Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 5 czerwca 2025 09:48
  • Data zakończenia: 5 czerwca 2025 09:59

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie jest wykorzystywane do łączenia włókien w komunikacyjnym kablu światłowodowym?

A. który służy do lutowania
B. spawarka
C. zgrzewarka
D. zaciśniacz
Wybór narzędzi do łączenia włókien optycznych może być mylący, szczególnie gdy rozważa się zastosowanie zaciskarki, lutownicy czy zgrzewarki. Zaciskarka jest narzędziem używanym do łączenia kabli elektrycznych i nie ma zastosowania w kontekście włókien optycznych. Jej mechanizm opiera się na zgrzewaniu metalowych przewodów, co jest całkowicie nieodpowiednie dla delikatnych włókien optycznych, które wymagają precyzyjnego połączenia bez narażania ich na uszkodzenia. Lutownica, natomiast, jest narzędziem stosowanym w elektronice do łączenia komponentów elektronicznych, a jej zasada działania polega na topnieniu cyny, co w przypadku włókien optycznych jest niewłaściwe, ponieważ nie ma możliwości skutecznego lutowania materiałów optycznych. Zgrzewarka także nie znajduje zastosowania w tej dziedzinie, ponieważ jej działanie opiera się na łączeniu materiałów przez wysokotemperaturowe zgrzewanie, co w przypadku włókien może prowadzić do ich zniszczenia. Aby połączyć włókna optyczne w sposób efektywny i bezpieczny, niezbędne jest zrozumienie różnic pomiędzy tymi technologiami oraz ich zastosowań w praktyce. Właściwe podejście do łączenia włókien optycznych, które zapewnia minimalizację strat sygnału i wysoką jakość połączenia, opiera się na wiedzy o technicznych aspektach używania spawarek światłowodowych, co podkreśla znaczenie właściwego wyboru narzędzi w branży telekomunikacyjnej.

Pytanie 2

W układzie elektronicznym uległa uszkodzeniu dioda prostownicza o następujących parametrach: Urm=200 V, lfav=1 A. Dobierz z tabeli parametry diody, którą należy zastosować, aby naprawić układ.

Maksymalne
napięcie wsteczne.
URM [V]
Maksymalny
średni prąd przewodzenia.
IFAV [A]
A.10001
B.1000,8
C.1003
D.3000,5

A. A.
B. B.
C. C.
D. D.
Odpowiedź A jest prawidłowa, ponieważ dioda prostownicza, którą wybrano, ma parametry URM=1000 V i IFAV=1 A, co przewyższa wymagania uszkodzonej diody o parametrach URM=200 V i IFAV=1 A. Wybór diody o wyższych parametrach jest zgodny z najlepszymi praktykami w dziedzinie elektroniki, gdzie zawsze należy stosować komponenty z odpowiednim marginesem bezpieczeństwa. W przypadku diod prostowniczych, ważne jest, aby napięcie wsteczne (URM) było wyższe niż maksymalne napięcie, które może wystąpić w obwodzie, aby uniknąć uszkodzenia diody. Ponadto, prąd przewodzenia (IFAV) powinien być co najmniej równy prądowi, który przepływa przez diodę w normalnych warunkach pracy. Wybierając komponenty, warto także zwrócić uwagę na parametry dynamiczne diody, takie jak czas przełączania oraz współczynnik temperatury, co ma znaczenie w aplikacjach, gdzie dioda pracuje w zmiennych warunkach. Selekcja odpowiednich komponentów na podstawie ich specyfikacji jest kluczowa dla niezawodności i trwałości układów elektronicznych.

Pytanie 3

W układzie sterowania automatyki przemysłowej został uszkodzony tyrystor BT138-600. Na podstawie parametrów przedstawionych w tabeli dobierz tyrystor zastępczy.

TypUDRMIT(RMS)ITSMIGTUGT
VAAmAV
BT136-500500425351,5
BT138-6006001290351,5
BT138-8008001290351,5
BT138-500F5001290351,5
BTA16-800B80016160501,5

A. BT138-500F
B. BTA16-800B
C. BT136-500
D. BT138-800
Tyrystor BT138-800 to doskonały wybór jako zamiennik dla uszkodzonego BT138-600, ponieważ charakteryzuje się parametrami, które są nie tylko równorzędne, ale wręcz lepsze. Przede wszystkim, maksymalne napięcie UDRM dla BT138-800 wynosi 800 V, co przewyższa 600 V uszkodzonego tyrystora. Taki parametr jest kluczowy, ponieważ zapewnia większą odporność na przebicia oraz stabilność w pracy w warunkach obciążenia. Dodatkowo, zachowanie identycznych wartości prądu oraz temperatury pracy oznacza, że BT138-800 będzie idealnie współpracował z resztą układu, co jest istotne dla zachowania ciągłości działania i bezpieczeństwa systemu. W praktyce, dobór odpowiednich tyrystorów do układów automatyki przemysłowej powinien opierać się na analizie danych katalogowych, co jest zgodne z zaleceniami branżowymi. Wybierając zamiennik, należy również zwrócić uwagę na producenta oraz oferowaną jakość komponentów, aby uniknąć problemów z kompatybilnością oraz niezawodnością, które mogą prowadzić do awarii całego systemu.

Pytanie 4

Jak powinna przebiegać prawidłowa sekwencja uruchamiania instalacji telewizyjnej?

A. podłączyć kabel antenowy, zaprogramować kanały, uruchomić odbiornik TV
B. uruchomić odbiornik TV, zaprogramować kanały, podłączyć kabel antenowy
C. zaprogramować kanały, uruchomić odbiornik TV, podłączyć kabel antenowy
D. podłączyć kabel antenowy, uruchomić odbiornik TV, zaprogramować kanały
Prawidłowa kolejność uruchomienia instalacji telewizyjnej to podłączenie kabla antenowego, uruchomienie odbiornika TV, a następnie zaprogramowanie kanałów. Zaczynając od podłączenia kabla antenowego, zapewniamy odbiornikowi dostęp do sygnału telewizyjnego, co jest kluczowe, ponieważ bez tego nie będzie on w stanie odebrać żadnych transmisji. Po upewnieniu się, że kabel antenowy jest prawidłowo podłączony, należy uruchomić odbiornik telewizyjny. W momencie włączenia urządzenia, system operacyjny TV inicjuje potrzebne procesy, które umożliwiają dalszą konfigurację. Ostatecznie, programowanie kanałów jest krokiem, który pozwala na dostosowanie odbiornika do preferencji użytkownika i lokalnych dostępnych stacji. Ta sekwencja działa zgodnie z najlepszymi praktykami instalacyjnymi, ponieważ zapewnia logiczny i efektywny proces konfiguracji, co jest zgodne z zaleceniami producentów sprzętu telewizyjnego. Prawidłowe podejście do instalacji wpływa na ogólne doświadczenia użytkownika oraz funkcjonalność urządzenia, co podkreśla znaczenie przestrzegania ustalonych procedur.

Pytanie 5

Odbiornik cyfrowy DVB-C jest zaprojektowany do przyjmowania sygnałów telewizyjnych

A. naziemnych
B. kablowych
C. z internetu
D. satelitarnych
Odbiornik DVB-C to sprzęt stworzony właśnie do telewizji kablowej. Działa dzięki standardowi DVB-C, czyli Digital Video Broadcasting - Cable. Co to oznacza? Że sygnał jest przesyłany przez kable koncentryczne. Dzięki temu, jakość obrazu i dźwięku jest na naprawdę dobrym poziomie, a do tego można oglądać więcej kanałów niż w tradycyjny sposób. Telewizje kablowe, które korzystają z DVB-C, oferują różne pakiety programowe, co daje użytkownikom dostęp do masy kanałów, w tym tych w jakości HD czy VOD, czyli video na żądanie. To fajne, bo nie tylko można oglądać ulubione programy, ale także korzystać z EPG, czyli elektronicznego przewodnika po programach, oraz interaktywnych usług, co znacząco ułatwia korzystanie z telewizji.

Pytanie 6

Jaką minimalną przestrzeń należy utrzymać (dla kabla o długości przekraczającej 35 m – nie odnosi się to do ostatnich 15 m) pomiędzy zasilaniem a nieekranowaną skrętką komputerową w konfiguracji bez separatora?

A. 50 mm
B. 200 mm
C. 100 mm
D. 20 mm
Odpowiedź 200 mm jest prawidłowa, ponieważ zgodnie z normami dotyczącymi instalacji kablowych, zachowanie odpowiedniej odległości pomiędzy przewodami zasilającymi a nieekranowanymi kablami komputerowymi jest kluczowe dla minimalizacji zakłóceń elektromagnetycznych. W przypadku tras kablowych dłuższych niż 35 m, zaleca się, aby odległość ta wynosiła co najmniej 200 mm, co jest zgodne z wytycznymi określonymi w normach TN i IEEE. Przykładem zastosowania tej zasady jest instalacja sieci komputerowej w biurze, gdzie unikanie bliskiego układania kabli zasilających i transmisyjnych pozwala na stabilniejszą i bardziej niezawodną komunikację sieciową. Dbanie o takie odległości przekłada się na mniejsze ryzyko interferencji oraz lepszą jakość sygnału, co jest kluczowe w środowiskach o dużym natężeniu ruchu sieciowego. Dlatego przestrzeganie tych norm nie tylko zabezpiecza instalację przed problemami technicznymi, ale również poprawia komfort użytkowników i wydajność systemów informatycznych.

Pytanie 7

Jakie kroki należy podjąć w celu udzielenia pomocy osobie dotkniętej prądem elektrycznym?

A. zgłoszenia sytuacji przełożonemu
B. wykonania sztucznego oddychania
C. odłączenia osoby od źródła prądu
D. przeprowadzenia masażu serca
Uwolnienie osoby spod działania prądu elektrycznego jest kluczowym pierwszym krokiem w udzielaniu pomocy w przypadku porażenia prądem. Prąd elektryczny może prowadzić do skurczów mięśni, co często uniemożliwia osobie dotkniętej porażeniem uwolnienie się z niebezpiecznego źródła. Dlatego też, zanim przystąpimy do wszelkich działań resuscytacyjnych, jak sztuczne oddychanie czy masaż serca, niezbędne jest usunięcie zagrożenia. Użycie odpowiednich narzędzi, takich jak kij czy materiał izolacyjny, może pomóc w wyciągnięciu ofiary bez narażania siebie na ryzyko porażenia. Ponadto, należy zawsze upewnić się, że źródło prądu zostało wyłączone lub że jesteśmy w stanie je odizolować. Dbanie o własne bezpieczeństwo jest podstawą dobrych praktyk w udzielaniu pierwszej pomocy. W sytuacjach zagrożenia życia, takich jak te, należy stosować się do wytycznych organizacji takich jak Europejska Rada Resuscytacji, które podkreślają, jak ważne jest najpierw zabezpieczenie miejsca zdarzenia i ochrona ratownika przed dodatkowym ryzykiem.

Pytanie 8

Aby móc obejrzeć wybrany film z platformy IPLA, konieczne jest posiadanie telewizora z funkcją SMART?

A. włożyć nośnik USB.
B. zestawić z tunerem satelitarnym.
C. połączyć go z Internetem.
D. spiąć z odtwarzaczem Blu-ray.
Aby oglądać filmy z serwisu IPLA, konieczne jest posiadanie dostępu do Internetu, ponieważ IPLA jest usługą streamingową, która wymaga ciągłego połączenia z siecią, aby przesyłać dane w czasie rzeczywistym. Podłączenie telewizora z funkcją SMART do Internetu można zrealizować za pomocą Wi-Fi lub przewodowego połączenia Ethernet. Po nawiązaniu połączenia użytkownik może zainstalować aplikację IPLA na swoim telewizorze i cieszyć się dostępem do bogatej biblioteki filmów i programów. Przykładem może być korzystanie z telewizora, który automatycznie aktualizuje aplikacje po podłączeniu do sieci, co pozwala na łatwy dostęp do najnowszych treści. Dobrą praktyką jest również regularne sprawdzanie połączenia internetowego i prędkości, aby zapewnić optymalne warunki do odtwarzania, co jest kluczowe dla uniknięcia opóźnień i buforowania podczas oglądania.

Pytanie 9

Multiswitch to urządzenie, które pozwala na

A. zapisywanie na twardym dysku sygnałów wideo pochodzących z różnych kamer
B. łączenie odmiennych sieci komputerowych
C. dystrybucję sygnału telewizyjnego satelitarnego i naziemnego do wielu odbiorników
D. rozgałęzienie sygnału wideo, aby móc wyświetlić obraz na wielu monitorach
Multiswitch to super ważne urządzenie w systemach telewizji satelitarnej i naziemnej. Dzięki niemu można rozdzielać sygnał do kilku odbiorników jednocześnie. Jak to działa? Multiswitch dostaje sygnały z różnych źródeł, jak satelity czy anteny naziemne, a potem dzieli to na różne wyjścia. To świetne, bo w domach, gdzie masz kilka telewizorów, każdy może oglądać coś innego. A co więcej, multiswitch dba o to, żeby sygnał był jak najlepszej jakości – tak, żebyś nie miał zakłóceń, co jest całkiem istotne. W większych instalacjach, jak w blokach, multiswitchy można łączyć, co daje jeszcze większą elastyczność. Warto pamiętać, żeby dobierać multiswitch z odpowiednią liczbą wyjść, bo za mało wyjść może prowadzić do problemów z sygnałem. Takie rzeczy są istotne, żeby telewizja działała bez zarzutu.

Pytanie 10

Montaż wtyku F na kablu koncentrycznym polega na

A. usunięciu odciętej zewnętrznej izolacji, usunięciu folii, usunięciu izolacji żyły, założeniu wtyku
B. nacięciu zewnętrznej powłoki, usunięciu oplotu, usunięciu izolacji żyły, nałożeniu wtyku
C. usunięciu odciętej zewnętrznej izolacji, ułożeniu oplotu wzdłuż kabla, usunięciu izolacji żyły, nałożeniu wtyku
D. nacięciu zewnętrznej powłoki, usunięciu folii, usunięciu izolacji żyły, nałożeniu wtyku
Odpowiedź wskazuje na prawidłowy proces montażu wtyku F na przewodzie koncentrycznym. Kluczowym krokiem jest usunięcie odciętej izolacji zewnętrznej, co pozwala na odsłonięcie oplotu. Oplot ten należy prawidłowo ułożyć wzdłuż przewodu, co jest istotne dla zapewnienia dobrego kontaktu elektrycznego oraz ochrony przed zakłóceniami elektromagnetycznymi. Następnie, po usunięciu izolacji żyły, nakręcamy wtyk, co powinno być wykonane z odpowiednią siłą, aby zapewnić solidne połączenie. Praktyczne przykłady zastosowania obejmują instalacje telewizyjne oraz systemy monitoringu, gdzie jakość sygnału jest kluczowa dla poprawnego działania. Dobre praktyki w zakresie montażu wtyków obejmują stosowanie odpowiednich narzędzi, takich jak wyspecjalizowane zaciskarki oraz monitorowanie jakości połączeń za pomocą mierników sygnału. Doświadczeni technicy zwykle przestrzegają standardów branżowych, takich jak ISO/IEC 11801, które zapewniają wytyczne dotyczące instalacji i jakości sygnalizacji w systemach telekomunikacyjnych.

Pytanie 11

Jeśli po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski lub rozmowa jest cicho, co należy zrobić?

A. dostosować poziom głośności w zasilaczu
B. podnieść napięcie zasilania elektrozaczepu
C. dostosować napięcie w kasecie rozmownej
D. zwiększyć poziom głośności w unifonie
Odpowiedź "wyregulować poziom głośności w zasilaczu" jest prawidłowa, ponieważ zasilacz domofonu zazwyczaj posiada opcję regulacji głośności, która wpływa na jakość dźwięku w słuchawce. Problemy z piskiem lub słabym dźwiękiem mogą wynikać z niewłaściwego ustawienia poziomu głośności w zasilaczu, co może prowadzić do nieodpowiedniego przesyłania sygnału audio. Przykładowo, zbyt niski poziom głośności może skutkować trudnościami w słyszeniu rozmowy, a zbyt wysoki może prowadzić do przesterowania i nieprzyjemnych pisków. Warto także pamiętać, że każdy system domofonowy jest różny, a regulacja głośności w zasilaczu powinna być zgodna z instrukcjami producenta. Dobre praktyki wskazują na konieczność przeprowadzenia testów akustycznych po instalacji, aby upewnić się, że poziom głośności jest odpowiedni dla użytkowników. Właściwe dostosowanie głośności w zasilaczu jest kluczowe dla zapewnienia komfortu użytkowania i jakości komunikacji.

Pytanie 12

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 100 mV
B. 150 mV
C. 1000 mV
D. 300 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 13

Jaki układ powinien być zastosowany, aby zestawić badane napięcie z napięciem odniesienia i w zależności od różnicy uzyskać na wyjściu układu sygnał logiczny 0 lub 1?

A. Stabilizator
B. Komparator
C. Multiplekser
D. Demultiplekser
Wybór niewłaściwego układu, takiego jak multiplekser, demultiplekser czy stabilizator, jest wynikiem mylnych przekonań na temat ich funkcji. Multiplekser to układ, który umożliwia wybór jednej z wielu linii wejściowych i przesyłanie jej na wyjście. Jego głównym celem jest manipulacja danymi, a nie bezpośrednie porównywanie napięć, co czyni go nieodpowiednim do zadania porównania napięć. Z kolei demultiplekser działa w przeciwny sposób – rozdziela sygnał z jednego źródła na wiele wyjść, co również nie odpowiada na potrzeby porównawcze. Stabilizator natomiast ma za zadanie utrzymanie stałego napięcia na wyjściu, niezależnie od zmian w napięciu wejściowym lub obciążeniu, co również jest inną funkcjonalnością. Te błędne wybory wynikają często z nieporozumień dotyczących podstawowych funkcji tych układów. Na przykład, mylenie roli komparatora z funkcją multipleksera może prowadzić do sytuacji, w której użytkownik szuka rozwiązania dla problemu porównania napięć, używając układu, który nie jest w stanie wykonać tej operacji. Aby uniknąć takich błędów, ważne jest zrozumienie różnic między tymi układami oraz ich zastosowań w praktyce, co jest kluczowe w projektowaniu systemów elektronicznych.

Pytanie 14

W tabeli przedstawiono parametry techniczne

tryb pracy: pentaplex
wyświetlanie do 8 obrazów w rozdzielczości maksymalnej 1920x1080 p
kompresja H.264
każdy kanał może nagrywać z prędkością 25 kl/s w 1080 p
każdy kanał można odtwarzać z prędkością 25 kl/s w 1080 p
jednoczesna praca wyjść HDMI/VGA
zaawansowana wideo detekcja: detekcja ruchu, zanik obrazu
archiwizacja: 2x HDD Sata III (max. 6TB), 2x USB2.0
interfejs sieciowy: 1x RJ-45 Ethernet (10/100M)
wejścia i wyjścia alarmowe: 8/1
wbudowany web server, obsługa przez BCS View Manager

A. nadajnika TV
B. odtwarzacza DVD
C. odbiornika TV
D. rejestratora DVR
Rejestrator DVR (Digital Video Recorder) to urządzenie, którego parametry techniczne w tabeli są zgodne z jego funkcjami. Tryb pracy pentaplex, który pozwala na jednoczesne nagrywanie, odtwarzanie, podgląd na żywo oraz zdalne zarządzanie, jest kluczowy w kontekście monitoringu oraz zabezpieczeń. Kompresja H.264 zapewnia efektywne przechowywanie danych wideo, co jest istotne w kontekście ograniczonej pojemności dysków twardych. Możliwość nagrywania z prędkością 25 kl/s w rozdzielczości 1080p świadczy o wysokiej jakości nagrania, co jest wymogiem w profesjonalnych systemach CCTV. Wyjścia HDMI i VGA umożliwiają podłączenie do nowoczesnych monitorów i telewizorów, co zwiększa wszechstronność urządzenia. Obsługa przez dedykowane oprogramowanie, takie jak BCS View Manager, pozwala na łatwe zarządzanie nagraniami oraz konfigurację urządzenia. Znajomość tych parametrów jest kluczowa dla profesjonalistów zajmujących się systemami monitoringu wizyjnego.

Pytanie 15

Kiedy urządzenie elektroniczne nie wykazuje żadnych oznak funkcjonowania, od czego powinno się zacząć diagnostykę uszkodzenia?

A. systemu masy
B. obwodów wyjściowych
C. układu zasilania
D. obwodów wejściowych
Układ zasilania jest kluczowym elementem w każdym urządzeniu elektronicznym. To właśnie ten układ dostarcza energię niezbędną do działania pozostałych komponentów. W przypadku braku oznak funkcjonowania urządzenia, pierwszym krokiem w diagnostyce powinno być sprawdzenie źródła zasilania. Może to obejmować weryfikację, czy urządzenie jest podłączone do sieci, czy nie ma uszkodzeń w kablu zasilającym oraz czy wtyczka i gniazdo są sprawne. Wykorzystując multimetr, można zmierzyć napięcie na wyjściu zasilacza, aby upewnić się, że dostarczane napięcie jest zgodne z wymaganiami urządzenia. Dobrym standardem jest również ocena, czy w przypadku urządzeń zasilanych bateryjnie nie doszło do rozładowania ogniw. Przykładowo, w przypadku laptopów, często pierwszy objaw problemu z zasilaniem to brak reakcji po naciśnięciu przycisku zasilania, co wymaga sprawdzenia zarówno zasilacza, jak i stanu baterii. Powinno to być zgodne z najlepszymi praktykami diagnostyki, które zalecają systematyczne podejście do analizy problemów zasilania.

Pytanie 16

Aby zweryfikować funkcjonalność kabla krosowego, co należy zastosować?

A. testera kabli sieciowych przy odłączonym kablu od wszystkich urządzeń
B. testera kabli sieciowych przy podłączonym kablu do sieci komputerowej
C. wobulatora przy odłączonym kablu od wszystkich urządzeń
D. wobulatora przy podłączonym kablu do sieci komputerowej
Tester kabli sieciowych to naprawdę przydatne urządzenie, które pozwala sprawdzić, czy kable krosowe działają jak należy. Żeby wyniki były miarodajne, kabel musi być odłączony od wszystkich urządzeń. To pozwala testerowi na dokładne zbadanie każdej żyły kabli, bez żadnych zakłóceń z podłączonych sprzętów. Gdy kabel jest odłączony, można przeprowadzić solidną analizę, co pozwala wyłapać ewentualne zwarcia, przerwy czy złe połączenia. Warto też pamiętać, że standardy jak TIA/EIA-568 mówią, jak najlepiej instalować i testować kabli, a przestrzeganie ich to klucz do dobrze działającej sieci. Testowanie po instalacji jest super ważne, bo można szybko znaleźć i naprawić błędy, co poprawia niezawodność całego systemu. Używanie testera przy odłączonym kablu to najlepszy sposób, żeby upewnić się, że wszystko działa jak trzeba, co jest mega ważne dla stabilności i wydajności naszych sieci.

Pytanie 17

Jakiego rodzaju diodą jest dioda o oznaczeniu BZV49-C7V5?

A. Zenera
B. Prostownicza
C. Pojemnościowa
D. Tunelowa
Dioda oznaczona jako BZV49-C7V5 jest diodą Zenera, która jest wykorzystywana głównie do regulacji napięcia w obwodach elektronicznych. Dioda Zenera działa w obszarze odwrotnego przebicia, co oznacza, że pozwala na stabilizację napięcia na zadanym poziomie, nawet w przypadku zmian w obciążeniu lub napięciu zasilania. Jest to niezwykle istotne w aplikacjach takich jak zasilacze, gdzie stabilność napięcia wejściowego jest kluczowa dla działania komponentów elektronicznych. Dioda BZV49-C7V5 charakteryzuje się maksymalnym napięciem Zenera wynoszącym około 7,5V, co czyni ją odpowiednią do zastosowań w niskonapięciowych układach elektronicznych. Przykładem zastosowania diod Zenera jest ich użycie w układach ochrony przed przepięciami, gdzie zapewniają one bezpieczeństwo wrażliwych komponentów poprzez ograniczanie napięcia do bezpiecznego poziomu. W branży elektronicznej standardy dotyczące stosowania diod Zenera podkreślają ich rolę w zabezpieczaniu układów przed niewłaściwymi wartościami napięcia, co może prowadzić do uszkodzeń podzespołów.

Pytanie 18

Jakie oznaczenie skrótowe stosuje się dla komponentów obwodów elektronicznych, które są przeznaczone do montażu powierzchniowego w drukowanych płytkach?

A. SMD
B. CCD
C. SSD
D. LCD
Skrót SMD oznacza 'Surface Mount Device', czyli elementy elektroniczne przeznaczone do montażu powierzchniowego. Technologia SMD zrewolucjonizowała produkcję elektroniki, umożliwiając miniaturyzację układów i zwiększenie gęstości montażu. Elementy SMD są montowane bezpośrednio na powierzchni płytki drukowanej (PCB), co eliminuje potrzebę wiercenia otworów, jak ma to miejsce w przypadku tradycyjnych komponentów przewlekanych. Dzięki temu, płytki PCB mogą być cieńsze, co jest kluczowe w nowoczesnych urządzeniach, takich jak smartfony, laptopy i urządzenia IoT. W branży elektronicznej standardy IPC (Institute for Printed Circuits) promują zasady projektowania i montażu elementów SMD, co zapewnia wysoką jakość i niezawodność produktów. Dodatkowo, stosowanie SMD przyczynia się do zwiększenia efektywności produkcji, ponieważ automatyzacja montażu pozwala na szybsze i tańsze wytwarzanie. Elementy te są również dostępne w różnych rozmiarach, co daje inżynierom dużo swobody w projektowaniu obwodów.

Pytanie 19

Aby podłączyć monitor do jednostki centralnej, należy użyć interfejsu

A. SATA
B. D-SUB 15
C. USB
D. IDE
Interfejs D-SUB 15, znany również jako VGA (Video Graphics Array), jest standardowym złączem stosowanym do przesyłania sygnału wideo z jednostki centralnej do monitora. To złącze umożliwia przesyłanie analogowego sygnału wideo, co czyni je jednym z najczęściej stosowanych rozwiązań w przypadku starszych monitorów oraz projektorów. D-SUB 15 jest zaprojektowany do obsługi rozdzielczości do 640x480 pikseli przy 60 Hz, a w przypadku nowszych technologii może obsługiwać wyższe rozdzielczości, chociaż z ograniczeniami wynikającymi z analogowej natury sygnału. W praktyce, aby prawidłowo podłączyć monitor z interfejsem D-SUB 15, użytkownik powinien upewnić się, że zarówno jednostka centralna, jak i monitor mają odpowiednie złącza. D-SUB 15 jest powszechnie stosowany w różnych zastosowaniach, takich jak prezentacje multimedialne czy w biurach, gdzie starsze technologie nadal są w użyciu.

Pytanie 20

Charakterystykę amplitudowo-częstotliwościową wzmacniacza mocy można określić przy użyciu generatora funkcyjnego oraz

A. miernik częstotliwości
B. miernik prądu
C. rezystor
D. oscyloskop
Odpowiedź 'oscyloskop' jest prawidłowa, ponieważ oscyloskop jest kluczowym przyrządem do analizy sygnałów elektrycznych. Pozwala na obserwację kształtu fali, co jest niezbędne do określenia charakterystyki amplitudowo-częstotliwościowej wzmacniacza mocy. W praktyce, używając oscyloskopu, możemy zmieniać częstotliwość sygnału wyjściowego wzmacniacza i jednocześnie obserwować zmiany amplitudy sygnału. Dzięki temu możemy określić, jak wzmacniacz reaguje na różne częstotliwości, co jest fundamentalne dla jego oceny i kalibracji. Zgodnie z dobrymi praktykami, oscyloskopy są często używane w laboratoriach oraz przy testowaniu sprzętu audio, co pozwala inżynierom na optymalizację parametrów pracy wzmacniacza. Użycie oscyloskopu do analizy sygnału jest zgodne z normami branżowymi, które wymagają dokładnych pomiarów dla zapewnienia jakości i niezawodności urządzeń elektronicznych. Wzmacniacze mocy powinny być testowane w szerokim zakresie częstotliwości, aby upewnić się, że działają zgodnie z oczekiwaniami, a oscyloskop jest do tego niezastąpionym narzędziem.

Pytanie 21

Aby wymienić moduł klawiatury z czytnikiem w systemach kontroli dostępu, co należy zrobić?

A. otworzyć moduł klawiatury, wyłączyć zasilanie systemu, przeprowadzić wymianę modułu, następnie włączyć zasilanie
B. otworzyć moduł klawiatury, dokonać wymiany modułu, sprawdzić działanie systemu, pomierzyć napięcia
C. otworzyć moduł klawiatury, wymienić moduł, wyłączyć i włączyć zasilanie w celu resetu systemu
D. wyłączyć zasilanie systemu, otworzyć moduł klawiatury, wymienić moduł, włączyć zasilanie
Właściwym podejściem do wymiany modułu klawiatury w systemach kontroli dostępu jest wyłączenie zasilania systemu przed rozpoczęciem jakichkolwiek prac. Praktyka ta jest zgodna z zasadami bezpieczeństwa, aby uniknąć uszkodzenia komponentów elektronicznych oraz zabezpieczyć personel przed porażeniem prądem. Po wyłączeniu zasilania można bezpiecznie otworzyć moduł klawiatury, co pozwala na wymianę uszkodzonego elementu. Po zakończeniu wymiany, zasilanie systemu należy ponownie włączyć, aby sprawdzić poprawność działania nowego modułu. W codziennej praktyce techników zajmujących się systemami zabezpieczeń, kluczowe jest przestrzeganie kolejności działań i zapewnienie, że zasilanie jest odłączone, zanim podejmie się jakiekolwiek fizyczne czynności. Przykładem może być sytuacja, gdy w systemie znajduje się wiele klawiatur rozproszonych. W takim przypadku, stosowanie tej procedury minimalizuje ryzyko błędów i uszkodzeń, jednocześnie zapewniając, że system będzie działał niezawodnie po dokonaniu wymiany.

Pytanie 22

Czujnik typu PIR służy do wykrywania

A. dymu
B. światła
C. wilgoci
D. ruchu
Czujki typu PIR są często mylone z innymi rodzajami czujników, takimi jak detektory dymu czy czujniki wilgoci, co może prowadzić do błędnych wniosków na temat ich zastosowania. Detektory dymu działają na zasadzie wykrywania cząstek stałych w powietrzu, które powstają w wyniku spalania, a ich celem jest ostrzeganie przed pożarem. Z kolei czujniki wilgoci monitorują poziom wilgotności w otoczeniu, co jest istotne w kontekście kontroli klimatu i zapobiegania problemom związanym z pleśnią czy uszkodzeniem materiałów. Odpowiedzi takie jak wykrywanie światła również nie odnoszą się do funkcji czujek PIR, które są zaprojektowane do rejestrowania ruchu na podstawie różnic temperatury między obiektami a tłem. Często występuje nieporozumienie dotyczące zasady działania czujników, gdzie użytkownicy mogą sądzić, że czujki PIR są odpowiednie do innych zadań związanych z detekcją, przez co mogą wybierać niewłaściwe urządzenia do określonych zastosowań. Zrozumienie specyfiki działania czujników oraz ich ograniczeń jest kluczowe, aby uniknąć typowych błędów przy wyborze odpowiednich rozwiązań w systemach zabezpieczeń i automatyzacji. Dlatego ważne jest, aby przed podjęciem decyzji o zakupie i instalacji czujników, dokładnie zapoznać się z ich funkcjami oraz zastosowaniami, co pozwoli na skuteczne wykorzystanie technologii w praktyce.

Pytanie 23

Jakie jest przybliżone wartości rezystancji trzech rezystorów połączonych równolegle, jeżeli rezystancja każdego z nich wynosi 30 kΩ?

A. 90 kΩ
B. 10 kΩ
C. 60 kΩ
D. 15 kΩ
Twoje błędne odpowiedzi pokazują, że rozumiesz temat, ale coś poszło nie tak przy interpretacji zasad dotyczących połączeń równoległych. Rezystory, które są połączone równolegle, nie sumują się jak te w połączeniu szeregowy, co może prowadzić do mylnych wniosków. Przykładowo odpowiedzi takie jak 15 kΩ, 60 kΩ czy 90 kΩ sugerują, że mogłeś myśleć, że te wartości dodajemy bezpośrednio, co jest dość typowym błędem. Przy równoległym połączeniu rezystorów całkowita rezystancja się zmniejsza, bo każdy nowy rezystor daje dodatkową drogę dla prądu. Natomiast w połączeniu szeregowym całkowita rezystancja rośnie. Zrozumienie tych podstawowych różnic między połączeniami jest naprawdę ważne dla analizy obwodów elektrycznych. W praktyce, złe obliczenia rezystancji mogą spowodować, że urządzenia będą działać nieprawidłowo, na przykład w zasilaczach, gdzie złe wartości rezystancji mogą prowadzić do przegrzewania się komponentów. Dobrze jest wrócić do zasad obliczania rezystancji w połączeniach równoległych, żeby unikać podobnych pomyłek w przyszłości.

Pytanie 24

Jakie urządzenie jest odpowiedzialne za rozdzielanie tonów niskich, średnich i wysokich do głośników?

A. komparator głośnikowy
B. zwrotnica głośnikowa
C. equalizer
D. limiter
Komparator głośnikowy, equalizer oraz limiter pełnią inne role w systemach audio i nie są odpowiednie do rozdzielania tonów niskich, średnich i wysokich. Komparator głośnikowy jest urządzeniem, które zazwyczaj służy do porównywania sygnałów audio, jednak nie jest zaprojektowany do efektywnego zarządzania częstotliwościami w systemach głośnikowych. Jego zastosowanie w kontekście rozdzielania tonów jest mylące, ponieważ nie oferuje funkcji filtracji i nie wpływa na kierowanie sygnału do odpowiednich głośników. Również equalizer, mimo że dostosowuje poziomy częstotliwości, nie dzieli sygnału na różne pasma w sposób, który jest wymagany do efektywnego używania głośników tonów niskich, średnich i wysokich. Equalizer jedynie pozwala na regulację głośności poszczególnych częstotliwości, co może poprawić brzmienie, ale nie rozdziela sygnału. Z kolei limiter służy do ograniczania maksymalnego poziomu sygnału audio, co ma na celu zapobieganie przesterowaniom. Ograniczanie sygnału nie jest związane z filtrowaniem częstotliwości i nie ma zastosowania w kontekście kierowania sygnałów do odpowiednich głośników. Zrozumienie tych różnic jest kluczowe, aby nie wprowadzać się w błąd podczas projektowania lub optymalizacji systemów audio. Fikcyjne przypisanie tych funkcji do zwrotnic prowadzi do niewłaściwego wykorzystania sprzętu, co negatywnie wpływa na jakość dźwięku oraz efektywność nagłośnienia.

Pytanie 25

Kable zasilające, które łączą antenę z odbiornikiem, określamy jako

A. symetryzatory
B. direktory
C. fidery
D. dipole
Fidery to linie zasilające, które łączą antenę z odbiornikiem lub nadajnikiem. Ich głównym zadaniem jest przesyłanie sygnału radiowego z jednego urządzenia do drugiego z minimalnymi stratami. W kontekście systemów komunikacyjnych, fidery są kluczowe dla zapewnienia efektywności transmisji i odbioru sygnałów. Istnieje wiele typów fiderów, w tym kabel koncentryczny oraz przewody typu twinlead, które różnią się budową, charakterystyką impedancyjną oraz zastosowaniem. Na przykład, kabel koncentryczny jest szeroko stosowany w telekomunikacji i systemach wideo, ze względu na swoją zdolność do przesyłania sygnałów na dużych odległościach. W praktyce, odpowiedni dobór fidera jest niezwykle istotny, ponieważ wpływa na jakość sygnału oraz minimalizację zakłóceń. W branży telekomunikacyjnej i radiowej istnieją standardy dotyczące konstrukcji i testowania fiderów, co zapewnia ich wysoką niezawodność. Zrozumienie tego zagadnienia jest kluczowe dla profesjonalistów zajmujących się projektowaniem i instalacją systemów komunikacyjnych.

Pytanie 26

Jaką czynność należy wykonać najpierw, gdy podczas serwisowania instalacji antenowej telewizji naziemnej zauważono obniżenie poziomu sygnału antenowego?

A. Wyregulować odbiornik
B. Zamienić przewód antenowy
C. Oczyścić wszystkie złącza
D. Wyregulować ustawienie anteny
Wyregulowanie ustawienia anteny jest kluczowym krokiem w przypadku stwierdzenia spadku poziomu sygnału antenowego. Anteny telewizyjne, w zależności od ich typu i lokalizacji, są zaprojektowane tak, aby odbierały sygnał radiowy z określonego kierunku. Niekiedy, na przykład z powodu zmiany warunków atmosferycznych, przeszkód w terenie czy działań budowlanych, kąt nachylenia lub kierunek anteny mogą wymagać korekty. Regulacja anteny powinna być przeprowadzana zgodnie z zaleceniami producenta oraz obowiązującymi standardami, takimi jak normy DVB-T, które określają wymagania dotyczące jakości sygnału. Przykładem praktycznego zastosowania jest użycie analizatora sygnału, który pozwala precyzyjnie ustawić antenę, aby osiągnąć optymalny poziom odbioru. Warto także pamiętać, że przed rozpoczęciem regulacji warto zidentyfikować, czy nie ma innych problemów z instalacją, takich jak uszkodzenia przewodów czy złączy, co może wpłynąć na jakość sygnału.

Pytanie 27

Jakie cechy ma przewód U/UTP 4×2×0,5?

A. ekranowany o czterech żyłach w podwójnej izolacji o długości 0,5 m
B. nieekranowany czterożyłowy o przekroju 0,5 mm2
C. ekranowany czterożyłowy o przekroju 0,5 mm2
D. nieekranowany o czterech żyłach w podwójnej izolacji o długości 0,5 m
Przewód U/UTP 4×2×0,5 oznacza, że mamy do czynienia z nieekranowanym przewodem, który składa się z czterech par żył, gdzie każda para składa się z dwóch żył o przekroju 0,5 mm². Tego rodzaju przewody są powszechnie stosowane w sieciach telekomunikacyjnych, w tym w systemach lokalnych LAN. Nieekranowane przewody U/UTP są popularne ze względu na ich elastyczność oraz odpowiednią wydajność w transmisji danych w typowych warunkach. Standardy, takie jak ANSI/TIA-568, definiują wymagania dotyczące przewodów i ich instalacji, co sprawia, że U/UTP jest często używany w biurach i domach, gdzie nie ma silnych zakłóceń elektromagnetycznych. Przykłady zastosowania to instalacje Ethernetowe, gdzie przewody U/UTP mogą obsługiwać prędkości transmisji do 1 Gbps na odległości do 100 metrów, co czyni je idealnym wyborem dla większości zastosowań domowych i biurowych.

Pytanie 28

Po uruchomieniu regulowanego zasilacza laboratoryjnego zauważono, że urządzenie nie funkcjonuje, a wskaźnik (dioda LED) nie jest aktywowany. Sprawdzono stan gniazda, do którego podłączono zasilacz i nie wykryto w nim uszkodzeń. Proces lokalizacji awarii w zasilaczu należy rozpocząć od weryfikacji

A. podzespołów pasywnych
B. dioda elektroluminescencyjna
C. bezpiecznika aparatowego
D. prostownika
Sprawdzanie różnych elementów, jak mostek prostowniczy czy dioda LED, w sytuacji, gdy zasilacz przestaje działać, może prowadzić do złych wniosków. Elementy pasywne, takie jak rezystory czy kondensatory, raczej nie są przyczyną nagłego wyłączenia zasilacza, zwłaszcza jeśli nie widać żadnych oznak jego działania. Nawet mostek prostowniczy może być sprawny, a zasilacz i tak nie działa, bo jego awaria nie oznacza, że nie ma prądu. Diody LED, co prawda informują o stanie urządzenia, ale nie są najważniejsze w zasilaniu; ich awaria nie znaczy, że zasilacz na pewno jest zepsuty. Dobrze jest najpierw sprawdzić bezpieczniki, bo to najczęstszy powód problemów. Takie podejście to dobry sposób na diagnostykę, który pokazuje, że najpierw musisz skupić się na najważniejszych elementach.

Pytanie 29

Wykonanie polecenia NOP przez mikrokontroler z rodziny '51

A. wykona logiczny iloczyn na odpowiednich bitach argumentów
B. nie spowoduje żadnych działań, zajmie jedynie 1 cykl maszynowy
C. spowoduje przesunięcie zawartości akumulatora w prawo
D. wywoła skok warunkowy do adresu zarejestrowanego w akumulatorze
Wielu programistów błędnie interpretuje instrukcję NOP jako mechanizm do przetwarzania danych, co prowadzi do nieporozumień na temat jej funkcji. Obie odpowiedzi sugerujące przesunięcie zawartości akumulatora w prawo oraz wykonanie logicznego iloczynu na bitach argumentów są całkowicie niezgodne z definicją NOP. Rozkaz NOP nie modyfikuje żadnych rejestrów ani danych w pamięci, co czyni go pasywną instrukcją. Przesunięcie w prawo wymagałoby użycia odpowiedniej instrukcji, takiej jak 'SHR' (Shift Right), która specyficznie przesuwa bity w akumulatorze, a tym samym może wpłynąć na jego zawartość. Podobnie, wykonanie operacji logicznej wymagałoby wskazania konkretnych operandów oraz zastosowania właściwych instrukcji, takich jak 'AND' czy 'OR'. Skok warunkowy, który sugeruje kolejna odpowiedź, również jest niepoprawny, ponieważ wymaga on konkretnego warunku oraz adresu docelowego, co jest sprzeczne z ideą NOP jako instrukcji bezoperacyjnej. Błędy te często wynikają z mylnego zrozumienia podstawowych zasad działania mikrokontrolerów oraz ich architektury, co podkreśla znaczenie solidnych podstaw w programowaniu niskopoziomowym.

Pytanie 30

W specyfikacji diody prostowniczej znajduje się maksymalny średni prąd obciążenia (Ifav) oraz maksymalny szczytowy prąd przewodzenia (Ifsm). Jaką relację można zapisać między tymi wartościami?

A. Ifav < Ifsm
B. Ifav > Ifsm
C. Ifav = Ifsm
D. Ifav ~= Ifsm
Dobrze, że wskazałeś, że Ifav < Ifsm. To ważna zasada, bo Itav to maksymalny prąd, który dioda może prowadzić na stałe. W zwykłych warunkach pracy nie powinieneś go przekraczać, bo to zapewnia, że dioda będzie działać długo i niezawodnie. Ifsm natomiast to maksymalny prąd, jaki dioda może znieść przez krótki czas. Zwykle Ifsm jest dużo większe od Ifav, co daje diodzie możliwość radzenia sobie z chwilowymi skokami prądu, na przykład w przetwornicach czy zasilaczach impulsowych. Kiedy wybierasz diodę prostowniczą, zawsze bierzesz pod uwagę oba te prądy. Musisz upewnić się, że Ifav nie przekracza Ifsm, żeby uniknąć przegrzewania diody i jej uszkodzenia na dłuższą metę. W układach zasilania, gdzie dioda prostownicza działa na prądzie zmiennym, to naprawdę kluczowe zagadnienie.

Pytanie 31

THT to metoda

A. umieszczania kabli w rurkach instalacyjnych
B. montowania elementów elektronicznych na płytkach drukowanych
C. prowadzenia przewodów przez otwory w ścianach
D. realizacji instalacji podtynkowej
Montaż przewlekany THT (Through-Hole Technology) to technika montażu elementów elektronicznych, w której komponenty są wprowadzane przez otwory w płytkach drukowanych (PCB) i lutowane na ich odwrotnej stronie. Jest to jedna z tradycyjnych metod montażu, która jest powszechnie stosowana w produkcji elektroniki, zwłaszcza w przypadku urządzeń wymagających dużej mocy lub w trudnych warunkach operacyjnych. Przykłady zastosowania THT obejmują produkcję zasilaczy, modułów komunikacyjnych czy układów analogowych, gdzie stabilność połączeń i ich odporność na wibracje są kluczowe. Zgodnie z normami IPC-A-610, THT zapewnia wysoką jakość lutowania, a także dużą odporność mechaniczną, co czyni tę metodę odpowiednią do zastosowań przemysłowych. Warto również zauważyć, że THT umożliwia łatwe wymienianie komponentów, co jest istotne podczas serwisowania i naprawy urządzeń elektronicznych, co czyni tę metodę korzystną z perspektywy całkowitych kosztów cyklu życia produktu.

Pytanie 32

Generator funkcyjny został skonfigurowany na sygnał o częstotliwości 1 kHz oraz maksymalnej wartości szczytowej wynoszącej 1 V. Po podłączeniu woltomierza AC, jego wskazanie wyniosło 0,707 V. Jaki kształt ma badany sygnał?

A. sinusoidalny
B. impulsowy
C. trójkątny
D. prostokątny
Odpowiedź 'sinusoidalny' jest prawidłowa, ponieważ przebieg sinusoidalny charakteryzuje się tym, że jego wartość szczytowa wynosi 1 V, co jest zgodne z ustawieniami generatora. Woltomierz AC wskazał 0,707 V, co odpowiada wartości skutecznej (RMS) dla sygnału sinusoidalnego. Wartość skuteczna sygnału sinusoidalnego można obliczyć jako wartość szczytowa podzieloną przez pierwiastek z dwóch, co potwierdza, że dla 1 V wartości szczytowej wartość skuteczna wynosi 1 V / √2 ≈ 0,707 V. Przebiegi sinusoidalne są powszechnie stosowane w zastosowaniach audio oraz w systemach zasilania AC. W inżynierii elektronicznej, zrozumienie charakterystyki sygnałów sinusoidalnych jest kluczowe dla projektowania układów oraz analizy ich działania zgodnie z normami IEC. Ponadto, w zastosowaniach praktycznych, takich jak telekomunikacja, sygnały sinusoidalny są wykorzystywane do modulacji, co wpływa na jakość przesyłanych informacji.

Pytanie 33

Podczas wymiany uszkodzonych części elektronicznych w systemie automatyki przemysłowej, technik korzysta z narzędzi z uchwytami pokrytymi izolacją, aby zabezpieczyć się przed

A. uszkodzeniami mechanicznymi
B. porażeniem prądem elektrycznym
C. wysoką temperaturą
D. niską wilgotnością
Izolacja uchwytów narzędzi stosowanych w instalacjach automatyki przemysłowej jest kluczowym środkiem ochrony przed porażeniem prądem elektrycznym. Prąd elektryczny, w przypadku kontaktu z nagimi metalowymi częściami narzędzi, może prowadzić do poważnych obrażeń, a nawet śmierci. Dlatego odpowiednie zastosowanie narzędzi z izolowanymi uchwytami jest niezbędne, aby zminimalizować ryzyko takich zdarzeń. W takich środowiskach, jak przemysł, gdzie występują wysokie napięcia, izolacja jest nie tylko zalecana, ale wręcz wymagana przez normy bezpieczeństwa, takie jak IEC 60900, która określa wymagania dotyczące narzędzi izolowanych do pracy pod napięciem. Przykładem zastosowania mogą być wkrętaki, szczypce czy klucze, które są używane w instalacjach elektrycznych. Używając narzędzi z izolacją, instalatorzy mogą bezpiecznie pracować w obszarach potencjalnego ryzyka, co przyczynia się do poprawy bezpieczeństwa w miejscu pracy oraz zwiększa efektywność wykonywanych zadań.

Pytanie 34

MAN to termin odnoszący się do typu sieci komputerowej

A. miejskiej
B. rozległej
C. lokalnej
D. masowej
MAN (Metropolitan Area Network) to rodzaj sieci komputerowej, która obejmuje obszar miejskiej aglomeracji. Głównym celem takiej sieci jest zapewnienie szybkiej komunikacji między różnymi lokalizacjami w obrębie miasta, co może obejmować zarówno biura, instytucje edukacyjne, jak i inne obiekty użyteczności publicznej. W praktyce MAN-y są często wykorzystywane do łączenia lokalnych sieci (LAN) w większe struktury, umożliwiając efektywne zarządzanie zasobami oraz dostęp do Internetu. Standardy techniczne, takie jak Ethernet, są często stosowane w MAN-ach, co pozwala na uzyskanie dużej przepustowości przy stosunkowo niskich kosztach. Dzięki ich elastyczności, MAN-y umożliwiają również implementację różnych technologii komunikacyjnych, co czyni je atrakcyjnym rozwiązaniem dla organizacji miejskich. Przykładowo, wiele miast korzysta z MAN-ów do integracji systemów transportowych, monitoringu czy inteligentnych rozwiązań miejskich. W ten sposób MAN przyczynia się do efektywnego zarządzania zasobami miejskimi oraz podniesienia jakości życia mieszkańców.

Pytanie 35

Multiswitch zainstalowany w systemie antenowym, mający 5 wejść, w tym jedno dla telewizji naziemnej, umożliwia odbiór wszystkich kanałów u każdego abonenta?

A. z 4 satelitów
B. z 1 satelity
C. z 5 satelitów
D. z 2 satelitów
Odpowiedzi wskazujące na możliwość odbioru sygnału z dwóch, czterech czy pięciu satelitów są nieprawidłowe i opierają się na błędnych założeniach dotyczących działania multiswitcha. Multiswitch, w zależności od swojego typu i ilości wejść, umożliwia podział sygnału pochodzącego z jednego źródła satelitarnego, a nie z wielu jednocześnie. Istnieje technologia, która pozwala na odbiór sygnału z kilku satelitów, jednak wymaga to zastosowania specjalnych konwerterów typu quad lub octo oraz dodatkowego sprzętu, co nie jest zgodne z założeniami tego pytania. Typowym błędem w myśleniu jest założenie, że multiswitch automatycznie może obsługiwać więcej niż jeden sygnał satelitarny, co jest nieprawda. W rzeczywistości, każdy multiswitch ma określoną liczbę wejść, które są przystosowane do jednego konkretnego sygnału, a ich ilość nie oznacza liczby satelitów, z których można odbierać sygnał. Przykładowo, maksymalna liczba sygnałów, które można obsługiwać, jest ograniczona przez konwertery oraz ich konfigurację, a nie przez multiswitch. Dlatego odpowiedzi sugerujące możliwość odbioru z dwóch, czterech czy pięciu satelitów są wynikiem nieporozumienia dotyczącego architektury systemów antenowych oraz funkcji, jakie pełni multiswitch w takim systemie.

Pytanie 36

W regulatorze PID podwojono stałą czasową Ti (czas całkowania), co skutkuje

A. wydłużeniem czasu regulacji
B. zmniejszeniem stabilności układu
C. brakiem zmian w czasie regulacji
D. wzrostem amplitudy oscylacji
Zwiększenie stałej czasowej Ti, która odpowiada za czas całkowania w regulatorze PID, bezpośrednio wpływa na wydłużenie czasu regulacji. Stała Ti jest kluczowym parametrem, który określa, jak szybko regulator będzie integrował błąd w systemie. Kiedy Ti jest większe, to regulator będzie wolniej reagował na zmiany w błędzie, co prowadzi do dłuższego czasu odpowiedzi na zakłócenia. W praktyce oznacza to, że system będzie potrzebował więcej czasu na osiągnięcie zadanego poziomu, co jest szczególnie istotne w aplikacjach wymagających precyzyjnej kontroli, takich jak automatyka przemysłowa czy systemy HVAC. Wartości Ti powinny być dostosowywane zgodnie z wymaganiami procesu, a ich nadmierne zwiększenie może prowadzić do opóźnień w reakcji systemu, co jest niekorzystne. W kontekście projektowania systemów automatyki, należy stosować metody dostrajania parametrów PID, takie jak metoda Zieglera-Nicholsa, aby uzyskać optymalne wartości Ti, co pozwoli na efektywniejszą regulację.

Pytanie 37

Badanie złącza p-n w tranzystorze bipolarnym można przeprowadzić przy użyciu

A. woltomierza
B. omomierza
C. amperomierza
D. watomierza
Odpowiedź dotycząca omomierza jest jak najbardziej trafna. To narzędzie służy do pomiaru oporu elektrycznego, co jest mega ważne przy badaniu złącza p-n w tranzystorze bipolarnym. Złącze p-n działa jak dioda, która w zasadzie jest przewodnikiem, gdy prąd płynie w jedną stronę, a w drugą - staje się opornikiem. Kiedy używamy omomierza, możemy sprawdzić, czy to złącze działa tak jak powinno, bo mierzymy opór w obu stanach. Jak tranzystor się uszkodzi, omomierz pokaże niską oporność nawet w stanie zaporowym, co oznacza, że coś jest nie tak. W elektronice omomierz to kluczowe narzędzie, zwłaszcza przy diagnozowaniu problemów w obwodach i produkcji komponentów elektronicznych. Każdy tranzystor musi być testowany, żeby był zgodny z normami jakości. To pokazuje, jak ważny jest omomierz przy weryfikacji złączy p-n.

Pytanie 38

Na jaką metodę najlepiej postawić, by ocenić sprawność tranzystora wylutowanego z obwodu, wykonując pomiary?

A. woltomierza
B. oscyloskopu i zasilacza
C. oscyloskopu i generatora funkcyjnego
D. omomierza
Podczas oceny stanu tranzystora, wybór narzędzia pomiarowego ma kluczowe znaczenie. Zastosowanie woltomierza, oscyloskopu czy generatora funkcyjnego w tej sytuacji nie jest optymalne. Woltomierz, choć może być użyty do pomiaru napięć, nie dostarcza informacji o rezystancji wewnętrznej tranzystora, co jest esencjonalne w ocenie jego sprawności. Z kolei oscyloskop w połączeniu z zasilaczem może pomóc w analizie sygnałów oraz charakterystyki dynamicznej tranzystora, ale wymaga złożonej konfiguracji oraz dostarcza jedynie pośrednie informacje o stanie komponentu. Generator funkcyjny, używany z oscyloskopem, głównie służy do testowania odpowiedzi tranzystora na sygnały zmienne, co również nie jest praktycznym sposobem na wykrycie uszkodzeń. Często w takich przypadkach można popełnić błąd myślowy, zakładając, że bardziej zaawansowane urządzenia pomiarowe zawsze dostarczają lepsze wyniki, co nie jest zgodne z rzeczywistością diagnostyki komponentów elektronicznych. Kluczowe jest zrozumienie, że dla szybkiej i efektywnej analizy stanu tranzystora, omomierz jest narzędziem o największej skuteczności w ocenie podstawowych parametrów.

Pytanie 39

Podczas instalacji wzmacniacza antenowego najpierw należy

A. najpierw podłączyć zasilanie, uziemić, następnie podłączyć przewody antenowe, a na końcu zamontować urządzenie
B. najpierw podłączyć przewody antenowe, później włączyć zasilanie, uziemić i na końcu zamontować urządzenie
C. uziemić urządzenie, następnie podłączyć przewody antenowe, włączyć zasilanie, a na końcu zamontować urządzenie
D. zamontować urządzenie, uziemić, podłączyć przewody antenowe, a na końcu podłączyć zasilanie
Poprawna odpowiedź polega na odpowiednim porządku prac przy montażu wzmacniacza antenowego. Proces ten powinien zaczynać się od zamontowania urządzenia, co zapewnia, że wszystkie elementy są prawidłowo zainstalowane i mają odpowiednie wsparcie mechaniczne. Następnie kluczowe jest uziemienie urządzenia, aby zminimalizować ryzyko uszkodzeń spowodowanych przepięciami czy wyładowaniami atmosferycznymi. Uziemienie jest istotnym krokiem w ochronie zarówno sprzętu, jak i osób korzystających z systemu. Po tym etapie powinno się podłączyć przewody antenowe, co jest niezbędne do prawidłowego funkcjonowania wzmacniacza, a na końcu można podłączyć zasilanie, co pozwoli na uruchomienie urządzenia. Taki porządek działań jest zgodny z dobrymi praktykami instalacyjnymi i zapewnia zarówno bezpieczeństwo, jak i skuteczność działania wzmacniacza. Przykładem zastosowania tych zasad może być instalacja anteny telewizyjnej, gdzie odpowiednia sekwencja zwiększa jakość odbioru sygnału.

Pytanie 40

Tłumienność wynosząca 1 dB/km wskazuje, że na odcinku światłowodu o długości 10 km dochodzi do rozproszenia

A. 90% wartości mocy sygnału przychodzącego
B. 20% wartości mocy sygnału przychodzącego
C. 10% wartości mocy sygnału przychodzącego
D. 80% wartości mocy sygnału przychodzącego
Widzę, że wybrałeś odpowiedź, w której mówisz, że na 10 km światłowodu rozprasza się 80%, 20% czy 10% mocy sygnału. To trochę pomyłka, bo nie do końca ogarnąłeś, jak to jest z tłumiennością i mocą sygnału. Tłumienność 1 dB/km znaczy, że na każdy kilometr moc sygnału spada o 1 dB. W praktyce na 10 km to daje 10 dB straty mocy, ale łatwo się pomylić, licząc, że jest to liniowe. Jak myślisz, że to procenty, a nie decybele, to można sobie głupotę wytłumaczyć, jak byś sądził, że 20% sygnału to dużo, a w rzeczywistości na końcu zostaje tylko 10%. Rozumienie tego tematu jest istotne, szczególnie przy projektowaniu sieci światłowodowych, gdzie dobre obliczenia tłumienia są kluczowe do przewidywania, jak daleko sygnał dojdzie i jak dobrze będzie działać. Jeśli nie weźmiesz tego pod uwagę, to mogą być kłopoty z jakością usług.