Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 28 kwietnia 2025 18:27
  • Data zakończenia: 28 kwietnia 2025 18:38

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z poniższych elementów jest częścią układu dolotowego samochodu?

A. Uszczelka miski olejowej
B. Bęben hamulcowy
C. Filtr powietrza
D. Sworzeń wahacza
Filtr powietrza to kluczowy element układu dolotowego w samochodzie. Jego głównym zadaniem jest oczyszczanie powietrza zasysanego do silnika z zanieczyszczeń takich jak kurz, pyłki czy inne drobne cząsteczki. Dzięki temu chroni wnętrze silnika przed przedwczesnym zużyciem i uszkodzeniami. Filtr powietrza znajduje się zazwyczaj w obudowie filtra, która jest częścią układu dolotowego, i jest umiejscowiony przed przepustnicą. W praktyce, regularna wymiana filtra powietrza jest niezbędna do zapewnienia optymalnej pracy silnika oraz ekonomii spalania. Zaniedbanie tej czynności może prowadzić do zwiększonego zużycia paliwa, spadku mocy silnika oraz potencjalnych uszkodzeń mechanicznych. Współczesne samochody są wyposażone w różne typy filtrów powietrza, w tym papierowe, bawełniane czy piankowe, każdy z nich ma swoje specyficzne właściwości i wymagania serwisowe. Filtr powietrza spełnia także rolę w redukcji emisji szkodliwych związków do atmosfery, co jest zgodne z coraz bardziej restrykcyjnymi normami ekologicznymi na całym świecie.

Pytanie 2

Zgięty wahacz w pojeździe należy

A. wyprostować w wysokiej temperaturze
B. wzmocnić dodatkowym elementem
C. wymienić na nowy
D. wyprostować w niskiej temperaturze
Wymiana zgiętego wahacza na nowy jest zdecydowanie najlepszym rozwiązaniem w przypadku uszkodzenia tego kluczowego elementu zawieszenia pojazdu. Wahacz odpowiada za stabilność oraz komfort jazdy, a jego deformacja może prowadzić do poważnych problemów z geometrą zawieszenia, co wpływa na bezpieczeństwo pojazdu. W praktyce, wahacze wykonane są z materiałów takich jak stal lub aluminium, które po zgięciu mogą stracić swoje właściwości mechaniczne. Nawet jeśli wahacz wydaje się być wyprostowany, w jego strukturze mogą pozostać mikropęknięcia, które z czasem mogą prowadzić do dalszych uszkodzeń. Wymiana wahacza na nowy zapewnia pełną niezawodność oraz zgodność z normami producenta, co jest kluczowe dla prawidłowego funkcjonowania układu zawieszenia. Dodatkowo, nowe wahacze są projektowane z uwzględnieniem najnowszych standardów i technologii, co może przyczynić się do poprawy osiągów pojazdu oraz jego trwałości. W sytuacji wystąpienia zgięcia wahacza zawsze należy zwrócić uwagę na jego wymianę, a nie na naprawę, aby zachować maksymalne bezpieczeństwo i komfort jazdy.

Pytanie 3

Jaką podstawę ma identyfikacja pojazdu?

A. numer karty pojazdu
B. numer silnika
C. numer dowodu rejestracyjnego pojazdu
D. numer VIN nadwozia
Numer VIN (Vehicle Identification Number) to unikalny identyfikator pojazdu, który zawiera istotne informacje dotyczące jego konstrukcji, producenta oraz daty produkcji. Jest to 17-znakowy kod składający się z liter i cyfr, który pozwala na jednoznaczną identyfikację konkretnego pojazdu w rejestrach, a także w systemach monitorowania kradzieży czy w historii serwisowej. Przykładowo, podczas zakupu używanego samochodu, sprawdzenie numeru VIN umożliwia weryfikację jego historii, co jest niezbędne dla dokonania świadomego wyboru. W praktyce, numer VIN jest także stosowany przez organy ścigania oraz ubezpieczycieli w celu identyfikacji pojazdów, co czyni go kluczowym elementem w procesach związanych z rejestracją i ubezpieczeniem. W związku z tym, właściwe posługiwanie się numerem VIN jest nie tylko standardem branżowym, ale także najlepszą praktyką w zarządzaniu flotą pojazdów oraz w handlu motoryzacyjnym.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Z załączonej normy zużycia materiałów eksploatacyjnych wynika, że roczne zużycie oleju silnikowego (bez jego wymiany) pojazdu który przejechał 12 000 km wyniosło

Norma zużycia materiałów eksploatacyjnych
podzespół- silnik
Rodzaj materiałuOlej silnikowy
Pojemność miski olejowej8 l
Norma zużycia na 1000 km0,5 l
Czasokres wymiany1 0000 km

A. 6,01
B. 8,51
C. 8,01
D. 14,01
Wiesz, poprawna odpowiedź wynika z tego, co mówią normy dotyczące zużycia oleju silnikowego. Dla auta, które przejeżdża 12 000 km rocznie, to wychodzi 6 litrów. Po zroundowaniu do dwóch miejsc po przecinku mamy 6,01 litra. To ważna wiedza, szczególnie dla tych, którzy zajmują się flotą pojazdów czy pracują w warsztatach. Precyzyjne obliczenia zużycia są kluczowe, żeby dobrze zaplanować wydatki. Zrozumienie norm zużycia pomaga też w ustalaniu, jak często trzeba serwisować pojazdy. Na przykład, jeśli mamy flotę z 10 samochodami, to możemy oszacować, że roczne zużycie oleju wyniesie 60 litrów. Pomaga to lepiej planować zakupy i kontrolować wydatki. Takie podejście na pewno podnosi efektywność zarządzania i może zmniejszyć koszty operacyjne.

Pytanie 6

Masa własna pojazdu obejmuje

A. masę standardowego wyposażenia pojazdu, jednak bez kierowcy
B. masę pojazdu oraz normalnego wyposażenia, a także kierowcy i pasażera
C. masę pojazdu oraz wyposażenia, bez płynów eksploatacyjnych i bez kierowcy
D. masę pojazdu oraz standardowego wyposażenia z płynami eksploatacyjnymi, lecz bez kierowcy
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumienia dotyczącego definicji masy własnej pojazdu. Odpowiedzi, które pomijają płyny eksploatacyjne lub sugerują brak kierowcy i pasażerów, nie oddają rzeczywistości i mogą prowadzić do poważnych błędów w obliczeniach wydajności pojazdu. Masa pojazdu jest elementem kluczowym dla uzyskania precyzyjnych danych dotyczących wydajności i bezpieczeństwa. Pojazdy są projektowane z uwzględnieniem ich masy, co ma wpływ na konstrukcję układu hamulcowego, zawieszenia oraz silnika. Pominięcie masy płynów eksploatacyjnych może prowadzić do wprowadzenia w błąd odnośnie do zdolności pojazdu do przewozu ładunków. Na przykład, niektóre normy dotyczące przewozu towarów określają maksymalne masy całkowite, które obejmują zarówno masę własną, jak i ładunek oraz pasażerów. Zrozumienie tej koncepcji jest fundamentalne dla prawidłowego korzystania z pojazdów i zgodności z przepisami drogowymi oraz normami bezpieczeństwa. Wszelkie obliczenia związane z masą pojazdu powinny być dokładne i uwzględniać wszystkie istotne komponenty, aby zapewnić odpowiednie osiągi i bezpieczeństwo eksploatacji.

Pytanie 7

Odczuwane wibracje podczas startu pojazdu mogą świadczyć o

A. zablokowaniu systemu chłodzenia
B. niewyważeniu kół
C. uszkodzeniu tarczy sprzęgłowej
D. deformacji tarczy hamulcowej
Kiedy tarcza sprzęgłowa jest uszkodzona, możesz odczuwać nieprzyjemne drgania, jak ruszasz pojazdem. To ta część, która łączy silnik z skrzynią biegów, więc jest dość ważna. Jak tarcza się zużyje albo przegrzeje, to moc jest przenoszona nierównomiernie i to właśnie te drgania możesz odczuwać w kabinie. Przykłady? Kiedy wciśniesz pedał sprzęgła i czujesz stuk lub wibracje, to może znaczy, że czas na wymianę tarczy. W motoryzacji dobrze jest regularnie sprawdzać sprzęgło, szczególnie w autach, które jeżdżą sporo albo mają duży przebieg. Wymiana uszkodzonej tarczy jest mega istotna, żeby jazda była bezpieczna i komfortowa, a cały układ dobrze działał.

Pytanie 8

Dlaczego ważne jest regularne sprawdzanie poziomu oleju silnikowego?

A. Zwiększenie mocy silnika
B. Poprawa wydajności systemu klimatyzacji
C. Zmniejszenie hałasu pracy silnika
D. Zapobieganie uszkodzeniom silnika z powodu niedostatecznego smarowania
Regularne sprawdzanie poziomu oleju silnikowego jest kluczowe dla prawidłowego funkcjonowania samochodu. Olej pełni funkcję smarowania elementów silnika, co zapobiega ich zużyciu i przegrzewaniu. Gdy poziom oleju jest zbyt niski, elementy silnika mogą nie być odpowiednio smarowane, co prowadzi do zwiększonego tarcia i potencjalnie poważnych uszkodzeń. Może to skutkować kosztownymi naprawami, a w ekstremalnych przypadkach całkowitym zniszczeniem silnika. Regularne sprawdzanie poziomu oleju pozwala także zauważyć ewentualne wycieki czy nadmierne zużycie oleju, które mogą być sygnałem innych problemów mechanicznych. Właściwy poziom oleju wspomaga także efektywne spalanie paliwa, co przekłada się na lepszą ekonomię jazdy. Dbanie o odpowiedni poziom oleju jest uznawane za podstawową dobrą praktykę w zakresie konserwacji samochodów i jest zalecane przez wszystkich producentów pojazdów.

Pytanie 9

Jaką częstotliwość powinny mieć błyski świateł kierunkowskazów?

A. 90 ± 30 błysków w ciągu minuty
B. 100 ± 30 błysków w ciągu minuty
C. 60 ± 30 błysków w ciągu minuty
D. 120 ± 30 błysków w ciągu minuty
Wybór częstotliwości błysków kierunkowskazów różniący się od 90 ± 30 błysków na minutę może prowadzić do wielu problemów związanych z komunikacją na drodze. Na przykład, wybór wartości 60 ± 30 błysków na minutę oznacza, że kierunkowskazy będą świecić znacznie wolniej, co może być mylące dla innych uczestników ruchu. Taki wolny rytm może nie zapewniać wystarczającej widoczności sygnału, zwłaszcza w sytuacjach o dużym natężeniu ruchu, gdzie czas reakcji jest kluczowy. Z drugiej strony, częstotliwość 100 ± 30 błysków na minutę może być zbyt szybka, przez co inne pojazdy mogą mieć problemy z zauważeniem sygnału, co zwiększa ryzyko wypadków. Częstość 120 ± 30 błysków na minutę nie tylko narusza zasady dotyczące ergonomii, ale także może być postrzegana jako niepokojąca przez innych kierowców. Często, wybór nieodpowiedniej częstotliwości wynika z błędnych założeń, które prowadzą do niskiego poziomu bezpieczeństwa na drogach. Dlatego ważne jest, aby stosować się do uznawanych standardów branżowych, które zapewniają optymalną widoczność i łatwość w interpretacji sygnałów kierunkowskazów.

Pytanie 10

Co może być przyczyną nadmiernego zużycia zewnętrznych krawędzi bieżnika jednej z opon?

A. Zbyt wysokie ciśnienie w oponie
B. Zbyt niskie ciśnienie w oponie
C. Nieodpowiedni kąt nachylenia koła
D. Nieprawidłowa zbieżność kół
Niewłaściwa zbieżność, niewłaściwy kąt pochylenia koła oraz zbyt wysokie ciśnienie w oponie to kwestie, które mogą wpłynąć na zużycie opon, ale nie są one bezpośrednimi przyczynami nadmiernego zużycia bieżnika na zewnętrznych krawędziach. Zbieżność, czyli ustawienie kół w odpowiedniej linii względem osi pojazdu, ma kluczowe znaczenie dla równomiernego zużycia opon. Błędna zbieżność może prowadzić do asymetrycznego zużycia, jednak niekoniecznie ogranicza się jedynie do zewnętrznych krawędzi. Również kąt pochylenia koła, który powinien być dostosowany do specyfikacji producenta, wpływa na kontakt opony z nawierzchnią. Niewłaściwy kąt może spowodować nierównomierne zużycie, ale niekoniecznie odbędzie się to w formie nadmiernego zużycia wyłącznie na zewnętrznych stronach. Z kolei zbyt wysokie ciśnienie w oponie prowadzi do szybszego zużycia środkowej części bieżnika, co jest odwrotnością sytuacji przy zbyt niskim ciśnieniu. Typowe błędy myślowe w analizie zużycia opon obejmują uproszczenia i pomijanie złożoności wpływu różnych parametrów na stan ogumienia. Utrzymanie odpowiednich ciśnień oraz regularne sprawdzanie geometrii kół są kluczowe dla zapewnienia długowieczności opon oraz bezpieczeństwa na drodze.

Pytanie 11

Podczas montażu pierścieni uszczelniających Simmera wyjętych ze skrzyni biegów należy

A. wymienić na nowe
B. zregenerować, gdy uległy zniszczeniu
C. zamienić miejscami
D. pozostawić w oryginalnych gniazdach
Regeneracja uszkodzonych pierścieni uszczelniających Simmera może wydawać się rozwiązaniem ekonomicznym, jednak takie podejście wiąże się z poważnymi ryzykami. Pierścienie te, wykonane z materiałów elastycznych, po długotrwałym użytkowaniu tracą swoje właściwości uszczelniające. Proces regeneracji zazwyczaj polega na ich czyszczeniu, co w praktyce nie gwarantuje przywrócenia oryginalnych parametrów technicznych. Zastosowanie regenerowanych pierścieni może prowadzić do ich przedwczesnego zużycia, a w efekcie do wycieków fluidów, co jest szczególnie niebezpieczne w przypadku układów smarnych. Wymiana miejscami uszczelnień również jest błędnym podejściem, gdyż każdy pierścień jest projektowany do konkretnych gniazd w skrzyni biegów. Ich zamiana może zaburzyć integralność całego układu uszczelniającego, prowadząc do nierównomiernego zużycia i potencjalnych awarii. Pozostawienie zużytych pierścieni w ich gniazdach z kolei nie rozwiązuje problemu, ponieważ ich degradacja sprawia, że nie będą one spełniały swojej funkcji, co skutkuje nieszczelnością. W kontekście standardów branżowych, zaleca się wymianę wszelkich uszczelnień i o-ringów na nowe w trakcie serwisowania lub naprawy, co jest kluczowe dla zachowania bezpieczeństwa użytkowania oraz efektywności działania urządzeń mechanicznych. Dlatego kluczowe jest stosowanie się do najlepszych praktyk dotyczących wymiany tych kluczowych elementów, aby uniknąć kosztownych napraw w przyszłości.

Pytanie 12

Mikrometr z noniuszem podaje wyniki pomiarów z precyzją

A. 0,10 mm
B. 0,02 mm
C. 0,05 mm
D. 0,01 mm
Noniusz mikrometra, znany z wysokiej precyzji pomiarów, wskazuje dokładność 0,01 mm. Taki poziom dokładności jest kluczowy w zastosowaniach inżynieryjnych oraz laboratoryjnych, gdzie wymagana jest precyzyjna obróbka materiałów czy też montaż elementów. Dzięki takiej rozdzielczości, użytkownicy mogą z łatwością określić niewielkie wymiary, co jest istotne w kontekście tolerancji produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, gdzie każdy milimetr ma znaczenie, pomiary realizowane z dokładnością do 0,01 mm umożliwiają osiągnięcie wysokiej jakości wykonania detali. Standardy branżowe, takie jak ISO 2768, nakładają obowiązek stosowania precyzyjnych narzędzi pomiarowych w procesie wytwarzania, co potwierdza znaczenie mikrometrów z noniuszem. Oprócz zastosowań przemysłowych, mikrometry są również stosowane w badaniach naukowych, gdzie precyzyjne pomiary są kluczowe dla uzyskania wiarygodnych wyników. To sprawia, że wiedza o dokładności mikrometrów jest istotnym elementem kształcenia inżynieryjnego.

Pytanie 13

Ciśnienie definiujemy jako siłę działającą na jednostkę

A. powierzchni
B. wagi
C. długości
D. gęstości
Ciśnienie definiuje się jako siłę działającą na jednostkę powierzchni. Jest to kluczowa koncepcja w fizyce i inżynierii, mająca zastosowanie w wielu dziedzinach, od mechaniki płynów po budownictwo. Przykładem praktycznym może być analiza sił działających na konstrukcje, takie jak mosty czy budynki, gdzie inżynierowie muszą uwzględniać ciśnienie wywierane przez wiatr, śnieg czy inne czynniki zewnętrzne. Zgodnie z zasadą Pascala, zmiany ciśnienia w zamkniętym płynie są przenoszone wszędzie równomiernie, co ma istotne znaczenie w hydraulice. Ciśnienie jest również kluczowe w medycynie, gdzie monitorowanie ciśnienia krwi może dostarczać informacji o stanie zdrowia pacjenta. W przemyśle, ciśnienie jest ważne w procesach takich jak pakowanie, gdzie odpowiednia siła musi być zastosowana do uzyskania szczelności opakowań. W myśl norm ISO, pomiar ciśnienia wymaga stosowania odpowiednich instrumentów, takich jak manometry, które muszą być kalibrowane zgodnie z międzynarodowymi standardami.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

W głowicy znajdują się dwa wałki rozrządu. Który symbol to przedstawia?

A. OHV
B. DOHC
C. SOHC
D. OHC
Termin DOHC, czyli Double Overhead Camshaft, odnosi się do silników, które posiadają dwa wałki rozrządu umieszczone w głowicy cylindrów. Taki układ umożliwia bardziej precyzyjne sterowanie zaworami w porównaniu do starszych rozwiązań. Dzięki temu, silniki DOHC mogą osiągać wyższe obroty, co przekłada się na lepsze osiągi i efektywność. Dodatkowo, zastosowanie dwóch wałków pozwala na lepszą synchronizację otwierania i zamykania zaworów, co z kolei wpływa na optymalizację cyklu pracy silnika. Przykładowo, silniki sportowe często korzystają z tego typu rozrządu, aby uzyskać maksymalne parametry mocy i momentu obrotowego. W praktyce, DOHC jest powszechnie stosowany w nowoczesnych samochodach, co czyni tę wiedzę istotną dla każdego, kto zajmuje się motoryzacją czy inżynierią mechaniczną.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Podczas serwisowania silnika wymieniono 4 wtryskiwacze o łącznym koszcie 1750,00 zł netto oraz turbinę w cenie 1900,00 zł netto. Całkowity czas serwisowania wyniósł 5,5 roboczogodziny, a stawka za jedną roboczogodzinę to 120,00 zł brutto. Części samochodowe podlegają opodatkowaniu VAT w wysokości 23%. Jaki jest całkowity koszt serwisowania brutto?

A. 5 301,30 zł
B. 4 310,00 zł
C. 5 149,50 zł
D. 4 489,50 zł
Aby obliczyć łączny koszt naprawy brutto, należy uwzględnić zarówno koszty części, jak i robocizny oraz odpowiednie stawki VAT. W naszym przypadku wtryskiwacze kosztowały 1750,00 zł netto, co po dodaniu 23% VAT daje 2152,50 zł. Turbina kosztowała 1900,00 zł netto, co z VAT wynosi 2337,00 zł. Koszt robocizny to 5,5 roboczogodziny mnożone przez 120,00 zł brutto, co daje 660,00 zł. Teraz sumujemy wszystkie te wartości: 2152,50 zł (wtryskiwacze) + 2337,00 zł (turbina) + 660,00 zł (robocizna) = 5150,50 zł. Dodając VAT (23%), całkowity koszt naprawy brutto wynosi 5 149,50 zł. Taki sposób kalkulacji jest zgodny z obowiązującymi standardami rachunkowości oraz praktykami w branży motoryzacyjnej, gdzie każda część oraz usługa są fakturowane z uwzględnieniem podatku VAT.

Pytanie 18

Jakim narzędziem dokonuje się oceny luzu zamka pierścienia zgarniającego na tłoku?

A. z wykorzystaniem mikrometra
B. przy pomocy suwmiarki
C. za pomocą szczelinomierza
D. przy użyciu płytek wzorcowych
Szczelinomierz to narzędzie pomiarowe, które idealnie nadaje się do sprawdzania luzu zamka pierścienia zgarniającego na tłoku. Umożliwia on precyzyjne pomiary szczelin o różnych wymiarach, co jest kluczowe w kontekście zapewnienia odpowiedniej pracy mechanizmów. Luz zamka jest istotnym parametrem, który wpływa na efektywność działania tłoków w silnikach spalinowych oraz innych układach hydraulicznych. W praktyce, stosując szczelinomierz, można szybko i dokładnie ocenić, czy luz jest zgodny z wymaganiami producenta. Warto również zwrócić uwagę na to, że w przypadku zbyt dużego luzu może dochodzić do nieszczelności, co w konsekwencji prowadzi do obniżonej wydajności urządzenia oraz przyspieszonego zużycia elementów. Dlatego regularne pomiary przy użyciu szczelinomierza są zalecane jako część procedur konserwacyjnych. Dobrą praktyką jest również dokumentowanie wyników pomiarów w celu monitorowania stanu technicznego urządzeń.

Pytanie 19

Przed przeprowadzeniem diagnostyki silnika pojazdu przy użyciu analizatora spalin, należy

A. podnieść temperaturę silnika do wartości eksploatacyjnej.
B. uzupełnić zbiornik paliwa.
C. schłodzić silnik.
D. dodać olej silnikowy do maksymalnego poziomu.
Rozgrzewanie silnika do temperatury eksploatacyjnej przed wykonaniem diagnostyki silnika przy użyciu analizatora spalin jest kluczowym etapem, który ma na celu uzyskanie dokładnych i wiarygodnych wyników pomiarów. Silniki spalinowe osiągają optymalną efektywność pracy oraz odpowiednie parametry spalin dopiero po osiągnięciu właściwej temperatury roboczej. W tej temperaturze wszystkie komponenty silnika, w tym systemy wtryskowe i katalizatory, działają w optymalny sposób, co pozwala na zminimalizowanie błędów pomiarowych. Dobrą praktyką jest również przeprowadzenie diagnostyki po pewnym czasie pracy silnika na biegu jałowym, co umożliwia stabilizację parametrów. Na przykład, podczas diagnostyki pojazdu osobowego, który przeszedł dłuższą jazdę, można zauważyć znaczące różnice w składzie spalin w porównaniu z pomiarami przy zimnym silniku. Warto zwrócić uwagę, że wiele instrukcji obsługi producentów zaleca konkretne procedury rozgrzewania silnika, co podkreśla znaczenie tego kroku w kontekście diagnostyki i redukcji emisji szkodliwych substancji.

Pytanie 20

Olej oznaczony jako PAG jest wykorzystywany do smarowania części

A. mostu napędowego
B. w systemie kierowniczym
C. w systemie klimatyzacji
D. skrzyni biegów
Wybranie innych opcji jako odpowiedzi sugeruje, że jest pewne nieporozumienie co do tego, do czego służy olej PAG. Olej w skrzyni biegów potrzebuje zupełnie innych właściwości. W automatycznych skrzyniach biegów stosuje się specjalne oleje ATF (Automotive Transmission Fluid), które są zaprojektowane do pracy w trudnych warunkach z dużymi obciążeniami i zmieniającymi się temperaturami. Te oleje są bardziej płynne i lepiej radzą sobie w dużym ciśnieniu, co jest innego niż w przypadku oleju PAG. W układach kierowniczych używa się z kolei olejów hydraulicznych, które mają odpowiednią lepkość i stabilność termiczną, żeby zapewnić płynne prowadzenie auta. W mostach napędowych często potrzebne są oleje o wyższej lepkości, odporne na wysokie temperatury i ciśnienia, co jest konieczne do smarowania przekładni i łożysk w trudnych warunkach. Dlatego niewłaściwe użycie oleju PAG w tych systemach może prowadzić do poważnych problemów mechanicznych. Ważne jest, żeby dobrze rozumieć rolę różnych olejów w układach, bo to klucz do bezawaryjnej pracy pojazdu przez długi czas.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Zamiana klocków hamulcowych na tylnej osi w pojazdach z EPB lub SBC wiąże się z

A. dezaktywacją zacisków hamulcowych
B. odpowietrzeniem układu hamulcowego
C. jednoczesną wymianą tarcz i klocków hamulcowych
D. wymianą płynu hamulcowego
Dezaktywacja zacisków hamulcowych jest niezbędnym krokiem przy wymianie klocków hamulcowych w pojazdach wyposażonych w systemy EPB (elektroniczna ręczna sprężyna) lub SBC (inteligentny system hamulcowy). Przy tych rozwiązaniach, zaciski hamulcowe są sterowane elektronicznie, co oznacza, że przed przystąpieniem do wymiany klocków, konieczne jest ich odłączenie. Proces ten pozwala na prawidłowe usunięcie zużytych klocków bez ryzyka uszkodzenia systemu hamulcowego. W praktyce, aby dezaktywować zaciski, należy skorzystać z odpowiedniego narzędzia diagnostycznego, które umożliwia komunikację z jednostką sterującą systemu hamulcowego. Tego typu działania są zgodne z zaleceniami producentów i są kluczowe dla zachowania integralności układu hamulcowego. W przypadku nieprzeprowadzenia dezaktywacji, może dojść do uszkodzenia elementów zacisku lub niewłaściwej pracy hamulców po wymianie, co stwarza zagrożenie dla bezpieczeństwa jazdy. Prawidłowa procedura wymiany klocków hamulcowych, z uwzględnieniem dezaktywacji zacisków, jest zgodna z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 23

Jaki będzie całkowity koszt części zamiennych użytych do wymiany układu wydechowego pojazdu?

Lp.NazwaIlość jednostkaCena brutto
1.Tłumik środkowy1 szt.95,00 zł
2.Tłumik końcowy1 szt.98,00 zł
3.Opaska zaciskowa1 kpl.29,00 zł
4.Czas pracy2 h-
5.Roboczogodzina1 h90,00 zł
Uwaga: od cen w tabeli przysługuje rabat w wysokości 5%

A. 193,00 zł
B. 210,90 zł
C. 408,00 zł
D. 222,00 zł
Poprawna odpowiedź, czyli 210,90 zł, wynika z prawidłowego obliczenia całkowitych kosztów części zamiennych do wymiany układu wydechowego. Aby osiągnąć tę wartość, należy najpierw zsumować ceny brutto wszystkich wymaganych komponentów. Następnie, na podstawie standardowych procedur stosowanych w branży motoryzacyjnej, od tej sumy odejmujemy rabat w wysokości 5%, co jest powszechną praktyką przy zakupach hurtowych lub w przypadku stałych dostawców. Na przykład, jeśli całkowita cena brutto części wynosi 222,00 zł, to po zastosowaniu rabatu otrzymujemy kwotę 210,90 zł (222,00 zł - 5% = 210,90 zł). Wiedza ta jest istotna nie tylko dla mechaników, ale także dla przedsiębiorstw zajmujących się serwisem pojazdów, gdzie precyzyjne kalkulacje kosztów mają kluczowe znaczenie dla rentowności działalności. Prawidłowe posługiwanie się tymi obliczeniami pozwala na lepsze planowanie budżetu i zarządzanie kosztami operacyjnymi, co przekłada się na efektywność finansową warsztatu.

Pytanie 24

Największa dopuszczalna różnica w sile hamowania pomiędzy kołami tej samej osi wynosi

A. 30%
B. 10%
C. 40%
D. 20%
Wybór innej wartości jako maksymalnej dopuszczalnej różnicy sił hamowania między kołami tej samej osi może wynikać z nieporozumień dotyczących znaczenia równoważenia sił hamowania oraz ich wpływu na stabilność pojazdu. Odpowiedzi sugerujące wyższe limity, takie jak 40% czy 20%, mogą wydawać się odpowiednie z perspektywy ogólnego zrozumienia działania układu hamulcowego, ale w rzeczywistości mogą prowadzić do poważnych problemów z bezpieczeństwem. Osiąganie zbyt dużych różnic w sile hamowania może skutkować nierównomiernym zużyciem opon oraz zwiększonym ryzykiem poślizgu, zwłaszcza w sytuacjach awaryjnych. W praktyce, nieprawidłowe wartości mogą wpłynąć na dynamikę pojazdu, powodując trudności w prowadzeniu oraz wydłużenie drogi hamowania. Ponadto, taki stan rzeczy może być źródłem niezgodności z przepisami prawnymi dotyczącymi stanu technicznego pojazdów. Kluczowe jest, aby mechanicy i właściciele pojazdów byli świadomi znaczenia tego parametru w kontekście ogólnego bezpieczeństwa na drodze oraz regularnie kontrolowali układ hamulcowy, aby zapewnić jego prawidłowe funkcjonowanie i pełną sprawność. Dbanie o równowagę sił hamowania jest fundamentalne dla zapewnienia bezpieczeństwa jazdy i komfortu użytkowania pojazdu.

Pytanie 25

Aby zredukować tarcie w mechanizmie różnicowym, stosuje się

A. smar stały
B. olej silnikowy
C. płyn hydrauliczny
D. olej przekładniowy
Olej przekładniowy to substancja smarująca, która została zaprojektowana z myślą o specyficznych wymaganiach mechanizmów różnicowych w pojazdach. Jego główną funkcją jest redukcja tarcia między ruchomymi częściami, co z kolei minimalizuje zużycie i wydłuża żywotność podzespołów. W przeciwieństwie do innych rodzajów olejów, olej przekładniowy zawiera dodatki, które poprawiają jego właściwości smarne oraz zapobiegają pienieniu się, co jest kluczowe w warunkach dużych obciążeń i zmiennych prędkości pracy. Zastosowanie oleju przekładniowego jest zgodne z zaleceniami producentów układów napędowych, co wpływa na ich niezawodność i efektywność. Dobór właściwego oleju jest istotny, ponieważ niewłaściwy może prowadzić do przegrzewania się przekładni, co skutkuje uszkodzeniem mechanizmu różnicowego. W praktyce, regularna wymiana oleju przekładniowego jest kluczowym elementem konserwacji pojazdów, co jest zgodne z najlepszymi praktykami utrzymania pojazdów.

Pytanie 26

Jakie napięcie uważa się za bezpieczne dla ludzi?

A. 220 V
B. 110 V
C. 360 V
D. 24 V
Napięcie 24 V jest uważane za bezpieczne dla człowieka, ponieważ w przypadku kontaktu z prądem o tej wartości ryzyko poważnych obrażeń jest znacznie mniejsze w porównaniu do wyższych napięć. Zgodnie z normami IEC 61140 oraz EN 60950, napięcia poniżej 50 V są klasyfikowane jako bezpieczne w warunkach normalnych. W praktyce napięcie 24 V jest powszechnie wykorzystywane w systemach zasilania urządzeń elektronicznych, automatyki budynkowej oraz zasilania czujników. Na przykład, w systemach sterowania oświetleniem lub w instalacjach alarmowych, napięcie 24 V pozwala na bezpieczne użytkowanie oraz minimalizuje ryzyko porażenia prądem. Dodatkowo, zasilanie w tym napięciu znacząco redukuje straty energii w systemach, co jest korzystne z perspektywy efektywności energetycznej. Warto podkreślić, że urządzenia działające na 24 V są często wykorzystywane w pojazdach czy instalacjach przemysłowych, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 27

Aby zweryfikować prawidłowość wykonanego serwisu układu przeniesienia napędu, mechanik powinien zrealizować

A. kontrolę luzu elementów układu zawieszenia
B. test na stanowisku rolkowym
C. pomiar zbieżności kół
D. jazdę próbną
Przeprowadzenie próby na stanowisku rolkowym, pomiaru zbieżności kół lub kontrola luzu elementów układu zawieszenia, choć istotne, nie zastępują jazdy próbnej jako metody weryfikacji naprawy układu przeniesienia napędu. Stanowisko rolkowe jest użyteczne do diagnostyki, jednak nie oddaje rzeczywistych warunków jazdy. Może pokazać pewne parametry, ale nie dostarczy informacji o zachowaniu pojazdu podczas jazdy w terenie, w zakrętach czy w reakcjach na zmiany prędkości. Zbieżność kół jest kluczowym parametrem, który wpływa na stabilność i kierowanie pojazdem, ale jej pomiar nie jest bezpośrednio związany z oceną naprawy układu napędowego. Kontrola luzów w zawieszeniu również ma znaczenie, ale koncentruje się na innym aspekcie pojazdu, a nie na samym układzie przeniesienia napędu. Te błędne podejścia pojawiają się często z braku zrozumienia, że naprawy wymuszają szeroką analizę całego systemu pojazdu w kontekście jego rzeczywistego użytkowania. Jazda próbna jest jedyną metodą, która pozwala na kompleksową ocenę działania układu przeniesienia napędu w rzeczywistych warunkach drogowych, co czyni ją niezbędnym etapem w procesie naprawczym.

Pytanie 28

Jakiego woltomierza o odpowiednim zakresie pomiarowym należy użyć do pomiaru spadku napięcia podczas rozruchu akumulatora?

A. 20 V DC
B. 2 V DC
C. 20 V AC
D. 2 V AC
Wybór zakresu 2 V AC, 20 V AC oraz 2 V DC do pomiaru spadku napięcia na akumulatorze jest zdecydowanie nietrafiony. Po pierwsze, akumulator dostarcza napięcie stałe (DC), więc woltomierz powinien być ustawiony właśnie na to napięcie. Użycie zakresu AC to spory błąd, bo sygnał zmienny (AC) nie pokazuje realnego stanu napięcia akumulatora, który jest stabilny. Dodatkowo, zakres 2 V DC może być za mały, bo spadki napięcia podczas uruchamiania mogą go przekraczać, co skutkuje błędnymi odczytami. No i ten 20 V AC – też nie ma sensu, bo to nie tylko wprowadza dodatkowe błędy, ale też nie ma nic wspólnego z rzeczywistością w systemach zasilania DC. Typowe błędy myślowe mogą tu obejmować brak rozróżnienia między AC a DC i niedocenianie wartości napięcia przy rozruchu. Żeby skutecznie ocenić stan akumulatora, trzeba korzystać z odpowiedniego sprzętu i technik pomiarowych. To jest kluczowe dla sprawności systemów elektrycznych w pojazdach.

Pytanie 29

Jakie urządzenie wykorzystuje się do pomiaru ciśnienia sprężania w silniku?

A. stetoskop
B. stroboskop
C. oscyloskop
D. manometr
Manometr jest narzędziem służącym do pomiaru ciśnienia, które jest kluczowe w diagnostyce silników spalinowych. W przypadku badania ciśnienia sprężania silnika, manometr umożliwia precyzyjny pomiar ciśnienia w cylindrach, co pozwala na ocenę stanu uszczelek zaworów oraz pierścieni tłokowych. Pomiar ten jest istotny, ponieważ niskie ciśnienie sprężania może wskazywać na zużycie silnika lub uszkodzenia, co może prowadzić do spadku mocy i zwiększonego zużycia paliwa. W praktyce, manometr umieszcza się w gnieździe świecy zapłonowej i uruchamia się silnik, aby uzyskać wynik pomiaru. W branży motoryzacyjnej, regularne sprawdzanie ciśnienia sprężania jest zalecane jako część rutynowych przeglądów, co jest zgodne z dobrymi praktykami diagnostyki silników. Przykładem zastosowania manometru może być diagnoza problemów z silnikiem w warsztatach samochodowych, gdzie mechanicy stosują ten przyrząd do identyfikacji usterki i planowania napraw. Wiedza o ciśnieniu sprężania jest również kluczowa dla entuzjastów motoryzacji, którzy dbają o osiągi swoich pojazdów.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jasnobłękitny kolor spalin wydobywających się z układu wydechowego wskazuje

A. na zbyt niską temperaturę pracy silnika
B. na przedostawanie się cieczy chłodzącej do cylindrów
C. na zbyt duży luz między tłokiem a cylindrem
D. na nieszczelność przylgni zaworowych
Wiele osób może błędnie interpretować jasnobłękitny kolor spalin jako symptom zbyt niskiej temperatury pracy silnika. W rzeczywistości, niska temperatura pracy silnika zazwyczaj objawia się innymi symptomami, takimi jak zwiększone zużycie paliwa czy gorsza dynamika pojazdu. Zbyt niska temperatura pracy nie wpływa bezpośrednio na kolor spalin, a raczej na ich gęstość i skład chemiczny. Warto zauważyć, że silniki są projektowane z myślą o osiągnięciu optymalnej temperatury pracy, co pozwala na efektywne spalanie paliwa i minimalizację emisji zanieczyszczeń. Kolejną mylną interpretacją może być myślenie, że jasnobłękitne spaliny świadczą o dostawaniu się cieczy chłodzącej do cylindrów. W takim przypadku, typowym objawem byłby różowy lub niebieskawy dym, ale niekoniecznie jasno-niebieski. Problemy z nieszczelnością przylgni zaworowych, które mogą generować dym w kolorze niebieskim, są również rzadziej spotykane i mają inne objawy, jak na przykład nieszczelności w układzie dolotowym. Konsekwencją tych błędnych analiz jest nie tylko niezrozumienie działania silnika, ale także ryzyko podejmowania nieodpowiednich działań naprawczych, co może prowadzić do poważniejszych usterek.

Pytanie 32

Nieprawidłowe rozpylenie paliwa wtryskiwanego, przejawiające się zwiększoną ilością sadzy w spalinach ponad dopuszczalne wartości, nie może być spowodowane

A. nieszczelnością rozpylacza.
B. zbyt niskim ciśnieniem wtrysku.
C. zużyciem otworów wylotowych rozpylacza.
D. nieszczelnością głowicy.
Nieszczelność w rozpylaczu, zużyte otwory wylotowe i niskie ciśnienie wtrysku to rzeczy, które mogą mocno wpłynąć na to, jak dobrze paliwo się rozpyla. Jak rozpylacz jest nieszczelny, to paliwo wtryskuje się źle i silnik działa nieregularnie. Kiedy paliwo jest źle rozprowadzone, mogą się pojawić duże krople, które nie spalają się tak, jak powinny, a to zwiększa emisję cząstek stałych, w tym sadzy. Zużyte otwory w rozpylaczu zaburzają strumień paliwa, co znowu ma wpływ na to, jak dobrze zachodzi spalanie. A niskie ciśnienie wtrysku to kolejny problem, bo przez to atomizacja paliwa nie zachodzi prawidłowo, co znów zwiększa ryzyko powstawania sadzy. Myślenie, że nieszczelności głowicy mogą być za to odpowiedzialne, to spory błąd, bo głowica nie wpływa na wtrysk. Więc żeby zmniejszyć emisję sadzy, ważne jest, żeby na bieżąco serwisować układy wtryskowe, sprawdzając stan rozpylaczy i ciśnienie, jak radzą producenci.

Pytanie 33

Podczas obsługi urządzenia do piaskowania elementów należy bezwzględnie zakładać

A. rękawice lateksowe
B. czapkę z daszkiem
C. obuwie ochronne
D. okulary ochronne
Użycie okularów ochronnych podczas obsługi urządzenia do piaskowania części jest kluczowe dla zapewnienia bezpieczeństwa operatora. Piaskowanie generuje cząsteczki pyłu oraz drobne cząstki materiału, które mogą łatwo trafić do oczu, powodując poważne urazy. Okulary ochronne, zgodne z normami ochrony osobistej, powinny być wykonane z materiałów odpornych na uderzenia, aby skutecznie chronić oczy przed potencjalnymi projektami. Przykładowo, stosowanie okularów z powłoką antyrefleksyjną i odpornych na zarysowania jest zalecane, aby zwiększyć komfort pracy oraz bezpieczeństwo. Ponadto, w kontekście przestrzegania przepisów BHP, wiele organizacji wymaga stosowania okularów ochronnych jako standardowego wyposażenia podczas wszelkich operacji związanych z obróbką materiałów. Prawidłowe zabezpieczenie oczu jest również elementem kultury bezpieczeństwa w miejscu pracy, co przyczynia się do obniżenia ryzyka wypadków.

Pytanie 34

Jakie substancje wykorzystuje się do czyszczenia układu klimatyzacyjnego?

A. alkohol metylowy bądź etylowy
B. benzyne ekstrakcyjną
C. rozpuszczalniki acetonowe
D. czysty azot lub chemiczny roztwór z azotem
Odpowiedź, którą zaznaczyłeś, jest trafna! Mówiąc o płukaniu układu klimatyzacji, czysty azot to świetny wybór. To taki neutralny gaz, więc nie wchodzi w reakcje z innymi substancjami. Dzięki temu idealnie nadaje się do usuwania zanieczyszczeń, takich jak oleje czy inne cieczy, które mogą się nagromadzić w układzie. W praktyce wprowadza się go pod ciśnieniem, co sprawia, że skutecznie wypłukuje wszystko, co zbędne. A chemiczne roztwory, które się używa, są specjalnie do tego stworzone, żeby rozpuszczać trudne do usunięcia zanieczyszczenia. Można tu podać przykład roztworów z detergentami, które z kolei świetnie radzą sobie z resztkami olejów czy smarów. W branży HVAC, czyli ogrzewania, wentylacji i klimatyzacji, korzystanie z azotu do płukania to standard. To naprawdę dowodzi, jak skuteczny i bezpieczny jest ten proces.

Pytanie 35

Podczas instalacji nowej uszczelki pod głowicą, co należy zrobić w pierwszej kolejności?

A. dokręcić śruby przy użyciu klucza oczkowego
B. sprawdzić ciśnienie sprężania w cylindrach
C. dokręcić śruby głowicy w odpowiedniej sekwencji
D. sprawdzić ustawienie luzów zaworowych
Dokręcanie śrub głowicy w odpowiedniej kolejności jest kluczowym krokiem w montażu nowej uszczelki pod głowicą. Proces ten ma na celu zapewnienie równomiernego rozkładu sił na uszczelce, co w konsekwencji zapobiega jej nieszczelności i umożliwia prawidłowe działanie silnika. Dobre praktyki wskazują na zastosowanie sekwencji dokręcania, która zazwyczaj zaczyna się od śrub centralnych i przechodzi w stronę zewnętrznych, co pozwala na stopniowe i kontrolowane napięcie. Właściwe dokręcenie śrub zgodnie z zaleceniami producenta, które często są podane w dokumentacji technicznej lub książkach serwisowych, jest niezbędne dla zachowania integralności silnika. Niewłaściwe dokręcenie może prowadzić do przemieszczenia głowicy, co w efekcie skutkuje uszkodzeniem uszczelki, a nawet całej jednostki napędowej. Dlatego też przed przystąpieniem do dokręcania konieczne jest dokładne zapoznanie się z instrukcjami i użycie odpowiedniego klucza dynamometrycznego, aby stosować właściwy moment obrotowy. Przykładem może być dokręcanie głowicy w silnikach typu DOHC, gdzie precyzyjne napięcie jest kluczowe dla utrzymania właściwego ciśnienia sprężania.

Pytanie 36

Optymalna grubość powłoki lakierniczej na elementach karoserii pojazdu to około

A. 0,01 mm
B. 250 µm
C. 0,1 mm
D. 150 µm
Grubość powłoki lakierniczej na nadwoziu powinna wynosić około 150 µm. To jest zgodne z tym, co mówią producenci i normy, takie jak ISO 2808. W praktyce to dość ważne, bo właściwa grubość lakieru naprawdę chroni auto przed korozją i innymi szkodliwymi czynnikami. Jak dajemy za cienki lakier, to auto szybko traci ładny wygląd, a takie zbyt grube mogą pękać i się łuszczyć. Warto też pamiętać, że podczas lakierowania dobrze jest używać natryskiwania elektrostatycznego, żeby uzyskać równą grubość. No i przygotowanie powierzchni przed malowaniem jest kluczowe, to na pewno wpływa na trwałość lakieru. Specjalistyczne laboratoria sprawdzają grubość powłok, żeby wszystko było na poziomie, co jest ważne dla długowieczności auta.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Zmiana koloru cieczy stosowanej do identyfikacji nieszczelności uszczelki pod głowicą jest spowodowana gazem obecnym w spalinach

A. CO2
B. NOx
C. O2
D. CO
Odpowiedź CO2 jest prawidłowa, ponieważ dwutlenek węgla jest jednym z głównych produktów spalania paliw w silnikach spalinowych. W przypadku nieszczelności uszczelki pod głowicą, spaliny mogą przedostawać się do układu chłodzenia, co prowadzi do zmiany zabarwienia płynu chłodniczego. Wykrywanie nieszczelności jest kluczowe dla zapewnienia prawidłowego funkcjonowania silników, a stosowanie wskaźników zabarwienia płynu opartych na obecności CO2 jest szeroko przyjętą praktyką. Standardy branżowe, takie jak SAE J1349, podkreślają konieczność monitorowania emisji spalin i ich składników, co jest istotne dla ochrony środowiska. Przykładem zastosowania jest test szczelności, w którym płyn zmienia kolor na żółty lub zielony w obecności CO2, co ułatwia diagnostykę i zapobiega dalszym uszkodzeniom silnika.

Pytanie 39

Wskaźnik temperatury chłodziwa w trakcie jazdy samochodem pokazał wartość przekraczającą 110 °C (czerwone pole). Co to oznacza?

A. może sugerować niski poziom oleju
B. może być oznaką zatarcia silnika
C. może świadczyć o awarii klimatyzacji
D. może wskazywać na uszkodzenie układu chłodzenia
Przekroczenie temperatury płynu chłodzącego powyżej 110 °C wskazuje na poważny problem, najczęściej związany z awarią układu chłodzenia. Układ chłodzenia silnika ma kluczowe znaczenie dla jego prawidłowego funkcjonowania, gdyż jego zadaniem jest odprowadzanie nadmiaru ciepła wytwarzanego podczas pracy silnika. W przypadku awarii, na przykład z powodu uszkodzenia termostatu, przecieku w układzie chłodzenia lub zatykania chłodnicy, temperatura może szybko wzrosnąć. W takich sytuacjach, ignorowanie wskaźnika temperatury może prowadzić do poważniejszych uszkodzeń silnika, takich jak zatarcie tłoków czy uszkodzenie uszczelki głowicy. Standardy motoryzacyjne zalecają regularne przeglądy układu chłodzenia oraz kontrolę poziomu płynu chłodzącego, aby zapobiec tym niebezpiecznym sytuacjom. Proaktywnym podejściem jest również przynajmniej raz w roku sprawdzanie stanu komponentów układu chłodzenia, co może znacznie zredukować ryzyko wystąpienia awarii.

Pytanie 40

Jakiego płynu należy użyć do napełnienia systemu hamulcowego?

A. L-HV
B. DOT-4
C. L-DAA
D. SG/CD SAE 5W/40
DOT-4 to specyfikacja płynu hamulcowego, który jest zalecany do stosowania w nowoczesnych układach hamulcowych. Jego główną zaletą jest wysoka temperatura wrzenia, wynosząca około 230°C, co sprawia, że jest odporny na zjawisko 'fadingu' hamulców. Płyn DOT-4 jest na bazie glikolu i zawiera dodatki, które zwiększają jego właściwości smarne i zapobiegają korozji komponentów układu hamulcowego. W praktyce oznacza to, że jego zastosowanie pozwala na skuteczniejsze działanie hamulców, co jest kluczowe w pojazdach osobowych oraz sportowych, gdzie wymagane są wysokie osiągi. Dobrą praktyką jest również regularne sprawdzanie poziomu płynu oraz jego wymiana co 2-3 lata, aby zapewnić optymalną wydajność układu hamulcowego. Użycie niewłaściwego płynu może prowadzić do poważnych konsekwencji, takich jak uszkodzenie uszczelek czy przegrzanie układu hamulcowego.