Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 13 maja 2025 14:27
  • Data zakończenia: 13 maja 2025 14:40

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby obiektywnie ocenić jakość naprawy systemu hamulcowego, należy

A. wykonać próbę wybiegu
B. przeprowadzić jazdę próbną
C. zmierzyć opory toczenia
D. zmierzyć siły hamowania
Pomiar oporów toczenia, próba wybiegu oraz jazda próbna, choć mogą dostarczać informacji o ogólnym stanie pojazdu, nie są bezpośrednimi wskaźnikami jakości naprawy układu hamulcowego. Zmierzenie oporów toczenia odnosi się głównie do oporów, jakie stawia pojazd w ruchu, co ma wpływ na jego oszczędność paliwa i dynamikę jazdy, ale nie pozwala ocenić skuteczności hamowania. W sytuacji, gdy układ hamulcowy został naprawiony, najistotniejsze jest, aby to właśnie siły hamowania były na odpowiednim poziomie, co ma kluczowe znaczenie dla bezpieczeństwa. Próba wybiegu, polegająca na ocenie, jak daleko pojazd przemieszcza się po zdjęciu nogi z pedału gazu, może być pomocna przy ocenie ogólnego stanu pojazdu, jednak nie daje pełnego obrazu efektywności hamulców. Jazda próbna również może być użyteczna, lecz opiera się głównie na subiektywnych odczuciach kierowcy i nie jest miarodajnym pomiarem sił hamowania. Właściwa ocena naprawy układu hamulcowego powinna opierać się na obiektywnych danych pomiarowych, które dostarczają rzetelnych informacji na temat jego efektywności, co jest kluczowe dla zapewnienia bezpieczeństwa na drodze.

Pytanie 2

Zanim silnik zostanie usunięty z pojazdu, co należy najpierw wykonać?

A. spuścić olej z silnika
B. odkręcić skrzynię biegów
C. odłączyć przewody elektryczne
D. odłączyć klemę akumulatora
Odłączenie klemy akumulatora przed wymontowaniem silnika jest kluczowym krokiem w procesie demontażu, ponieważ zapewnia bezpieczeństwo zarówno dla osoby pracującej przy pojeździe, jak i dla samego pojazdu. Praca z układem elektrycznym pojazdu, w tym z silnikiem, bez odłączenia źródła zasilania może prowadzić do zwarć, uszkodzeń komponentów elektronicznych oraz niebezpiecznych sytuacji, jak porażenie prądem. Dobry praktyka inżynieryjna nakazuje, aby przed rozpoczęciem jakichkolwiek prac serwisowych związanych z silnikiem najpierw odłączyć klemę ujemną akumulatora, a następnie klemę dodatnią, co zapewnia nie tylko bezpieczeństwo, ale również możliwość wykonania prac w sposób uporządkowany. Dodatkowo, takie postępowanie minimalizuje ryzyko przypadkowego uruchomienia silnika, co może być niebezpieczne podczas prac naprawczych. W praktyce, profesjonaliści stosują ten krok jako standard, aby wyeliminować ryzyko związane z operacjami elektrycznymi oraz zapewnić bezpieczeństwo w warsztacie.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

W pojeździe z doładowanym silnikiem diesla, po długotrwałej eksploatacji, przed zatrzymaniem silnika, powinno się

A. włączyć ogrzewanie w celu szybszego schłodzenia silnika
B. otworzyć pokrywę silnika, aby przyspieszyć proces chłodzenia
C. odłączyć wszystkie odbiorniki energii
D. zostawić auto na kilka minut na niskich obrotach
Odpowiedź polegająca na pozostawieniu pojazdu na wolnych obrotach przez kilka minut przed jego unieruchomieniem jest uzasadniona technicznie. Silniki wysokoprężne, zwłaszcza te z doładowaniem, generują znaczną ilość ciepła podczas długotrwałej jazdy. Kiedy silnik jest wyłączany natychmiast po zakończeniu jazdy, może to prowadzić do nadmiernego nagrzewania się niektórych komponentów, zwłaszcza turbosprężarki, co z kolei może skutkować ich uszkodzeniem. Pozostawienie silnika na wolnych obrotach pozwala na jego stopniowe schłodzenie, co sprzyja równomiernemu rozprowadzeniu temperatury oraz redukcji ryzyka uszkodzenia. To praktyka stosowana przez wielu doświadczonych kierowców oraz zalecana przez producentów pojazdów, co potwierdzają również standardy branżowe. Przykładem może być sytuacja, w której po długiej trasie kierowca dojeżdża do stacji benzynowej; zatrzymując się na wolnych obrotach, zmniejsza ryzyko awarii spowodowanych nagłym chłodzeniem silnika. Dobrze jest również pamiętać o systematycznym sprawdzaniu stanu oleju silnikowego, ponieważ odpowiednia jego jakość i poziom wpływają na efektywność chłodzenia silnika.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jakie jest zadanie systemu ABS?

A. wspomaganie procesu hamowania w sytuacjach awaryjnych
B. zapobieganie zablokowaniu kół w trakcie hamowania na śliskiej nawierzchni
C. zapobieganie poślizgowi kół na śliskiej nawierzchni podczas ruszania
D. stabilizacja trajektorii jazdy podczas pokonywania zakrętów
Wybór odpowiedzi, która mówi o zapobieganiu poślizgowi kół podczas ruszania na śliskiej nawierzchni, jest mylny z kilku powodów. Po pierwsze, układ ABS nie jest zaprojektowany do interwencji w procesie ruszania pojazdu. Główna funkcja ABS polega na monitorowaniu prędkości obrotowej kół podczas hamowania oraz na automatycznym dostosowywaniu ciśnienia hamulców, aby uniknąć ich blokady. System ten działa podczas hamowania, nie podczas przyspieszania. Z kolei twierdzenie, że ABS wspomaga hamowanie w sytuacjach awaryjnych, jest również nieprecyzyjne. Chociaż system ABS może zwiększyć bezpieczeństwo podczas hamowania, nie wspomaga aktywnie hamowania, lecz jedynie zapobiega blokowaniu kół, co w konsekwencji pozwala na bardziej efektywne hamowanie. Poza tym, odpowiedź dotycząca stabilizacji toru jazdy podczas pokonywania zakrętów jest nieprawidłowa, ponieważ do tego celu służą inne systemy, takie jak ESP (Electronic Stability Program), które mają na celu kontrolę nad pojazdem w trakcie manewrów. Zrozumienie roli i funkcji systemu ABS jest kluczowe, ponieważ błędne wyobrażenia mogą prowadzić do niewłaściwego użytkowania pojazdu w trudnych warunkach. Użytkownicy pojazdów powinni być świadomi, że ABS nie zastępuje zdrowego rozsądku ani ostrożności podczas jazdy, zwłaszcza w trudnych warunkach atmosferycznych.

Pytanie 7

Hybrydowy napęd to wykorzystanie w pojeździe jednostki napędowej

A. spalinowej z elektryczną
B. elektrycznej
C. z zapłonem iskrowym
D. wysokoprężnej
Napęd hybrydowy w pojazdach oznacza zastosowanie zarówno silnika spalinowego, jak i elektrycznego w celu optymalizacji efektywności energetycznej oraz zmniejszenia emisji spalin. W praktyce oznacza to, że pojazdy hybrydowe mogą korzystać z mocy silnika spalinowego podczas jazdy na autostradzie, gdzie wymagana jest większa moc, natomiast w warunkach miejskich, gdzie prędkości są niższe, silnik elektryczny może działać samodzielnie. Taki system przyczynia się do znacznego obniżenia zużycia paliwa i redukcji emisji CO2, co jest zgodne z globalnymi standardami w zakresie ochrony środowiska. Przykłady zastosowania obejmują popularne modele samochodów takie jak Toyota Prius czy Honda Insight, które udowodniły, że hybrydowe napędy są nie tylko technologicznie zaawansowane, ale również ekonomicznie opłacalne dla użytkowników. Standardy dotyczące emisji spalin, takie jak Euro 6, kładą nacisk na rozwój technologii hybrydowych, co potwierdza ich rosnące znaczenie w branży motoryzacyjnej.

Pytanie 8

Mechanik podczas weryfikacji układu napędowego samochodu powinien zwrócić szczególną uwagę na:

A. Stan przegubów homokinetycznych
B. Kondycję wycieraczek przednich
C. Poziom płynu do spryskiwaczy
D. Jakość dźwięku z głośników
Podczas weryfikacji układu napędowego samochodu, szczególną uwagę należy zwrócić na stan przegubów homokinetycznych. Przeguby te mają kluczowe znaczenie w przenoszeniu napędu z wału napędowego do kół, umożliwiając jednocześnie ruchy zawieszenia i skręcanie kół. Ich prawidłowe działanie zapewnia płynne i efektywne przekazywanie mocy, co jest niezbędne dla bezpieczeństwa i komfortu jazdy. Uszkodzone przeguby mogą prowadzić do wibracji, hałasów oraz trudności w prowadzeniu pojazdu. Dlatego regularna kontrola ich stanu, w tym osłon przegubów, które chronią przed zanieczyszczeniami i utratą smaru, jest jedną z podstawowych czynności podczas diagnostyki układu napędowego. Profesjonalni mechanicy wykorzystują różne metody, takie jak testy drogowe czy inspekcje wizualne, aby ocenić kondycję przegubów. Dbanie o te elementy zgodnie z zaleceniami producentów i najlepszymi praktykami branżowymi to klucz do długotrwałej i bezawaryjnej eksploatacji pojazdu.

Pytanie 9

Pedał hamulca, który nadmiernie się ugina przy kolejnych naciskach, wskazuje na

A. zapowietrzenie układu hamulcowego
B. zbyt wysoki poziom płynu hamulcowego
C. nadmierne zużycie bieżnika opon
D. brak przyczepności opony do nawierzchni
Zbyt miękki pedał hamulca, który rośnie przy kolejnych naciśnięciach, najprawdopodobniej wskazuje na zapowietrzenie układu hamulcowego. Zapowietrzenie oznacza, że w układzie hydraulicznym znajduje się powietrze, co powoduje, że ciśnienie generowane przez pompkę hamulcową nie jest w pełni przenoszone na tłoczki hamulców. W efekcie pedał hamulca staje się mniej responsywny i wymaga większego wciśnięcia. Aby skutecznie rozwiązać ten problem, należy przeprowadzić odpowietrzanie układu hamulcowego, co jest kluczowym krokiem w utrzymaniu bezpieczeństwa pojazdu. Według standardów branżowych, zaleca się regularne sprawdzanie stanu układu hamulcowego oraz okresowe wymiany płynu hamulcowego, co zapobiega osadzaniu się powietrza oraz zapewnia jego właściwe właściwości hydrauliczne. Przykładem dobrych praktyk jest również stosowanie odpowiednich narzędzi do odpowietrzania, takich jak zestawy podciśnieniowe, które umożliwiają szybką i skuteczną eliminację powietrza z systemu.

Pytanie 10

Które z poniższych twierdzeń o samochodzie z automatyczną skrzynią biegów jest fałszywe?

A. Zużycie paliwa jest zazwyczaj trochę wyższe niż w modelu z manualną skrzynią biegów
B. Nie powinno się holować samochodu na długie odległości
C. W pojeździe można ręcznie zmieniać biegi
D. Nie da się uruchomić pojazdu przez zaciągnięcie
Tu sprawa z uruchamianiem pojazdu przez zaciągnięcie czy holowanie jest dość skomplikowana. Sporo osób myli automatyczne skrzynie z manualnymi, co prowadzi do pomyłek. W samochodach z automatem zwykle nie da się odpalić go przez zaciągnięcie, a to może uszkodzić hamulec postojowy. Holowanie też nie jest najlepszym pomysłem, bo może przegrzać skrzynię biegów. Lepiej korzystać ze specjalnych narzędzi do transportu takich aut. Co do paliwa, to niektórzy mogą być zaskoczeni, że automaty mogą zużywać więcej niż manuale. To dlatego, że automatyczne skrzynie, mimo że są zaawansowane, mają zwykle trochę większy opór, co wpływa na spalanie. Ważne, żeby znać te rzeczy, bo można łatwo popełnić błędy podczas użytkowania takich samochodów.

Pytanie 11

Część zawieszenia – kolumna McPhersona – pełni równocześnie rolę

A. wahacza wleczonego
B. drążka reakcyjnego
C. drążka stabilizacyjnego
D. zwrotnicy układu kierowniczego
Wybór wahacza wleczonego, drążka stabilizacyjnego lub drążka reakcyjnego jako pełniących funkcję kolumny McPhersona jest nieprawidłowy, ponieważ każdy z tych elementów ma odmienne funkcje w układzie zawieszenia. Wahacz wleczony, na przykład, jest elementem, który w głównej mierze odpowiada za utrzymywanie kół w odpowiedniej pozycji w płaszczyźnie pionowej oraz ograniczenie ich ruchów wzdłużnych, co jest kluczowe dla zachowania stabilności pojazdu. W przeciwieństwie do kolumny McPhersona, nie pełni on funkcji kierunkowej, co jest fundamentalne w kontekście manewrowania pojazdem. Drążek stabilizacyjny, z kolei, jest odpowiedzialny za redukcję przechyłów nadwozia w trakcie zakrętów, zapewniając większą stabilność, ale nie ma wpływu na kierowanie. Drążek reakcyjny również nie ma związku z kierowaniem, a jego funkcja polega na przeciwdziałaniu ruchom wzdłużnych sił podczas pracy zawieszenia. Wszystkie te elementy pełnią ważne, ale różne role w układzie zawieszenia, co może prowadzić do błędnych wniosków, jeśli nie zrozumie się, że kolumna McPhersona łączy zarówno funkcję zawieszenia, jak i układu kierowniczego w jednym elemencie. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania i naprawy pojazdów, a także dla oceny ich wydajności i bezpieczeństwa. W praktyce technicznej, nieprawidłowe zrozumienie roli elementów zawieszenia może prowadzić do błędów w diagnostyce problemów z zawieszeniem, co z kolei wpływa na bezpieczeństwo jazdy.

Pytanie 12

Zgodnie z informacjami od producenta, właściwa zbieżność kół przednich pojazdu powinna wynosić
1,5 mm ± 1,5 mm. Która z podanych wartości nie mieści się w zakresie tolerancji?

A. 1 mm
B. 2 mm
C. 4 mm
D. 3 mm
Odpowiedź 3 mm jest poprawna, ponieważ znajduje się ona poza zakresem tolerancji podanym przez producenta, który wynosi 1,5 mm ± 1,5 mm, co oznacza, że akceptowalne wartości powinny mieścić się w przedziale od 0 mm do 3 mm. Wartość 4 mm przekracza maksymalny dopuszczalny limit tolerancji, co może prowadzić do problemów z geometrią zawieszenia, a w efekcie wpływać na bezpieczeństwo i komfort jazdy. Utrzymanie właściwej zbieżności kół jest kluczowe dla równomiernego zużycia opon oraz optymalnej przyczepności pojazdu. Należy regularnie monitorować zbieżność kół, zwłaszcza po wymianie opon lub po kolizjach, aby zapewnić ich prawidłowe ustawienie. W praktyce serwisowej zaleca się korzystanie z profesjonalnych narzędzi do pomiaru zbieżności, które pozwalają na precyzyjne dostosowanie ustawień pojazdu według norm producenta.

Pytanie 13

Głównym surowcem używanym do produkcji bębnów hamulcowych jest

A. brąz
B. aluminium
C. stal
D. żeliwo
Żeliwo jest głównym materiałem stosowanym do produkcji bębnów hamulcowych ze względu na swoje właściwości mechaniczne i termiczne. Posiada doskonałą zdolność do odprowadzania ciepła, co jest kluczowe w procesie hamowania, gdzie temperatura bębnów może znacznie wzrosnąć. Dodatkowo, żeliwo ma wysoką odporność na ścieranie, co zwiększa trwałość elementów hamulcowych. W praktyce, bębny hamulcowe wykonane z żeliwa są powszechnie stosowane w pojazdach osobowych oraz ciężarowych, a ich konstrukcja często spełnia normy takie jak ISO 9001, które zapewniają wysoką jakość i niezawodność. Żeliwo jest również łatwe do obróbki, co umożliwia precyzyjne dopasowanie bębnów do reszty układu hamulcowego, co jest istotne dla poprawnej pracy całego systemu. Użycie żeliwa w produkcji bębnów hamulcowych jest więc zgodne z najlepszymi praktykami branżowymi, co świadczy o jego niezawodności i efektywności w aplikacjach motoryzacyjnych.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

W skład systemu kierowniczego nie zalicza się

A. końcówka drążka kierowniczego
B. drążek kierowniczy
C. przekładnia ślimakowa
D. drążek reakcyjny
Drążek reakcyjny jest komponentem, który nie należy do układu kierowniczego. W skrócie, układ kierowniczy pojazdu składa się z elementów odpowiedzialnych za kontrolowanie kierunku jazdy, co obejmuje drążek kierowniczy, końcówkę drążka kierowniczego oraz przekładnię ślimakową. Drążek reakcyjny jest stosowany w systemach hydraulicznych, a jego funkcja polega na przenoszeniu sił reakcyjnych, co nie jest konieczne do bezpośredniego działania układu kierowniczego. Zastosowanie drążków kierowniczych oraz ich końcówek jest kluczowe dla zapewnienia precyzyjnego manewrowania pojazdem, co jest regulowane przez normy takie jak ISO 26262 dotyczące bezpieczeństwa funkcjonalnego. W praktyce, właściwe zrozumienie funkcji poszczególnych elementów układu kierowniczego pozwala na efektywniejsze projektowanie oraz serwisowanie pojazdów, co z kolei wpływa na bezpieczeństwo jazdy.

Pytanie 16

Po wymianie klocków hamulcowych w pojeździe osobowym konieczne jest zbadanie

A. wyważenia felg
B. geometrii kół
C. stanu opon
D. siły hamowania
Po wymianie szczęk hamulcowych kluczowe jest sprawdzenie siły hamowania, ponieważ nowo zamontowane elementy muszą być odpowiednio osadzone i dopasowane do reszty układu hamulcowego. Siła hamowania jest bezpośrednio związana z efektywnością układu hamulcowego, a jej niewłaściwe ustawienie może prowadzić do wydłużenia drogi hamowania, co zagraża bezpieczeństwu kierowcy i pasażerów. Przykładem praktycznym może być sytuacja, w której nowe szczęki wymagają kilkukrotnej operacji hamowania, aby osiągnąć optymalne tarcie. Właściwe sprawdzenie siły hamowania można przeprowadzić na specjalistycznym stanowisku diagnostycznym, gdzie mierzy się wartości siły hamowania na poszczególnych kołach. Zgodnie z obowiązującymi standardami, takim jak normy ISO dotyczące badań układów hamulcowych, należy również zwrócić uwagę na równomierność siły hamowania pomiędzy kołami, co ma kluczowe znaczenie dla stabilności pojazdu podczas manewrów hamowania. Regularne przeglądy i testy hamulców są nie tylko zalecane, ale również wymagane przez przepisy prawne w wielu krajach, aby zapewnić maksymalne bezpieczeństwo na drogach.

Pytanie 17

Lepki, czerwony płyn eksploatacyjny to

A. płyn klimatyzacji R 134a
B. olej ATT
C. olej silnikowy
D. płyn hamulcowy DOT 4
Wybór nieprawidłowej odpowiedzi wskazuje na nieporozumienie dotyczące właściwości różnych płynów eksploatacyjnych w pojazdach. Płyn hamulcowy DOT 4 jest substancją, która ma zupełnie inne zastosowanie, służy do przenoszenia siły w układzie hamulcowym i nie jest lepki ani nie występuje w kolorze czerwonym, a jego właściwości są dostosowane do wysokich temperatur i ciśnień. Użycie oleju silnikowego to kolejny błąd, ponieważ jest on przeznaczony do smarowania silnika, a nie do przekładni; jego kolor może się różnić, ale nie jest typowo czerwony. Płyn klimatyzacji R 134a jest substancją gazową, stosowaną jako czynnik chłodniczy, a nie płyn eksploatacyjny w tradycyjnym rozumieniu. Typowe błędy myślowe, które prowadzą do takich wyników, często wynikają z pomylenia różnych płynów i ich zastosowań w kontekście układów motoryzacyjnych. Kluczowe jest zrozumienie, że każdy z tych płynów ma unikalne właściwości i zastosowania, które są istotne dla bezpieczeństwa i efektywności działania pojazdu. Właściwe rozróżnienie między nimi jest niezbędne, aby uniknąć poważnych uszkodzeń układów samochodowych.

Pytanie 18

Energia mechaniczna w silnikach cieplnych nie powstaje w wyniku procesu spalania

A. oleju silnikowego
B. gazu ziemnego
C. benzyny
D. oleju napędowego
Odpowiedzi takie jak "olej napędowy", "benzyna" oraz "gaz ziemny" mogą wprowadzać w błąd, gdyż sugerują, że to właśnie te paliwa są bezpośrednio odpowiedzialne za generowanie energii mechanicznej w silnikach cieplnych. W rzeczywistości są one źródłem energii, które przez proces spalania przekształcają chemiczną energię paliwa w energię mechaniczną. Jednakże olej napędowy i benzyna są specyficznymi rodzajami paliw stosowanych w silnikach spalinowych, a ich spalanie w silniku prowadzi do ruchu tłoków, który jest następnie konwertowany na energię mechaniczną. Gaz ziemny, jako paliwo gazowe, również wykorzystywany jest w silnikach spalinowych, jednak i w tym przypadku jego rola polega na dostarczaniu energii spalania. Istotnym błędem myślowym jest mylenie funkcji paliwa i oleju silnikowego. Olej silnikowy, jak wspomniano wcześniej, nie jest paliwem i nie uczestniczy w procesach energetycznych, lecz pełni funkcję smarną, co jest kluczowe dla optymalizacji pracy silnika oraz wydajności jego działania. Niepodważalnym standardem w branży jest podejście do smarowania jako nieodłącznego elementu zapewniającego długotrwałe i efektywne działanie silników, które muszą być odpowiednio eksploatowane z uwzględnieniem właściwych olejów oraz ich parametrów jakościowych.

Pytanie 19

W celu pielęgnacji powłok lakierniczych karoserii samochodowej zaleca się użycie środków opartych na

A. alkoholu
B. woskach
C. olejach pochodzenia naftowego
D. olejach mineralnych
Preparaty na bazie wosków są najczęściej stosowane do konserwacji powłok lakierniczych nadwozi samochodowych ze względu na swoje właściwości ochronne i estetyczne. Woski, zarówno naturalne, jak i syntetyczne, tworzą na powierzchni lakieru warstwę ochronną, która zabezpiecza go przed działaniem czynników atmosferycznych, takich jak promieniowanie UV, woda, oraz zanieczyszczenia środowiskowe. Dzięki temu lakier dłużej zachowuje swoje właściwości estetyczne, a pojazd wygląda na zadbany. Przykładem zastosowania wosków mogą być regularne zabiegi pielęgnacyjne, które wykonuje się co kilka miesięcy, aby utrzymać samochód w odpowiednim stanie. Wosk tworzy również efekt hydrofobowy, co oznacza, że woda spływa z powierzchni, co minimalizuje ryzyko powstawania zarysowań i osadzania się brudu. W branży samochodowej preferowane są woski twarde, które zapewniają większą trwałość i odporność na ścieranie. Stosowanie produktów na bazie wosków jest zgodne z dobrymi praktykami w pielęgnacji lakierów.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Podczas przeglądu technicznego samochodu stwierdzono potrzebę wymiany oleju silnikowego oraz klocków hamulcowych w kwocie 120,00 zł za komplet. Koszt 4 l oleju z filtrem olejowym wyniósł 160,00 zł, a wartość robocizny to 320,00 zł. Całkowity koszt usługi po uwzględnieniu 10% rabatu wyniósł

A. 540,00 zł
B. 560,00 zł
C. 480,00 zł
D. 600,00 zł
Aby obliczyć łączny koszt usługi po uwzględnieniu zniżki, należy zsumować wszystkie koszty związane z wymianą oleju oraz klocków hamulcowych. Koszt wymiany klocków hamulcowych wynosi 120,00 zł, a koszt oleju silnikowego i filtra to 160,00 zł. Koszt robocizny wynosi 320,00 zł. Łączny koszt usługi przed zniżką wynosi 120,00 zł + 160,00 zł + 320,00 zł = 600,00 zł. Następnie należy obliczyć 10% zniżkę, co daje 60,00 zł. Po odjęciu zniżki od pierwotnego kosztu, otrzymujemy 600,00 zł - 60,00 zł = 540,00 zł. Przykład ten ilustruje ważność znajomości procedur przeglądów okresowych oraz umiejętności kalkulacji kosztów, co jest kluczowe w profesjonalnym zarządzaniu pojazdami. W praktyce, wiele warsztatów stosuje podobne podejście do kalkulacji kosztów usług, aby zapewnić transparentność i zrozumiałość dla klienta, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej.

Pytanie 23

Skrót DOHC w specyfikacji technicznej silnika oznacza, że jest to silnik

A. z wałkiem rozrządu znajdującym się w głowicy
B. z systemem rozrządu górnozaworowego
C. z systemem rozrządu suwakowego
D. z dwoma wałkami rozrządu umieszczonymi w głowicy
Skrót DOHC oznacza 'Dual Overhead Camshaft', co w tłumaczeniu na język polski oznacza 'dwoma wałkami rozrządu w głowicy'. Tego rodzaju konstrukcja silnika jest powszechnie stosowana w nowoczesnych pojazdach. Zastosowanie dwóch wałków rozrządu pozwala na precyzyjne sterowanie zaworami dolotowymi i wylotowymi, co przekłada się na lepszą wydajność silnika oraz wyższe osiągi. Silniki DOHC są często bardziej efektywne pod względem zużycia paliwa oraz generują więcej mocy, szczególnie w wyższych zakresach obrotów. Dodatkowo, ta konstrukcja umożliwia zastosowanie nowoczesnych technologii, takich jak zmienne fazy rozrządu, które dodatkowo poprawiają charakterystyki silnika. Przykładem zastosowania silnika DOHC może być wiele modeli sportowych i wyścigowych, w których kluczowe są parametry dynamiczne oraz efektywność. Dzięki skomplikowanej budowie silniki te są również często bardziej responsywne na wciśnięcie pedału gazu, co ma znaczenie w motoryzacji wyczynowej.

Pytanie 24

Aby zweryfikować poprawność przeprowadzonej naprawy układu kierowniczego, należy zrealizować

A. jazdę próbną
B. badanie na stanowisku rolkowym
C. pomiar siły hamowania
D. sprawdzenie luzu elementów układu zawieszenia
Próba na stanowisku rolkowym jest stosunkowo popularną metodą oceny działania układu napędowego pojazdu, jednak nie jest to podejście, które w pełni odzwierciedla rzeczywiste warunki drogowe. Stanowisko rolkowe pozwala na ocenę siły hamowania oraz sprawności układu napędowego, ale nie zapewnia informacji o zachowaniu układu kierowniczego w dynamicznych warunkach jazdy. Można w ten sposób wykryć niektóre wady, ale kluczowe aspekty, takie jak responsywność kierownicy czy działanie asystenta kierowcy, pozostaną niewykryte. Kontrola luzu elementów układu zawieszenia, chociaż istotna dla bezpieczeństwa i komfortu jazdy, nie jest wystarczająca do weryfikacji poprawności naprawy układu kierowniczego. Luz w zawieszeniu może wpływać na komfort jazdy, ale niekoniecznie na samą mechanikę kierowania. Podobnie pomiar siły hamowania, choć krytyczny dla bezpieczeństwa, nie dostarcza informacji o precyzji pracy układu kierowniczego. Często pojazdy mogą przechodzić techniczne testy w kontrolowanych warunkach, ale na drodze mogą działać zupełnie inaczej, dlatego jazda próbna pozostaje niezastąpionym narzędziem w ocenie stanu technicznego układu kierowniczego.

Pytanie 25

Najczęściej tarcze hamulcowe produkowane są z

A. stopu miedzi
B. stali
C. żeliwa
D. aluminiowych stopów
Wybór innych materiałów do tarcz hamulcowych, jak stopy aluminium, brąz czy stal, nie jest najlepszy. Ale dlaczego? No bo te materiały mają gorsze właściwości, jeśli chodzi o mechanikę i temperaturę. Stopy aluminium są super lekkie, ale ich odporność na wysokie temp czy ścieranie jest dość słaba, co sprawia, że nie za bardzo nadają się do intensywnego hamowania. Brąz z kolei jest wytrzymały, ale nie ma takich właściwości termicznych jak żeliwo, a do tego jest drogi i mało efektywny w porównaniu do żeliwa. Stal też czasem się używa, ale nie dorównuje żeliwu w przewodnictwie ciepła i odporności na zużycie. Jak widzisz, dobór materiału ma ogromne znaczenie dla bezpieczeństwa i sprawności hamulców. Właśnie dlatego żeliwo jest najczęściej wybierane i stosowane z myślą o bezpieczeństwie, bo inne materiały mogą sprawić, że hamulce będą działać gorzej i mogą być niebezpieczne.

Pytanie 26

Podczas naprawy systemu hamulcowego, mechanik zaobserwował, że jedna z okładzin na klocku hamulcowym jest uszkodzona. Jaką decyzję powinien podjąć mechanik w tej sytuacji?

A. uszkodzonego klocka hamulcowego na nowy
B. klocka hamulcowego na nowy o tej samej grubości okładziny
C. wszystkich klocków na danej osi samochodu
D. klocków hamulcowych na konkretnym kole pojazdu
Wybór wymiany wszystkich klocków hamulcowych na danej osi pojazdu jest zgodny z zaleceniami producentów oraz z najlepszymi praktykami w branży motoryzacyjnej. Klocki hamulcowe są elementem, który zużywa się równomiernie pod wpływem sił działających na nie podczas hamowania. W przypadku, gdy jeden z klocków na osi wykazuje oznaki uszkodzenia, takiego jak wykruszenie okładziny, może to sugerować, że pozostałe klocki na tej samej osi również zbliżają się do końca swojej żywotności. Działania takie jak wymiana tylko jednego klocka mogą prowadzić do niejednolitego działania układu hamulcowego, co zwiększa ryzyko wystąpienia poślizgu lub nieskutecznego hamowania. Dodatkowo, wymiana wszystkich klocków na tej samej osi zapewnia lepszą równowagę i stabilność podczas hamowania, co jest kluczowe dla bezpieczeństwa jazdy. W praktyce, mechanicy powinni zawsze dążyć do wymiany klocków w parze na danej osi, aby utrzymać optymalną funkcjonalność układu hamulcowego oraz wydłużyć ich żywotność. Takie podejście jest również zgodne z zaleceniami wielu standardów branżowych, takich jak normy ISO dotyczące bezpieczeństwa pojazdów.

Pytanie 27

Energia mechaniczna w silnikach cieplnych funkcjonujących prawidłowo nie powstaje w wyniku procesu spalania

A. gazu ziemnego
B. benzyny
C. oleju silnikowego
D. oleju napędowego
Wybór odpowiedzi związanych z paliwami takimi jak benzyna, olej napędowy i gaz ziemny odzwierciedla powszechne zrozumienie roli tych substancji w procesie generowania energii mechanicznej w silnikach cieplnych. Paliwa te są kluczowymi źródłami energii, które podczas spalania uwalniają ciepło, które następnie przekształcane jest w ruch. Proces spalania w silniku cieplnym polega na reakcji chemicznej, w której energia chemiczna zamienia się w energię cieplną, co pozwala na poruszanie się tłoków i wytwarzanie mocy niezbędnej do napędzania pojazdu. Zrozumienie tych procesów jest istotne, gdyż pozwala na lepsze dobieranie paliw do konkretnych zastosowań oraz zrozumienie wpływu jakości paliwa na wydajność silnika. Wybór oleju silnikowego jako odpowiedzi może wynikać z nieporozumienia co do jego funkcji. Olej silnikowy, mimo że jest niezbędny dla prawidłowego działania silnika, nie uczestniczy w procesie spalania i nie przekształca się bezpośrednio w energię mechaniczną. Jego zadanie polega na smarowaniu, chłodzeniu i oczyszczaniu silnika, co jest kluczowe dla zapobiegania awariom oraz zapewnienia efektywności pracy silnika. Typowe błędy myślowe obejmują dezinformację na temat ról różnych substancji w silnikach i niewłaściwe przypisanie funkcji oleju silnikowego do procesu generowania energii, co prowadzi do mylnych wniosków.

Pytanie 28

Który z poniższych elementów nie jest częścią układu wydechowego?

A. Filtr powietrza
B. Tłumik
C. Katalizator
D. Sonda lambda
Filtr powietrza, w przeciwieństwie do katalizatora, nie jest częścią układu wydechowego. Jego główną funkcją jest oczyszczanie powietrza, które trafia do silnika, z kurzu, pyłów i innych zanieczyszczeń. Znajduje się on w układzie dolotowym i jest kluczowy dla zapewnienia odpowiedniej mieszanki paliwowo-powietrznej, co bezpośrednio wpływa na spalanie paliwa i wydajność silnika.

Pytanie 29

Jakie narzędzie wykorzystuje się do weryfikacji współosiowości czopów wałka rozrządu?

A. sprawdzianu tłokowego
B. czujnika zegarowego z podstawą
C. liniału sinusoidalnego
D. suwmiarki z wyświetlaczem elektronicznym
Liniał sinusowy, sprawdzian tłoczkowy oraz suwmiarka z odczytem elektronicznym są narzędziami, które w pewnych przypadkach mogą być używane do pomiarów, ale nie są najlepszym wyborem do oceny współosiowości czopów wałka rozrządu. Liniał sinusowy, choć przydatny w pomiarach kątowych, nie oferuje wystarczającej precyzji przy pomiarze odchyleń osiowych. Tego typu narzędzie jest bardziej odpowiednie do sprawdzania płaszczyzn i kątów, a nie do analizy układów obrotowych. Sprawdzian tłoczkowy z kolei jest stosowany głównie do oceny wymiarów wewnętrznych lub zewnętrznych elementów, ale nie dostarcza informacji o współosiowości, co jest kluczowe przy montażu wałków rozrządu. Suwmiarka z odczytem elektronicznym, chociaż jest precyzyjnym narzędziem pomiarowym, jej zastosowanie w kontekście współosiowości jest ograniczone, ponieważ nie pozwala na pomiar małych, dynamicznych odchyleń, które mogą wystąpić podczas pracy silnika. Użycie tych narzędzi do pomiarów, w sytuacjach, w których wymagane są wysokie standardy dokładności, może prowadzić do błędnych wyników i potencjalnych uszkodzeń komponentów silnika, co podkreśla znaczenie stosowania odpowiednich narzędzi i metodyki w kontekście modernizacji i naprawy pojazdów.

Pytanie 30

Trudności w włączeniu jednego z biegów w synchronizowanej skrzyni biegów zazwyczaj są spowodowane uszkodzeniem

A. łożyskowania koła zębatego tego biegu na wałku
B. łożyskowania synchronizatora tego biegu
C. synchronizatora tego biegu
D. koła zębatego tego biegu
Uszkodzenia koła zębatego biegu mogą wpływać na proces zmiany biegów, jednak nie są one najczęstszą przyczyną trudności z włączaniem biegów w synchronizowanej skrzyni biegów. Koła zębate, będące integralną częścią skrzyni biegów, odpowiadają za przeniesienie mocy, a ich uszkodzenia najczęściej manifestują się w postaci hałasu lub drgań, a nie bezpośrednich trudności w przełączaniu biegów. Problemy z łożyskowaniem koła zębatego mogą prowadzić do nieprawidłowego działania całego mechanizmu przeniesienia napędu, ale nie są one tak powszechne jak uszkodzenia synchronizatorów. Ponadto łożyskowanie synchronizatora, choć istotne, nie jest bezpośrednio związane z trudnościami w włączaniu biegów. Każde z wymienionych podejść może być wynikiem błędnego zrozumienia roli poszczególnych komponentów skrzyni biegów. Dobrze zaprojektowana skrzynia biegów, zgodna z najlepszymi praktykami inżynieryjnymi, minimalizuje ryzyko wystąpienia takich problemów poprzez regularne testy i konserwację, co pozwala na wczesne wykrywanie potencjalnych uszkodzeń. Właściwa diagnoza i zrozumienie funkcji synchronizatora w procesie zmiany biegów są kluczowe dla uniknięcia takich problemów.

Pytanie 31

Regulacja silnika spalinowego na stanowisku serwisowym w czasie pracy silnika może być przeprowadzona po

A. ustawieniu znaków ostrzegawczych
B. zakładaniu rękawic roboczych
C. podłączeniu odciągu spalin do rury wydechowej
D. zakładaniu okularów ochronnych
Podłączenie odciągu spalin do rury wydechowej jest kluczowym krokiem w procesie regulacji silnika spalinowego, ponieważ minimalizuje ryzyko narażenia personelu na szkodliwe opary i substancje chemiczne. Spaliny emitowane przez silnik zawierają wiele toksycznych związków, dlatego ich odprowadzanie do atmosfery w sposób kontrolowany jest niezbędne dla zapewnienia bezpieczeństwa. Praktyka ta jest zgodna z normami BHP i ochrony środowiska, które wymagają stosowania odpowiednich systemów wentylacyjnych w miejscach pracy. Ważne jest, aby przed rozpoczęciem jakichkolwiek czynności regulacyjnych upewnić się, że układ odprowadzania spalin jest sprawny, a jego podłączenie nie stwarza dodatkowych zagrożeń. Przykładem dobrych praktyk jest przeprowadzanie regularnych inspekcji systemów wentylacyjnych oraz szkolenie pracowników w zakresie obsługi tych urządzeń, co pozwala na bezpieczne i efektywne wykonywanie prac na silnikach spalinowych.

Pytanie 32

Jak długo trwa całkowita regulacja zbieżności przedniej osi na urządzeniu czterogłowicowym, jeśli kompensacja bicia jednego koła zajmuje 5 minut, a regulacja zbieżności kół przednich 10 minut?

A. 35 minut
B. 40 minut
C. 30 minut
D. 20 minut
Wybór innej odpowiedzi może być wynikiem nieprecyzyjnego zrozumienia procesu regulacji zbieżności kół oraz jak czas potrzebny na wykonanie poszczególnych czynności wpływa na całkowity czas operacji. Odpowiedzi takie jak 40 minut czy 35 minut mogą sugerować, że osoba odpowiadająca zsumowała czas kompensacji bicia oraz czas regulacji zbieżności w sposób nieodpowiedni, myląc całkowity czas operacyjny z czasem potrzebnym na każdą czynność. W rzeczywistości, na urządzeniu czterogłowicowym procedura regulacji kół jest zoptymalizowana, co pozwala na jednoczesne działanie na wszystkich kołach, a nie ich sekwencyjne regulowanie. Z kolei odpowiedzi 20 minut i 40 minut wskazują na błędne założenia dotyczące długości czasu, który jest niezbędny do wykonania pełnej regulacji. W przypadku regulacji zbieżności kół, kluczowe jest zrozumienie, że czas działania nie jest liniowy, a każda operacja ma swoje specyficzne wymagania czasowe. Zrozumienie tych zasad jest istotne nie tylko dla prawidłowego przeprowadzenia regulacji, ale również dla odpowiedniego planowania czasu pracy w warsztacie, co wpływa na efektywność i obciążenie pracowników.

Pytanie 33

Aby zmierzyć ciśnienie oleju w układzie smarowania silnika z zapłonem iskrowym, powinno się zastosować manometr o zakresie pomiarowym

A. 0 - 0,2 MPa
B. 0 - 0,l MPa
C. 0 - 0,4 MPa
D. 0 - 0,5 MPa
Wybór manometru o zakresie pomiarowym innym niż 0 - 0,5 MPa może prowadzić do szeregu problemów w praktyce. Użycie manometru o zakresie 0 - 0,2 MPa może nie obejmować rzeczywistych wartości ciśnienia oleju, które często przekraczają tę wartość, co skutkuje błędnymi odczytami i utratą kluczowych informacji o stanie silnika. Z kolei manometr o zakresie 0 - 0,1 MPa nie tylko jest niewystarczający, ale również może powodować panikę w przypadku odczytów nieosiągalnych dla tak małego zakresu, co prowadzi do niepotrzebnych napraw i wydatków. Wybór manometru o zakresie 0 - 0,4 MPa również jest problematyczny, ponieważ w przypadku silników o wyższej wydajności ciśnienie oleju może przekroczyć tę wartość, co prowadzi do sytuacji, w których manometr nie jest w stanie zarejestrować rzeczywistego ciśnienia, co może skutkować zjawiskami takimi jak przegrzanie lub zatarcie silnika. Wszystkie te błędy myślowe prowadzą do nieprawidłowych założeń dotyczących ciśnienia oleju i mogą wpływać na żywotność i efektywność działania silnika. W praktyce, wybór odpowiedniego manometru jest kluczowy i powinien być podejmowany na podstawie analizy specyfikacji technicznych sprzętu oraz standardów branżowych.

Pytanie 34

Zanim przystąpisz do badania spalin, powinieneś podgrzać silnik, aby temperatura oleju w misie olejowej wyniosła około

A. 30 °C
B. 90 °C
C. 50 °C
D. 70 °C
Wybierając temperaturę 50 °C, można uznać, że silnik nie był odpowiednio rozgrzany do analizy spalin. Taka temperatura jest zbyt niska, aby zapewnić pełne smarowanie oleju, co wpływa na wyniki pomiarów. W rzeczywistości, przy zbyt niskiej temperaturze, olej silnikowy nie osiąga swojej optymalnej lepkości, co może prowadzić do nieprawidłowego funkcjonowania silnika i zafałszowanych pomiarów. Z kolei 30 °C jest jeszcze bardziej niewłaściwą wartością, ponieważ w tej temperaturze silnik może być wciąż w fazie rozgrzewania. Takie podejście nie spełnia standardów wymaganych do rzetelnej analizy emisji spalin, w tym norm Euro, które wskazują na konieczność przeprowadzenia testów w odpowiednich temperaturach. Z kolei wybór 90 °C, mimo że zbliżony do optymalnych warunków pracy silnika, jest zbyt wysoki na początek analizy spalin. W tej temperaturze ryzykujemy przegrzanie silnika i zjawiska mogące wpłynąć na wyniki, takie jak zmiana charakterystyki spalania czy uszkodzenie komponentów. Dlatego kluczowe jest, aby rozumieć, że odpowiednia temperatura 70 °C nie tylko zapewnia dokładność pomiarów, ale także bezpieczeństwo podczas analizy, co jest niezbędne w procesach diagnostycznych i przestrzeganiu norm środowiskowych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

W pojeździe z silnikiem wysokoprężnym przeprowadzono pomiar emisji spalin uzyskując następujące wyniki: CO – 0,4g/km; NOx – 0,19g/km; PM – 0,008g/km; HC-0,03g/km; HC+NOx – 0,28g/km. Na podstawie dopuszczalnych wartości przedstawionych w tabeli, można pojazd zakwalifikować do grupy spełniającej co najwyżej normę

Dopuszczalne wartości emisji spalin w poszczególnych normach EURO
dla pojazdów z silnikiem wysokoprężnym
emisja
[g/km]
EURO 1EURO 2EURO 3EURO 4EURO 5EURO 6
CO3,1610,640,50,50,5
HC-0,150,060,050,050,05
NOx-0,550,50,250,180,08
HC+NOx1,130,70,560,30,230,17
PM0,140,080,050,0090,0050,005

A. EURO 6
B. EURO 4
C. EURO 3
D. EURO 5
Prawidłowa odpowiedź to EURO 4, ponieważ wszystkie zmierzone wartości emisji spalin mieszczą się w dopuszczalnych limitach dla tej normy. Normy EURO są regulacjami prawnymi, które określają maksymalne poziomy emisji zanieczyszczeń do atmosfery dla pojazdów silnikowych. Każda norma ma swoje specyfikacje dotyczące różnych substancji, takich jak tlenek węgla (CO), tlenki azotu (NOx), cząstki stałe (PM) oraz węglowodory (HC). W kontekście normy EURO 4, dopuszczalne limity dla CO wynoszą 0,5 g/km, dla NOx 0,25 g/km, dla PM 0,025 g/km oraz dla HC 0,1 g/km. Zatem, pojazd spełnia te normy, ponieważ jego emisje są niższe od wskazanych wartości. Zastosowanie norm EURO w praktyce ma na celu redukcję zanieczyszczenia powietrza i ochronę zdrowia publicznego, co jest szczególnie istotne w kontekście rosnącej liczby pojazdów na drogach.

Pytanie 38

Korzystając z tabeli, określ zakres wymiaru grubości półpanewki dla drugiego wymiaru naprawczego

Oznaczenie wymiaruNr katalogowy półpanewki (górnej lub dolnej)Grubość ścianki półpanewki (mm)Średnica wewnętrzna panewki po zamontowaniu (mm)
N000Produkcyjny0050/50-312/02.000+0.020-0.03060.00+0.079-0.040
N0251 naprawa0050/50-349/02.125+0.020-0.03059.75+0.079-0.040
N0502 naprawa0050/50-393/02.250+0.020-0.03059.50+0.079-0.040
N0753 naprawa0050/50-392/02.375+0.020-0.03059.25+0.079-0.040
N1004 naprawa0050/50-385/02.500+0.020-0.03059.00+0.079-0.040
N1255 naprawa0050/50-386/02.625+0.020-0.03058.75+0.079-0.040

A. 2,355-2,405 mm
B. 2,220-2,230 mm
C. 2,020-2,030 mm
D. 2,105-2,155 mm
Błędne odpowiedzi wskazują na nieprawidłowe zrozumienie zasad obliczania wymiarów dla półpanewki. W przypadku odpowiedzi, które mieszczą się w zakresie 2,020-2,030 mm oraz 2,105-2,155 mm, można zauważyć, że są one oparte na zbyt dużych odchyłkach od wartości nominalnej, co prowadzi do nieprawidłowego wyznaczenia granic. W inżynierii mechanicznej kluczowe jest, aby wszelkie obliczenia oparte były na solidnych fundamentach teoretycznych oraz aktualnych normach. Przykładowo, nieodpowiednie zrozumienie, jak odchyłki wpływają na finalne wymiary, może prowadzić do produkcji podzespołów o niedostatecznej precyzji. W tym kontekście, błędne odpowiedzi mogą wynikać z typowych pomyłek, takich jak pomijanie odchyłek ujemnych, które odgrywają kluczową rolę w ustalaniu minimalnych granic wymiarów. Ponadto, niewłaściwe interpretowanie norm dotyczących tolerancji może prowadzić do poważnych konsekwencji, takich jak obniżona jakość produktów lub ich niewłaściwe dopasowanie w mechanizmach. W związku z tym, tak ważne jest, aby podczas obliczeń nie tylko stosować się do standardów, ale również dokładnie analizować, jakie wartości odchyłek są dopuszczalne w danym przypadku.

Pytanie 39

Przekładnia ślimakowo-kulkowa wykorzystywana jest w systemie

A. kierowniczym
B. napędowym
C. zawieszenia
D. hamulcowym
Udzielenie odpowiedzi dotyczącej zastosowania przekładni ślimakowo-kulkowej w układzie napędowym lub hamulcowym jest nieprawidłowe, ponieważ te układy wymagają innych typów mechanizmów, które są bardziej odpowiednie do przetwarzania dużych obciążeń i wysokich prędkości. W układzie napędowym kluczowe są przekładnie planetarne czy zębate, które umożliwiają efektywne przenoszenie mocy i optymalizację momentu obrotowego. Użycie przekładni ślimakowo-kulkowej w takich systemach może skutkować stratyfikacją mocy oraz nieefektywnością w przenoszeniu ruchu. W kontekście układu hamulcowego, przekładnie powinny zapewniać szybkie i bezawaryjne działanie hamulców, co wymaga systemów hydraulicznych lub pneumatycznych, które oferują lepszą responsywność i moc potrzebną do zatrzymywania pojazdu. Zastosowanie przekładni ślimakowo-kulkowej w tych układach prowadziłoby do przegrzewania się elementów oraz osłabienia ich funkcji, co zagrażałoby bezpieczeństwu pojazdu. Dodatkowo, jeśli chodzi o zawieszenia, przekładnie te nie są wykorzystywane, ponieważ systemy zawieszenia wymagają bardziej elastycznych mechanizmów, które mogą sprostać zmieniającym się warunkom drogowym oraz różnym obciążeniom. Użycie ślimakowo-kulkowych w takich aplikacjach z pewnością doprowadziłoby do obniżenia komfortu jazdy i stabilności pojazdu.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.