Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 26 marca 2025 14:20
  • Data zakończenia: 26 marca 2025 14:32

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką minimalną powierzchnię należy zapewnić na jednego pracownika pracującego równocześnie w tej samej przestrzeni biurowej?

A. 4 m2
B. 1 m2
C. 2 m2
D. 3 m2
Przypisanie zbyt małej powierzchni na jednego pracownika, jak 1 m2, 3 m2 lub 4 m2, może prowadzić do różnych problemów ergonomicznych i zdrowotnych. Odpowiedź 1 m2 jest zdecydowanie niewystarczająca, ponieważ w praktyce oznacza brak miejsca na podstawowe elementy wyposażenia, takie jak biurko, krzesło, a także przestrzeń do poruszania się. Zbyt mała powierzchnia może prowadzić do uczucia dyskomfortu, które negatywnie wpływa na zdrowie psychiczne i fizyczne pracowników. W przypadku 3 m2, mimo że pod względem powierzchni może wydawać się to bardziej odpowiednie, nadal nie zapewnia to wystarczającej przestrzeni na swobodny ruch oraz zachowanie dystansu, co jest kluczowe w kontekście pracy w grupie. Z kolei 4 m2 może być w niektórych przypadkach zbyt dużą przestrzenią, co z kolei wiąże się z nieefektywnym wykorzystaniem biura oraz większymi kosztami operacyjnymi. Kluczowe jest zrozumienie, że odpowiednia przestrzeń powinna być dostosowana do potrzeb pracowników, a także specyfiki wykonywanej pracy. Błędem jest również założenie, że mniejsza powierzchnia sprzyja lepszej interakcji między pracownikami; przeciwnie, zbyt bliskie sąsiedztwo może prowadzić do zakłóceń oraz obniżenia efektywności zespołu. W praktyce, przeciwdziałanie tym problemom i dostosowanie przestrzeni do standardów ergonomicznych jest kluczowe dla zdrowia i wydajności pracowników.

Pytanie 2

Na zdjęciu przedstawiono

Ilustracja do pytania
A. tensometry
B. tyrystory
C. termistory
D. diody
Termistory to elementy elektroniczne, które zmieniają swoją rezystancję w odpowiedzi na zmiany temperatury. Wyróżniamy dwa główne typy termistorów: NTC (Negative Temperature Coefficient) i PTC (Positive Temperature Coefficient). W przypadku NTC, rezystancja maleje wraz ze wzrostem temperatury, co sprawia, że są one często wykorzystywane w aplikacjach pomiarowych, takich jak termometry elektroniczne, gdzie umożliwiają precyzyjne monitorowanie temperatury. Z kolei PTC zwiększa swoją rezystancję przy wzroście temperatury, co czyni je skutecznymi zabezpieczeniami przed przegrzaniem w urządzeniach elektrycznych. Przykłady zastosowań obejmują kontrolę temperatury w urządzeniach HVAC oraz w układach zasilania, gdzie termistory służą do ochrony komponentów przed uszkodzeniem. Zrozumienie działania termistorów i ich właściwości jest kluczowe w projektowaniu systemów elektronicznych, spełniającym wymagania dotyczące dokładności pomiarów temperatury oraz bezpieczeństwa urządzeń.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Oznaczenie YLY 3×6 mm2 odnosi się do przewodu

A. 3-żyłowego, z żyłami aluminiowymi w izolacji polwinitowej oraz powłoce polwinitowej
B. 3-żyłowego, z żyłami miedzianymi w izolacji polwinitowej oraz powłoce polwinitowej
C. 6-żyłowego, z żyłami miedzianymi w izolacji polietylenowej oraz powłoce polietylenowej
D. 6-żyłowego, z żyłami aluminiowymi w izolacji polietylenowej oraz powłoce polietylenowej
Odpowiedź wskazująca na przewód 3-żyłowy, o żyłach miedzianych w izolacji polwinitowej i powłoce polwinitowej, jest poprawna, ponieważ oznaczenie YLY 3×6 mm² jednoznacznie wskazuje na cechy techniczne tego przewodu. Przewody te są powszechnie stosowane w instalacjach elektrycznych i charakteryzują się dobrą elastycznością oraz odpornością na czynniki mechaniczne. Użycie miedzi jako materiału przewodzącego zapewnia doskonałe właściwości przewodzenia prądu, co jest istotne w kontekście wydajności energetycznej instalacji. Izolacja polwinitowa zapewnia odpowiednią odporność na temperaturę oraz chemikalia, co czyni ten typ przewodu idealnym do zastosowań zarówno wewnętrznych, jak i zewnętrznych, gdzie może być narażony na niekorzystne warunki atmosferyczne. Dodatkowo, zgodnie z normami IEC 60228 oraz PN-HD 60364, zastosowanie przewodów miedzianych w instalacjach elektrycznych znacznie podnosi bezpieczeństwo operacyjne oraz efektywność systemów energetycznych. W praktyce, przewody YLY 3×6 mm² są często stosowane w domowych instalacjach oświetleniowych oraz do zasilania urządzeń elektrycznych o średnim poborze mocy.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Kiedy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać pisk lub rozmowa jest niewyraźna, powinno się

A. dostosować poziom głośności w zasilaczu
B. dostosować napięcie w kasecie rozmownej
C. zwiększyć napięcie zasilania elektrozaczepu
D. zwiększyć poziom głośności w unifonie
Podwyższenie głośności w unifonie wydaje się logiczne, gdy dźwięk jest słabo słyszalny, ale nie zawsze to działa. Unifon to końcowe urządzenie w systemie i jego głośność powinna być dostosowana do tego, co zasilacz może wysłać. Jak zasilacz nie ma wystarczającej mocy, to raczej nic nie zdziałasz na unifonie. Podwyższenie napięcia zasilania elektrozaczepu też raczej nie pomoże w sprawie dźwięku. Elektrozaczep działa na innym poziomie i nie wpływa na to, co słychać w słuchawce. Regulacja napięcia w kasecie rozmownej to też nie najlepszy pomysł, bo ona ma swoje normy i nie powinna być zmieniana na siłę, bo to może tylko zepsuć. Takie myślenie może prowadzić do błędnych wniosków, że problem z dźwiękiem można rozwiązać na poziomie unifonu, a w rzeczywistości trzeba się skupić na zasilaniu, bo to podstawowa rzecz dla całego systemu.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Urządzenie wykorzystywane do podziału lub łączenia sygnałów telewizyjnych i radiowych w systemach antenowych to

A. modulator
B. generator
C. spliter
D. dekoder
Splitter, zwany też rozgałęźnikiem sygnału, to takie ważne urządzenie w instalacjach antenowych. Działa na zasadzie dzielenia sygnału radiowego lub telewizyjnego, co jest naprawdę przydatne, gdy mamy kilka odbiorników w jednym miejscu. Na przykład, kiedy chcemy, żeby w różnych pokojach był dostęp do telewizji, to splitter pozwala nam to zrobić bez potrzeby stawiania wielu anten. Fajnie jest wybierać splittery, które mają niski poziom strat sygnału. Dzięki temu odbiór jest lepszej jakości, co jest bardzo istotne. Takie standardy, jak DVB-T, mówią, że używanie dobrych splitterów zmniejsza zakłócenia, co pewnie wszyscy chcieliby, żeby tak działało. Ważne, żeby pasmo pracy splitera było odpowiednie do częstotliwości sygnału, bo wtedy zyskujemy lepszy przesył.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Mostek Graetza stanowi przykład

A. stabilizatora
B. prostownika
C. zasilacza
D. generatora
Wybór odpowiedzi sugerującej, że Mostek Graetza jest generatorem, prostownikiem, zasilaczem lub stabilizatorem, wynika z nieprecyzyjnego zrozumienia funkcji i zastosowań tych układów elektronicznych. Generator to układ, który przekształca energię elektryczną w sygnały elektryczne, często o określonych parametrach. W kontekście Mostka Graetza, nie ma on na celu generowania sygnałów, lecz prostowanie prądu, co jest kluczowym rozróżnieniem. Zasilacz z kolei jest urządzeniem, które dostarcza energię elektryczną o określonych parametrach, a Mostek Graetza jest jednym z jego elementów; wykonuje jedynie prostowanie, a nie pełni funkcji zasilania jako całość. Stabilizatory, najczęściej używane w kontekście stabilizacji napięcia, również nie są tożsame z Mostkiem Graetza, ponieważ nie regulują oni napięcia, a jedynie przekształcają prąd zmienny na stały. Typowe błędy w myśleniu o tych układach polegają na myleniu ich funkcji oraz nieprawidłowym interpretowaniu ról, które pełnią w szerszym kontekście systemów elektronicznych. Ważne jest, aby zrozumieć, że każdy z tych komponentów ma swoją unikalną rolę i charakterystyki, co podkreśla znaczenie precyzyjnego doboru na etapie projektowania układów elektronicznych.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

W trakcie serwisowania systemu alarmowego nie kontroluje się

A. linii sabotażowych
B. faktury zakupu
C. stanu akumulatora
D. ustawienia czujek ruchu
Podczas konserwacji systemu alarmowego kluczowe jest zrozumienie, które elementy wymagają regularnego nadzoru i dlaczego. Stan akumulatora jest jednym z najważniejszych aspektów, ponieważ to on zapewnia zasilanie w przypadku przerwy w dostawie energii elektrycznej. Jeśli akumulator nie jest w dobrym stanie, cała instalacja alarmowa może się wyłączyć, co stwarza ryzyko utraty bezpieczeństwa. Linia sabotażowa jest innym krytycznym elementem, który powinien być testowany, aby upewnić się, że nie został usunięty ani uszkodzony. W kontekście ochrony mienia, testowanie tych linii jest istotne, ponieważ ich awaria może prowadzić do nieautoryzowanego dostępu. Ustawienia czujek ruchu również wymagają uwagi, ponieważ ich niewłaściwe skalibrowanie może prowadzić do fałszywych alarmów lub, co gorsza, do braku reakcji na rzeczywiste zagrożenie. Przykładem dobrej praktyki jest przeprowadzanie regularnych przeglądów technicznych, które powinny obejmować analizę wszystkich tych komponentów. Z drugiej strony, sprawdzenie faktury zakupu nie ma znaczenia w kontekście operacyjnym systemu. To dokumentacja administracyjna, która nie wpływa na bieżące funkcjonowanie urządzenia. Warto podkreślić, że choć faktura może być istotna w kontekście gwarancji lub zwrotów, nie jest to czynność związana z konserwacją, co może prowadzić do mylnych wniosków o jej znaczeniu w codziennym utrzymaniu systemu alarmowego.

Pytanie 16

Instrukcja CLR P1.7 wskazuje na

A. wymazanie komórki o adresie 1.7
B. wczytanie komórki znajdującej się pod adresem 1.7
C. konfigurację linii 7 w porcie P1
D. zerowanie linii 7 w porcie P1
W analizie błędnych odpowiedzi na pytanie o rozkaz CLR P1.7, warto zwrócić uwagę na koncepcje, które prowadzą do nieporozumień. Sformułowanie "załadowanie komórki o adresie 1.7" sugeruje, że rozkaz ten ma na celu przeniesienie danych z pamięci do rejestru, co jest niezgodne z jego funkcją. Rozkaz CLR nie wykonuje operacji ładowania, lecz zerowania konkretnego bitu, co jest fundamentalnie różne od operacji załadunku. Podobnie odpowiedź dotycząca "ustawienia linii 7 w porcie P1" implikuje, że CLR ma na celu ustawienie bitu na stan wysoki, co jest również błędne, gdyż CLR działa odwrotnie. Z kolei odpowiedź sugerująca "skasowanie komórki o adresie 1.7" może wprowadzać w błąd, ponieważ kasowanie odnosi się do usuwania danych w pamięci, co nie ma zastosowania w kontekście rozkazów dotyczących portów I/O. Typowym błędem jest mylenie operacji manipulujących bitami w rejestrach z operacjami pamięciowymi. W kontekście programowania mikrokontrolerów, zrozumienie różnicy pomiędzy ładowaniem, ustawianiem, kasowaniem i zerowaniem bitów jest kluczowe dla prawidłowego działania aplikacji. Właściwe interpretowanie rozkazów i ich zastosowanie w praktyce stanowi istotny krok w kierunku wydajnego projektowania systemów wbudowanych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 1000 mV
B. 300 mV
C. 150 mV
D. 100 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jeśli złącze BE tranzystora bipolarnego jest spolaryzowane w kierunku przewodzenia, a złącze CB w kierunku zaporowym, to w jakim stanie pracuje tranzystor?

A. zatkania (odcięcia)
B. aktywnym
C. nasycenia
D. aktywnym inwersyjnym
Odpowiedzi, które wskazują na zatkanie, nasycenie lub aktywny inwersyjny, opierają się na błędnych zrozumieniach działania tranzystora bipolarnego. W stanie zatkania, zarówno złącze BE, jak i CB są spolaryzowane zaporowo, co oznacza, że nie ma przepływu prądu, a tranzystor nie przewodzi. To podejście jest sprzeczne z rzeczywistością przedstawioną w pytaniu, gdzie złącze BE jest w stanie przewodzenia. Z kolei stan nasycenia występuje, gdy obydwa złącza są spolaryzowane w kierunku przewodzenia, co prowadzi do maksymalnego przepływu prądu kolektora. To również nie odpowiada sytuacji opisanej w pytaniu. Aktywny inwersyjny tryb pracy odnosi się do sytuacji, w której tranzystor jest używany w konfiguracji inwersyjnej, co nie ma miejsca w przypadku podanych warunków. Typowe błędy myślowe w tym kontekście to mylenie polaryzacji złączy oraz niezrozumienie, że zależność między prądem bazy a prądem kolektora jest kluczowym aspektem pracy tranzystora w trybie aktywnym. Aby poprawnie zrozumieć działanie tranzystora, kluczowe jest przyswojenie zasad jego polaryzacji oraz roli złącza BE w procesie wzmacniania sygnału.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

W czterech różnych wzmacniaczach selektywnych przeprowadzono analizę charakterystyki przenoszenia, a na tej podstawie wyznaczono współczynnik prostokątności p. Jaka wartość współczynnika prostokątności wskazuje na najwyższą selektywność wzmacniacza?

A. p = 0,4
B. p = 0,6
C. p = 1,0
D. p = 0,8
Wartości współczynnika prostokątności p, które są mniejsze niż 1,0, wskazują na ograniczoną selektywność wzmacniacza, co może prowadzić do problemów w odbiorze sygnału. Odpowiedź p = 0,6 sugeruje, że wzmacniacz potrafi oddzielić sygnały, ale nie w sposób optymalny. W praktyce oznacza to, że wzmacniacz może wprowadzać zniekształcenia i szumy, co wpływa na jakość końcowego sygnału. Wartości takie jak p = 0,4 czy p = 0,8 również sugerują, że wzmacniacz nie pracuje w pełni efektywnie. Prowadzi to do typowych błędów myślowych związanych z interpretacją parametrów urządzeń elektronicznych. Niektórzy mogą sądzić, że niższe wartości p pozwalają na lepsze odbieranie sygnałów, jednak w rzeczywistości jest odwrotnie — oznaczają one mniejszą zdolność do selekcji pożądanych sygnałów oraz większą podatność na zakłócenia z innych źródeł. W kontekście inżynierii dźwięku czy telekomunikacji, zrozumienie znaczenia współczynnika prostokątności jest kluczowe dla projektowania efektywnych systemów, które muszą działać w złożonym środowisku pełnym różnych sygnałów. Dlatego zawsze warto dążyć do uzyskania wartości p jak najbliższej 1,0, aby zapewnić najlepszą jakość przenoszenia sygnału.

Pytanie 25

Dokładne umycie i odtłuszczenie powierzchni płytki przed instalacją elementów elektronicznych jest wykonywane w celu

A. zapobiegania utlenianiu lutu
B. zwiększenia adhezji lutowia do pola lutowniczego
C. zwiększenia temperatury topnienia lutu
D. zapobiegania pękaniu lutu
Staranne mycie i odtłuszczenie powierzchni płytki przed montażem elementów elektronicznych jest kluczowe dla zwiększenia adhezji lutowia z polem lutowniczym. Wysoka jakość lutowania zależy w dużej mierze od czystości powierzchni, na której będzie aplikowane lutowia. Zanieczyszczenia, takie jak oleje, smary czy pozostałości po produkcji, mogą znacząco obniżyć jakość połączenia, prowadząc do słabszej adhezji i zwiększonego ryzyka wystąpienia błędów w funkcjonowaniu urządzenia. Na przykład, przy lutowaniu powierzchniowym (SMD) niezbędne jest, aby powierzchnie lutownicze były wolne od wszelkich zanieczyszczeń, co zapewnia lepsze wetknięcie lutowia w pole lutownicze. Firmy stosujące standardy IPC-A-610 i IPC-J-STD-001 kładą szczególny nacisk na odpowiednie przygotowanie powierzchni do lutowania, co ma kluczowe znaczenie dla niezawodności i trwałości wytwarzanych produktów elektronicznych. Zastosowanie kontroli wizualnej i testów jakościowych po lutowaniu pozwala na wczesne wykrycie potencjalnych problemów, co jest niezbędne w procesach produkcyjnych.

Pytanie 26

W systemie automatyki uległ awarii przekaźnik. Napięcie zasilające cewkę tego przekaźnika wynosi 12 V DC. Prąd przepływający przez styki robocze przekaźnika osiąga maksymalnie 20 A DC. Napięcie na stykach roboczych może wynosić nawet 100 V DC. Jakie parametry powinien posiadać przekaźnik, który ma zastąpić uszkodzony?

A. Napięcie cewki – 12 V DC Prąd styków – 15 A DC Napięcie styków – 300 V DC
B. Napięcie cewki – 12 V DC Prąd styków – 25 A DC Napięcie styków – 300 V DC
C. Napięcie cewki – 12 V DC Prąd styków – 20 A DC Napięcie styków – 50 V DC
D. Napięcie cewki – 12 V DC Prąd styków – 25 A DC Napięcie styków – 50 V DC
Wybór niewłaściwych parametrów przekaźnika może prowadzić do poważnych problemów w funkcjonowaniu systemu automatyki. Przykładowo, w przypadku pierwszej odpowiedzi, prąd styków wynoszący 15 A DC jest niewystarczający, gdyż nie pokrywa maksymalnego prądu roboczego 20 A DC. Użycie przekaźnika o zbyt niskim prądzie roboczym może prowadzić do jego przegrzania, a w konsekwencji do uszkodzenia przekaźnika i awarii całego systemu. W kolejnej odpowiedzi, napięcie styków wynoszące 50 V DC jest znacznie poniżej maksymalnego napięcia 100 V DC, co oznacza, że przekaźnik może nie być w stanie wytrzymać wymaganych warunków pracy, co prowadzi do ryzyka uszkodzenia sprzętu. W przypadku trzeciej odpowiedzi, mimo że prąd styków wynosi 25 A DC, co jest odpowiednie, napięcie styków wynoszące 300 V DC jest zbędne w kontekście zastosowania, ale nie stanowi bezpośredniego błędu. Wybierając przekaźnik, kluczowe jest, aby wszystkie parametry były dostosowane do rzeczywistych warunków pracy, co jest zgodne z zasadami projektowania systemów automatyki. Ostatecznie, kluczowe jest posługiwanie się danymi technicznymi oraz standardami branżowymi, aby zapewnić najwyższy poziom bezpieczeństwa i niezawodności w działaniu systemów.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Brak obrazu na ekranie wideodomofonu może być spowodowany

A. zwarciem przewodu sygnałowego
B. usterką podświetlaczy IRED kamery
C. awarią elektrozaczepu
D. polem elektromagnetycznym w okolicy sprzętu
Zwarcie kabla sygnałowego jest jednym z najczęstszych problemów, które mogą prowadzić do braku obrazu na monitorze wideodomofonu. Kabel sygnałowy, odpowiedzialny za przesyłanie danych wideo między kamerą a wyświetlaczem, może ulec uszkodzeniu, na przykład w wyniku nieprawidłowego montażu, zbyt dużego napięcia, lub kontaktu z wodą. W przypadku zwarcia sygnał jest zakłócony, co uniemożliwia poprawne przesyłanie obrazu. Praktycznym przykładem może być sytuacja, gdy instalacja była prowadzona w trudnych warunkach atmosferycznych, co zwiększa ryzyko uszkodzenia kabli. W branży zaleca się stosowanie kabli o odpowiedniej klasyfikacji i wysokiej odporności na czynniki zewnętrzne, a także regularne przeprowadzanie testów i inspekcji instalacji, aby upewnić się, że system działa prawidłowo. Warto też stosować standardy takie jak ISO/IEC 11801 dotyczące okablowania strukturalnego, aby zapewnić wysoką jakość i niezawodność instalacji.

Pytanie 29

Warystor to komponent, który zabezpiecza urządzenia elektroniczne przed skutkami działania

A. promieniowania X.
B. niskich temperatur.
C. wyładowań atmosferycznych.
D. opadów deszczu.
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumienia na temat funkcji warystora i jego zastosowania. Promieniowanie rentgenowskie, niska temperatura oraz opady deszczu nie są związane z zasadą działania warystorów. Promieniowanie rentgenowskie to forma promieniowania elektromagnetycznego, które nie wpływa na integralność elektronicznych układów poprzez przepięcia. Niska temperatura może wpłynąć na działanie niektórych komponentów elektronicznych, ale nie jest bezpośrednim zagrożeniem, które mogłoby być neutralizowane przez warystor. Opady deszczu mogą powodować korozję lub zwarcia w urządzeniach, ale nie są powiązane z przepięciami, dla których warystory zapewniają ochronę. Typowym błędem myślowym jest mylenie skutków z przyczynami: warystory są projektowane wyłącznie do ochrony przed nadmiernym napięciem, a nie do ochrony przed innymi czynnikami zewnętrznymi. Dlatego kluczowe jest zrozumienie, że warystor działa jako element zabezpieczający przed skutkami wyładowań atmosferycznych, a nie przed innymi zagrożeniami. Zrozumienie tych różnic jest kluczowe w projektowaniu systemów zabezpieczeń w urządzeniach elektronicznych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Do styku oznaczonego jako TMP w czytniku kart umiejscowionym przy wejściu należy podłączyć

A. do linii antysabotażowej systemu alarmowego
B. do zacisku uziemiającego w centrali
C. równolegle do zasilania czytnika
D. szeregowo do zasilania czytnika
Podłączenie styku TMP równolegle do zasilania czytnika jest błędne, ponieważ nie zapewnia to właściwej detekcji stanu sabotażu. Tego typu rozwiązanie może wprowadzić fałszywe poczucie bezpieczeństwa, ponieważ nie monitoruje integralności samego urządzenia. W sytuacji, gdy system zasilania zostanie przerwane, styk TMP nie zgłosi żadnego alarmu, co jest kluczowe w kontekście ochrony obiektów. Plasowanie styku w szereg z zasilaniem czytnika również nie jest poprawne, ponieważ w takim przypadku, jeśli dojdzie do wyłączenia czytnika, również nie zostanie zarejestrowane żadne zdarzenie alarmowe. Ponadto, podłączenie do zacisku uziemiającego w centrali nie tylko jest niezgodne z zasadami instalacji, ale również nie ma sensu w kontekście monitorowania stanu czytnika. Uziemienie ma na celu jedynie ochronę przed przepięciami i nie jest odpowiednim sposobem na detekcję sabotażu. Zastosowanie niepoprawnych metod podłączenia może prowadzić do nieefektywności systemu alarmowego oraz narazić obiekt na ryzyko związane z włamaniami czy innymi nieautoryzowanymi działaniami. Bez odpowiedniego monitorowania, skuteczność systemu zabezpieczeń zostaje znacznie ograniczona.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Aby połączyć przewody systemu domofonowego w kostce połączeniowej, należy wykorzystać

A. wiertarkę
B. pilnik
C. młotek
D. wkrętak
Użycie wkrętaka do podłączenia przewodów w kostce podłączeniowej systemu domofonowego jest najlepszym wyborem, ponieważ wkrętak umożliwia precyzyjne i pewne dokręcenie śrub, co jest kluczowe dla zapewnienia trwałego i stabilnego połączenia. Dobrze zaciśnięte przewody w kostce minimalizują ryzyko przypadkowego rozłączenia i zwiększają bezpieczeństwo całego systemu. Na przykład, w przypadku domofonów, które mogą być narażone na działanie warunków atmosferycznych, solidne połączenie przewodów jest niezbędne do utrzymania prawidłowego funkcjonowania. W branży elektrycznej oraz w instalacjach niskonapięciowych stosowanie wkrętaka jest standardem, który zapewnia zgodność z normami, takimi jak PN-IEC 60364, które określają zasady prawidłowego podłączania elementów elektronicznych. Praktycznie rzecz biorąc, użycie wkrętaka odpowiedniego do typu śrub w kostce podłączeniowej zwiększa efektywność pracy oraz bezpieczeństwo instalacji.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakie oznaczenie mają terminale w urządzeniach systemów alarmowych, które służą do podłączenia obwodu sabotażowego?

A. TMP
B. COM
C. CLK
D. KPD
Oznaczenie TMP (tamper) odnosi się do zacisków, które są wykorzystywane do podłączenia obwodu sabotażowego w systemach alarmowych. Obwód sabotażowy jest kluczowym elementem zabezpieczeń, ponieważ jego zadaniem jest monitorowanie integralności samego urządzenia. Gdy dojdzie do manipulacji, np. otwarcia obudowy czujnika lub innego urządzenia, obwód sabotażowy zostaje przerwany, co aktywuje alarm. Zastosowanie obwodu TMP jest powszechną praktyką w systemach zgodnych z normami EN 50131, które definiują wymagania dla systemów alarmowych. Przykładowo, w instalacjach alarmowych używanych w obiektach komercyjnych czy przemysłowych, zastosowanie zacisków TMP zapewnia wysoki poziom ochrony przed nieautoryzowanym dostępem. Właściwe podłączenie tych zacisków przyczynia się do zwiększenia skuteczności całego systemu alarmowego, co jest kluczowe w kontekście ochrony mienia.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Podczas pomiaru rezystancji przy użyciu metody technicznej, woltomierz oraz amperomierz wskazują odpowiednio 40 V i 20 mA. Jaką wartość ma mierzona rezystancja?

A. 2 kΩ
B. 0,2 kΩ
C. 200 kΩ
D. 20 kΩ
Wartość mierzonej rezystancji można obliczyć korzystając z prawa Ohma, które stanowi, że rezystancja (R) jest równa napięciu (U) podzielonemu przez natężenie prądu (I). W naszym przypadku napięcie wynosi 40 V, a natężenie prądu 20 mA (co odpowiada 0,02 A). Zatem, stosując wzór R = U / I, otrzymujemy R = 40 V / 0,02 A = 2000 Ω, co można przeliczyć na kiloomy: 2000 Ω = 2 kΩ. Ta metoda pomiaru rezystancji jest szeroko stosowana w praktyce, zwłaszcza w elektronice i elektrotechnice, gdzie precyzyjne pomiary są kluczowe dla prawidłowego działania obwodów. Przykładowe zastosowanie można znaleźć w diagnostyce układów elektronicznych, gdzie pomiar rezystancji pozwala na identyfikację uszkodzeń komponentów. W branży stosuje się również tę technikę w różnych standardach pomiarowych, podkreślając jej znaczenie i niezawodność w praktyce.

Pytanie 38

Wybierz z podanych parametrów sygnałów, które poziomy sygnałów analogowych są wykorzystywane w systemach automatyki przemysłowej do transmisji danych?

A. 4 V ÷ 20 V
B. 4 mA ÷ 20 mA
C. 4 A ÷ 20 A
D. 4 mV ÷ 20 mV
Wybór poziomów sygnałów innych niż 4 mA ÷ 20 mA wskazuje na niepełne zrozumienie zasad funkcjonowania systemów automatyki przemysłowej. Sygnały 4 mV ÷ 20 mV są zbyt niskie, aby skutecznie przesyłać informacje na znaczące odległości w środowisku przemysłowym, gdzie zakłócenia elektryczne są powszechne. Podobnie, sygnały 4 A ÷ 20 A są rzadko stosowane, co może prowadzić do nieodpowiedniego doboru elementów systemu, a także do trudności w integracji z urządzeniami, które funkcjonują w standardzie 4 mA ÷ 20 mA. Odnośnie poziomów 4 V ÷ 20 V, ten zakres jest także mniej powszechny, a jego użycie może być niepraktyczne w kontekście pomiarów analogowych, gdzie prąd jest bardziej stabilny i odporny na zakłócenia. Domyślnym rozwiązaniem w automatyce przemysłowej jest sygnał prądowy, ponieważ prąd jest mniej podatny na wpływ oporu kabli na różne długości, co sprawia, że pomiary są bardziej wiarygodne. Użycie niewłaściwego zakresu sygnałowego może prowadzić do błędnych odczytów, co z kolei może rzutować na efektywność i bezpieczeństwo procesów przemysłowych. Zrozumienie standardów sygnałów analogowych jest kluczowe dla skutecznej pracy w dziedzinie automatyki i kontroli procesów.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Co oznacza funkcja ARW w radiowych odbiornikach?

A. wybieranie oraz wyszukiwanie rodzaju programu
B. odbiór komunikatów drogowych
C. automatyczną regulację wzmocnienia
D. odbiór tekstowych komunikatów
Funkcja automatycznej regulacji wzmocnienia (ARW) w odbiornikach radiowych jest kluczowym elementem zapewniającym stabilność sygnału audio. ARW automatycznie dostosowuje poziom wzmocnienia sygnału, co jest szczególnie przydatne w sytuacjach, gdy sygnał odbierany jest niestabilny lub zmienia się w czasie, na przykład podczas przejazdu przez obszary o różnej jakości sygnału. Dzięki ARW, użytkownicy mogą cieszyć się lepszą jakością dźwięku, ponieważ funkcja ta minimalizuje szumy i przerywania w audio. W praktyce, ARW znajduje zastosowanie w odbiornikach radiowych, systemach audio w samochodach oraz w urządzeniach przenośnych, gdzie utrzymanie stabilności sygnału ma kluczowe znaczenie. Zgodnie z dobrą praktyką branżową, implementacja ARW w urządzeniach radiowych jest standardem, co przyczynia się do poprawy doświadczeń użytkowników i zwiększa ich zadowolenie z korzystania z technologii radiowej. Przykładem zastosowania ARW może być radioodbiornik, który automatycznie dostosowuje wzmocnienie sygnału w trakcie zmiany położenia użytkownika, utrzymując jednocześnie jakość dźwięku na stałym poziomie.