Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 kwietnia 2025 12:57
  • Data zakończenia: 8 kwietnia 2025 13:30

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Celem smarowania pastą silikonową elementu montowanego na radiatorze jest

A. uzyskanie mniejszej rezystancji cieplnej na połączeniu elementu i radiatora.
B. zmniejszenie przewodności cieplnej radiatora.
C. zwiększenie siły nacisku elementu na radiator.
D. poprawa wyglądu urządzenia elektronicznego.
Wybór odpowiedzi, która sugeruje zwiększenie siły dociskającej element do radiatora, jest mylny. Siła dociskająca jest istotna, ale nie jest to główny cel stosowania pasty silikonowej. W praktyce, aby efektywnie przewodzić ciepło, nie wystarczy jedynie silnie docisnąć element do radiatora, gdyż kluczowym czynnikiem jest jakość kontaktu termicznego, który można poprawić poprzez odpowiednie smarowanie. Dodatkowo, wskazanie na poprawę estetyki wykonania urządzenia elektronicznego jako celu smarowania jest nieuzasadnione w kontekście funkcji pasty. Chociaż estetyka jest ważna, w przypadku smarowania to nie wygląd, ale efektywność przewodzenia ciepła ma kluczowe znaczenie dla wydajności urządzenia. Ostatnią nieprawidłową koncepcją jest sugerowanie, że smarowanie ma na celu zmniejszenie przewodności cieplnej radiatora. Tego rodzaju myślenie jest sprzeczne z podstawową zasadą termodynamiki; radiator powinien zawsze mieć wysoką przewodność cieplną, aby skutecznie odprowadzać ciepło z elementów generujących ciepło. Obserwując te błędne założenia, warto zrozumieć, jak ważne jest prawidłowe podejście do smarowania, które ma na celu optymalizację transferu ciepła, a nie jedynie poprawę wizualną czy sztuczne zwiększanie siły docisku.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Który rodzaj oprogramowania komputerowego monitoruje przebieg procesu oraz dysponuje funkcjami w zakresie m.in. gromadzenia, wizualizacji i archiwizacji danych oraz kontrolowania i alarmowania?

A. CAE
B. CAM
C. CAD
D. SCADA
Odpowiedź 'SCADA' jest prawidłowa, ponieważ systemy SCADA (Supervisory Control And Data Acquisition) pełnią kluczową rolę w monitorowaniu i kontrolowaniu procesów przemysłowych oraz infrastruktury. SCADA pozwala na zbieranie danych w czasie rzeczywistym z różnych źródeł, takich jak czujniki, urządzenia pomiarowe czy automatyka przemysłowa. Dzięki zaawansowanym funkcjom wizualizacji, operatorzy mogą na bieżąco śledzić stan procesów za pomocą interfejsów graficznych, co znacząco zwiększa efektywność zarządzania. Systemy SCADA umożliwiają również archiwizację danych, co jest istotne dla analizy trendów i optymalizacji procesów. Przykładem praktycznego zastosowania SCADA jest monitorowanie sieci energetycznych, gdzie system ten pozwala na detekcję awarii oraz zarządzanie obciążeniem w czasie rzeczywistym, zgodnie z najlepszymi praktykami branżowymi, takimi jak standardy IEC 61850 dla komunikacji w systemach automatyki. W skrócie, SCADA to kluczowy element w strategiach zarządzania procesami, który przyczynia się do zwiększenia bezpieczeństwa i efektywności operacyjnej.

Pytanie 9

Na wyświetlaczu panelu operatorskiego falownika wyświetla się kod błędu F005. Określ na podstawie tabeli z instrukcji serwisowej co może być przyczyną sygnalizowania wystąpienia błędu.

Kod błęduOpis uszkodzeniaCzynności naprawcze
F001PrzepięcieSprawdź czy wielkość napięcia zasilania jest właściwe dla znamion falownika i sterowanego silnika.
Zwiększyć czas opadania częstotliwości (nastawa P003).
Sprawdź czy moc hamowania mieści się w dopuszczalnych granicach.
F002PrzetężenieSprawdź czy moc falownika jest odpowiednia do zastosowanego silnika.
Sprawdź czy długość kabli zasilających silnika nie jest zbyt duża.
Sprawdź czy nie nastąpiło przebicie izolacji uzwojeń silnika lub przewodów kabli zasilających.
Sprawdź czy wartości nastaw P081 - P086 są zgodne z wartościami danych znamionowych silnika.
Sprawdź czy wartość nastawy P089 jest zgodna z wielkością rzeczywistej rezystancji uzwojeń stojana silnika.
Zwiększ czas narastania częstotliwości wyjściowej P002.
Zmniejsz wielkości forsowania częstotliwości (wartość nastaw P078 i P079).
Sprawdź czy wał silnika nie jest zablokowany lub przeciążony.
F003PrzeciążenieSprawdź czy silnik nie jest przeciążony.
Zwiększ częstotliwość maksymalną (wartość nastawy P013) w przypadku gdy używany jest silnik o dużym poślizgu znamionowym.
F005Przegrzanie falownika
(zadziałanie wewnętrznego termistora PTC)
Sprawdź czy temperatura otoczenia przekształtnika nie jest zbyt wysoka.
Sprawdź czy wloty i wyloty powietrza chłodzącego obudowy falownika nie są przysłonięte przez elementy sąsiadujące.
Sprawdź czy wentylator chłodzący funkcjonuje prawidłowo.
F008Przekroczenie okresu oczekiwania na sygnał z łącza szeregowegoSprawdź poprawność łącza szeregowego.
Sprawdź prawidłowość ustawienia parametrów komunikacji łącza szeregowego (wartości nastaw P091 - P093).

A. Za małe obciążenie na wale silnika.
B. Za duża temperatura otoczenia.
C. Za duża moc silnika.
D. Za mała częstotliwość.
Odpowiedź "Za duża temperatura otoczenia." jest prawidłowa, ponieważ kod błędu F005, wskazujący na przegrzanie falownika, jednoznacznie sugeruje, że warunki otoczenia są niewłaściwe. Przegrzanie falownika może prowadzić do poważnych uszkodzeń urządzenia, co w dłuższym czasie może skutkować jego awarią. W praktyce, aby zapobiec takim sytuacjom, ważne jest zapewnienie odpowiedniego chłodzenia i wentylacji falownika w jego miejscu instalacji. Zastosowanie wentylatorów lub systemów klimatyzacyjnych jest kluczowe w zapewnieniu optymalnych warunków pracy. Warto również regularnie monitorować temperaturę otoczenia oraz stan termistora PTC, co pozwoli na wczesne wykrywanie problemów z przegrzewaniem. W przypadku wykrycia wysokiej temperatury otoczenia, należy rozważyć zmianę lokalizacji falownika lub poprawę jego chłodzenia, zgodnie z wytycznymi producenta, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jaki czujnik powinien zostać zainstalowany na obudowie siłownika, aby monitorować położenie tłoczyska z magnesem?

A. Ultradźwiękowy
B. Optyczny
C. Piezoelektryczny
D. Kontaktronowy
Czujnik kontaktronowy jest idealnym rozwiązaniem do wykrywania położenia tłoczyska z magnesem w siłownikach. Działa na zasadzie zjawiska magnetycznego, co oznacza, że gdy magnes znajdujący się na tłoczysku zbliża się do czujnika, jego styk zamyka się, co pozwala na precyzyjne określenie pozycji. Kontaktrony charakteryzują się dużą wytrzymałością na warunki atmosferyczne i mechaniczne, co czyni je niezawodnymi w trudnych warunkach pracy. W praktyce są szeroko stosowane w automatyce przemysłowej, gdzie precyzyjne pomiary położenia są kluczowe. Dodatkowo, zgodnie z normami ISO 13849 dotyczącymi bezpieczeństwa maszyn, czujniki kontaktronowe mogą być wykorzystywane w systemach bezpieczeństwa, co zwiększa ich wszechstronność. Wybór czujnika kontaktronowego na korpusie siłownika jest zatem zgodny z najlepszymi praktykami branżowymi i zapewnia niezawodność oraz bezpieczeństwo systemów automatyki.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Aby zmienić skok gwintu należy zmienić wartość liczbową przy literze adresowej

N100 G00 X55 Z5
N110 T3 S80 M03
N120 G31 X50 Z-30 D-2 F3 Q3

A. D (korektor narzędzia)
B. F (prędkość posuwu)
C. Q (promień wodzący)
D. T (wybór narzędzia)
Odpowiedź "F" dotycząca prędkości posuwu jest poprawna, ponieważ w programowaniu obrabiarek CNC litera adresowa "F" definiuje właśnie tę prędkość. Prędkość posuwu to kluczowy parametr, który wpływa na jakość obróbki oraz efektywność procesu skrawania. Ustalając odpowiednią prędkość posuwu, operator może kontrolować tempo, w jakim narzędzie porusza się wzdłuż materiału, co przekłada się na dokładność i wydajność obróbki. W praktyce, zmiana wartości przy literze "F" pozwala na dostosowanie parametrów do rodzaju obrabianego materiału oraz zastosowanego narzędzia skrawającego, co jest niezbędne do osiągnięcia optymalnych efektów. Warto również zaznaczyć, że w przypadku gwintowania za pomocą obrabiarek CNC, odpowiednia prędkość posuwu jest kluczowa dla uzyskania pożądanej jakości gwintu, dlatego operatorzy muszą być świadomi znaczenia tego parametru oraz umieć go odpowiednio dostosować w zależności od specyfiki zadania. Zmiana skoku gwintu odbywa się poprzez inne parametry, takie jak G32 lub G33, co podkreśla znaczenie właściwego przypisania liter adresowych w programowaniu CNC.

Pytanie 14

Jakiego rodzaju silnik elektryczny powinno się wykorzystać do zasilania taśmociągu, jeśli dostępne jest tylko napięcie 400 V, 50 Hz?

A. Szeregowy
B. Obcowzbudny
C. Bocznikowy
D. Klatkowy
Klatkowy silnik elektryczny, znany także jako silnik asynchroniczny, jest idealnym rozwiązaniem do napędu taśmociągu przy zasilaniu 400 V, 50 Hz. Jego działanie opiera się na różnicy prędkości między polem magnetycznym a wirnikiem, co pozwala na uzyskanie wysokiej efektywności energetycznej. W praktyce, silniki klatkowe charakteryzują się niskimi kosztami eksploatacji, łatwością wmontowania oraz niskimi wymaganiami konserwacyjnymi. Stosuje się je powszechnie w różnych aplikacjach przemysłowych, takich jak transport materiałów, ponieważ potrafią pracować z dużymi obciążeniami i są odporne na przeciążenia. W przypadku taśmociągów, kluczowe jest, aby silnik zapewniał stałą prędkość obrotową i był w stanie sprostać zmiennym warunkom operacyjnym, co silnik klatkowy realizuje w sposób optymalny, zgodnie z normami IEC 60034 dotyczącymi maszyn elektrycznych. Dodatkowo, ich konstrukcja jest prosta, co minimalizuje ryzyko awarii, co czyni je standardem w branży.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Który z literowych identyfikatorów powinien być wykorzystany w poleceniu odnoszącym się do analogowych wyjść?

A. AI
B. AQ
C. MW
D. SM
Wybór identyfikatora "AQ" jako poprawnej odpowiedzi jest w pełni uzasadniony w kontekście systemów automatyki i sterowania. Skrót ten oznacza "Analog Output", co bezpośrednio odnosi się do wyjść analogowych w urządzeniach automatyki. Wyjścia analogowe są kluczowym elementem w procesach kontrolnych, ponieważ umożliwiają przekazywanie sygnałów w formie ciągłej, co jest istotne w przypadku aplikacji wymagających precyzyjnej regulacji, takich jak sterowanie silnikami czy regulacja temperatury. Zrozumienie roli identyfikatorów literowych, takich jak "AQ", jest fundamentalne dla projektantów systemów automatyki, gdyż pozwala na poprawne rozróżnienie między różnymi typami sygnałów. W praktyce identyfikatory te są niezbędne do programowania i konfigurowania urządzeń, co ma kluczowe znaczenie dla efektywności i niezawodności systemów. Zgodność z normami branżowymi, takimi jak IEC 61131-3, również podkreśla znaczenie stosowania odpowiednich identyfikatorów dla różnych typów I/O, co zapewnia spójność oraz prawidłowe działanie systemów w automatyce przemysłowej.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakimi literami oznaczane są analogowe wyjścia w sterownikach PLC?

A. I
B. Q
C. AI
D. AQ
Odpowiedź AQ jest prawidłowa, ponieważ symbol ten jest szeroko stosowany w branży automatyki przemysłowej do oznaczania wyjść analogowych w sterownikach PLC. Wyjścia analogowe są kluczowe w kontekście przetwarzania sygnałów, które mogą przyjmować różne wartości w określonym zakresie, co pozwala na precyzyjne sterowanie procesami technologicznymi. Na przykład, w systemach sterowania temperaturą, wyjścia analogowe umożliwiają regulację wartości na podstawie pomiarów z czujników, co jest niezbędne w wielu aplikacjach przemysłowych. Warto zaznaczyć, że standard ISO 61131-3 definiuje klasyfikację sygnałów w systemach PLC, a AQ jako oznaczenie wyjść analogowych jest zgodne z tą normą. Dobrą praktyką jest również stosowanie jednolitych konwencji w projektowaniu schematów elektrycznych, co ułatwia ich interpretację i współpracę między różnymi specjalistami.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Który z parametrów wskazuje na efektywność sprężarki pneumatycznej?

A. Prędkość obrotowa wału [obr./min]
B. Ciśnienie [bar]
C. Strumień objętości [m3/min]
D. Sprawność [%]
Strumień objętości [m3/min] jest kluczowym parametrem określającym wydajność sprężarki pneumatycznej, ponieważ reprezentuje ilość powietrza, którą urządzenie jest w stanie dostarczyć w ciągu jednej minuty. Wydajność sprężarki ma bezpośredni wpływ na jej zastosowanie w różnych procesach przemysłowych, takich jak obróbka materiałów, zasilanie narzędzi pneumatycznych czy systemy transportu pneumatycznego. Wysoka wydajność sprężarki jest istotna w aplikacjach, gdzie wymagana jest ciągła i stabilna dostawa powietrza, na przykład w liniach produkcyjnych. Standardy branżowe, takie jak ISO 8573, określają wymagania dotyczące jakości powietrza i wydajności sprężarek, co podkreśla znaczenie strumienia objętości jako wskaźnika efektywności. W praktyce, przed wyborem sprężarki, warto dokładnie oszacować potrzebny strumień objętości, aby dobrać odpowiedni model, co pozwoli na optymalizację kosztów eksploatacji i zapewnienie odpowiedniego wsparcia dla procesów produkcyjnych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Modulacja PWM (Pulse-Width Modulation), wykorzystywana w elektrycznych impulsowych systemach sterowania i regulacji, polega na modyfikacji

A. częstotliwości sygnału.
B. fazy sygnału.
C. szerokości sygnału.
D. amplitudy sygnału.
Modulacja PWM, czyli modulacja szerokości impulsu, jest techniką, która pozwala na kontrolowanie średniej mocy dostarczanej do obciążenia poprzez zmianę szerokości impulsów w trakcie cyklu pracy. W praktyce oznacza to, że stosując PWM, możemy efektywnie regulować jasność diod LED, prędkość silników elektrycznych, a także temperaturę w układach grzewczych. Technika ta jest szeroko stosowana w systemach automatyki oraz w elektronice użytkowej, ponieważ pozwala na oszczędność energii oraz lepszą kontrolę nad działaniem urządzeń. Zrozumienie, jak działa modulacja PWM, jest kluczowe dla inżynierów elektryków, którzy projektują nowoczesne urządzenia. W standardach branżowych, takich jak IEC 61131, modulacja PWM jest opisane jako jedna z metod sterowania, co podkreśla jej znaczenie w automatyce przemysłowej.

Pytanie 40

W mechatronicznym urządzeniu uszkodzony został sterownik LOGO 12/24RC. W tabeli przedstawiono producenta informacje dotyczące stosowanych oznaczeń. Które dane odpowiadają uszkodzonemu sterownikowi?

 — 12/24: zasilanie napięciem 12/24 V DC
 — 230: zasilanie napięciem 115 ÷ 240 V AC/DC
 — R: wyjścia przekaźnikowe (brak symbolu R - wyjścia tranzystorowe)
 — C: wbudowany zegar tygodniowy
 — o: wersja bez wyświetlacza (LOGO! Pure)
 — DM: binarny moduł rozszerzenia
 — AM: analogowy moduł rozszerzenia
 — CM: komunikacyjny moduł zewnętrzny (np. moduły EIB/KNX)
 — TD: Panel tekstowy

A. Napięcie zasilania 12 V lub 24 V AC, wyjścia tranzystorowe, binarny moduł rozszerzenia, wersja z wyświetlaczem.
B. Napięcie zasilania 115 ÷ 240 V AC, wyjścia tranzystorowe, wbudowany zegar tygodniowy, wersja bez wyświetlacza.
C. Napięcie zasilania 12 V lub 24 V DC, wyjścia przekaźnikowe, wbudowany zegar tygodniowy, wersja z wyświetlaczem.
D. Napięcie zasilania 115 ÷ 240 V AC, wyjścia przekaźnikowe, analogowy moduł rozszerzenia, wersja bez wyświetlacza.
Wybrana odpowiedź jest poprawna, ponieważ dokładnie odzwierciedla specyfikację sterownika LOGO 12/24RC. Ten model rzeczywiście działa na napięciu 12 V lub 24 V DC, co jest kluczowe dla jego prawidłowego funkcjonowania w różnych aplikacjach automatyki. Wyjścia przekaźnikowe pozwalają na sterowanie obwodami z większymi obciążeniami, co jest niezbędne w wielu projektach mechatronicznych. Wbudowany zegar tygodniowy umożliwia programowanie zaawansowanych harmonogramów pracy, co zwiększa efektywność energetyczną systemów oraz pozwala na automatyzację procesów zgodnie z wymaganiami użytkownika. Wersja z wyświetlaczem ułatwia monitorowanie i diagnostykę, co jest nieocenione w praktyce inżynieryjnej. Dobrym przykładem zastosowania może być automatyka budynkowa, gdzie sterownik ten kontroluje oświetlenie i systemy grzewcze zgodnie z zaprogramowanym harmonogramem. Zrozumienie specyfikacji sterowników, takich jak LOGO, jest kluczowe dla inżynierów zajmujących się automatyką, ponieważ pozwala na ich prawidłowy dobór i zastosowanie w praktyce.