Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 13 maja 2025 11:42
  • Data zakończenia: 13 maja 2025 12:00

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z protokołów umożliwia terminalowe połączenie ze zdalnymi urządzeniami, zapewniając jednocześnie transfer danych w zaszyfrowanej formie?

A. SSH (Secure Shell)
B. Telnet
C. SSL (Secure Socket Layer)
D. Remote
SSH (Secure Shell) to protokół wykorzystywany do bezpiecznego łączenia się z zdalnymi urządzeniami, który zapewnia szyfrowanie danych przesyłanych w sieci. W przeciwieństwie do Telnetu, który przesyła dane w formie niezaszyfrowanej, SSH chroni poufność informacji, co jest kluczowe w dzisiejszym świecie cyberzagrożeń. Protokół ten stosuje zaawansowane techniki kryptograficzne, w tym szyfrowanie symetryczne oraz asymetryczne, co sprawia, że jest niezwykle trudny do przechwycenia przez osoby trzecie. SSH jest powszechnie wykorzystywany przez administratorów systemów do zdalnego zarządzania serwerami i innymi urządzeniami, umożliwiając im bezpieczne wykonywanie poleceń w trybie terminalowym. Przykładem może być sytuacja, w której administrator zarządza serwerem Linux, łącząc się z nim za pomocą polecenia `ssh user@server_ip`, co zapewnia bezpieczny dostęp do powłoki systemu. Dzięki swojej elastyczności, SSH znajduje także zastosowanie w tunelowaniu portów oraz wykorzystywaniu przekierowań X11, co pozwala na uruchamianie aplikacji graficznych w trybie zdalnym przy zachowaniu bezpieczeństwa. Warto również zwrócić uwagę, że SSH jest standardem w branży IT, co sprawia, że jego znajomość jest niezbędna dla specjalistów zajmujących się administracją systemami i bezpieczeństwem IT.

Pytanie 2

Narzędzie diagnostyczne tracert służy do ustalania

Ikona CMDWiersz polecenia
_ X
C:\>tracert wp.pl
Trasa śledzenia do wp.pl [212.77.100.101]
przewyższa maksymalną liczbę przeskoków 30
1    2 ms    3 ms    2 ms  192.168.0.1
2    8 ms    8 ms   10 ms  10.135.96.1
3    *       *       *     Upłynął limit czasu żądania.
4    9 ms    7 ms   10 ms  upc-task-gw.task.gda.pl [153.19.0.5]
5   10 ms   14 ms   10 ms  task-tr-wp.pl [153.19.102.1]
6   91 ms    *      10 ms  zeu.ptr02.sdm.wp-sa.pl [212.77.105.29]
7   11 ms   10 ms   11 ms  www.wp.pl [212.77.100.101]

Śledzenie zakończone.

C:\>

A. ścieżki do miejsca docelowego
B. poprawności ustawień protokołu TCP/IP
C. możliwości analizy struktury systemu DNS
D. wydajności połączenia w protokole IPX/SPX
Polecenie tracert nie służy do diagnozowania infrastruktury systemu DNS. System DNS (Domain Name System) jest odpowiedzialny za tłumaczenie nazw domenowych na adresy IP, ale tracert koncentruje się na śledzeniu ścieżki pakietów IP przez różne węzły sieciowe. Próba użycia tracert w celu diagnozy DNS może prowadzić do błędnych wniosków, ponieważ nie bada on ani poprawności, ani wydajności serwerów DNS. Tracert nie diagnozuje również sprawności połączenia przy użyciu protokołu IPX/SPX, który nie jest nawet kompatybilny z analizowanym protokołem TCP/IP. IPX/SPX był używany w sieciach Novell NetWare i jego funkcjonalność różni się od TCP/IP. Polecenie to także nie służy do weryfikacji poprawności konfiguracji protokołu TCP/IP. Narzędzia takie jak ping czy ipconfig są bardziej odpowiednie do sprawdzania konfiguracji sieci IP. Tracert dostarcza informacji o ścieżce pakietu w sieci, co jest kluczowe dla rozwiązywania problemów z routingiem i identyfikacji miejsc, gdzie połączenie może być ograniczone, ale nie bada konfiguracji TCP/IP jako takiej. Pomylenie funkcji tego narzędzia z innymi można przypisać do zbyt ogólnego podejścia do narzędzi sieciowych i braku zrozumienia ich specyficznych zastosowań. Zrozumienie, kiedy i jak stosować każde narzędzie, jest kluczowe dla skutecznego zarządzania siecią komputerową.

Pytanie 3

W standardzie Ethernet 100BaseTX do przesyłania danych używane są żyły kabla UTP podłączone do pinów

Ilustracja do pytania
A. 1, 2, 3, 4
B. 4, 5, 6, 7
C. 1, 2, 3, 6
D. 1, 2, 5, 6
Sieć Ethernet 100BaseTX, znana również jako Fast Ethernet, wykorzystuje kabel UTP (Unshielded Twisted Pair) kategorii 5 lub wyższej. W standardzie tym do transmisji danych wykorzystywane są pary przewodów połączone z pinami 1, 2, 3 i 6 w złączu RJ-45. Piny 1 i 2 są używane do transmisji danych z urządzenia, podczas gdy piny 3 i 6 służą do odbioru danych. Zarówno standard EIA/TIA-568A, jak i 568B definiują te same piny dla 100BaseTX, co zapewnia zgodność i łatwość instalacji. Praktyczne zastosowanie tej wiedzy można znaleźć w konfiguracji domowych i biurowych sieci komputerowych, gdzie odpowiednie podłączenie kabli jest kluczowe dla zapewnienia właściwego działania sieci. Warto również zaznaczyć, że prawidłowe zakończenie kabli UTP zgodnie z jednym z tych standardów jest istotne dla minimalizacji przesłuchów i utraty sygnału, co wpływa na jakość i stabilność połączenia. Zrozumienie tego standardu jest kluczowe dla każdego specjalisty IT zajmującego się sieciami komputerowymi, ponieważ nieprawidłowe okablowanie może prowadzić do problemów z łącznością i wydajnością.

Pytanie 4

Zapis liczby w systemie oznaczonym jako #108 to

A. binarnym
B. dziesiętnym
C. oktalnym
D. heksadecymalnym
Wybranie innej opcji może wynikać z nieporozumienia dotyczącego różnych systemów liczbowych oraz ich oznaczeń. System oktalny, oznaczający liczby w podstawie 8, używa cyfr od 0 do 7. W związku z tym, zapis #108 mógłby sugerować, że liczba jest zapisana w systemie oktalnym, jednak w takim przypadku nie byłoby użycia znaku #, co jest jednoznacznie związane z systemem heksadecymalnym. Z kolei system binarny, który wykorzystuje jedynie dwie cyfry – 0 i 1 – również nie pasuje do tego zapisu, gdyż liczby binarne nie są zazwyczaj przedstawiane z przedrostkiem #. System dziesiętny, najbardziej powszechnie stosowany w codziennych obliczeniach, opiera się na podstawie 10 i nie wymaga oznaczeń, jak w przypadku systemów heksadecymalnych czy binarnych. Typowym błędem myślowym jest mylenie notacji oraz założeń dotyczących reprezentacji danych. Kluczowe w nauce o systemach liczbowych jest zrozumienie, że różne notacje mają swoje specyficzne zastosowania w informatyce i matematyce. Aby uniknąć pomyłek, warto zwracać uwagę na konwencje przyjęte w danym kontekście, a także zaznajomić się z typowymi zastosowaniami każdego z systemów liczbowych. W praktyce programistycznej znajomość systemów liczbowych jest niezbędna do interpretacji danych oraz efektywnego programowania w różnych językach, które często wymagają precyzyjnego posługiwania się zapisami liczbowymi.

Pytanie 5

Jaką minimalną liczbę bitów potrzebujemy w systemie binarnym, aby zapisać liczbę heksadecymalną 110 (h)?

A. 16 bitów
B. 4 bity
C. 3 bity
D. 9 bitów
Aby zrozumieć, dlaczego do zapisania liczby heksadecymalnej 110 (h) potrzebne są 9 bity w systemie binarnym, należy najpierw przekształcić tę liczbę do postaci binarnej. Liczba heksadecymalna 110 (h) odpowiada wartości dziesiętnej 256. W systemie binarnym, liczby są zapisywane jako ciągi zer i jedynek, a każda cyfra binarna (bit) reprezentuje potęgę liczby 2. Aby obliczyć, ile bitów jest potrzebnych do zapisania liczby 256, musimy znaleźć najmniejszą potęgę liczby 2, która jest większa lub równa 256. Potęgi liczby 2 są: 1 (2^0), 2 (2^1), 4 (2^2), 8 (2^3), 16 (2^4), 32 (2^5), 64 (2^6), 128 (2^7), 256 (2^8). Widzimy, że 256 to 2^8, co oznacza, że potrzebujemy 9 bitów, aby uzyskać zakres od 0 do 255. Zatem mamy 9 możliwych kombinacji bitów do przedstawienia wszystkich wartości od 0 do 512. W praktyce, w kontekście komunikacji i przechowywania danych, znajomość konwersji między systemami liczbowymi jest kluczowa dla inżynierów oraz programistów i ma zastosowanie w wielu dziedzinach, takich jak projektowanie układów scalonych, programowanie oraz w analizie danych.

Pytanie 6

Port AGP służy do łączenia

A. kart graficznych
B. urządzeń peryferyjnych
C. szybkich pamięci masowych
D. modemu
Złącze AGP (Accelerated Graphics Port) zostało zaprojektowane z myślą o zwiększeniu wydajności przesyłania danych między płytą główną a kartą graficzną. Jest to złącze dedykowane do podłączania kart graficznych, co pozwala na szybszy transfer danych, w porównaniu do standardowych gniazd PCI. Dzięki AGP, karty graficzne mogą korzystać z bezpośredniego dostępu do pamięci RAM, co znacząco poprawia wydajność w aplikacjach wymagających intensywnej obróbki graficznej, takich jak gry komputerowe czy profesjonalne oprogramowanie do edycji wideo. W praktyce AGP wprowadziło nową architekturę, która zmniejsza opóźnienia i zwiększa przepustowość, co czyni je odpowiednim rozwiązaniem dla wymagających użytkowników. Warto również zauważyć, że standard AGP był stosowany w czasach, gdy karty graficzne zaczęły wymagać znacznie większych zasobów niż oferowały wcześniejsze złącza, co pozwoliło na rozwój technologii graficznych, które znamy dzisiaj.

Pytanie 7

Do czynności konserwacyjnych związanych z użytkowaniem skanera płaskiego należy

A. systematyczne czyszczenie szyby skanera oraz płyty dociskowej
B. czyszczenie dysz wkładu kartridża
C. podłączenie sprzętu do listwy z zabezpieczeniem przed przepięciami
D. uruchomienie automatycznego pobierania rekomendowanych sterowników do urządzenia
Regularne czyszczenie szyby skanera oraz płyty dociskowej jest kluczowym elementem konserwacji skanera płaskiego. Z czasem na szybie mogą gromadzić się zanieczyszczenia, kurz czy odciski palców, co negatywnie wpływa na jakość skanowanych dokumentów. Czysta szyba pozwala na uzyskanie wyraźnych i dokładnych skanów, co jest szczególnie ważne w przypadku skanowania dokumentów zawierających drobne detale. Dodatkowo, płyta dociskowa, która ma za zadanie utrzymać dokument w odpowiedniej pozycji podczas skanowania, również powinna być regularnie czyszczona. Zastosowanie odpowiednich środków czyszczących i delikatnych narzędzi pomoże uniknąć zarysowań i innych uszkodzeń. Zgodnie z zaleceniami producentów skanerów, czyszczenie powinno być przeprowadzane co najmniej raz w miesiącu, a w przypadku intensywnej eksploatacji nawet częściej. Takie praktyki nie tylko przedłużają żywotność urządzenia, ale również znacząco podnoszą jakość pracy biurowej.

Pytanie 8

Która z usług umożliwia rejestrowanie oraz identyfikowanie nazw NetBIOS jako adresów IP wykorzystywanych w sieci?

A. DHCP
B. HTTPS
C. WINS
D. WAS
Wybór nieprawidłowych odpowiedzi może wynikać z nieporozumienia dotyczącego podstawowych funkcji oferowanych przez różne usługi sieciowe. WAS (Windows Process Activation Service) jest związany z aktywacją procesów w aplikacjach webowych, a więc nie ma związku z rozpoznawaniem nazw NetBIOS ani z przekształcaniem ich na adresy IP. Z kolei DHCP (Dynamic Host Configuration Protocol) jest protokołem odpowiedzialnym za dynamiczne przydzielanie adresów IP urządzeniom w sieci. Choć DHCP może również rejestrować nazwy hostów, jego głównym celem jest zarządzanie adresami IP, a nie ich rozpoznawanie w kontekście nazw NetBIOS. Ponadto, HTTPS (Hypertext Transfer Protocol Secure) to protokół zapewniający bezpieczną komunikację przez sieć, który dotyczy przesyłania danych, a nie zarządzania nazwami w sieci. Często błędem jest mylenie funkcji serwisów i protokołów, co prowadzi do nieporozumień. Kluczowe jest zrozumienie, jakie zadania pełnią te usługi oraz ich zastosowanie w praktyce. W sieciach złożonych, takich jak te stosowane w dużych organizacjach, istotne jest wdrożenie odpowiednich rozwiązań, które będą odpowiednio zarządzać komunikacją między urządzeniami, co w przypadku rozpoznawania nazw NetBIOS najlepiej realizuje właśnie WINS.

Pytanie 9

Który z interfejsów stanowi port równoległy?

A. RS232
B. IEEE1284
C. IEEE1394
D. USB
USB (Universal Serial Bus) to interfejs szeregowy, a nie równoległy. Choć USB jest szeroko stosowane w różnych urządzeniach, takich jak klawiatury, myszy czy pamięci masowe, działa na zasadzie przesyłania danych po jednym bicie w danym czasie, co nie odpowiada definicji portu równoległego. IEEE1394, znany również jako FireWire, jest innym interfejsem szeregowym, który obsługuje szybką transmisję danych, ale również nie jest portem równoległym. RS232 to standard komunikacji szeregowej, używany głównie w aplikacjach przemysłowych do komunikacji z urządzeniami takimi jak modemy, ale nie spełnia kryteriów portu równoległego. Pojęcie portu równoległego opiera się na koncepcji przesyłania wielu bitów danych jednocześnie, co jest niemożliwe w interfejsach szeregowych. Typowym błędem jest mylenie interfejsów szeregowych z równoległymi, co często wynika z nieznajomości podstawowych różnic w zakresie architektury przesyłania danych. Zrozumienie tych różnic jest kluczowe w kontekście projektowania i implementacji systemów komunikacyjnych.

Pytanie 10

Samodzielną strukturą sieci WLAN jest

A. IBSS
B. BSS
C. BSSI
D. ESS
BSS (Basic Service Set) oraz ESS (Extended Service Set) to struktury sieciowe, które są związane z bardziej tradycyjnym podejściem do budowy sieci WLAN. BSS to jednostkowy element sieci, który polega na komunikacji urządzeń bezprzewodowych z punktami dostępu (AP), co oznacza, że wymaga on centralnego punktu do zarządzania komunikacją. Użycie BSS w kontekście sieci bezprzewodowych jest powszechnie spotykane w biurach i domach, gdzie użytkownicy łączą się za pośrednictwem jednego punktu dostępu. Z kolei ESS jest rozszerzeniem BSS i pozwala na tworzenie sieci WLAN, gdzie wiele punktów dostępu współpracuje ze sobą, umożliwiając płynne przełączanie się między nimi. To podejście jest bardziej skomplikowane, ale oferuje większy zasięg i większą liczbę podłączonych użytkowników. Istnieje także termin BSSI, który nie jest uznawany w standardach WLAN. Często mylone są różnice pomiędzy tymi strukturami, co prowadzi do błędnych wniosków o ich funkcjonalności. Kluczowe jest zrozumienie, że IBSS jest unikalne ze względu na swoją niezależność od punktów dostępowych, podczas gdy pozostałe typy wymagają ich obecności, co w praktyce ogranicza ich zastosowanie w sytuacjach, gdzie infrastruktura nie jest dostępna.

Pytanie 11

W jakiej logicznej topologii działa sieć Ethernet?

A. siatki gwiazdy
B. siatkowej
C. pierścieniowej i liniowej
D. rozgłaszania
Sieć Ethernet opiera się na topologii rozgłaszania, co oznacza, że dane są wysyłane do wszystkich urządzeń w sieci, a każde z nich podejmuje decyzję, czy dane te są dla niego przeznaczone. W praktyce oznacza to, że jeśli jedno urządzenie wysyła ramkę, to wszystkie inne urządzenia w sieci Ethernet odbierają tę ramkę, ale tylko to, którego adres MAC jest zgodny z adresem docelowym, przetworzy dane. Taki model komunikacji ma wiele zastosowań w małych i dużych sieciach, szczególnie tam, gdzie prosta konfiguracja i niskie koszty są kluczowe. Przykładem są sieci lokalne w biurach, gdzie wiele komputerów i urządzeń współdzieli tę samą infrastrukturę. Zgodnie z normą IEEE 802.3, Ethernet definiuje nie tylko fizyczny aspekt komunikacji, ale również zasadę działania w warstwie 2 modelu OSI, co czyni go fundamentem dla wielu współczesnych rozwiązań sieciowych. Dodatkowo, zrozumienie topologii rozgłaszania jest kluczowe dla projektowania i rozwiązywania problemów w sieciach, co przekłada się na większą efektywność operacyjną.

Pytanie 12

Chusteczki namoczone w płynie o działaniu antystatycznym są używane do czyszczenia

A. ekranów monitorów LCD
B. wałków olejowych w drukarkach laserowych
C. rolek prowadzących papier w drukarkach atramentowych
D. ekranów monitorów CRT
Chusteczki nasączone płynem o właściwościach antystatycznych są zaprojektowane z myślą o ochronie ekranów monitorów CRT, które są bardziej podatne na gromadzenie się kurzu i statycznego ładunku elektrycznego. Płyn antystatyczny neutralizuje ładunki elektryczne, co znacząco zmniejsza przyczepność zanieczyszczeń do powierzchni ekranu. Ponadto, czyszczenie ekranów CRT wymaga szczególnej ostrożności, ponieważ są one wrażliwe na różne substancje chemiczne. Właściwe użycie chusteczek antystatycznych pozwala na skuteczne usunięcie zanieczyszczeń bez ryzyka uszkodzenia powierzchni monitora. Dobrą praktyką jest także regularne czyszczenie ekranów, aby zapewnić ich długowieczność oraz optymalną jakość obrazu. Użycie chusteczek zgodnych z zaleceniami producenta jest kluczowe, aby zminimalizować ryzyko uszkodzeń i zachować właściwości techniczne monitora. W kontekście standardów branżowych, czyszczenie urządzeń elektronicznych powinno odbywać się przy użyciu produktów, które są specjalnie zaprojektowane dla danego typu sprzętu, co gwarantuje ich skuteczność i bezpieczeństwo.

Pytanie 13

Który z protokołów przesyła datagramy użytkownika BEZ GWARANCJI ich dostarczenia?

A. HTTP
B. ICMP
C. TCP
D. UDP
UDP (User Datagram Protocol) jest protokołem transportowym w zestawie protokołów internetowych, który nie zapewnia gwarancji dostarczenia datagramów. Jego podstawową cechą jest to, że przesyła dane w sposób bezpołączeniowy, co oznacza, że nie ustanawia żadnej sesji komunikacyjnej przed wysłaniem danych. To sprawia, że jest idealny do zastosowań, gdzie szybkość jest ważniejsza od niezawodności, takich jak transmisje wideo na żywo, gry online czy VoIP (Voice over Internet Protocol). W tych zastosowaniach opóźnienia mogą być bardziej krytyczne niż utrata niektórych pakietów danych. W praktyce, programiści często decydują się na użycie UDP tam, gdzie aplikacja może sama poradzić sobie z ewentualnymi błędami, np. przez ponowne wysyłanie zagubionych pakietów. W związku z tym, standardy RFC 768 definiują UDP jako protokół, który nie implementuje mechanizmów kontroli błędów ani retransmisji, co przyspiesza proces przesyłania danych i zmniejsza narzuty. Z tego powodu, UDP jest wszechobecny w aplikacjach wymagających niskich opóźnień i dużej przepustowości.

Pytanie 14

Na płycie głównej z chipsetem Intel 865G

A. można zainstalować kartę graficzną z interfejsem PCI-Express
B. można zainstalować kartę graficzną z interfejsem AGP
C. nie ma możliwości zainstalowania karty graficznej
D. można zainstalować kartę graficzną z interfejsem ISA
Zainstalowanie karty graficznej z PCI-Express na płycie głównej z układem Intel 865G to zły pomysł, bo ten chipset nie obsługuje PCI-Express. Różnica między PCI-Express a AGP tkwi w strukturze złącza i tym, jak przesyłane są dane. PCI-Express, które weszło na rynek na początku lat 2000, ma o wiele lepszą przepustowość i elastyczność w porównaniu do AGP, ale płyta Intel 865G nie ma odpowiednich slotów do PCI-Express. Też nie ma co myśleć o złączu ISA, które było popularne w latach 80. i 90., bo nie nadaje się do nowoczesnych kart graficznych. Wiele osób myli te standardy, nie zdając sobie sprawy, że AGP było stworzone tylko dla kart graficznych w starszych systemach. To, że nie rozumie się różnic między nimi, prowadzi do błędnych przekonań, jak to, że nowsze złącza mogą działać na starszych płytach. Więc, jak myślisz o modernizacji sprzętu, pamiętaj, żeby wszystkie podzespoły były kompatybilne, a w przypadku Intel 865G będziesz musiał wybierać karty graficzne z AGP.

Pytanie 15

Na ilustracji zaprezentowano schemat blokowy karty

Ilustracja do pytania
A. telewizyjnej
B. sieciowej
C. dźwiękowej
D. graficznej
Schemat blokowy przedstawia kartę telewizyjną, co można zidentyfikować na podstawie kilku kluczowych elementów. Karty telewizyjne są zaprojektowane do odbioru sygnałów telewizyjnych z anteny i ich przetwarzania na formaty cyfrowe, które mogą być odtwarzane na komputerze. Na schemacie widoczne są takie komponenty jak tuner, który odbiera sygnał RF z anteny, a także dekoder wideo, który przetwarza sygnał na format cyfrowy, często w standardzie MPEG-2. Obecność przetwornika analogowo-cyfrowego (A/C) dla sygnałów wideo i audio wskazuje na funkcję konwersji sygnałów analogowych na cyfrowe. Dodatkowe elementy, takie jak EEPROM i DRAM, wspierają przetwarzanie i przechowywanie danych, co jest typowe dla bardziej zaawansowanych funkcji kart TV, takich jak timeshifting czy nagrywanie programów. Interfejs magistrali umożliwia komunikację karty z resztą systemu komputerowego, co jest niezbędne do przesyłania przetworzonych danych wideo i audio do dalszego odtwarzania. Karty telewizyjne znajdują zastosowanie w systemach multimedialnych, umożliwiając odbiór i nagrywanie telewizji oraz integrację z innymi funkcjami komputerowymi.

Pytanie 16

W ustawieniach haseł w systemie Windows Server aktywowano opcję, że hasło musi spełniać wymagania dotyczące złożoności. Z jakiej minimalnej liczby znaków musi składać się hasło użytkownika?

A. 10 znaków
B. 6 znaków
C. 12 znaków
D. 5 znaków
Hasło użytkownika w systemie Windows Server, gdy włączona jest opcja wymuszająca złożoność, musi składać się z co najmniej 6 znaków. To wymóg, który ma na celu zwiększenie bezpieczeństwa kont użytkowników. Złożone hasła powinny zawierać kombinację wielkich i małych liter, cyfr oraz znaków specjalnych, co sprawia, że są trudniejsze do odgadnięcia. Na przykład, silne hasło może wyglądać jak 'P@ssw0rd!' i zawierać wszystkie te elementy. Warto pamiętać, że stosowanie złożonych haseł jest zalecane przez wiele organizacji zajmujących się bezpieczeństwem, w tym NIST (National Institute of Standards and Technology). Zastosowanie takiego podejścia przyczynia się do ochrony przed atakami słownikowymi oraz innymi formami nieautoryzowanego dostępu, co jest kluczowe w środowiskach, gdzie bezpieczeństwo danych jest priorytetem.

Pytanie 17

Na ilustracji przedstawiono symbol urządzenia cyfrowego

Ilustracja do pytania
A. multipleksera priorytetowego
B. kodera priorytetowego
C. dekodera priorytetowego
D. demultipleksera priorytetowego
Koder priorytetu to układ cyfrowy, który przekształca wiele sygnałów wejściowych w kodowany wynik na podstawie zdefiniowanej hierarchii priorytetów. Jest on używany tam, gdzie istnieje potrzeba obsługi wielu źródeł sygnałów, ale tylko jeden wynik może być przekazany dalej. Układ ten nadaje priorytet jednemu z aktywnych sygnałów wejściowych, ignorując inne, co jest niezwykle przydatne w systemach, gdzie wielozadaniowość wymaga selekcji najwyższego priorytetu. W praktyce koder priorytetu znajduje zastosowanie w systemach przerwań w komputerach, gdzie różne urządzenia mogą zgłaszać potrzebę obsługi, a układ selekcjonuje to o najwyższym priorytecie. Algorytmy kodowania priorytetowego są szeroko stosowane w zarządzaniu zasobami i optymalizacji przepływu danych, co czyni je kluczowym elementem w architekturach komputerowych. Standardy projektowe zalecają stosowanie takich koderów w systemach embedded, aby zapewnić skuteczne i szybkie przetwarzanie sygnałów przy minimalnym opóźnieniu, co jest istotne dla wbudowanych aplikacji czasu rzeczywistego.

Pytanie 18

Główny punkt, z którego odbywa się dystrybucja okablowania szkieletowego, to punkt

A. dystrybucyjny
B. pośredni
C. abonamentowy
D. dostępowy
Wybór odpowiedzi pośredni, abonencki lub dostępowy to nieporozumienie związane z funkcją i strukturą infrastruktury okablowania szkieletowego. Punkt pośredni najczęściej odnosi się do elementów, które mogą pełnić rolę pośredniczącą w przekazywaniu sygnałów, ale nie są centralnym miejscem dystrybucji. Z kolei punkt abonencki dotyczy lokalizacji, gdzie użytkownicy końcowi łączą się z siecią, a nie miejsca, z którego rozprowadzane są sygnały. Odpowiedź dostępowy wskazuje na miejsce, które umożliwia dostęp do sieci, ale również nie spełnia roli centralnego punktu dystrybucji. Kluczowe jest zrozumienie, że w kontekście okablowania szkieletowego, punkt dystrybucyjny odpowiada za organizację i zarządzanie kablami oraz sygnałami w sposób efektywny. Oznacza to, że wybór niewłaściwych terminów prowadzi do zamieszania w zakresie funkcjonalności i lokalizacji w sieci. W przypadku błędnych odpowiedzi, istotne jest, aby zwrócić uwagę na podstawowe zasady projektowania sieci, takie jak standardy TIA/EIA, które jasno definiują role poszczególnych punktów w infrastrukturze. Zrozumienie tych różnic jest kluczowe dla efektywnego zarządzania i budowy sieci komputerowych.

Pytanie 19

Program, który ocenia wydajność zestawu komputerowego, to

A. sniffer
B. kompilator
C. benchmark
D. debugger
Benchmark to program służący do oceny wydajności zestawu komputerowego poprzez przeprowadzanie zestawu standaryzowanych testów. Jego głównym celem jest porównanie wydajności różnych komponentów sprzętowych, takich jak procesory, karty graficzne czy pamięci RAM, w warunkach kontrolowanych. Przykłady popularnych benchmarków to Cinebench, 3DMark oraz PassMark, które umożliwiają użytkownikom zarówno oceny aktualnego stanu swojego sprzętu, jak i porównania go z innymi konfiguracjami. Rekomendacje dotyczące użycia benchmarków są ściśle związane z praktykami optymalizacji sprzętu oraz oceny jego zgodności. Użytkownicy mogą również korzystać z wyników benchmarków do planowania przyszłej modernizacji sprzętu oraz do monitorowania wpływu wprowadzanych zmian. Warto pamiętać, że wiarygodność wyników benchmarków zależy od ich prawidłowego przeprowadzenia, co powinno obejmować eliminację wszelkich potencjalnych zakłóceń, takich jak uruchomione w tle aplikacje. Stosowanie benchmarków jest zgodne z najlepszymi praktykami w branży IT, gdzie regularne testy wydajności pozwalają na utrzymanie sprzętu w optymalnym stanie.

Pytanie 20

Jak określić długość prefiksu adresu sieci w adresie IPv4?

A. liczbę bitów o wartości 0 w dwóch pierwszych oktetach adresu IPv4
B. liczbę bitów o wartości 0 w trzech pierwszych oktetach adresu IPv4
C. liczbę bitów o wartości 1 w części hosta adresu IPv4
D. liczbę początkowych bitów mających wartość 1 w masce adresu IPv4
Wybierając odpowiedzi, które wskazują na liczbę bitów mających wartość 0 w oktetach adresu IPv4 lub na bity w części hosta, można wpaść w pułapki błędnego myślenia. Istotne jest, aby zrozumieć, że adres IPv4 składa się z czterech oktetów, z których każdy ma 8 bitów, co daje łącznie 32 bity. Próbując określić długość prefiksu poprzez liczenie bitów o wartości 0, można dojść do błędnych wniosków, ponieważ to właśnie bity o wartości 1 w masce podsieci definiują, jaka część adresu dotyczy sieci. Zrozumienie znaczenia maski sieciowej jest kluczowe; maska ta dzieli adres IP na część sieciową i hostową. Nieprawidłowe podejście do analizy bitów w częściach hosta prowadzi do pomyłek w ocenie, jakie adresy IP mogą być przydzielane w danej podsieci oraz jakie są możliwości jej rozbudowy. Kluczowym błędem jest zatem pomieszanie pojęcia adresu sieci i hosta, co może prowadzić do nieefektywnego zarządzania zasobami adresowymi. Podstawowe zasady projektowania sieci oraz najlepsze praktyki, takie jak te zawarte w standardach IETF, jednoznacznie wskazują na konieczność właściwego zrozumienia maski podsieci i operacji na bitach, aby uniknąć poważnych problemów w zarządzaniu i konfiguracji sieci.

Pytanie 21

Komputer uzyskuje dostęp do Internetu za pośrednictwem sieci lokalnej. Gdy użytkownik wpisuje w przeglądarkę internetową adres www.wp.pl, nie może otworzyć strony WWW, natomiast podanie adresu IP, przykładowo 212.77.100.101, umożliwia otwarcie tej strony. Jakie mogą być tego powody?

A. Brak serwera DNS
B. Brak serwera PROXY
C. Brak serwera WINS
D. Brak adresu bramy
Brak serwera DNS jest kluczowym problemem w tej sytuacji, ponieważ DNS (Domain Name System) odpowiada za tłumaczenie nazw domen na adresy IP. Kiedy użytkownik wpisuje adres strony, np. www.wp.pl, system operacyjny żąda od serwera DNS przetłumaczenia tej nazwy na odpowiadający jej adres IP. Jeśli serwer DNS nie działa lub jest niedostępny, komputer nie jest w stanie nawiązać połączenia z odpowiednim serwerem, co skutkuje brakiem dostępu do strony. W przypadku wpisania bezpośredniego adresu IP, system omija proces DNS, co pozwala na nawiązanie połączenia z serwerem. W praktyce, aby zapewnić prawidłowe działanie aplikacji internetowych i dostęp do zasobów w sieci, ważne jest, aby konfiguracja serwera DNS była poprawna oraz aby urządzenia w sieci miały odpowiednie ustawienia DNS. Standardy branżowe, takie jak RFC 1035, definiują mechanizmy działania DNS, które są kluczowe dla prawidłowego funkcjonowania internetu.

Pytanie 22

Systemy operacyjne należące do rodziny Linux są dystrybuowane na mocy licencji

A. shareware
B. komercyjnej
C. GNU
D. MOLP
Odpowiedź GNU jest prawidłowa, ponieważ systemy operacyjne z rodziny Linux są dystrybuowane głównie na podstawie licencji GNU General Public License (GPL). Ta licencja, stworzona przez fundację Free Software Foundation, ma na celu zapewnienie swobody użytkowania, modyfikacji i dystrybucji oprogramowania. Dzięki temu każda osoba ma prawo do korzystania z kodu źródłowego, co sprzyja innowacjom i współpracy w społeczności programistycznej. Przykładem jest dystrybucja Ubuntu, która jest jedną z najpopularniejszych wersji systemu Linux, dostarczająca użytkownikom łatwy dostęp do potężnych narzędzi, bez konieczności płacenia za licencję. W praktyce, licencje GNU przyczyniają się do tworzenia otwartych i bezpiecznych rozwiązań, które są stale rozwijane przez globalną społeczność. Systemy operacyjne oparte na tej licencji są wykorzystywane w wielu sektorach, od serwerów po urządzenia mobilne, co podkreśla ich znaczenie oraz elastyczność w zastosowaniach komercyjnych i prywatnych.

Pytanie 23

Urządzenie ADSL wykorzystuje się do nawiązania połączenia

A. radiowego
B. cyfrowego symetrycznego
C. cyfrowego asymetrycznego
D. satelitarnego
Ważne jest, aby zrozumieć, że odpowiedzi dotyczące połączeń cyfrowych symetrycznych, radiowych i satelitarnych nie są poprawne w kontekście urządzenia ADSL. Połączenia cyfrowe symetryczne, jak na przykład technologie Ethernet, oferują równą prędkość zarówno dla pobierania, jak i wysyłania danych, co jest przeciwieństwem asymetrycznego charakteru ADSL. Użytkownicy, którzy wybierają symetryczne połączenia, często potrzebują wyższej prędkości wysyłania dla aplikacji takich jak przesyłanie dużych plików czy hosting serwisów internetowych. Z kolei technologie radiowe i satelitarne różnią się od ADSL pod względem sposobu transmisji danych. Połączenia radiowe wykorzystują fale radiowe do dostarczania sygnału, co może wprowadzać większe opóźnienia i problemy z jakością sygnału, zwłaszcza w warunkach atmosferycznych. Z kolei technologie satelitarne, mimo że oferują zasięg w odległych lokalizacjach, mają znaczne opóźnienia wynikające z odległości do satelitów na orbicie, co czyni je mniej praktycznymi dla codziennego użytku porównując do ADSL. Wybór nieodpowiedniej technologii może prowadzić do nieefektywnego korzystania z internetu, dlatego kluczowe jest, aby zrozumieć różnice między nimi oraz odpowiednio dostosować wybór technologii do swoich potrzeb. Zrozumienie tych różnic jest kluczowe w kontekście optymalizacji usług internetowych dla użytkowników końcowych.

Pytanie 24

Taśma drukująca stanowi kluczowy materiał eksploatacyjny w drukarce

A. atramentowej
B. termicznej
C. igłowej
D. laserowej
Taśma barwiąca jest kluczowym elementem w drukarkach igłowych, które działają na zasadzie mechanicznego uderzania igieł w taśmę, w rezultacie co prowadzi do przeniesienia atramentu na papier. Taśma barwiąca składa się z materiału, który ma zdolność do przenoszenia barwnika na powierzchnię papieru, co jest niezbędne do uzyskania wyraźnego wydruku. W przypadku drukarek igłowych, taśmy te są wykorzystywane w zastosowaniach, gdzie wymagana jest duża wydajność oraz niskie koszty eksploatacji, na przykład w biurach, gdzie drukowane są dokumenty masowo. Dobre praktyki branżowe zalecają stosowanie oryginalnych taśm barwiących, ponieważ zapewniają one lepszą jakość druku oraz dłuższą żywotność urządzenia. Warto również pamiętać, że drukarki igłowe są często wykorzystywane w systemach POS (point of sale), gdzie niezawodność, szybkość i niski koszt eksploatacji są kluczowe. Używanie właściwych materiałów eksploatacyjnych, takich jak taśmy barwiące, jest niezbędne do utrzymania wysokiej jakości i efektywności druku.

Pytanie 25

Napięcie dostarczane przez płytę główną dla pamięci typu SDRAM DDR3 może wynosić

A. 1,5 V
B. 1,2 V
C. 2,5 V
D. 3,3 V
Zasilanie pamięci SDRAM DDR3 nie może wynosić 3,3 V, 1,2 V ani 2,5 V z uwagi na szereg podstawowych różnic w konstrukcji i działaniu tych technologii. Pamięci DDR3 zostały zaprojektowane z myślą o efektywności energetycznej, stąd napięcie zasilania zostało obniżone do 1,5 V, co jest istotnym krokiem w kierunku zmniejszenia zużycia energii przez komponenty komputerowe. Napięcie 3,3 V jest typowe dla starszych standardów, takich jak SDR SDRAM lub DDR SDRAM, które nie są już powszechnie stosowane w nowoczesnych systemach. Pamięci z wyższym napięciem mogą prowadzić do większego wydzielania ciepła i mniejszej efektywności energetycznej, co jest niepożądane w dzisiejszych aplikacjach. Z drugiej strony, wartość 1,2 V odnosi się do pamięci DDR4, która jest nowszym standardem i zapewnia jeszcze większą efektywność energetyczną oraz wyższe prędkości transferu danych. Podobnie, napięcie 2,5 V jest związane z technologią DDR2, która również jest już przestarzała. W związku z tym, błędne podejście do napięcia zasilania pamięci DDR3 może prowadzić do nieodpowiedniej konfiguracji systemów, co w konsekwencji może skutkować niestabilnością lub uszkodzeniem podzespołów. Ważne jest, aby dostosować wybór pamięci do specyfikacji producenta płyty głównej oraz systemu, co jest kluczowym elementem w zapewnieniu optymalnej wydajności i niezawodności całego systemu komputerowego.

Pytanie 26

Podaj standard interfejsu wykorzystywanego do przewodowego łączenia dwóch urządzeń.

A. IrDA
B. IEEE 1394
C. WiMAX
D. IEEE 802.15.1
IEEE 1394, znany również jako FireWire, to standard interfejsu, który umożliwia przewodowe połączenie dwóch urządzeń. Charakteryzuje się dużą prędkością przesyłu danych, sięgającą do 400 Mb/s w przypadku wersji 1394a oraz do 800 Mb/s w wersji 1394b. Jest szeroko stosowany w różnych zastosowaniach, takich jak podłączanie kamer cyfrowych, zewnętrznych dysków twardych czy urządzeń audio-wideo. Standard ten jest szczególnie ceniony za swoją zdolność do podłączania wielu urządzeń w architekturze typu „daisy chain”, co pozwala na efektywne zarządzanie kablami i portami. W kontekście profesjonalnego wideo i muzyki, IEEE 1394 zapewnia niską latencję oraz wysoka przepustowość, co czyni go idealnym wyborem dla zastosowań wymagających wysokiej jakości transmisji. Dodatkowo, standard ten wspiera także zasilanie urządzeń, co eliminuje potrzebę użycia dodatkowych kabli zasilających. Warto podkreślić, że pomimo rosnącej popularności USB, IEEE 1394 nadal znajduje swoje miejsce w branżach, gdzie szybkość i niezawodność są kluczowe.

Pytanie 27

Jakie polecenie w systemie Windows powinno być użyte do sprawdzania aktywnych połączeń karty sieciowej w komputerze?

A. Ping
B. Telnet
C. Ipconfig
D. Netstat
Polecenie Netstat jest kluczowym narzędziem w systemie Windows do monitorowania i diagnozowania aktywnych połączeń sieciowych. Umożliwia ono wyświetlenie informacji na temat wszystkich aktywnych połączeń TCP/IP oraz UDP, a także statystyk dotyczących interfejsów sieciowych. Przykładowo, używając polecenia 'netstat -an', użytkownik może szybko zobaczyć wszystkie aktywne połączenia oraz ich statusy, co jest niezwykle przydatne w zarządzaniu bezpieczeństwem sieci. Dla administratorów systemów i specjalistów IT, monitorowanie takich połączeń pozwala na identyfikację potencjalnych zagrożeń, jak nieautoryzowane połączenia, czy też analizy wydajności aplikacji sieciowych. Dobrą praktyką jest regularne korzystanie z tego narzędzia w celu weryfikacji stanu sieci oraz wprowadzenia ewentualnych działań naprawczych. Ponadto, zrozumienie wyników generowanych przez polecenie Netstat jest fundamentalne w kontekście zarządzania ruchem sieciowym oraz optymalizacji jego wydajności.

Pytanie 28

Na rysunku poniżej przedstawiono ustawienia zapory ogniowej w ruterze TL-WR340G. Jakie zasady dotyczące konfiguracji zapory zostały zastosowane?

Ilustracja do pytania
A. Zapora jest nieaktywna, filtrowanie adresów IP oraz domen jest wyłączone, reguła filtrowania adresów IP ustawiona na opcję "zezwalaj pakietom nieokreślonym jakimikolwiek regułami filtrowania przejść przez urządzenie", filtrowanie domen aktywne
B. Zapora jest aktywna, włączone jest filtrowanie adresów IP, reguła filtrowania adresów IP ustawiona na opcję "odmów pakietom nieokreślonym jakimikolwiek regułami filtrowania przejść przez urządzenie", filtrowanie domen wyłączone
C. Zapora jest aktywna, wyłączone jest filtrowanie adresów IP, reguła filtrowania adresów IP ustawiona na opcję "odmów pakietom nieokreślonym jakimikolwiek regułami filtrowania przejść przez urządzenie", filtrowanie domen aktywne
D. Zapora jest aktywna, włączone jest filtrowanie adresów IP, reguła filtrowania adresów IP ustawiona na opcję "zezwalaj pakietom nieokreślonym jakimikolwiek regułami filtrowania przejść przez urządzenie", filtrowanie domen jest wyłączone
Odpowiedź numer 3 jest poprawna ponieważ na załączonym rysunku zapora ogniowa w ruterze TL-WR340G jest włączona co oznacza że urządzenie jest zabezpieczone przed nieautoryzowanym dostępem z zewnątrz. Włączone jest filtrowanie adresów IP co pozwala na kontrolowanie jakie adresy IP mogą się łączyć z siecią dzięki czemu można ograniczyć lub całkowicie zablokować dostęp dla niepożądanych adresów. Reguła filtrowania ustawiona jest na zezwalanie pakietom nieokreślonym innymi regułami co jest przydatne w sytuacjach gdzie sieć musi być otwarta na nowe nieznane wcześniej połączenia ale wymaga to równocześnie staranności przy definiowaniu reguł aby nie dopuścić do sytuacji gdy niepożądany ruch uzyska dostęp. Filtrowanie domen jest wyłączone co oznacza że ruch jest filtrowany tylko na poziomie adresów IP a nie nazw domen co może być wystarczające w przypadku gdy infrastruktura sieciowa nie wymaga dodatkowej warstwy filtracji opierającej się na domenach. Taka konfiguracja jest często stosowana w małych firmach i domowych sieciach gdzie priorytetem jest łatwość administracji przy jednoczesnym zachowaniu podstawowej ochrony sieci.

Pytanie 29

Określenie najlepszej trasy dla połączenia w sieci to

A. sniffing
B. routing
C. conntrack
D. tracking
Routing to kluczowy proces w sieciach komputerowych, który polega na wyznaczaniu optymalnej trasy dla przesyłanych danych między różnymi punktami w sieci. Umożliwia to efektywne przesyłanie informacji, minimalizując opóźnienia i maksymalizując wydajność. W praktyce routing jest realizowany przez urządzenia takie jak routery, które analizują przychodzące pakiety danych i decydują, gdzie je przekierować na podstawie zdefiniowanych tras w tablicach routingu. Standardy takie jak RIP (Routing Information Protocol) czy OSPF (Open Shortest Path First) są powszechnie stosowane w branży do zarządzania trasami. W kontekście praktycznych zastosowań, routing jest niezbędny w każdej infrastrukturze sieciowej, od małych biur po rozległe sieci korporacyjne, zapewniając, że dane są dostarczane w najefektywniejszy sposób. Na przykład, w sieci WAN routing pozwala na łączenie wielu lokalizacji geograficznych, co jest kluczowe dla globalnych firm. Wiedza na temat routing jest fundamentalna dla administratorów sieci i inżynierów IT, pozwala im na optymalizację i troubleshootowanie problemów związanych z przesyłem danych.

Pytanie 30

Program iftop działający w systemie Linux ma na celu

A. kończenie procesu, który zużywa najwięcej zasobów procesora
B. ustawianie parametrów interfejsu graficznego
C. prezentowanie bieżącej prędkości zapisu w pamięci operacyjnej
D. monitorowanie aktywności połączeń sieciowych
Program iftop jest narzędziem służącym do monitorowania połączeń sieciowych w systemie Linux. Jego główną funkcjonalnością jest wyświetlanie danych dotyczących aktywności sieciowej w czasie rzeczywistym. Użytkownik może zobaczyć, które adresy IP są najbardziej aktywne, jak również ilość przesyłanych danych w określonym czasie. Dzięki temu administratorzy sieci mogą szybko identyfikować potencjalne problemy, takie jak nadmierne obciążenie sieci, działania złośliwe lub błędy konfiguracyjne. Dodatkowo, iftop umożliwia filtrowanie wyników według interfejsów sieciowych oraz protokołów, co zwiększa jego użyteczność w bardziej złożonych środowiskach. W praktyce, narzędzie to jest często wykorzystywane w połączeniu z innymi narzędziami do monitorowania sieci, takimi jak Wireshark, aby uzyskać pełniejszy obraz stanu infrastruktury sieciowej. Jeżeli chcesz dowiedzieć się więcej o monitoringach sieciowych, warto zaznajomić się z protokołem SNMP oraz narzędziami do jego implementacji.

Pytanie 31

Narzędzie zaprezentowane na rysunku jest wykorzystywane do przeprowadzania testów

Ilustracja do pytania
A. karty sieciowej
B. zasilacza
C. okablowania LAN
D. płyty głównej
Widoczny na rysunku tester okablowania LAN jest specjalistycznym narzędziem używanym do sprawdzania poprawności połączeń w kablach sieciowych takich jak te zakończone złączami RJ-45. Tester taki pozwala na wykrycie błędów w połączeniach kablowych takich jak zwarcia przerwy w obwodzie czy błędne parowanie przewodów co jest kluczowe dla prawidłowego funkcjonowania sieci komputerowej. Praktyczne zastosowanie tego narzędzia obejmuje diagnozowanie problemów sieciowych w biurach i centrach danych gdzie poprawne połączenia sieciowe są niezbędne do zapewnienia stabilnej i szybkiej transmisji danych. Tester przewodów LAN działa zazwyczaj poprzez wysyłanie sygnału elektrycznego przez poszczególne pary przewodów w kablu i weryfikację jego poprawnego odbioru na drugim końcu. Jest to zgodne z normami takimi jak TIA/EIA-568 które określają standardy okablowania strukturalnego. Ponadto dobre praktyki inżynierskie zalecają regularne testowanie nowo zainstalowanych kabli oraz okresową weryfikację istniejącej infrastruktury co może zapobiec wielu problemom sieciowym i umożliwić szybką diagnozę usterek.

Pytanie 32

Czym zajmuje się usługa DNS?

A. weryfikacja poprawności adresów domenowych
B. przekład adresów IP na nazwy domenowe
C. przekład nazw domenowych na adresy IP
D. weryfikacja poprawności adresów IP
Usługa DNS (Domain Name System) pełni kluczową rolę w internecie, umożliwiając translację nazw domenowych na adresy IP. Dzięki temu użytkownicy mogą wprowadzać przyjazne dla człowieka adresy, takie jak www.przyklad.pl, zamiast trudnych do zapamiętania ciągów cyfr. Proces ten odbywa się poprzez zapytania do serwerów DNS, które odpowiadają odpowiednim adresom IP, umożliwiając przeglądarkom internetowym łączenie się z odpowiednimi serwerami. Przykładowo, gdy wpisujesz adres www.example.com, twoje urządzenie wysyła zapytanie do serwera DNS, który zwraca adres IP, do którego należy ta strona. Istotne jest, że DNS nie tylko ułatwia korzystanie z internetu, ale również wspiera bezpieczeństwo poprzez różne mechanizmy, takie jak DNSSEC, które weryfikują autentyczność danych. Dobrą praktyką jest również korzystanie z rozproszonych serwerów DNS, co zwiększa odporność na awarie i ataki DDoS. Wzmacnia to wydajność i niezawodność połączeń sieciowych, co jest kluczowe w dzisiejszym świecie, w którym zaufanie do infrastruktury internetowej jest niezbędne.

Pytanie 33

Minimalna odległość toru nieekranowanego kabla sieciowego od instalacji oświetleniowej powinna wynosić

A. 20cm
B. 50cm
C. 30cm
D. 40cm
Odległość 30 cm pomiędzy torami nieekranowanych kabli sieciowych a instalacjami elektrycznymi jest zgodna z ogólnie przyjętymi normami dotyczącymi instalacji telekomunikacyjnych i elektrycznych, w tym z wytycznymi określonymi w normie PN-EN 50174-2. Ta odległość ma kluczowe znaczenie dla zapewnienia ochrony przed zakłóceniami elektromagnetycznymi, które mogą negatywnie wpływać na jakość sygnału przesyłanego przez kable sieciowe. Przykładowo, w przypadku instalacji w biurze, gdzie przewody sieciowe są często prowadzone w pobliżu instalacji oświetleniowych, odpowiednia separacja zmniejsza ryzyko wpływu zakłóceń, co przekłada się na stabilność połączeń internetowych. Utrzymanie minimalnej odległości 30 cm zapewnia również zgodność z wymaganiami bezpieczeństwa, co jest istotne dla długoterminowej niezawodności systemów komunikacyjnych.

Pytanie 34

Aby skopiować katalog c: est z podkatalogami na dysk przenośny f: w systemie Windows 7, jakie polecenie należy zastosować?

A. copy f: est c: est/E
B. xcopy c: est f: est/E
C. xcopy f: est c: est/E
D. copy c: est f: est/E
Polecenie xcopy c:\est f:\est /E jest poprawne, ponieważ xcopy jest zaawansowanym narzędziem w systemie Windows, które umożliwia kopiowanie plików oraz katalogów, w tym podkatalogów, co jest istotne w tym przypadku. Opcja /E pozwala na skopiowanie wszystkich katalogów, w tym pustych, co może być kluczowe dla zachowania struktury katalogów źródłowych. W praktyce, używanie xcopy jest standardową praktyką podczas przenoszenia dużych zbiorów danych między różnymi nośnikami, szczególnie gdy wymagane jest zachowanie hierarchii folderów. Przykładowo, w przypadku archiwizacji projektów, gdzie każdy projekt miałby swoją strukturę folderów, korzystając z xcopy, można łatwo przenieść wszystko w jednym kroku, co oszczędza czas i minimalizuje ryzyko pominięcia plików. Warto również wspomnieć, że w przypadku pracy z dużymi ilościami danych, xcopy oferuje dodatkowe opcje, takie jak /C, które pozwalają na kontynuowanie kopiowania w przypadku wystąpienia błędów, co zwiększa niezawodność procesu. Zrozumienie i umiejętność korzystania z polecenia xcopy jest niezbędne dla administratorów systemów i użytkowników, którzy regularnie zarządzają danymi.

Pytanie 35

W dokumentacji technicznej procesora znajdującego się na płycie głównej komputera, jaką jednostkę miary stosuje się do określenia szybkości zegara?

A. s
B. GHz/s
C. kHz
D. GHz
Odpowiedź, którą zaznaczyłeś, to GHz i to jest całkiem dobre! To jednostka częstotliwości, którą często używamy, żeby mówić o szybkości zegara w procesorach komputerowych. Gigaherc oznacza miliard cykli na sekundę, co ma spory wpływ na wydajność danego procesora. Im wyższa częstotliwość, tym sprawniej procesor radzi sobie z różnymi zadaniami. Na przykład, procesor z częstotliwością 3.5 GHz potrafi wykonać 3.5 miliarda cykli w każdej sekundzie, co jest naprawdę przydatne w grach czy programach wymagających dużej mocy do obliczeń. W branży komputerowej takie standardy jak Intel Turbo Boost czy AMD Turbo Core też bazują na GHz, dostosowując moc procesora do aktualnego obciążenia. Ważne jest, żeby znać te jednostki, bo zrozumienie ich wpływu na działanie komputerów jest kluczowe dla każdego, kto ma z nimi do czynienia.

Pytanie 36

Protokół transportowy bez połączenia w modelu ISO/OSI to

A. STP
B. FTP
C. TCP
D. UDP
UDP, czyli User Datagram Protocol, jest bezpołączeniowym protokołem warstwy transportowej, który działa na modelu ISO/OSI. Jego główną cechą jest to, że nie nawiązuje trwałego połączenia przed przesłaniem danych, co pozwala na szybszą transmisję, ale kosztem pewności dostarczenia. UDP jest często wykorzystywany w aplikacjach czasu rzeczywistego, takich jak strumieniowanie wideo, gry online oraz VoIP, gdzie opóźnienia są bardziej istotne niż całkowita niezawodność. W przeciwieństwie do TCP, który zapewnia mechanizmy kontroli błędów i retransmisji, UDP nie gwarantuje dostarczenia pakietów, co czyni go idealnym do zastosowań, gdzie szybkość jest kluczowa, a niewielkie straty danych są akceptowalne. Przykładem zastosowania UDP w praktyce może być transmisja głosu w czasie rzeczywistym, gdzie opóźnienia są niepożądane, a niewielkie zniekształcenia lub utraty pakietów są tolerowane. W kontekście dobrych praktyk branżowych, UDP jest zalecany w sytuacjach, gdzie minimalizacja opóźnień jest priorytetem, a aplikacje są zaprojektowane z myślą o obsłudze potencjalnych strat danych.

Pytanie 37

Jakie urządzenie diagnostyczne jest pokazane na ilustracji oraz opisane w specyfikacji zawartej w tabeli?

Ilustracja do pytania
A. Reflektometr optyczny
B. Multimetr cyfrowy
C. Analizator sieci bezprzewodowych
D. Diodowy tester okablowania
Analizator sieci bezprzewodowych to zaawansowane urządzenie diagnostyczne przeznaczone do zarządzania i analizy sieci WLAN. Jego główną funkcją jest monitorowanie i ocena wydajności sieci bezprzewodowych zgodnych ze standardami 802.11 a/b/g/n. Urządzenie to pozwala na identyfikację źródeł zakłóceń i optymalizację wydajności, co jest kluczowe dla utrzymania wysokiej jakości usług sieciowych. Dzięki możliwości analizowania konfiguracji, oceny zabezpieczeń przed zagrożeniami oraz rozwiązywania problemów związanych z połączeniami, analizator jest nieocenionym narzędziem dla administratorów sieci. Często stosowany jest w przedsiębiorstwach, gdzie stabilność i optymalizacja sieci są priorytetem. Urządzenia te wspierają również raportowanie, co jest istotne dla dokumentacji i analizy długoterminowej. Dobre praktyki branżowe zalecają regularne korzystanie z analizatorów w celu utrzymania sieci w optymalnym stanie i szybkiego reagowania na ewentualne problemy. Ponadto, możliwość podłączenia anteny zewnętrznej zwiększa jego funkcjonalność, umożliwiając precyzyjne pomiary w różnych warunkach środowiskowych.

Pytanie 38

Aby uzyskać listę procesów aktualnie działających w systemie Linux, należy użyć polecenia

A. dir
B. show
C. who
D. ps
Polecenie 'ps' w systemie Linux jest kluczowym narzędziem do monitorowania i zarządzania procesami działającymi w systemie. Jego pełna forma to 'process status', a jego zadaniem jest wyświetlenie informacji o aktualnie uruchomionych procesach, takich jak ich identyfikatory PID, wykorzystanie pamięci, stan oraz czas CPU. Dzięki możliwościom filtrowania i formatowania wyników, 'ps' jest niezwykle elastyczne, co czyni je niezastąpionym narzędziem w codziennej administracji systemami. Na przykład, użycie polecenia 'ps aux' pozwala uzyskać pełen widok na wszystkie procesy, w tym te uruchomione przez innych użytkowników. W praktyce, administratorzy często łączą 'ps' z innymi poleceniami, takimi jak 'grep', aby szybko zidentyfikować konkretne procesy, co jest zgodne z dobrymi praktykami zarządzania systemami. Zrozumienie i umiejętność korzystania z 'ps' jest fundamentem dla każdego, kto zajmuje się administracją systemów Linux, a jego znajomość jest kluczowym elementem w rozwiązywaniu problemów związanych z wydajnością czy zarządzaniem zasobami.

Pytanie 39

NAT64 (Network Address Translation 64) to proces, który przekształca adresy

A. MAC na adresy IPv4
B. IPv4 na adresy MAC
C. prywatne na adresy publiczne
D. IPv4 na adresy IPv6
Zrozumienie procesu NAT64 wymaga znajomości podstawowych zasad działania adresacji w sieciach komputerowych. Odpowiedzi, które wskazują na mapowanie adresów IPv4 na adresy MAC, prywatne na publiczne czy MAC na IPv4, wskazują na istotne nieporozumienia w zakresie funkcji i zastosowania NAT. NAT64 nie jest związany z adresacją MAC, która dotyczy warstwy drugiej modelu OSI, podczas gdy NAT64 operuje na warstwie trzeciej, koncentrując się na adresach IP. Próba mapowania adresów prywatnych na publiczne odnosi się bardziej do tradycyjnego NAT, który służy do ukrywania układów adresów prywatnych w Internecie. W przypadku NAT64 dochodzi do translacji między różnymi wersjami protokołów IP, co nie ma na celu zmiany miejsca przechowywania adresu w warstwie sieciowej, lecz umożliwienie komunikacji między sieciami używającymi różnych standardów. Ponadto, mapa z adresów MAC na IPv4 jest zupełnie nieadekwatna, ponieważ MAC to adres sprzętowy, natomiast IPv4 jest adresem sieciowym. Zrozumienie tych różnic oraz prawidłowe postrzeganie sposobu, w jaki NAT64 funkcjonuje, jest kluczowe dla dalszego rozwoju i zastosowania technologii sieciowych, szczególnie w kontekście rosnącego znaczenia IPv6.

Pytanie 40

Ile bajtów odpowiada jednemu terabajtowi?

A. 10^14 bajtów
B. 10^8 bajtów
C. 10^12 bajtów
D. 10^10 bajtów
Odpowiedź 10^12 bajtów jest prawidłowa, ponieważ jeden terabajt (TB) w standardzie międzynarodowym odpowiada 1 000 000 000 000 bajtów, co można zapisać jako 10^12. W praktyce oznacza to, że terabajt to jednostka miary powszechnie stosowana w informatyce i technologii komputerowej do określania pojemności pamięci, zarówno w dyskach twardych, jak i w pamięciach flash. Warto zaznaczyć, że w niektórych kontekstach terabajt jest używany w odniesieniu do systemu binarnego, gdzie 1 TB równoważy się z 2^40 bajtów, co daje 1 099 511 627 776 bajtów. Zrozumienie różnicy między tymi systemami jest istotne, szczególnie przy planowaniu przestrzeni dyskowej i zarządzaniu danymi. Przykładowo, zakup dysku twardego o pojemności 1 TB oznacza, że możemy przechować około 250 000 zdjęć, 250 000 utworów muzycznych lub od 300 do 600 godzin filmów w jakości standardowej, co ilustruje praktyczne zastosowanie tej jednostki. W branży technologicznej standardy jednostek miary są kluczowe dla zapewnienia zgodności i zrozumienia pomiędzy różnymi systemami i produktami.