Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 13 kwietnia 2025 11:24
  • Data zakończenia: 13 kwietnia 2025 11:37

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przy dokonywaniu pomiarów trzeba uwzględnić błąd miejsca zera?

A. rozstawów, stosując taśmę stalową
B. kątów pionowych
C. rozstawów, przy użyciu dalmierza elektromagnetycznego
D. kątów poziomych
Błąd miejsca zera jest szczególnie istotny przy pomiarach kątów pionowych, ponieważ może znacząco wpłynąć na dokładność pomiarów wysokości i spadków. W przypadku używania instrumentów pomiarowych, takich jak teodolity czy niwelatory optyczne, ważne jest, aby precyzyjnie ustawić zero, aby uniknąć błędnych odczytów. Przykładem zastosowania jest pomiar wysokości budynków lub obiektów terenowych, gdzie nawet niewielki błąd w ustawieniu miejsca zera może prowadzić do błędnych wyliczeń różnicy wysokości. W praktyce, aby zminimalizować ten błąd, stosuje się kalibrację instrumentów, regularne sprawdzanie ich dokładności oraz wykonywanie pomiarów z różnych punktów referencyjnych. W branży budowlanej oraz geodezyjnej przestrzeganie standardów takich jak ISO 17123 jest kluczowe dla zapewnienia rzetelności danych pomiarowych, co w konsekwencji wpływa na bezpieczeństwo i jakość realizowanych inwestycji.

Pytanie 2

Cyfra 2 w symbolu 2/5, użytym podczas oznaczania w terenie punktów hektometrowych stworzonych w trakcie wytyczania linii profilu podłużnego, wskazuje na

A. całkowitą liczbę kilometrów od początku trasy
B. liczbę hektometrów w danym kilometrze trasy
C. numer hektometra w konkretnym kilometrze
D. całkowitą liczbę metrów w jednym odcinku trasy
Odpowiedź wskazująca, że cyfra 2 w symbolu 2/5 oznacza pełną liczbę kilometrów od początku trasy, jest prawidłowa. W kontekście wytyczenia linii profilu podłużnego, ten format graficzny jest powszechnie stosowany w inżynierii lądowej i geodezji. Cyfry w takim zapisie odpowiadają segmentom trasy, przy czym licznik (2) wskazuje na liczbę pełnych kilometrów. Oznacza to, że pomiar dotyczy odległości od punktu startowego trasy, co jest kluczowe dla poprawnej interpretacji danych geodezyjnych. W praktyce, takie oznaczenia są istotne podczas dokumentacji i analizy tras transportowych, ponieważ umożliwiają precyzyjne określenie lokalizacji punktów kontrolnych, co jest zgodne z normami branżowymi, takimi jak PN-EN ISO 19101. Na przykład, w projektach budowlanych czy inżynieryjnych, znajomość i poprawne odczytywanie tych symboli jest niezbędne do planowania i koordynacji prac budowlanych, co wpływa na efektywność realizacji zadań.

Pytanie 3

Który z dokumentów jest konieczny do zlokalizowania w terenie punktu osnowy geodezyjnej?

A. Opis topograficzny punktu
B. Dziennik pomiaru długości boków osnowy
C. Dziennik pomiaru kątów osnowy
D. Szkic polowy osnowy
Opis topograficzny punktu jest kluczowym dokumentem w geodezji, ponieważ zawiera szczegółowe informacje o lokalizacji i charakterystyce punktu osnowy geodezyjnej. Zazwyczaj obejmuje takie elementy jak współrzędne geograficzne, wysokość, otoczenie punktu oraz dostępność do niego. Dzięki temu geodeta, przebywając w terenie, może szybko zlokalizować punkt osnowy, co jest istotne przy wykonywaniu pomiarów. Przykładowo, w przypadku prowadzenia pomiarów dla celów projektowych, posiadanie opisu topograficznego pozwala na efektywne planowanie prac w terenie oraz minimalizowanie ryzyk związanych z błędami lokalizacyjnymi. W branży geodezyjnej stosuje się standardy, które wymagają, aby wszystkie punkty osnowy miały odpowiednio przygotowaną dokumentację, co podnosi jakość i dokładność przeprowadzanych pomiarów.

Pytanie 4

Konstrukcja przestrzennego wcięcia w przód opiera się na połączeniu kątowego wcięcia w przód z techniką

A. biegunową
B. tachimetryczną
C. niwelacji trygonometrycznej
D. niwelacji geometrycznej
Przestrzenne wcięcie w przód to ważny element w metodzie niwelacji trygonometrycznej. Chodzi tu o wyznaczanie różnic wysokości pomiędzy różnymi punktami, a robimy to przez pomiar kątów i odległości. Ustawiając instrument w odpowiedni sposób, możemy uzyskać dokładniejsze pomiary. Eliminuje to błędy, które mogą wynikać z krzywizny ziemi czy refrakcji atmosferycznej. Można to zauważyć w projektach budowlanych, gdzie dokładne niwelacje są mega ważne, szczególnie przy ustalaniu poziomów fundamentów. Według norm geodezyjnych, takich jak ISO 17123, metody trygonometryczne mają duże znaczenie przy zbieraniu danych topograficznych, co potem ułatwia planowanie różnych inwestycji. Szczególnie w obszarach górzystych, gdzie inne metody mogą być mniej skuteczne, niwelacja trygonometryczna jest bardzo przydatna.

Pytanie 5

Korzystając z którego z poniższych wzorów można obliczyć teoretyczną sumę kątów lewych w otwartym ciągu poligonowym, dowiązanym dwustronnie?

A. [α] = AK + AP - n × 200g
B. [β] = AP + AK - n × 200g
C. [β] = AP - AK + n × 200g
D. [α] = AK - AP + n × 200g
Wszystkie inne odpowiedzi zawierają elementy, które mogą wprowadzać w błąd, ponieważ nie uwzględniają kluczowego aspektu obliczania kątów w otwartym ciągu poligonowym. Na przykład, odpowiedzi sugerujące dodawanie lub odejmowanie kątów w sposób, który nie uwzględnia różnicy między kątami zewnętrznymi a wewnętrznymi, prowadzą do błędnych wyników. Często błędne zrozumienie zagadnienia wynika z mylnego przekonania, że sumy kątów w poligonach zamkniętych i otwartych są takie same, co jest nieprawdziwe. W przypadku poligonów otwartych, kąt wewnętrzny odgrywa inną rolę, a jego obliczenia muszą być dostosowane, by uwzględniały liczbę boków oraz charakterystykę geometrii. Używanie niewłaściwych wzorów, takich jak dodawanie dodatkowych kątów bez uwzględnienia ich rzeczywistego wpływu na geometrię poligonu, prowadzi do poważnych błędów w pomiarach. Dlatego ważne jest, aby przy podejmowaniu decyzji o wyborze wzoru kierować się nie tylko intuicją, ale także solidnym zrozumieniem zasad geometrii i metrologii, które są podstawą efektywnej i precyzyjnej pracy w dziedzinie geodezji i inżynierii.

Pytanie 6

Długość odcinka zmierzonego na mapie w skali 1:500 to 11,1 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 2,22 m
B. 5,55 m
C. 55,5 m
D. 22,2 m
Często, gdy wybierasz złą odpowiedź, to wynika to z nie do końca jasnego zrozumienia, jak działa skala mapy. Na przykład można pomylić jednostki, myśląc, że 11,1 cm to 1,11 m, co znacznie zaniża długość. Niektórzy mylą się i dzielą, zamiast pomnożyć długość odcinka przez wartość skali. W skali 1:500 zawsze przeliczasz jednostki mapy na rzeczywiste w proporcji 1 cm = 500 cm. Jeśli wychodzą odpowiedzi 5,55 m czy 2,22 m, to znaczy, że ktoś źle podzielił długość przez wartość skali, co zdarza się często. Odpowiedź 22,2 m może wskazywać na błędne jednostki albo przeliczenie. W pomiarach warto konsekwentnie trzymać się jednostek i rozumieć, jak skala wpływa na obraz rzeczywistości. Dlatego ważne jest, żeby starać się stosować poprawne praktyki w obliczeniach, by uniknąć takich pomyłek.

Pytanie 7

Aby ułatwić lokalizację zmierzonych szczegółów danego obszaru na odpowiednim szkicu terenowym, tworzy się szkic

A. podstawowy
B. przeglądowy
C. tachimetryczny
D. dokumentacyjny
Odpowiedź "przeglądowy" jest poprawna, ponieważ szkic przeglądowy jest to dokument, który wizualizuje ogólny układ terenu oraz lokalizację różnych obiektów na nim. Jest on tworzony w celu umożliwienia szybkiego odnalezienia i identyfikacji pomierzonych szczegółów w terenie. Przykładem zastosowania szkicu przeglądowego może być jego wykorzystanie w planowaniu prac budowlanych czy inwentaryzacji terenów. Szkic przeglądowy jest zgodny z dobrą praktyką w geodezji, ponieważ umożliwia efektywne przedstawienie danych w sposób zrozumiały dla różnych użytkowników, takich jak inżynierowie, architekci czy inwestorzy. Ułatwia to komunikację między różnymi stronami zaangażowanymi w projekt, a także przyspiesza proces podejmowania decyzji. Dobrze wykonany szkic przeglądowy powinien zawierać wszystkie istotne informacje, takie jak kierunki, skale oraz legendy, co czyni go kluczowym dokumentem w obiegu informacji przestrzennej.

Pytanie 8

Z jaką precyzją w odniesieniu do najbliższych punktów poziomej sieci geodezyjnej powinno się przeprowadzić pomiar inwentaryzacyjny włazu studzienki kanalizacyjnej?

A. 0,10 m
B. 0,20 m
C. 0,50 m
D. 0,30 m
Pomiar inwentaryzacyjny włazu studzienki kanalizacyjnej to sprawa dość poważna, więc wymagana dokładność 0,10 m to w sumie nic dziwnego. Jak wiemy, precyzyjne pomiary są mega ważne w geodezji. Na przykład, jeśli właz jest w miejscu, gdzie jest dużo zabudowań, to każda zmiana w układzie drogowym może wpłynąć na to, jak studzienki są lokalizowane. Jak się pomyli w pomiarze, to później mogą być problemy z dostępem do tych studzienek, a to nie jest to, co chcemy. Przykłady standardów, jak norma PN-EN ISO 17123, pokazują, że taka dokładność to nie jest tylko wymysł, ale konieczność w inwentaryzacji budynków. Starając się trzymać tych wytycznych, dajemy sobie szansę na bezpieczną i efektywną pracę z infrastrukturą, która jest pod ziemią.

Pytanie 9

Zbieranie, rejestrowanie, przechowywanie, udostępnianie oraz zabezpieczanie materiałów pochodzących z państwowego zasobu geodezyjnego i kartograficznego, odbywa się przy użyciu systemu

A. teleinformatycznego
B. komunikacyjnego
C. ewidencyjnego
D. informacyjnego
Wybór ewidencyjnego systemu w kontekście pozyskiwania i przechowywania materiałów geodezyjnych nie uwzględnia pełnej funkcjonalności, jaką zapewnia system teleinformatyczny. Systemy ewidencyjne skupiają się głównie na rejestrowaniu danych oraz ich formalnej dokumentacji, co nie pokrywa się z wymaganiami dynamicznego przetwarzania i udostępniania informacji. Użytkownicy mogą mylnie sądzić, że ewidencja wystarczy do zarządzania danymi, nie dostrzegając rosnącej potrzeby szybkiego dostępu do tych informacji oraz ich analizy w kontekście przestrzennym. Wykorzystanie systemu informacyjnego również nie spełni wszystkich wymagań, gdyż koncentruje się na przechowywaniu danych, a nie na integracji z różnymi źródłami informacji i interakcji użytkownika z danymi na poziomie GIS. Z kolei systemy komunikacyjne, jakkolwiek istotne w wymianie danych, nie zapewniają niezbędnych funkcji do zabezpieczania i zarządzania złożonymi zbiorami danych geodezyjnych. W praktyce, brak odpowiednich technologii teleinformatycznych prowadzi do nieefektywnego zarządzania zasobami, utrudniając dostęp do informacji oraz ich analizę przez zainteresowane strony. Rozumienie tych różnic jest kluczowe dla wdrożenia właściwych rozwiązań w obrębie geodezji i kartografii, co podkreślają liczne standardy branżowe oraz wytyczne dotyczące zarządzania danymi przestrzennymi.

Pytanie 10

Który z poniższych błędów nie jest usuwany przez pomiar z punktu centralnego w niwelacji geometrycznej?

A. Osadzenie instrumentu.
B. Zakrzywienie powierzchni ziemi.
C. Różne położenie zera pary łat.
D. Refrakcja pionowa.
Osiadanie instrumentu jest zjawiskiem, które może wystąpić, jeśli sprzęt nie jest prawidłowo umiejscowiony lub jeśli podłoże, na którym stoi, nie jest stabilne. Taki błąd można zminimalizować poprzez odpowiednie przygotowanie stanowiska pomiarowego, ale nie eliminuje go całkowicie. Refrakcja pionowa to zjawisko, które wpływa na przebieg promieni świetlnych w atmosferze, co może wprowadzać błędy w pomiarach geodezyjnych. Nawet mając na uwadze refrakcję, niwelacja geometryczna nie jest w stanie jej całkowicie wyeliminować, chociaż można stosować korekty w obliczeniach. Zakrzywienie powierzchni ziemi to kolejny czynnik, który należy brać pod uwagę, szczególnie na dużych odległościach, gdzie jego wpływ staje się zauważalny. Użycie metod niwelacyjnych wymaga uwzględnienia wszystkich tych zjawisk, lecz nie można ich wyeliminować jedynie poprzez pomiar ze środka. Często w praktyce geodezyjnej występuje mylne przekonanie, że odpowiedni pomiar ze środka rozwiąże wszystkie problemy związane z pomiarami, co jest błędne. W rzeczywistości, każdy z tych błędów wymaga innego podejścia i zastosowania odpowiednich metod korekcyjnych, aby uzyskać wiarygodne wyniki pomiarów.

Pytanie 11

Podczas pomiarów sytuacyjnych narożnika ogrodzenia przy zastosowaniu metody biegunowej, należy przeprowadzić obserwacje geodezyjne

A. kąta pionowego i odległości poziomej
B. kąta poziomego i odległości skośnej
C. kąta pionowego i odległości skośnej
D. kąta poziomego i odległości poziomej
Wybór kąta poziomego oraz odległości poziomej podczas pomiaru narożnika ogrodzenia metodą biegunową jest zgodny z praktycznymi zasadami geodezji. Obserwacja kąta poziomego pozwala na precyzyjne określenie kierunku, w którym znajduje się punkt, co jest kluczowe dla określenia granic działek i lokalizacji obiektów. Z kolei pomiar odległości poziomej jest istotny, ponieważ pozwala na dokładne wyznaczenie dystansu pomiędzy punktami w poziomie, co ma bezpośrednie zastosowanie w geodezyjnych mapach i planach. Zastosowanie tej metody jest szczególnie ważne w przypadku działek o nieregularnym kształcie, gdzie dokładność pomiarów wpływa na późniejsze decyzje dotyczące zagospodarowania przestrzennego. Warto również zauważyć, że zgodnie z normami ISO oraz krajowymi standardami geodezyjnymi, wykorzystanie pomiarów poziomych jest preferowane w wielu przypadkach, co podkreśla ich znaczenie w praktyce geodezyjnej.

Pytanie 12

Południkiem osiowym w odwzorowaniu Gaussa-Krügera dla układu współrzędnych PL-2000 jest południk

A. 22°
B. 20°
C. 21°
D. 19°
Odpowiedź 21° jest poprawna, ponieważ w układzie współrzędnych PL-2000 południkiem osiowym odwzorowania Gaussa-Krügera dla strefy, w której mieści się Polska, jest właśnie południk 21°. Układ PL-2000 jest oparty na odwzorowaniu Gaussa-Krügera, które jest używane do precyzyjnego odwzorowywania powierzchni ziemi na płaszczyznach. Południki osiowe są kluczowe, ponieważ definiują strefy odwzorowań, co jest istotne w kontekście dokładności geodezyjnej oraz kartograficznej. Użycie południka 21° pozwala na minimalizację zniekształceń w obszarze, co jest przydatne w praktyce, na przykład w geodezji czy podczas tworzenia map topograficznych. Dobór odpowiednich południków jest zgodny z normami, takimi jak PN-EN ISO 19111, które określają zasady klasyfikacji i odwzorowań strefowych. Wiedza na temat południków osiowych jest kluczowa dla profesjonalistów zajmujących się kartografią i geodezją, ponieważ wpływa na jakość i dokładność realizowanych projektów.

Pytanie 13

Na łatach niwelacyjnych umiejscowionych w punktach 100 oraz 101 dokonano pomiarów l100 = 1 555, l101 = 2 225. Jaka jest różnica wysokości Δh100-101 między punktami 100 a 101?

A. 0,670 m
B. -0,670 m
C. -0,670 cm
D. 6,700 m
Odpowiedź -0,670 m jest prawidłowa, ponieważ różnica wysokości między punktami niwelacyjnymi oblicza się jako różnicę odczytów poziomych na łatach. W tym przypadku, aby obliczyć różnicę wysokości Δh100-101, należy wykorzystać wzór Δh = l101 - l100. Podstawiając wartości: Δh = 2 225 - 1 555 = 670. Ponieważ punkt 101 jest wyżej od punktu 100, różnica wysokości powinna być ujemna, co daje -0,670 m. W praktyce proces ten jest kluczowy w geodezji, szczególnie w kontekście budowy, gdzie precyzyjne pomiary różnic wysokości są niezbędne do zapewnienia odpowiednich spadków i poziomów fundamentów. W branży stosuje się różne techniki pomiarowe, takie jak niwelacja, które pozwalają na dokładne określenie różnic wysokości między punktami. Dodatkowo, standardy geodezyjne, takie jak normy ISO i PN-EN, podkreślają znaczenie dokładności w pomiarach wysokościowych, co jest kluczowe dla bezpieczeństwa konstrukcji.

Pytanie 14

Na mapach terenowych nie uwzględnia się obiektów budowlanych

A. drewnianych przeznaczonych do wyburzenia
B. murowanych gospodarczych w stanie surowym
C. murowanych mieszkalnych w etapie projektowania
D. drewnianych, które nie są zamieszkałe
Odpowiedź 'murowanych mieszkalnych w fazie projektu' jest poprawna, ponieważ na szkicach polowych, które służą do przedstawiania istniejących warunków i elementów zagospodarowania przestrzennego, nie zaznacza się budynków, które są jedynie na etapie planowania. Budynki znajdujące się w fazie projektu nie mają jeszcze fizycznej obecności, co oznacza, że nie powinny być uwzględniane w dokumentacji przedstawiającej aktualny stan terenu. W praktyce architektonicznej i urbanistycznej, zgodnie z wytycznymi i standardami dotyczącymi prowadzenia dokumentacji, należy odzwierciedlać jedynie te obiekty, które są już zrealizowane lub w trakcie realizacji. Taka zasada pozwala na zachowanie przejrzystości i wiarygodności dokumentów, co jest kluczowe w procesie planowania przestrzennego oraz w analizach dotyczących zagospodarowania terenu. Przykładem zastosowania tej zasady jest przygotowanie raportów dotyczących uwarunkowań środowiskowych, gdzie zazwyczaj ujmuje się jedynie obiekty istniejące oraz infrastrukturę, a nie plany przyszłych inwestycji.

Pytanie 15

Jakie znaczenie ma oznaczenie mz1 1 na mapie zasadniczej?

A. Jednorodzinny dom.
B. Budynek mieszkalny.
C. Dom w zabudowie szeregowej
D. Wieżowiec.
Zapis 'mz1 1' na mapie zasadniczej oznacza wieżowiec i jest zgodny z obowiązującymi standardami klasyfikacji obiektów budowlanych. Wieżowce to budynki, które przekraczają określoną wysokość, co czyni je dominującymi elementami w krajobrazie urbanistycznym. W praktyce, wieżowce są projektowane w sposób umożliwiający maksymalne wykorzystanie przestrzeni, co jest istotne w gęsto zabudowanych obszarach miejskich. Często pełnią funkcje mieszkalne, biurowe lub komercyjne. W kontekście planowania przestrzennego, zrozumienie tej klasyfikacji jest kluczowe dla urbanistów i architektów, ponieważ wpływa na decyzje dotyczące zagospodarowania terenu oraz wytycznych budowlanych. Przykładowo, przy planowaniu nowego osiedla w obrębie miasta, wiedza o tym, jak klasyfikować budynki, pozwala na lepsze dostosowanie infrastruktury do potrzeb mieszkańców oraz na utrzymanie harmonii w krajobrazie miejskim. Obiekty te często wymagają również specjalnych rozwiązań inżynieryjnych, takich jak systemy przeciwpożarowe i windy o dużej wydajności, co może wpływać na koszty budowy i późniejszej eksploatacji.

Pytanie 16

Jakie jest zastosowanie pionownika optycznego w geodezyjnej obsłudze budowlanej?

A. Do tyczenia punktów głównych projektowanego obiektu
B. Do pomiaru boków tyczonego obiektu
C. Do przenoszenia poziomu na dno wykopu
D. Do tyczenia wskaźników konstrukcyjnych na wyższych kondygnacjach
Kiedy mówimy o pionowniku optycznym, to jego podstawowa funkcja to przenoszenie punktów w pionie. Jeśli ktoś mówi, że używa go do przenoszenia wysokości na dno wykopu czy tyczenia punktów głównych obiektu, to trochę nie do końca rozumie jego zwykłe zastosowanie. Wykop to miejsce, gdzie lepiej sprawdzą się inne narzędzia, jak poziomica albo niwelator. Tyczenie punktów głównych wymaga bardziej złożonych pomiarów, a pionownik nie jest do tego stworzony. Przykład użycia pionownika do takich celów pokazuje, że można się pomylić, nie znając dobrze narzędzi geodezyjnych. Ważne jest, żeby wiedzieć, że każde narzędzie ma swoje miejsce i umiejętność ich używania jest kluczowa, bo złe użycie może prowadzić do błędów w pomiarach oraz w całej budowie.

Pytanie 17

Kontrolę numeracji pikiet na szkicu oraz w dzienniku pomiarowym wykonuje się podczas pomiarów terenowych, aby zapewnić

A. poprawność prowadzenia szkicu polowego
B. poprawność przy kartowaniu pikiet na mapę
C. zgodność prowadzenia szkicu polowego i dziennika pomiarowego
D. poprawność prowadzenia dziennika pomiarowego
Zgodność prowadzenia szkicu polowego i dziennika pomiarowego jest kluczowym aspektem w procesie pomiarów terenowych, ponieważ obie te formy dokumentacji muszą odzwierciedlać te same dane pomiarowe i ich układ w terenie. Utrzymanie spójności między szkicem a dziennikiem pomiarowym pozwala na skuteczne śledzenie postępu prac oraz zapewnia, że późniejsza analiza danych będzie oparta na rzetelnych informacjach. Przykładowo, w przypadku wykrycia błędów w jednej z form dokumentacji, ich identyfikacja i korekta będą znacznie łatwiejsze, gdy obie dokumentacje będą ze sobą zgodne. W branży geodezyjnej istnieją ustalone standardy, które nakładają obowiązek prowadzenia takich dokumentów w sposób ułatwiający ich wzajemne weryfikowanie. W praktyce, podczas realizacji pomiarów, geodeta powinien regularnie sprawdzać, czy numery pikiet w szkicu odpowiadają tym wpisanym w dzienniku, co minimalizuje ryzyko błędów oraz ułatwia dalsze etapy pracy, takie jak kartowanie czy przygotowanie mapy. Właściwe utrzymanie zgodności dokumentacji jest nie tylko kwestią organizacyjną, ale również wpływa na jakość końcowych rezultatów pracy geodezyjnej.

Pytanie 18

Jakie grupy lub grupy dokładnościowe obejmują detale terenowe, których pomiar można zrealizować za pomocą limy pomiarowej, opierając się z jednej strony na narożniku budynku, a z drugiej na latarni?

A. Do II i III grupy
B. Tylko do I grupy
C. Do I i II grupy
D. Tylko do II grupy
Odpowiedź wskazująca na przynależność szczegółów terenowych do II i III grupy jest poprawna, ponieważ obie te grupy obejmują pomiary, które można wykonać za pomocą limy pomiarowej. Grupa II odnosi się do pomiarów, które wymagają większej dokładności, typowych dla prac geodezyjnych związanych z inżynierią lądową i budownictwem, gdzie precyzyjne ustalenie lokalizacji elementów budowlanych jest kluczowe. Z kolei grupa III to pomiary o niższej precyzji, jednak nadal akceptowalne w kontekście podstawowych prac terenowych. W praktyce, dokładne pomiary związane z narożnikami budynków oraz ich relacją do latarni mogą mieć zastosowanie w różnych projektach budowlanych, takich jak planowanie i kontrola robót budowlanych, a także w geodezyjnych kontrolach jakości. Standardy, takie jak normy ISO 17123 dotyczące metod pomiarów w geodezji, podkreślają znaczenie stosowania odpowiednich narzędzi, jak lima pomiarowa, w celu zapewnienia wymaganej dokładności i powtarzalności pomiarów.

Pytanie 19

Jeśli długość boku kwadratu zmierzonego w terenie wynosi 10 m, to jego pole na mapie w skali 1:1000 będzie wynosić

A. 100,0 cm2
B. 0,1 cm2
C. 1,0 cm2
D. 10,0 cm2
Aby obliczyć pole powierzchni kwadratu na mapie w skali 1:1000, należy najpierw przeliczyć długość boku kwadratu z metra na centymetry. Dla boku o długości 10 m, mamy 10 m x 100 cm/m = 1000 cm. Pole powierzchni kwadratu obliczamy ze wzoru P = a², gdzie a to długość boku. Zatem, pole wynosi 1000 cm x 1000 cm = 1 000 000 cm² w rzeczywistości. Na mapie w skali 1:1000, pole to będzie reprezentowane przez 1 000 000 cm² / 1 000 000 = 1 cm². Przykład zastosowania tej wiedzy można znaleźć w geodezji, gdzie skale map używane są do przedstawiania dużych obszarów na małych powierzchniach, a dokładne obliczenia są kluczowe dla prawidłowego odwzorowania terenu. Dobra praktyka wymaga, aby geodeci i kartografowie dokładnie przeliczywali wymiary obiektów, aby zapewnić dokładność mapy oraz informacji, które ona przekazuje.

Pytanie 20

Wykonanie mapy zasadniczej dla obszarów z istotnym obecnym lub prognozowanym zainwestowaniem powinno odbywać się w skali

A. 1:500
B. 1:1000
C. 1:5000
D. 1:2000
Skale 1:1000 oraz 1:500 są zbyt szczegółowe i niepraktyczne dla tworzenia mapy zasadniczej w kontekście obszarów o znacznym zainwestowaniu. Mapa w skali 1:1000 mogłaby dostarczyć nadmiarowych informacji, które w kontekście planowania przestrzennego mogą prowadzić do trudności w interpretacji i nadmiaru szczegółów, które nie są wymagane na etapie ogólnych analiz. W przypadku skali 1:500, takie odwzorowanie jest właściwe dla bardzo szczegółowych planów, jak plany architektoniczne dla pojedynczych budynków, a nie dla dużych obszarów urbanistycznych. Z kolei skala 1:5000, choć może wydawać się użyteczna do przedstawienia szerszego kontekstu geograficznego, nie zapewnia wystarczającej dokładności dla lokalizacji budynków i infrastruktury w obszarach intensywnej zabudowy. Idealna skala do mapy zasadniczej powinna zatem zrównoważyć potrzebę szczegółowości z możliwością łatwego przedstawienia i interpretacji danych. Ostatecznie, nieprawidłowe wybory skali mogą prowadzić do błędów w analizach przestrzennych, co z kolei może skutkować nieodpowiednimi decyzjami planistycznymi oraz problemami prawnymi związanymi z zagospodarowaniem terenu.

Pytanie 21

Wskazanie lokalizacji pikiet w terenie oznacza zdefiniowanie miejsca, w którym podczas dokonywania pomiaru

A. powinien znajdować się obserwator
B. powinien być pomiarowy
C. powinno być ustawione lustro lub łata
D. powinno znajdować się stanowisko instrumentu
Poprawna odpowiedź wskazuje, że określenie położenia pikiet w terenie oznacza wskazanie miejsca, gdzie powinno być ustawione lustro lub łata. W kontekście pomiarów geodezyjnych, lustro lub łata jest kluczowym elementem, który umożliwia precyzyjne odczytywanie pomiarów wysokościowych i poziomych. Zastosowanie lustra w połączeniu z instrumentem pomiarowym, takim jak teodolit czy niwelator, pozwala na dokładne określenie wysokości punktu oraz jego położenia w przestrzeni. W praktyce, lustro powinno być ustawione w dokładnej linii widzenia z instrumentem, co umożliwia uzyskanie precyzyjnych wyników. Standardy branżowe, takie jak Normy Geodezyjne, podkreślają wagę poprawnego ustawienia lustra dla uzyskania wiarygodnych danych pomiarowych. Przykładowo, w przypadku niwelacji, poprawne ustawienie łaty w punkcie pomiarowym jest kluczowe dla uzyskania dokładnego różnicowania wysokości, co ma ogromne znaczenie w budownictwie oraz inżynierii lądowej, gdzie precyzyjne dane o wysokości są niezbędne.

Pytanie 22

Podczas określania miejsca punktów szczegółowej osnowy poziomej przy użyciu metody poligonizacji, długości boków w ciągach poligonowych powinny wynosić od 150 do maksymalnie

A. 400 m
B. 500 m
C. 300 m
D. 600 m
Wybieranie długości boków w poligonach na 300 m, 400 m albo 600 m to nie najlepszy pomysł. Przy takich długościach możemy natknąć się na naprawdę dużo problemów, które mogą zaburzyć pomiar. Zwłaszcza te powyżej 500 m mocno zwiększają ryzyko błędów, a te są trudne do naprawienia. Jak mamy długie odcinki, jak na przykład 600 m, to różne czynniki, jak pogoda, mogą łatwo wpłynąć na wyniki, co sprawia, że stają się mniej pewne. Trudniej też wtedy zapewnić dobre odniesienia w pomiarach, co jest mega ważne, gdy robimy poligonizację. Pamiętaj, żeby dbać o równomierny rozkład punktów, żeby uniknąć błędów i uzyskać bardziej wiarygodne dane. W praktyce, geodeci zazwyczaj wybierają długości w zakresie 150 m do 500 m, co jest zgodne z branżowymi standardami. Jeśli wybierzesz nieodpowiednie długości, to możesz zaszkodzić dokładności późniejszych analiz i map.

Pytanie 23

Jakie oznaczenie literowe powinno znaleźć się na szkicu inwentaryzacji powykonawczej budynku, który ma być przekształcony w bibliotekę?

A. f
B. e
C. k
D. b
Oznaczenia literowe w inwentaryzacji są ważne, bo pomagają w klasyfikacji i organizacji pomieszczeń w budynkach. Odpowiedzi jak 'f', 'b' czy 'e' pokazują różne pomieszczenia, ale w kontekście biblioteki mogą być mylące. Oznaczenie 'f' może się kojarzyć z funkcjami, które w ogóle nie są związane z przestrzeniami publicznymi, takimi jak jakieś nagrody czy pomieszczenia techniczne. No i 'b' jest często używane w kontekście budynków publicznych, ale nie mówi nic konkretnego o funkcji biblioteki. A 'e' odnosi się do przestrzeni edukacyjnych, które też nie zawsze są w bibliotece. Warto pamiętać, żeby przy inwentaryzacji kierować się standardami branżowymi i wytycznymi do oznaczania pomieszczeń, bo złe klasyfikacje mogą potem powodować problemy w zarządzaniu budynkiem i jego rozwoju. Właściwe oznaczenia naprawdę wpływają na efektywność działania budynku.

Pytanie 24

Jakie grupy błędów, mających wpływ na wyniki pomiarów, są wyróżniane w geodezji?

A. Błędy stałe, omyłki, błędy systematyczne
B. Błędy osobowe, błędy systematyczne, błędy losowe
C. Błędy grube, błędy systematyczne, błędy przypadkowe
D. Błędy grube, omyłki, błędy stałe
W geodezji mamy trzy główne grupy błędów, które mogą wpłynąć na to, co zmierzymy. Po pierwsze, są błędy grube, które mocno psują wyniki. Często wynikają z tego, że coś źle odczytaliśmy albo popełniliśmy błąd przy obsłudze sprzętu. Na przykład, zawsze trzeba uważać, żeby dobrze wpisać wartości do systemu, bo jeden zły krok i wszystko się sypie. Potem są błędy systematyczne. To takie błędy, które sobie powtarzają przez to, że narzędzie pomiarowe może być źle kalibrowane. Jak coś jest źle ustawione, to za każdym razem będziemy dostawać ten sam zły wynik. A na końcu mamy błędy przypadkowe. To te, które się zdarzają bez żadnego ostrzeżenia, jak zmiany pogody czy losowe wahania w wynikach. W geodezji ważne jest, żeby te błędy identyfikować i minimalizować, bo w projektach budowlanych czy geodezyjnych precyzyjne pomiary to klucz do sukcesu.

Pytanie 25

Wyniki pomiarów należy skorygować przed ich użyciem w obliczeniach, uwzględniając poprawki związane z błędami

A. grube.
B. systematyczne.
C. pozorne.
D. średnie.
Odpowiedź "systematyczne" jest prawidłowa, ponieważ odnosi się do błędów systematycznych, które są stałymi odchyleniami wyników pomiarów spowodowanymi przez określone czynniki, takie jak nieprawidłowości w użytym sprzęcie, błędy w metodzie pomiarowej czy wpływ otoczenia. Korygowanie wyników pomiarów w celu eliminacji tych błędów jest kluczowe dla uzyskania dokładnych i wiarygodnych danych. Przykładem może być pomiar temperatury, gdzie błędy systematyczne mogą wynikać z nieprawidłowo skalibrowanego termometru. Poprawki wprowadzane na etapie analizy danych, takie jak kalibracja sprzętu przed pomiarem lub stosowanie kompensacji wpływu temperatury otoczenia, są zgodne z najlepszymi praktykami w naukach przyrodniczych i inżynieryjnych. Eliminowanie błędów systematycznych jest również zgodne z normami ISO, które podkreślają znaczenie dokładności i precyzji w procesach pomiarowych, co jest kluczowe dla zapewnienia wysokiej jakości wyników badań oraz ich rzetelności.

Pytanie 26

W jakich okolicznościach materiały z publicznego zasobu geodezyjnego i kartograficznego mogą być usunięte z tego zbioru?

A. Kiedy stracą wartość użytkową
B. Po upływie dwóch lat od dodania do zasobu
C. Kiedy zostaną zniszczone
D. Kiedy nie były używane przez pięć lat
Wyłączenie materiałów z państwowego zasobu geodezyjnego i kartograficznego nie jest związane z czasem ich nieużywania, ani z ich fizycznym zniszczeniem. Twierdzenie, że materiały mogą zostać wyłączone z zasobu, gdy nie były wykorzystywane przez pięć lat, opiera się na błędnym założeniu, że brak użycia oznacza brak wartości. W rzeczywistości materiały mogą pozostawać w zasobie, nawet jeśli nie były aktywnie wykorzystywane, gdyż mogą wciąż mieć potencjalną wartość dla przyszłych projektów, badań czy planowania. Zniszczenie materiałów, choć może prowadzić do potrzeby ich wyłączenia, nie jest kluczowe w kontekście zarządzania zasobami geodezyjnymi. Istotniejsze jest, aby ocenić ich aktualność i przydatność użytkową. W momencie, gdy materiały przestają spełniać wymagania użytkowników, niezależnie od ich stanu fizycznego, powinny być wyłączone. Warto także zauważyć, że zasady dotyczące wyłączenia materiałów nie opierają się na określonym czasie, takim jak dwa lata od ich włączenia do zasobu. To podejście ignoruje dynamiczny charakter użytkowania danych geodezyjnych, które mogą być wielokrotnie aktualizowane w miarę zmieniających się potrzeb użytkowników oraz rozwoju technologii. Dlatego tak ważne jest, aby zarządzanie zasobami geodezyjnymi opierało się na regularnych ocenach ich wartości i przydatności, a nie na sztywnych ramach czasowych.

Pytanie 27

Jaką metodą powinno się wykonać pomiar kątów w celu określenia współrzędnych punktu, który jest niedostępny, stosując metodę wcięcia kątowego w przód?

A. Kierunkową
B. Sektorową
C. Wypełnienia horyzontu
D. Pojedynczego kąta
Wybór metod wypełnienia horyzontu, sektorowej czy kierunkowej w kontekście wyznaczania współrzędnych punktu niedostępnego przy wcięciu kątowym w przód prowadzi do licznych nieporozumień dotyczących technik pomiarowych. Metoda wypełnienia horyzontu, choć użyteczna w innych kontekstach, polega na pomiarze kątów w wielu kierunkach w celu uzyskania pełnej charakterystyki otoczenia. Taka technika jest czasochłonna i nieefektywna, gdyż wymaga podejmowania pomiarów w różnych azymutach, co nie jest konieczne przy pomiarze pojedynczego kąta. Metoda sektorowa, z kolei, skupia się na podziale obszaru na sektory, co w przypadku punktów trudnodostępnych w praktyce przynosi więcej komplikacji niż korzyści, gdyż może prowadzić do błędów w ocenie odległości i kątów. Zastosowanie metody kierunkowej również nie jest optymalne w tej sytuacji, ponieważ polega na pomiarze kątów w kierunku wybranym przez operatora, co może skutkować zniekształceniem wyników, zwłaszcza w trudnym terenie. Wybór niewłaściwej metody może wynikać z braku zrozumienia podstawowych zasad pomiarów kątowych, co jest kluczowe dla uzyskania precyzyjnych rezultatów w geodezji. Dlatego istotne jest, aby przed przystąpieniem do pomiarów, zrozumieć specyfikę i zalety konkretnej metody, aby uniknąć typowych błędów myślowych i zwiększyć efektywność prowadzonych prac.

Pytanie 28

Która z metod niwelacji opiera się na określaniu różnic w wysokości pomiędzy punktami terenu za pomocą zmierzonych kątów pionowych oraz odległości poziomych między tymi punktami?

A. Punktów rozproszonych
B. Reperów
C. Geometryczna
D. Trygonometryczna
Metoda niwelacji trygonometrycznej opiera się na wyznaczaniu różnic wysokości pomiędzy punktami terenowymi przy użyciu pomiarów kątów pionowych oraz odległości poziomych. Ta technika jest szczególnie przydatna w sytuacjach, gdzie bezpośredni dostęp do punktów jest utrudniony lub niemożliwy. W praktyce, inżynierowie często wykorzystują niwelację trygonometryczną do tworzenia bardziej skomplikowanych projektów budowlanych, takich jak mosty czy drogi, gdzie precyzyjne określenie różnic wysokości jest kluczowe. Zastosowanie tej metody pozwala na obliczenia przy użyciu wzorów trygonometrycznych, co zwiększa efektywność pomiarów. Standardy branżowe, takie jak normy ISO dotyczące geodezji, wskazują na niwelację trygonometryczną jako jedną z zalecanych metod w skomplikowanych projektach geodezyjnych, co świadczy o jej uznawanej wartości i praktyczności w dziedzinie inżynierii i geodezji.

Pytanie 29

Co należy zrobić, jeśli na poprawnie sporządzonym szkicu polowym błędnie zapisano odległość między dwoma punktami osnowy poziomej?

A. napisać obok błędnego wpisu 'źle' i podać właściwą odległość
B. przekreślić nieprawidłowy zapis i wpisać poprawną odległość
C. zamalować błędny zapis korektorem i wpisać na nowo właściwą odległość
D. przerysować cały szkic od nowa
Przekreślenie błędnego zapisu i wpisanie właściwej odległości jest najwłaściwszym podejściem w przypadku korekty szkicu polowego. Taka praktyka jest zgodna z zasadami prowadzenia dokumentacji geodezyjnej, gdzie kluczowe jest zachowanie przejrzystości i czytelności zapisów. Przekreślenie błędnego zapisu umożliwia zachowanie oryginalnych danych, co jest istotne w przypadku weryfikacji lub audytu realizacji prac geodezyjnych. Poprawny zapis powinien być wyraźnie zaznaczony, co minimalizuje ryzyko pomyłek w dalszych etapach analizy danych. Dobrą praktyką jest także stosowanie jasnych kolorów i odpowiednich narzędzi do korekty, aby każdy, kto będzie korzystał ze szkicu, mógł szybko zidentyfikować dokonane zmiany. Przykładem może być sytuacja, w której geodeta przyjmuje nowe pomiary w terenie, a korekta zapisu odległości między punktami osnowy nie tylko zwiększa precyzję, ale także wspiera zachowanie rzetelności dokumentacji. Zastosowanie takiej metody korekty jest zgodne z normami branżowymi, które zalecają, aby wszelkie zmiany były dokonywane w sposób przejrzysty, co jest kluczowe dla zachowania wysokich standardów pracy w geodezji.

Pytanie 30

Która z wielkości jest obciążona błędem indeksu w trakcie pomiaru?

A. Kierunek pionowy
B. Odczyt na łacie
C. Odległość skośna
D. Kierunek poziomy
Odległość skośna, kierunek poziomy i odczyt na łacie to rzeczy, które mogą się mylić z błędem indeksu, ale tak naprawdę mają swoje zasady i błędy, które są inne. Odległość skośna, na przykład, jest mierzona w terenie i tam pojawiają się inne błędy, jak refrakcja atmosferyczna czy nieprecyzyjny odczyt. Kierunek poziomy, który jest prostopadły do pionowego, można mierzyć dokładniej, szczególnie z nowoczesnymi instrumentami, które pomagają ograniczyć błędy. Odczyt na łacie też nie jest bezpośrednio związany z błędem indeksu, ale można się pomylić przy odczycie lub gdy teren jest nierówny. Często mylimy te pojęcia z błędem indeksu, bo nie rozumiemy, jak wykonywane są różne pomiary i jakie błędy mogą się zdarzyć. Dlatego ważne jest, żeby korzystać z odpowiednich standardów pomiarowych i technik, żeby zminimalizować błędy i uzyskać wiarygodne wyniki.

Pytanie 31

Jaką wartość ma kąt, o który trzeba obrócić alidadę przy precyzyjnym poziomowaniu teodolitu, po ustawieniu libelli równolegle do osi dwóch śrub regulacyjnych oraz ustawieniu pęcherzyka w pozycji centralnej?

A. 90°
B. 180°
C. 200°
D. 360°
Obroty o 180°, 360° lub 200° są błędne, ponieważ nie są one zgodne z zasadami dokładnego poziomowania teodolitu. Obrót o 180° oznaczałby, że alidade byłaby ustawiona w przeciwnym kierunku, co nie pozwoliłoby na właściwe sprawdzenie poziomowania w kierunkach prostopadłych. Taki kąt nie przynosi dodatkowych informacji o poziomie, a jedynie przesuwa punkt odniesienia na linię, co jest niepraktyczne w kontekście precyzyjnych pomiarów. Obrót o 360° oznaczałby, że alidade powróciłaby do pierwotnej pozycji, co również jest nieefektywne, gdyż nie wprowadza żadnych nowych danych dotyczących poziomowania. Natomiast wybór 200° jest nieadekwatny, gdyż nie ma uzasadnienia geodezyjnego dla takiego kąta w kontekście wykonywania pomiarów z wykorzystaniem teodolitu. W geodezji, każdy kąt obrotu i jego zastosowanie powinny być dobrze przemyślane i oparte na standardach, które gwarantują dokładność i niezawodność pomiarów. Użytkownicy teodolitu muszą być świadomi, że niepoprawne podejście do poziomowania prowadzi do błędnych wyników, które mogą skutkować poważnymi konsekwencjami w projektach budowlanych i inżynieryjnych.

Pytanie 32

Jakiej z wymienionych zasad nie wolno zastosować podczas sporządzania szkicu terenu przy pomiarze sytuacyjnym metodą ortogonalną?

A. Podania domiarów biegunowych (α, d) punktów, które są zdejmowane
B. Wpisania miar bieżących zdejmowanych punktów prostopadle do linii pomiarowej
C. Podania miary bieżącej (0,00) przy początkowym punkcie linii pomiarowej
D. Wpisania rzędnych punktów zdejmowanych równolegle do prostokątnej linii domiaru
Podanie domiarów biegunowych (α, d) zdejmowanych punktów nie jest zasadą stosowaną w metodzie ortogonalnej, ponieważ ta metoda opiera się na pomiarze prostopadłym do linii podstawowej oraz na określeniu odległości w kierunkach prostopadłych do tej linii. Przy pomiarach ortogonalnych kluczowe jest zachowanie prostokątności, co umożliwia precyzyjne wyznaczenie położenia punktów w przestrzeni. W praktyce, jeśli chcemy zmierzyć odległości i kąty, stosuje się metody, które umożliwiają dokładne określenie pozycji w oparciu o rzędne i odległości w kierunkach prostokątnych. Znajomość zasad stosowanych w różnych metodach pomiarowych jest istotna dla uzyskania dokładnych i wiarygodnych wyników, co jest kluczowe w geodezji i kartografii. Na przykład, w terenie, gdzie niemożliwe jest stosowanie domiarów biegunowych, możemy skupić się na pomiarach ortogonalnych przy pomocy teodolitu lub tachimetru, co zapewnia wysoką precyzję.

Pytanie 33

Długość odcinka zmierzonego na mapie o skali 1:500 wynosi 11,1 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 22,20 m
B. 5,55 m
C. 55,50 m
D. 2,22 m
Wybór takich odpowiedzi jak 2,22 m, 5,55 m czy 22,20 m prawdopodobnie wynika z tego, że nie do końca zrozumiałeś zasady przeliczania skali mapy. Te odpowiedzi pokazują, że mogły być jakieś błędy w obliczeniach. Na przykład, 2,22 m może sugerować, że pomyliłeś jednostki, chyba że źle przeliczyłeś centymetry na metry. Z kolei 5,55 m to chyba wynik pomylenia przelicznika skali, możliwe, że pomyliłeś ją z 1:100. A odpowiedź 22,20 m może wskazywać, że rozumiesz, że długość odcinka powinna być większa, ale obliczenia są krzywe; być może pomnożyłeś 11,1 przez 200 zamiast 500. Takie błędy mogą być poważne w projektach inżynieryjnych. W praktyce, żeby unikać takich pomyłek, warto najpierw zrozumieć, jak działa skala i jakie są standardowe procedury pomiarowe. Na przykład, w geodezji dobrze jest zawsze sprawdzić dane pomiarowe na podstawie uznawanych norm oraz korzystać z odpowiednich narzędzi do pomiarów, jak dalmierze czy tachimetry, które dają precyzyjne wyniki.

Pytanie 34

Zmierzoną odległość 120 m określono z błędem średnim ±3 cm. Jaki jest błąd względny tej pomierzonej odległości?

A. 1/2000
B. 1/5000
C. 1/4000
D. 1/1000
Aby zrozumieć, dlaczego inne odpowiedzi są nieprawidłowe, warto przyjrzeć się, jak oblicza się błąd względny i jakie są typowe błędy w jego interpretacji. Niektórzy mogą mylnie uznawać, że błąd względny można obliczyć w inny sposób, na przykład poprzez dodanie lub pomnożenie błędu do wartości pomiarowej, co prowadzi do błędnych wyników. Inna powszechna mylna koncepcja dotyczy pomijania przeliczeń jednostek. Przykładowo, odpowiedzi, które sugerują błędne wartości, mogą wynikać z nieprawidłowego przeliczenia błędu z centymetrów na metry lub z błędnych założeń dotyczących wartości bazowej. Podczas obliczania błędu względnego kluczowe jest, aby błąd zawsze odnosił się do wartości, która jest analizowana, w tym przypadku 120 m. Każdy błąd w tym podejściu prowadzi do niepoprawnych wyników, co może mieć istotne konsekwencje w praktyce inżynieryjnej, gdzie precyzja jest kluczowa. Przykładowo, w budownictwie lub geodezji, nieprawidłowe obliczenia mogą skutkować błędnymi pomiarami, co z kolei może prowadzić do poważnych problemów w realizacji projektów.

Pytanie 35

Długości krawędzi działki w formie kwadratu zmierzono z takim samym błędem ±3 cm. Jaki jest błąd obliczenia powierzchni działki, jeśli długość krawędzi wynosi 100 m?

A. ±60 m2
B. ±6 m2
C. ±3 m2
D. ±30 m2
Odpowiedź ±6 m2 jest poprawna, ponieważ błąd w obliczeniu pola kwadratu wynika z błędu pomiarowego długości boku. Jeśli długość boku kwadratu wynosi 100 m, jego pole powierzchni obliczamy ze wzoru P = a², gdzie a to długość boku. W przypadku błędu pomiarowego ±3 cm (czyli ±0,03 m), możemy użyć wzoru na błąd propagacji w funkcji kwadratowej. Przy pomiarze długości boku kwadratu, błąd w polu można obliczyć jako: ΔP = 2a * Δa, co w tym przypadku wynosi ΔP = 2 * 100 m * 0,03 m = 6 m². Oznacza to, że rzeczywiste pole powierzchni może się różnić od obliczonego o ±6 m². Tego typu obliczenia są kluczowe w inżynierii i architekturze, gdzie precyzyjny pomiar i obliczenia mają ogromne znaczenie dla bezpieczeństwa i funkcjonalności projektów.

Pytanie 36

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych z zastosowaniem metody ortogonalnej?

A. Wysokości punktów terenu
B. Szczegóły terenowe sytuacyjne
C. Numery obiektów budowlanych
D. Domiary prostokątne
Poprawną odpowiedzią jest stwierdzenie, że na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną nie zamieszcza się wysokości punktów terenu. Szkic polowy służy do przedstawienia szczegółów sytuacyjnych, takich jak numery budynków czy tereny użytkowe, które są kluczowe dla analizy zagospodarowania przestrzennego. W przypadku pomiaru ortogonalnego skupiamy się na odwzorowaniu kształtów i układów w pionie i poziomie, co ułatwia późniejsze prace geodezyjne i kartograficzne. Wysokości punktów terenu, które są istotne w kontekście modelowania terenu, są zazwyczaj rejestrowane osobno, w ramach pomiarów wysokościowych, a następnie łączone z danymi sytuacyjnymi w procesie tworzenia map. Takie podejście jest zgodne z normami geodezyjnymi, które promują precyzję i efektywność w zbieraniu danych.

Pytanie 37

Dokonano pomiaru kąta pionowego w dwóch ustawieniach lunety, uzyskując rezultaty: OI= 101g80c70cc, OII= 298g17c00cc. Jaki jest kąt zenitalny?

A. 196g36c30cc
B. 199g98c85cc
C. 298g18c15cc
D. 101g81c85cc
Żeby obliczyć kąt zenitalny w oparciu o pomiary kątów pionowych zrobione w dwóch różnych położeniach lunety, trzeba skorzystać z wzoru: Kąt zenitalny = OI + OII - 200g. W naszym przypadku mamy OI = 101g80c70cc i OII = 298g17c00cc. Jak to zsumujemy: 101g80c70cc + 298g17c00cc wychodzi 399g97c70cc. Następnie odejmujemy 200g: 399g97c70cc - 200g = 199g97c70cc. Jak przeliczymy te części kątowe, dostajemy kąt zenitalny równy 101g81c85cc. Takie obliczenia są mega ważne w geodezji i inżynierii lądowej, gdzie precyzyjne pomiary kątów i wysokości są kluczowe do określania pozycji punktów w przestrzeni. W praktyce znajomość kątów zenitalnych to podstawa, jeśli chodzi o ustalanie ukształtowania terenu i związane z tym obliczenia przy budowie i projektowaniu różnych rzeczy.

Pytanie 38

Na rysunku osnowy pomiarowej nie należy zamieszczać

A. wyrównanych kątów poziomych
B. rzędnych oraz odciętych dotyczących szczegółów sytuacyjnych
C. uśrednionych długości linii pomiarowych
D. numerów punktów osnowy
Odpowiedź wskazująca na brak umieszczania rzędnych i odciętych do szczegółów sytuacyjnych na szkicu pomiarowej osnowy sytuacyjnej jest prawidłowa. Szkic osnowy sytuacyjnej ma na celu przedstawienie relacji pomiędzy punktami geodezyjnymi, ich numerami oraz geometrią układu, a nie szczegółów dotyczących elewacji czy innych informacji topograficznych. Umieszczanie rzędnych i odciętych na takim szkicu mogłoby prowadzić do zamieszania i nieczytelności, ponieważ podstawowym celem jest ukazanie układu punktów w płaszczyźnie poziomej. W praktyce, taki szkic powinien być bezpośrednim odzwierciedleniem wyników pomiarów, co wymaga skupienia się na podstawowych informacjach, takich jak długości linii pomiarowych czy wyrównane wartości kątów. Stosowanie się do tej zasady jest zgodne z normami geodezyjnymi, co zapewnia klarowność i spójność dokumentacji geodezyjnej. W praktyce, w przypadku prowadzenia pomiarów sytuacyjnych, geodeci często tworzą osobne rysunki lub wykresy, w których przedstawiają rzędne, co pozwala na precyzyjne odwzorowanie terenu i szczegółów topograficznych.

Pytanie 39

Wysokość anteny odbiorczej przed oraz po zakończeniu sesji pomiarowej przy użyciu metody precyzyjnego pozycjonowania z zastosowaniem GNSS powinna być określona z dokładnością wynoszącą

A. 0,004 m
B. 0,01 m
C. 0,001 m
D. 0,02 m
Wybór innych wartości, takich jak 0,02 m, 0,001 m czy 0,004 m, wskazuje na brak zrozumienia wymagań dotyczących precyzyjnego pozycjonowania w kontekście technologii GNSS. W przypadku 0,02 m, chociaż może to wydawać się akceptowalnym poziomem dokładności, w rzeczywistości jest to zbyt duży błąd, który może prowadzić do poważnych nieścisłości w pomiarach, zwłaszcza w geodezji, gdzie standardy w zakresie dokładności są szczególnie surowe. Przykłady zastosowań, gdzie dokładność jest kluczowa, obejmują monitoring deformacji gruntu czy precyzyjne pomiary w inżynierii lądowej. Zastosowanie 0,001 m jako wymaganej dokładności również jest niepraktyczne, ponieważ w rzeczywistości osiągnięcie tak wysokiej precyzji w warunkach terenowych jest niezwykle trudne i kosztowne. Wreszcie, wybór 0,004 m również nie odpowiada rzeczywistym potrzebom, ponieważ nie zapewnia odpowiedniego marginesu bezpieczeństwa w kontekście pomiarów, które mogą być narażone na różne źródła błędów, takie jak interferencje atmosferyczne czy multipath. W związku z tym, dla zastosowań wymagających precyzji, ustalanie wysokości anteny odbiornika z dokładnością 0,01 m jest najbardziej odpowiednim rozwiązaniem, które nie tylko spełnia standardy branżowe, ale również odpowiada rzeczywistym wymaganiom projektowym.

Pytanie 40

Długość boku kwadratowej działki a = 100,00 m została zmierzona z średnim błędem ma = ±5 cm. Jaką wartość ma średni błąd mp w obliczeniu pola P tej działki?

A. mp = ±10 m2
B. mp = ±20 m2
C. mp = ±5 m2
D. mp = ±1 m2
Niepoprawne odpowiedzi są rezultatem błędnych interpretacji zależności między błędami pomiarowymi a obliczanym polem. Wartości błędów przedstawione w odpowiedziach, takie jak mp = ±20 m2, mp = ±5 m2 czy mp = ±1 m2, nie są zgodne z zasadami propagacji błędów. Na przykład, mp = ±20 m2 sugeruje, że błąd pomiarowy jest większy niż rzeczywisty wpływ błędu długości boku na pole, co jest sprzeczne z logiką obliczeń. Taki błąd myślowy może wynikać z nieprawidłowego zastosowania wzoru na błąd średni lub nieuwzględnienia, że pole jest funkcją kwadratową. Odpowiedź mp = ±5 m2 z kolei nie uwzględnia całkowitego wpływu błędu pomiarowego na pole, co ogranicza dokładność obliczeń. Wydaje się, że w tym przypadku nie zrozumiano, że należy pomnożyć długość boku przez 2, aby uwzględnić wpływ błędu w obliczeniach. Z kolei mp = ±1 m2 jest zdecydowanie zaniżonym wynikiem, który również ignoruje zasadnicze zasady propagacji błędów. W praktyce, przy obliczeniach inżynieryjnych, niedoszacowanie błędów może prowadzić do poważnych konsekwencji, stąd tak istotne jest stosowanie odpowiednich wzorów i metod w celu uzyskania precyzyjnych wyników. Warto również pamiętać o standardach metrologicznych, które kładą nacisk na odpowiednie traktowanie błędów pomiarowych w każdym etapie pracy. Wysoka dokładność obliczeń jest kluczowa w wielu dziedzinach, w tym w budownictwie, geodezji i inżynierii, gdzie błędy mogą wpływać na bezpieczeństwo i efektywność realizowanych projektów.