwagi na te aspekty może prowadzić do typowych błędów, takich jak 'cold joints', które są niepewnymi połączeniami i mogą skutkować awarią całego układu. Dlatego tak istotne jest, aby stosować się do dobrych praktyk i standardów branżowych w zakresie lutowania, aby zapewnić wysoką jakość wykonania oraz niezawodność finalnych produktów.

Pytanie 16

W analizowanym układzie przeprowadzono pomiar rezystancji Rx. Zgodnie z normami wartość rezystancji Rx=(10,06±0,03) Ω. Który z wyników pomiarowych nie jest zgodny z normą?

A. Rx = 10,00 Ω
B. Rx = 10,06 Ω
C. Rx = 10,03 Ω
D. Rx = 10,09 Ω
Odpowiedź Rx = 10,00 Ω jest prawidłowa, ponieważ wartość ta znajduje się poza dopuszczalnym zakresem błędu pomiarowego określonego przez normę. Zgodnie z danymi, rezystancja Rx powinna wynosić 10,06 Ω z tolerancją ±0,03 Ω, co oznacza, że akceptowalne wartości rezystancji mieszczą się w przedziale od 10,03 Ω do 10,09 Ω. Wartość 10,00 Ω jest poniżej dolnej granicy normy, co czyni ją niezgodną z wymaganiami. W praktyce, takie pomiary są istotne w kontekście zapewnienia jakości produktów elektronicznych, gdzie każda jednostka musi spełniać określone specyfikacje. Normy takie jak IEC 60068-2-6 dostarczają wytycznych dotyczących testowania i określania tolerancji, co jest kluczowe w procesach produkcyjnych. Właściwe zrozumienie tolerancji w pomiarach rezystancji jest niezbędne do analizy i oceny właściwości materiałów oraz zapewnienia ich niezawodności w zastosowaniach inżynieryjnych.

Pytanie 17

W przypadku łączenia urządzeń audio na dużą odległość, jakie kable powinny być wykorzystane?

A. symetryczne (balanced)
B. sygnalizacyjne YKSwXs
C. sygnalizacyjne YKSY
D. niesymetryczne (unbalanced)
Wybór kabli niesymetrycznych, takich jak kable unbalanced, do długodystansowych połączeń akustycznych jest podejściem niezalecanym. Kable te charakteryzują się prostszą konstrukcją, z jednym przewodem sygnałowym i ekranem, co czyni je bardziej podatnymi na zakłócenia elektromagnetyczne. W praktyce oznacza to, że sygnał przesyłany przez kable niesymetryczne może ulegać degradacji na długich trasach, co skutkuje utratą jakości dźwięku, szumami i innymi niepożądanymi efektami akustycznymi. W kontekście standardów branżowych, takie podejście może być stosowane tylko na krótkich dystansach, na przykład w połączeniach między urządzeniami audio znajdującymi się blisko siebie. Odpowiedzi wskazujące na kable sygnalizacyjne YKSwXs i YKSY również nie są prawidłowe, ponieważ chociaż mogą mieć zastosowanie w specyficznych sytuacjach, nie są one zaprojektowane z myślą o eliminacji zakłóceń na dużych odległościach. W rezultacie, stosowanie tych typów kabli w długodystansowych połączeniach akustycznych naraża system na szereg problemów związanych z jakością dźwięku, co jest podstawowym błędem myślowym w kontekście profesjonalnych instalacji audio.

Pytanie 18

Analogowy woltomierz ma skalę od 0 do 100 działek. Jaka jest wartość napięcia, jeżeli pomiar był wykonany w zakresie 200 V, a wskaźnik wskazuje 80 działek?

A. 120 V
B. 40 V
C. 80 V
D. 160 V
W przypadku podanych odpowiedzi, wiele pomyłek wynika z niewłaściwego zrozumienia skali oraz sposobu przeliczania wartości. Na przykład, odpowiedź 80 V sugeruje, że użytkownik mógł błędnie uznać, że wskazówka wskazuje bezpośrednio wartość napięcia bez uwzględnienia skali. Możliwe, że rozumowanie opierało się na założeniu, że 80 działek to po prostu 80 V, co jest niezgodne z zasadami działania woltomierza, który wyskalowany jest w odniesieniu do maksymalnej wartości zakresu. Inną często spotykaną pomyłką jest odpowiedź 40 V, gdzie użytkownik mógł błędnie przypuszczać, że woltomierz działa na zasadzie prostego podziału zakresu, co prowadzi do pominięcia kluczowego elementu, jakim jest przeliczanie wartości działek na rzeczywiste napięcie. Odpowiedź 120 V również pokazuje nieporozumienie, w którym użytkownik mógł zakładać, że 80 działek to 2/3 z maksymalnych 200 V, co jednak nie jest poprawnym podejściem w kontekście wyliczania wartości na analogowej skali. Kluczowe jest, aby użytkownicy zrozumieli mechanizm działania analogowych woltomierzy oraz zasady przeliczania wartości, aby unikać błędnych interpretacji wyników pomiarów. W praktyce, dokładność pomiarów jest fundamentem bezpieczeństwa w instalacjach elektrycznych, dlatego znajomość zasad jego działania jest niezbędna.

Pytanie 19

Aby podłączyć czujkę kontaktronową w trybie NC do systemu alarmowego, należy użyć przewodu o co najmniej

A. sześciożyłowym z dwoma rezystorami
B. czterożyłowym z jednym rezystorem
C. czteroparowym UTP z dwoma rezystorami
D. dwużyłowym bez rezystorów
Wszystkie niepoprawne odpowiedzi opierają się na błędnych założeniach dotyczących wymagań dotyczących przewodów do czujek kontaktronowych w konfiguracji NC. Na przykład zastosowanie sześciożyłowego przewodu z dwoma rezystorami może wynikać z mylnego przekonania, że czujki wymagają bardziej złożonego okablowania i dodatkowych elementów dla zapewnienia poprawnego działania. W rzeczywistości, czujki kontaktronowe działają na zasadzie bezpośredniego zamykania obwodu, a dodatkowe rezystory nie są potrzebne. Podobnie, czterożyłowy przewód z jednym rezystorem sugeruje, że użytkownik myli się co do podstawowych zasad działania czujek. Rezystory są często stosowane w bardziej skomplikowanych systemach, które wymagają monitorowania stanu obwodów, a nie w prostych konfiguracjach NC. Zastosowanie dwużyłowego bez rezystorów jest zgodne z najlepszymi praktykami branżowymi, które uwzględniają efektywność kosztową i prostotę instalacji. Kolejnym błędnym podejściem jest pomysł użycia czteroparowego UTP z dwoma rezystorami, co sugeruje, że użytkownik nie rozumie, że czujki kontaktronowe nie wymagają skomplikowanego okablowania. W praktyce, im prostsze połączenie, tym lepiej dla niezawodności systemu alarmowego. Na koniec, zaburzony związek między liczbą żył a funkcjonalnością czujki może prowadzić do mylnych wniosków dotyczących wymagań instalacyjnych, co jest częstym błędem wśród osób nieposiadających odpowiedniego doświadczenia w dziedzinie elektroniki zabezpieczeń.

Pytanie 20

Jaki element elektroniczny jest określany przez symbole: S-źródło, G-bramka, D-dren?

A. Tranzystor unipolarny
B. Tranzystor bipolarny
C. Trymer
D. Tyrystor
Tyrystory, tranzystory bipolarne oraz trymer to elementy elektroniczne o różnych zastosowaniach i zasadach działania, które nie pasują do opisanego schematu terminali S, G i D. Tyrystor jest urządzeniem półprzewodnikowym, które działa jako przełącznik i jest aktywowany przez impuls prądowy, jednak posiada tylko dwa główne terminale: anody i katody. Jego struktura oraz sposób działania są inne niż w tranzystorze unipolarnym, co prowadzi do nieporozumień w identyfikacji. Tranzystor bipolarny, z kolei, ma trzy terminale: emiter, bazę i kolektor, gdzie prąd przepływa na podstawie sygnału wejściowego z bazy, co różni się od zasady działania tranzystora unipolarnego, gdzie kluczową rolę odgrywa napięcie na bramce. Natomiast trymer jest kondensatorem o regulowanej pojemności, wykorzystywanym głównie w obwodach rezonansowych, co również nie odpowiada opisanemu terminowi. Błędy w analizie pytania mogą prowadzić do mylnego rozumienia podstaw elektroniki, a także do niewłaściwego doboru komponentów w praktycznych zastosowaniach. Zrozumienie różnicy między tymi elementami jest kluczowe dla skutecznego projektowania systemów elektronicznych, co wymaga znajomości ich właściwości i funkcji. Przy projektowaniu obwodów, istotne jest stosowanie odpowiednich elementów w zależności od wymagań aplikacji i standardów branżowych.

Pytanie 21

Przewody zasilające łączące antenę z odbiornikiem określa się mianem

A. fiderami
B. symetryzatorami
C. dyrektorami
D. dipolami
Odpowiedzi takie jak 'direktorami', 'dipolami' i 'symetryzatorami' są niewłaściwe, bo każdy z tych terminów odnosi się do różnych elementów w systemach antenowych i komunikacyjnych. Dierektory to części, które używa się w antenach kierunkowych, jak Yagi, ale nie są one linią zasilającą. Dipole to rodzaj anteny i choć mogą być używane w radiu, to też nie są linią zasilającą. Symetryzatory to urządzenia, które ułatwiają dopasowanie impedancji, ale nie transportują sygnału między anteną a odbiornikiem. Bardzo łatwo pomylić te pojęcia i ich znaczenie, a to prowadzi do nieporozumień w projektowaniu systemów RF. Ważne jest, żeby dobrze rozumieć rolę fiderów, bo to może pomóc uniknąć problemów z jakością sygnału i efektywnością systemu antenowego. Dlatego warto znać różnice między tymi terminami, żeby poprawnie je stosować w praktyce.

Pytanie 22

Jakie urządzenie stosuje się do podziału sygnału z anteny w systemie telewizyjnym?

A. zwrotnicę
B. switch
C. symetryzator
D. spliter
Jak chodzi o rozdzielenie sygnału z anteny, to takie odpowiedzi jak symetryzator, switch czy zwrotnica to nie to samo co spliter. Symetryzator działa głównie w systemach przesyłowych i przekształca sygnał niesymetryczny na symetryczny. Pomaga, ale nie rozdziela sygnału z anteny. Switch z kolei przełącza sygnały między różnymi źródłami, ale nie dzieli ich na kilka odbiorników. W telewizji używamy go, gdy chcemy wybrać konkretne źródło sygnału, ale nie do dzielenia. Zwrotnica to też inna bajka – ona łączy lub dzieli sygnały, ale głównie w systemach kablowych. Wiele osób myli te urządzenia ze splitterem, co prowadzi do błędnych decyzji przy składaniu systemu telewizyjnego. Warto po prostu ogarnąć, jak każde z tych urządzeń działa, żeby dobrze skonfigurować swój telewizyjny setup.

Pytanie 23

Którego koloru nie powinien mieć przewód fazowy w kablu zasilającym, który dostarcza napięcie z sieci energetycznej do sprzętu elektronicznego?

A. Niebieskiego
B. Szarego
C. Czarnego
D. Brązowego
Wybór brązowego, czarnego lub szarego przewodu jako odpowiednich kolorów dla przewodu fazowego może prowadzić do nieporozumień i zagrożeń. Chociaż brązowy, czarny i szary są rzeczywiście kolorami stosowanymi dla przewodów fazowych, istotne jest, aby nie mylić ich z kolorem niebieskim, który służy jako przewód neutralny. Myślenie, że przewód fazowy może być niebieski, często wynika z niewłaściwego rozumienia standardów kolorystycznych. Przewody fazowe są przewodnikami, przez które płynie prąd, i ich prawidłowe oznaczenie jest kluczowe dla bezpieczeństwa. Pomyłka może prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy porażenia prądem. Wiele osób, zwłaszcza laików, może zakładać, że każdy przewód w instalacji elektrycznej może pełnić dowolną funkcję, co jest błędem. Zrozumienie, które kolory przewodów odpowiadają za konkretne funkcje, jest kluczowe dla każdego, kto pracuje z instalacjami elektrycznymi. Dlatego ważne jest, aby zawsze stosować się do standardów i praktyk branżowych, takich jak PN-EN 60446, które jasno określają, jak prawidłowo oznaczać przewody elektryczne, aby zapewnić bezpieczeństwo użytkowników i funkcjonalność instalacji.

Pytanie 24

Całkowity koszt materiałów potrzebnych do zrealizowania instalacji elektrycznej w mieszkaniu wynosi 2 000 zł brutto. Koszt realizacji instalacji odpowiada 100% wartości brutto materiałów. Jaką sumę trzeba będzie zapłacić za realizację instalacji, jeśli stawka VAT na usługi wynosi 8%?

A. 4 320 zł
B. 4 160 zł
C. 2 320 zł
D. 2 160 zł
Analiza błędów w obliczeniach kosztów wykonania instalacji elektrycznej w mieszkaniu może ujawnić szereg nieporozumień dotyczących podstawowych zasad naliczania podatków i kosztów. Często pojawiają się błędne założenia dotyczące tego, jak należy obliczać całkowity koszt inwestycji, co może prowadzić do nieprawidłowych oszacowań. W przypadku podanych odpowiedzi wiele osób może skupić się na prostym dodawaniu kosztów materiałów i robocizny, nie uwzględniając prawidłowych zasad naliczania VAT. Zrozumienie, że usługi instalacyjne wymagają obliczenia VAT na całościowy koszt robocizny i materiałów, jest kluczowe. Dodatkowo, niektórzy mogą mylnie przypisać VAT tylko do kosztów materiałów, co jest niezgodne z przepisami. Na przykład, przyjmując, że koszt robocizny jest oddzielny od kosztów materiałów, można błędnie obliczyć całkowity koszt na podstawie niepełnych danych. Istotnym aspektem jest również znajomość obowiązujących stawek VAT dla różnych usług budowlanych, które mogą się różnić w zależności od rodzaju wykonywanych prac. Błędne jest również pominięcie faktu, że całkowity koszt inwestycji powinien zawierać wszystkie wydatki, a nie tylko te związane z materiałami. Zrozumienie tych zasad jest niezbędne w celu właściwej kalkulacji kosztów budowlanych oraz przy zachowaniu przejrzystości finansowej w projektach inwestycyjnych.

Pytanie 25

Sprawdzanie działania elektronicznego wzmacniacza akustycznego nie obejmuje

A. pomiaru parametrów
B. kontroli temperatury elementów
C. uaktualniania oprogramowania
D. znajdowania anomalii w działaniu urządzenia
Wszystkie pozostałe odpowiedzi wskazują na aspekty, które są istotne w procesie testowania wzmacniaczy akustycznych, jednak niektóre z nich mogą być mylące. Pomiar parametrów jest fundamentalnym krokiem w ocenie wydajności wzmacniacza. Warto pamiętać, że każdy wzmacniacz akustyczny powinien być testowany pod kątem zniekształceń, dynamiki oraz pasma przenoszenia, co pozwala na określenie jego walorów akustycznych oraz zgodności z technicznymi specyfikacjami. Kontrola temperatury elementów jest także kluczowa, ponieważ wzmacniacze mogą generować znaczne ilości ciepła podczas pracy, a przegrzewanie się komponentów może prowadzić do ich uszkodzenia oraz degradacji jakości dźwięku. Zbyt wysoka temperatura może wpływać na parametry pracy wzmacniacza, co prowadzi do nieodwracalnych uszkodzeń. Dodatkowo, kontrola anomalii w działaniu urządzenia jest niezbędna do zapewnienia niezawodności wzmacniacza. Mylne może być jednak myślenie, że uaktualnianie oprogramowania jest kluczowym elementem testowania wzmacniacza akustycznego. Oprogramowanie, choć istotne w kontekście zarządzania funkcjami wzmacniacza, nie stanowi bezpośredniego elementu testowania jego wydajności akustycznej. Warto zauważyć, że w profesjonalnym środowisku audio, testowanie sprzętu akustycznego opiera się na obiektywnych pomiarach i standardach, takich jak normy IEC oraz AES, które określają procedury testowe dla wzmacniaczy. Dlatego ważne jest, aby rozróżniać między funkcjami związanymi z utrzymaniem sprzętu a jego rzeczywistym testowaniem akustycznym.

Pytanie 26

Wykonano pomiar napięcia stałego za pomocą woltomierza cyfrowego w zakresie 20 V, uzyskując wynik 5 V. Błąd przyrządu wynosi ± 1 % ± 2 D, a pole odczytowe miernika to 3,5 cyfry. Która forma zapisu wyniku pomiaru jest właściwa?

A. U = (5,00 ± 0,02) V
B. U = (5,00 ± 0,05) V
C. U = (5,00 ± 0,01) V
D. U = (5,00 ± 0,07) V
Niepoprawne odpowiedzi wykazują pomyłki w obliczaniu błędów pomiarowych oraz ich interpretacji. W przypadku pierwszej koncepcji, błąd ± 0,05 V nie uwzględnia błędu stałego, co prowadzi do niedoszacowania niepewności wyniku. Przyjęcie tylko błędu procentowego na poziomie 1 % przy odczycie 5 V to niewystarczające podejście, ponieważ rzeczywisty błąd instrumentu obejmuje również komponent stały, który nie może być pominięty. W drugiej opcji, ± 0,02 V nie odzwierciedla rzeczywistej sytuacji, ponieważ jest to tylko błąd wynikający z błędu stałego, podczas gdy błąd procentowy nadal pozostaje ważny i musi być uwzględniony. Z kolei w trzeciej odpowiedzi podano zbyt niski błąd, co wynika z nieprawidłowych obliczeń, które nie sumują błędów w sposób właściwy. Wysoka jakość pomiarów wymaga uwzględnienia wszystkich źródeł niepewności, co jest kluczowym elementem standardów metrologicznych. Bez prawidłowego zrozumienia tych koncepcji, pomiary mogą prowadzić do błędnych wniosków oraz decyzji, co w profesjonalnych zastosowaniach, takich jak inżynieria, może mieć poważne konsekwencje. Kluczowe jest, aby każdy pomiar był dokumentowany z uwzględnieniem pełnej charakterystyki błędów, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 27

Które z działań nie jest konieczne podczas konserwacji bramy przesuwnej?

A. Ponowne programowanie pilotów zdalnego sterowania
B. Sprawdzenie ustawień krańcowych bramy
C. Smarowanie elementów ruchomych napędu
D. Weryfikacja działania zabezpieczeń mechanicznych
Wszystkie wymienione czynności są istotnymi elementami konserwacji bramy przesuwnej, jednak wiele osób może mylnie zakładać, że programowanie pilotów zdalnego sterowania jest równie istotne jak inne czynności. Sprawdzenie działania zabezpieczeń mechanicznych to fundamentalny krok w zapewnieniu bezpieczeństwa. Takie zabezpieczenia, jak blokady czy czujniki, mają kluczowe znaczenie, aby zapobiegać przypadkowemu uruchomieniu bramy, które mogłoby prowadzić do obrażeń osób lub uszkodzenia mienia. Przesmarowanie części ruchomych napędu jest zadaniem, które powinno być wykonywane regularnie, aby zredukować tarcie i zużycie, co przekłada się na efektywność i trwałość mechanizmów. Niezwykle ważne jest również sprawdzenie położeń krańcowych bramy, co zapobiega jej niekontrolowanemu ruchowi. Ustawienia te powinny być regularnie kontrolowane, aby upewnić się, że brama zatrzymuje się w odpowiednich punktach i nie uszkadza się ani nie zakleszcza. Typowym błędem jest myślenie, że programowanie pilotów jest tak samo istotne, jak te aspekty mechaniczne. W praktyce, programowanie pilotów dotyczy jedynie sytuacji, gdy zmieniają się warunki ich użycia, podczas gdy pozostałe czynności są kluczowe dla bezpieczeństwa i długoterminowej sprawności bramy. Dobra praktyka w konserwacji bram przesuwnych opiera się na regularnych kontrolach i utrzymaniu ich w optymalnym stanie, co powinno być priorytetem każdego użytkownika.

Pytanie 28

Switch w sieci LAN

A. przekazuje sygnał do PC
B. odczytuje adresy IP
C. posiada serwer DNS
D. przydziela adresy IP
Istnieje wiele nieporozumień dotyczących funkcji przełączników w sieciach LAN, co prowadzi do błędnych odpowiedzi. Po pierwsze, przydzielanie adresów IP jest zadaniem serwera DHCP (Dynamic Host Configuration Protocol), a nie przełącznika. Serwer DHCP automatycznie przydziela adresy IP urządzeniom w sieci, co jest kluczowe dla ich dalszej komunikacji. W sieci LAN, każdy komputer wymaga unikalnego adresu IP, aby mógł komunikować się z innymi urządzeniami, a przełącznik nie ma takiej funkcji. Odczytywanie adresów IP również leży poza zakresem obowiązków przełączników. Te urządzenia operują na poziomie adresów MAC, co oznacza, że nie analizują ruchu na poziomie IP. W przypadku serwera DNS (Domain Name System), jego rola polega na tłumaczeniu nazw domenowych na adresy IP, co jest niezbędne do lokalizacji serwerów w internecie. Przełącznik nie pełni funkcji serwera DNS, ponieważ nie angażuje się w procesy związane z rozpoznawaniem nazw. Typowym błędem jest mylenie funkcji przełączników z innymi komponentami sieciowymi, co może prowadzić do nieefektywnego projektowania sieci oraz utrudnienia w rozwiązywaniu problemów. Zrozumienie roli każdego elementu w infrastrukturze sieciowej jest kluczowe dla prawidłowego funkcjonowania i efektywności całego systemu.

Pytanie 29

W oscyloskopie dwukanałowym do wejścia CH-B podłączono sygnał o znanej częstotliwości, natomiast do wejścia CH-A sygnał, który jest przedmiotem analizy. W jaki sposób należy ustawić oscyloskop, aby korzystając z krzywych Lissajous, oszacować częstotliwość sygnału analizowanego?

A. ADD
B. SINGLE
C. X-Y
D. DUAL
Jak przełączysz oscyloskop w tryb DUAL, ADD albo SINGLE, to w zasadzie nie wykorzystasz krzywych Lissajous do analizy częstotliwości sygnału, co jest trochę szkoda. W trybie DUAL możesz wprawdzie pokazać dwa sygnały naraz, ale na osobnych osiach czasu, więc nie zobaczysz, jak się one do siebie mają pod względem fazy czy amplitudy. W tym trybie nie uzyskasz tych fajnych krzywych Lissajous, bo sygnały nie są w odpowiednich osiach X i Y. Z kolei tryb ADD po prostu zsumuje sygnały i wszystko zniekształci, więc porównanie ich w kontekście analizy fazowej w ogóle nie wyjdzie. A w trybie SINGLE to tylko jeden sygnał pokażesz, więc całkiem odpadasz z porównania dwóch sygnałów na tym samym wykresie. Czasem ludzie myślą, że jak mają tryb DUAL to wystarczy, ale zapominają, że wtedy krzywych Lissajous się nie da uzyskać. To pewnie wynika z tego, że nie do końca rozumieją, o co chodzi w analizie sygnałów i jak je można zobrazować na wykresie. Żeby dobrze wykorzystać oscyloskop do określenia częstotliwości sygnałów, trzeba zrozumieć, że kluczowe jest przedstawienie ich w odpowiednich osiach, co tylko w trybie X-Y działa.

Pytanie 30

Podczas instalacji którego z elementów elektronicznych nie trzeba zwracać uwagi na jego polaryzację?

A. Kondensatora elektrolitycznego
B. Diody prostowniczej
C. Kondensatora ceramicznego
D. Fotodiody
Kondensatory ceramiczne to jedna z najczęściej stosowanych rodzin kondensatorów, która charakteryzuje się brakiem polaryzacji. Oznacza to, że ich montaż nie wymaga szczególnej uwagi na kierunek podłączenia, co znacznie upraszcza proces instalacji w obwodach elektronicznych. Przykładowo, kondensatory ceramiczne są często stosowane w układach filtrujących oraz w aplikacjach, w których wymagana jest stabilność w szerokim zakresie temperatur i częstotliwości. Warto również zauważyć, że ich niewielkie rozmiary oraz niska cena sprawiają, że są one idealne do zastosowań w urządzeniach mobilnych oraz innych produktach, gdzie przestrzeń i koszt mają kluczowe znaczenie. Zgodnie z najlepszymi praktykami w branży, zaleca się stosowanie kondensatorów ceramicznych w miejscach, gdzie nie występuje ryzyko wystąpienia dużych napięć, co może prowadzić do niepożądanych efektów. Znajomość właściwości tych komponentów jest kluczowa dla projektantów elektroniki, którzy dążą do tworzenia niezawodnych i efektywnych układów elektronicznych.

Pytanie 31

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 1000 mV
B. 150 mV
C. 100 mV
D. 300 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 32

Wdrożenie kompleksowego pakietu programowo-usługowego, składającego się z programów radiowych i telewizyjnych, odbieranych za pośrednictwem satelity oraz naziemnie, a także wprowadzanych lokalnie, jest zadaniem

A. głównej stacji czołowej
B. regionalnej stacji czołowej
C. węzła optycznego
D. magistrali optycznej
Główna stacja czołowa jest kluczowym elementem systemu nadawczego, odpowiedzialnym za wprowadzanie i dystrybucję szerokiego pakietu programów radiowych i telewizyjnych. Jej zadaniem jest odbieranie sygnałów z różnych źródeł, takich jak satelity czy stacje naziemne, a następnie przetwarzanie ich i przesyłanie do lokalnych stacji nadawczych. To właśnie główna stacja czołowa zapewnia centralizację zarządzania treściami oraz kontrolowanie jakości sygnału. Przykładem zastosowania tej technologii mogą być duże platformy telewizyjne, które łączą wiele kanałów i programów w jedną ofertę dla widzów. Dzięki standardom, takim jak DVB-T (Digital Video Broadcasting - Terrestrial) i DVB-S (Digital Video Broadcasting - Satellite), możliwe jest efektywne zarządzanie i dystrybucja treści, co zwiększa dostępność programów na różnych obszarach geograficznych oraz poprawia doświadczenie użytkowników. Warto zaznaczyć, że główne stacje czołowe są również kluczowe w kontekście konwergencji mediów, gdzie różne formy treści są integrowane w jedną platformę, umożliwiając użytkownikom łatwiejszy dostęp do różnorodnych formatów mediów.

Pytanie 33

W kablowej telewizji magistrale optyczne wykorzystywane są do przesyłania sygnałów na znaczne odległości?

A. drogą radiową
B. skretkami telefonicznymi
C. łączami światłowodowymi
D. kablami koncentrycznymi
Odpowiedź 'łączami światłowodowymi' jest prawidłowa, ponieważ magistrale optyczne są kluczowym elementem nowoczesnych systemów telekomunikacyjnych. Wykorzystują one światłowody do przesyłania danych na bardzo dużych odległościach z minimalnymi stratami sygnału. Światłowody działają na zasadzie całkowitego wewnętrznego odbicia, co pozwala na efektywne przekazywanie sygnałów świetlnych. W praktyce, światłowody są wykorzystywane w telekomunikacji do łączenia dużych miast oraz w infrastrukturze internetowej, gdzie wymagane jest przesyłanie dużych ilości danych w krótkim czasie. Standardowe systemy światłowodowe, takie jak ITU-T G.652, zapewniają optymalną wydajność w zakresie transmisji w różnych warunkach. Dzięki zastosowaniu technologii światłowodowej, operatorzy telekomunikacyjni mogą oferować usługi o wysokiej przepustowości, co jest niezbędne w dobie rosnącego zapotrzebowania na szybki internet. Zastosowanie magistrali optycznych w telewizji kablowej pozwala nie tylko na przesył sygnału telewizyjnego, ale także na jednoczesną transmisję danych i głosu, co zwiększa efektywność wykorzystania zasobów infrastrukturalnych.

Pytanie 34

Który rodzaj linii transmisyjnej zapewnia przesył sygnału telewizyjnego, wyróżniający się najwyższą odpornością na negatywne skutki warunków atmosferycznych?

A. Symetryczna kablowa
B. Światłowodowa
C. Kablowa koncentryczna
D. Radiowa
Sygnał telewizyjny przesyłany za pomocą światłowodów charakteryzuje się wyjątkową odpornością na zakłócenia, w tym te związane z niekorzystnymi warunkami atmosferycznymi. Wynika to z faktu, że światłowody wykorzystują światło do przesyłania informacji, co sprawia, że są one niewrażliwe na czynniki takie jak deszcz, śnieg czy burze. Światłowodowe linie transmisyjne zapewniają niskie tłumienie sygnału oraz wysoką przepustowość, co umożliwia przesyłanie sygnałów o dużej jakości, w tym sygnałów HD i 4K. Ponadto, światłowody nie emitują fal radiowych, co wyklucza ich zakłócanie przez inne źródła sygnału. Przykładem zastosowania technologii światłowodowej jest modernizacja sieci telewizyjnych w miastach, gdzie światłowody zastępują tradycyjne kable, co zapewnia nieprzerwaną jakość sygnału nawet w trudnych warunkach atmosferycznych. Wykorzystanie światłowodów w telekomunikacji jest zgodne z międzynarodowymi standardami, takimi jak ITU-T G.652, które określają parametry techniczne dla światłowodów jedno- i wielomodowych, zapewniając ich skuteczność w transmisji danych.

Pytanie 35

Jaka wartość w systemie szesnastkowym odpowiada binarnej liczbie 01101101?

A. 7B
B. BC
C. C6
D. 6D
Odpowiedź 6D jest poprawna, ponieważ liczba binarna 01101101 w systemie szesnastkowym odpowiada wartości 6D. Aby zrozumieć, jak dokonano tej konwersji, warto zauważyć, że system binarny jest systemem pozycyjnym z podstawą 2, a system szesnastkowy ma podstawę 16. Liczbę binarną dzielimy na grupy po cztery bity, co daje nam 0110 i 1101. Następnie każdą z tych grup zamieniamy na odpowiadające wartości w systemie szesnastkowym: 0110 to 6, a 1101 to D. Tak więc, 01101101 to 6D w systemie szesnastkowym. W praktyce takie konwersje są niezwykle ważne, szczególnie w programowaniu na poziomie niskim oraz przy pracy z systemami sprzętowymi, gdzie operacje na bitach i bajtach są powszechne. Rozumienie konwersji między systemami liczbowymi jest fundamentalne w inżynierii oprogramowania oraz w projektowaniu systemów cyfrowych, gdzie często zachodzi potrzeba interpretacji wartości binarnych w bardziej zrozumiałych dla ludzi systemach, takich jak hex.

Pytanie 36

W zainstalowanym wideodomofonie nie ma obrazu, jednak dźwięk działa poprawnie. Która z wymienionych usterek nie może wystąpić w tym urządzeniu?

A. Uszkodzenie monitora
B. Awaria zasilacza zestawu wideodomofonowego
C. Zniszczenie przewodu łączącego bramofon z monitorem
D. Usterka kamery bramofonu
Awaria kamery bramofonu, uszkodzenie przewodu łączącego bramofon z monitorem oraz uszkodzenie monitora mogą prowadzić do sytuacji, w której nie ma wizji w wideodomofonie, ale dźwięk działa prawidłowo. Zaczynając od kamery, jeżeli ulegnie awarii, nie będzie w stanie przesyłać obrazu do monitora, co skutkuje brakiem wizji, podczas gdy system audio może wciąż działać, ponieważ dźwięk przesyłany jest inną ścieżką sygnału. Uszkodzenie przewodu łączącego bramofon z monitorem również może prowadzić do problemów z przesyłaniem obrazu, podczas gdy dźwięk pozostanie nienaruszony, jeśli przewód audio działa poprawnie. W przypadku uszkodzenia monitora, jego komponenty odpowiedzialne za odbiór i wyświetlanie sygnału wideo mogą być uszkodzone, co również skutkuje brakiem wizji, mimo że dźwięk może być odbierany bez przeszkód. Takie błędne wnioski mogą wynikać z niepełnego zrozumienia działania systemów wideodomofonowych oraz ich interakcji. Ważne jest, aby zrozumieć, że problemy z obrazem i dźwiękiem w systemach wideodomofonowych mogą manifestować się niezależnie, co może prowadzić do mylnych diagnoz. W praktyce należy zawsze przeprowadzać dokładną diagnostykę, aby wykluczyć wszystkie możliwe przyczyny problemów z obu sygnałami.

Pytanie 37

W instrukcji technicznej zasilacza impulsowego podano, że amplituda napięcia wyjściowego nie przekracza 50 mVpp. Co oznacza, że wartość nieprzekraczająca 50 mV to

A. skuteczna wartość napięcia tętnień
B. średnia wartość napięcia tętnień
C. międzyszczytowa wartość napięcia tętnień
D. maksymalna wartość napięcia tętnień
Odpowiedź dotycząca międzyszczytowej wartości napięcia tętnień jest poprawna, gdyż odnosi się ona do analizy sygnałów zmiennych w zasilaczach impulsowych. Międzyszczytowa wartość tętnień, oznaczająca różnicę między maksymalnym a minimalnym napięciem w jednym cyklu, jest kluczowym parametrem w ocenie jakości zasilania. Tętnienia napięcia wyjściowego są istotne, ponieważ mogą wpływać na stabilność pracy różnych komponentów elektronicznych. Zgodnie ze standardami, takimi jak IEC 61000-3-2, kontrola tętnień jest niezbędna dla zapewnienia zgodności z normami elektromagnetycznymi. Przykładem zastosowania tej wiedzy jest zaprojektowanie zasilacza do urządzeń audio, gdzie niskie tętnienia są kluczowe dla eliminacji zakłóceń, co przekłada się na lepszą jakość dźwięku. W praktyce, projektanci zasilaczy stosują różne techniki filtrowania, aby uzyskać jak najniższe wartości międzyszczytowe, co jest istotne dla poprawnego działania odbiorników elektronicznych.

Pytanie 38

Aby odpowiednio dopasować impedancję w systemie antenowym, konieczne jest zastosowanie

A. wzmacniacza antenowego.
B. zwrotnicy antenowej.
C. rozdzielacza.
D. symetryzatora.
Rozgałęźnik, zwrotnica antenowa oraz wzmacniacz antenowy są urządzeniami, które pełnią różne funkcje w systemach antenowych, ale żadne z nich nie jest przeznaczone do dopasowania impedancji. Rozgałęźnik służy do dzielenia sygnału na kilka odbiorników, co może wprowadzać dodatkowe straty sygnału i nie rozwiązuje problemu dopasowania impedancji. Użycie rozgałęźnika w instalacji antenowej bez odpowiedniego dopasowania impedancji może prowadzić do znacznego pogorszenia jakości odbioru sygnału. Zwrotnica antenowa jest stosowana do kierunkowego podziału sygnału, na przykład do oddzielania kanałów telewizyjnych z różnych częstotliwości, ale podobnie jak rozgałęźnik, nie zajmuje się dopasowaniem impedancji. Wzmacniacz antenowy z kolei ma na celu zwiększenie poziomu sygnału, ale jeśli impedancja nie jest odpowiednio dopasowana, to wzmacniacz może jedynie wzmocnić zakłócenia i inne niepożądane sygnały. Często popełnianym błędem jest mylenie tych urządzeń z symetryzatorem, co prowadzi do nieefektywnego projektowania instalacji antenowych. Właściwe zrozumienie funkcji każdego z tych elementów jest kluczowe dla osiągnięcia optymalnej jakości sygnału w systemach antenowych, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej.

Pytanie 39

Protokół internetowy, który pozwala na pobieranie wiadomości e-mail z serwera na komputer, to

A. DHCP
B. ARP
C. POP3
D. FTP
POP3, czyli Post Office Protocol version 3, to standardowy protokół używany do odbierania poczty elektronicznej z serwera do klienta e-mail. Jego głównym celem jest umożliwienie użytkownikom pobierania wiadomości e-mail z serwera, co jest kluczową funkcjonalnością w codziennej komunikacji elektronicznej. POP3 działa na zasadzie pobierania wiadomości na lokalny komputer, co oznacza, że po ich pobraniu z serwera, są one zazwyczaj usuwane z serwera (choć można skonfigurować klienta, aby pozostawiał je na serwerze). Przykładem zastosowania POP3 jest sytuacja, gdy użytkownik korzysta z klienta pocztowego, takiego jak Microsoft Outlook, aby zyskać dostęp do swojej poczty, jednocześnie umożliwiając odczyt wiadomości offline. Protokół działa głównie na porcie 110, a dla szyfrowanej wersji, czyli POP3S, na porcie 995. POP3 jest zgodny z normami IETF, co czyni go częścią zbioru protokołów standardowych, zapewniając interoperacyjność między różnymi systemami i aplikacjami pocztowymi.

Pytanie 40

Badanie złącza p-n w tranzystorze bipolarnym można przeprowadzić przy użyciu

A. omomierza
B. woltomierza
C. amperomierza
D. watomierza
Woltomierz, watomierz i amperomierz to fajne przyrządy, ale do badania oporu złącza p-n w tranzystorze bipolarnym się nie nadają. Woltomierz mierzy napięcie, ale w kontekście złącza p-n to nie da nam pełnego obrazu. Może zmierzymy napięcie na złączu, ale to za mało, by stwierdzić, czy działa sprawnie. Watomierz też nie jest pomocny, bo on mierzy moc, a nie opór. Może się przydać w innych sytuacjach, ale nie do oceny samego złącza. Amperomierz bada natężenie prądu i daje jakieś wieści o przepływie prądu przez złącze, ale bez znajomości napięcia jest ciężko stwierdzić, czy złącze działa jak należy. Wiele osób myli te pojęcia, przez co czasem sądzimy, że inne przyrządy nadają się do złącz p-n. Ważne jest, żeby wiedzieć, że do pomiaru oporu potrzebujemy omomierza, który jest jedynym słusznym wyborem w tej sprawie.