Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 7 kwietnia 2025 08:08
  • Data zakończenia: 7 kwietnia 2025 08:31

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Administrator systemu Linux wykonał listę zawartości folderu /home/szkola w terminalu, uzyskując następujący wynik -rwx -x r-x 1 admin admin 25 04-09 15:17 szkola.txt. Następnie wpisał polecenie: ```chmod ug=rw szkola.txt | ls -l``` Jaki rezultat jego działania zostanie pokazany w terminalu?

A. -rwx r-x r-x 1 admin admin 25 04-09 15:17 szkola.txt
B. -rw- rw- r-x 1 admin admin 25 04-09 15:17 szkola.txt
C. -rw- rw- rw- 1 admin admin 25 04-09 15:17 szkola.txt
D. -rwx ~x rw- 1 admin admin 25 04-09 15:17 szkola.txt
Wybrane odpowiedzi nie odzwierciedlają poprawnego rozumienia mechanizmu zarządzania uprawnieniami w systemie Linux. W przypadku niepoprawnych odpowiedzi, pojawiają się poważne niedociągnięcia w interpretacji działania polecenia 'chmod'. Warto zauważyć, że uprawnienia są definiowane w trzech sekcjach: dla właściciela, grupy oraz innych użytkowników. Zmiana uprawnień za pomocą 'chmod ug=rw' powoduje, że tylko te uprawnienia są przyznawane właścicielowi oraz grupie, natomiast uprawnienia dla pozostałych użytkowników pozostają nietknięte. Niektóre odpowiedzi sugerują, że uprawnienia dla wszystkich użytkowników uległyby zmianie, co jest błędne. Tego rodzaju nieporozumienia mogą wynikać z braku zrozumienia kluczowych elementów składni polecenia 'chmod', w tym użycia operatorów przypisania (=) oraz ich konsekwencji dla uprawnień. W rzeczywistości, stosując polecenie 'chmod', należy zawsze mieć na uwadze, czy zmiany dotyczą wszystkich użytkowników, czy tylko określonych grup. Dodatkowo, przy przyznawaniu uprawnień, warto stosować zasady minimalnych uprawnień, aby zredukować ryzyko niewłaściwego dostępu do wrażliwych danych.

Pytanie 2

Aby utworzyć kontroler domeny w systemach z rodziny Windows Server na serwerze lokalnym, konieczne jest zainstalowanie roli

A. usług domenowej w Active Directory
B. usług certyfikatów w Active Directory
C. usług zarządzania prawami dostępu w Active Directory
D. usług LDS w Active Directory
Usługi domenowe w usłudze Active Directory (AD DS) są kluczowym elementem infrastruktury Windows Server, które umożliwiają tworzenie i zarządzanie domenami, a tym samym kontrolerami domeny. Kontroler domeny jest serwerem, który autoryzuje i uwierzytelnia użytkowników oraz komputery w sieci, a także zarządza politykami zabezpieczeń. Instalacja roli AD DS na serwerze Windows Server pozwala na stworzenie struktury katalogowej, która jest niezbędna do prawidłowego funkcjonowania usług takich jak logowanie do sieci, zarządzanie dostępem do zasobów oraz centralne zarządzanie politykami grupowymi (GPO). Przykładem zastosowania tej roli może być organizacja, która chce wprowadzić jednolite zarządzanie kontami użytkowników i komputerów w wielu lokalizacjach. Dodatkowo, zgodnie z najlepszymi praktykami IT, każda instytucja korzystająca z systemów Windows powinna mieć w swojej architekturze przynajmniej jeden kontroler domeny, aby zapewnić ciągłość działania i bezpieczeństwo operacji sieciowych.

Pytanie 3

Na płycie głównej uszkodzona została zintegrowana karta sieciowa. Komputer nie ma zainstalowanego dysku twardego ani żadnych innych napędów, takich jak stacja dysków czy CD-ROM. Klient informuje, że w firmowej sieci komputery nie mają napędów, a wszystko "czyta" się z serwera. W celu przywrócenia utraconej funkcji należy zainstalować

A. kartę sieciową samodzielnie wspierającą funkcję Postboot Execution Enumeration w gnieździe rozszerzeń
B. napęd CD-ROM w komputerze
C. kartę sieciową  samodzielnie wspierającą funkcję Preboot Execution Environment w gnieździe rozszerzeń
D. dysk twardy w komputerze
Odpowiedź dotycząca zainstalowania karty sieciowej wspierającej funkcję Preboot Execution Environment (PXE) jest poprawna, ponieważ PXE pozwala na uruchamianie systemu operacyjnego z serwera poprzez sieć. W przypadku, gdy komputer nie ma zainstalowanego dysku twardego ani napędów optycznych, PXE staje się kluczowym rozwiązaniem, umożliwiającym klientowi korzystanie z zasobów dostępnych na serwerze. Karta sieciowa z obsługą PXE pozwala na zdalne bootowanie i ładowanie systemów operacyjnych oraz aplikacji bez potrzeby posiadania lokalnych nośników pamięci. Przykłady zastosowania tej technologii można znaleźć w środowiskach korporacyjnych, gdzie często korzysta się z centralnych serwerów do zarządzania i aktualizacji systemów operacyjnych na wielu komputerach. Implementacja PXE znacząco upraszcza proces instalacji oraz zarządzania oprogramowaniem, zgodnie z najlepszymi praktykami IT oraz standardami branżowymi, jak na przykład ITIL.

Pytanie 4

Aby stworzyć bezpieczny wirtualny tunel pomiędzy dwoma komputerami korzystającymi z Internetu, należy użyć technologii

A. VLAN (Virtual Local Area Network)
B. EVN (Easy Virtual Network)
C. VPN (Virtual Private Network)
D. VoIP (Voice over Internet Protocol)
Wybór odpowiedzi związanych z EVN, VoIP oraz VLAN może wynikać z niepełnego zrozumienia funkcji i zastosowania tych technologii. EVN, czyli łatwa sieć wirtualna, nie jest standardowo uznawana za technologię umożliwiającą tworzenie bezpiecznych tuneli, a raczej odnosi się do prostszych form zdalnego dostępu. VoIP, czyli protokół głosowy w Internecie, skupia się głównie na przesyłaniu dźwięku, co sprawia, że nie ma zastosowania w kontekście tworzenia bezpiecznych tuneli danych. Ta technologia ma zupełnie inną funkcję, koncentrując się na komunikacji głosowej, a nie na bezpieczeństwie przesyłanych informacji. VLAN, z kolei, to technologia stosowana do segmentacji sieci lokalnych, co pozwala na organizację ruchu w sieci, ale nie zapewnia szyfrowania ani bezpiecznego połączenia przez Internet. Często osoby mylą VLAN z VPN, nie dostrzegając kluczowej różnicy między nimi. Błędne przypisanie tych technologii do kontekstu bezpieczeństwa danych może prowadzić do poważnych luk w zabezpieczeniach. Dlatego ważne jest zrozumienie, że dla zapewnienia bezpieczeństwa komunikacji w Internecie, VPN jest niezbędnym narzędziem, podczas gdy inne wymienione technologie pełnią inne funkcje i nie są przeznaczone do zabezpieczania połączeń między komputerami.

Pytanie 5

Aby zwiększyć bezpieczeństwo osobistych danych podczas przeglądania stron internetowych, warto dezaktywować w ustawieniach przeglądarki

A. powiadomienia o wygasłych certyfikatach
B. blokowanie wyskakujących okienek
C. monity dotyczące uruchamiania skryptów
D. funkcję zapamiętywania haseł
Wyłączenie opcji zapamiętywania haseł w przeglądarkach to naprawdę ważny krok, jeśli chodzi o bezpieczeństwo twoich danych. Może i to jest wygodne, ale z drugiej strony, przechowywanie haseł w przeglądarkach może narazić cię na problemy, na przykład mogą je wykradać złośliwe programy. Wyobraź sobie, że ktoś dostaje się do twojego komputera i łatwo wyciąga wszystkie twoje hasła - to by było nieprzyjemne, prawda? Dlatego lepiej jest korzystać z menedżera haseł, który szyfruje twoje dane i trzyma je w bezpiecznym miejscu. To jest naprawdę zgodne z najlepszymi praktykami w branży, żeby nie trzymać haseł w przeglądarkach. Takie podejście zmniejsza ryzyko utraty ważnych informacji, a ty możesz korzystać z mocniejszych, unikalnych haseł do każdego konta. To się nazywa zdrowy rozsądek w kwestii bezpieczeństwa!

Pytanie 6

Aby chronić sieć WiFi przed nieautoryzowanym dostępem, należy między innymi

A. korzystać tylko z kanałów wykorzystywanych przez inne sieci WiFi
B. dezaktywować szyfrowanie informacji
C. wybrać nazwę identyfikatora sieci SSID o długości co najmniej 16 znaków
D. włączyć filtrowanie adresów MAC
Włączenie filtrowania adresów MAC jest skuteczną metodą zabezpieczania sieci bezprzewodowej przed nieautoryzowanym dostępem. Filtrowanie adresów MAC polega na zezwalaniu na dostęp do sieci wyłącznie urządzeniom, których unikalne adresy fizyczne (MAC) zostały wcześniej zapisane w urządzeniu routera lub punktu dostępowego. Dzięki temu, nawet jeśli potencjalny intruz zna nazwę SSID i hasło do sieci, nie będzie mógł uzyskać dostępu, jeśli jego adres MAC nie znajduje się na liście dozwolonych. Praktyczne zastosowanie tej metody polega na regularnej aktualizacji listy dozwolonych adresów, szczególnie po dodaniu nowych urządzeń. Warto jednak pamiętać, że filtrowanie adresów MAC nie jest niezawodną metodą, ponieważ adresy MAC mogą być fałszowane przez bardziej zaawansowanych hakerów. Dlatego zaleca się stosowanie tej techniki w połączeniu z innymi metodami zabezpieczania, takimi jak silne szyfrowanie WPA3, które oferuje lepszą ochronę danych przesyłanych przez sieć. Filtrowanie adresów MAC jest zgodne z dobrymi praktykami bezpieczeństwa w sieciach lokalnych i jest szeroko stosowane w środowiskach zarówno domowych, jak i biznesowych.

Pytanie 7

Możliwość odzyskania listy kontaktów na telefonie z systemem Android występuje, jeśli użytkownik wcześniej zsynchronizował dane urządzenia z Google Drive za pomocą

A. konta Yahoo
B. konta Microsoft
C. konta Google
D. jakiegokolwiek konta pocztowego z portalu Onet
Konta Google to świetna opcja, jeśli chodzi o synchronizację danych na telefonach z Androidem. Jak to działa? Kiedy synchronizujesz swoje konto, to automatycznie przesyłane są twoje kontakty, kalendarze i inne dane do chmury. Dzięki temu, jeśli zmienisz telefon lub coś stracisz, możesz w prosty sposób odzyskać wszystko. Na przykład, kupując nowy telefon, wystarczy, że zalogujesz się na konto Google, a wszystkie twoje kontakty wracają na miejsce. To naprawdę przydatne! Warto pamiętać, żeby zawsze mieć włączoną synchronizację kontaktów w ustawieniach, bo dzięki temu twoje dane są bezpieczne i na wyciągnięcie ręki.

Pytanie 8

Płyta główna z gniazdem G2 będzie kompatybilna z procesorem

A. AMD Opteron
B. AMD Trinity
C. Intel Pentium 4 EE
D. Intel Core i7
Podejmując decyzję o wyborze procesora do płyty głównej z gniazdem G2, ważne jest zrozumienie, że nie wszystkie procesory są ze sobą kompatybilne. W przypadku AMD Trinity oraz AMD Opteron, oba te procesory są zaprojektowane do współpracy z innymi gniazdami, odpowiednio FM1 i Socket G34. Właściwa architektura i standardy gniazd są kluczowe dla zapewnienia prawidłowego działania systemu. Często spotykanym błędem w procesie wyboru procesora jest założenie, że wystarczy tylko dopasować nazwę modelu, a nie uwzględnić specyfikacji gniazda. Ponadto, Intel Pentium 4 EE jest przestarzałym procesorem, który korzysta z gniazda LGA 775, co sprawia, że również nie będzie współpracował z płytą główną G2. Osoby, które nieznajomość standardów gniazd i architektury procesorów mogą prowadzić do nieprawidłowych założeń i, w efekcie, wyboru niewłaściwych komponentów. Aby uniknąć takich błędów, warto przed zakupem dokładnie sprawdzić specyfikacje płyty głównej oraz procesora, korzystając z zasobów internetowych oraz dokumentacji producentów. Rozumienie różnic w gniazdach oraz architekturze procesorów jest kluczowe dla budowy wydajnego i stabilnego komputera.

Pytanie 9

Zarządzanie partycjami w systemach operacyjnych Windows

A. umożliwiają określenie maksymalnej wielkości przestrzeni dyskowej dla kont użytkowników
B. przydzielają etykietę (np. C) dla konkretnej partycji
C. przydzielają partycje na nośnikach
D. oferują podstawowe funkcje diagnostyczne, defragmentację oraz checkdisk
Analizując pozostałe odpowiedzi, można zauważyć, że niektóre z nich wprowadzają w błąd, dotyczące funkcji przydziałów dyskowych. Na przykład, stwierdzenie, że przydziały dyskowe przydzielają etykietę dla danej partycji, jest nieścisłe. Etykieta partycji to nazwa nadawana dyskom i partycjom w celu identyfikacji, ale nie jest to funkcja przydziałów dyskowych. Przydziały są bardziej związane z kontrolą zasobów niż z etykietowaniem. Inna koncepcja dotycząca przydzielania partycji na dyskach jest również myląca. Przydziały dyskowe nie są odpowiedzialne za tworzenie czy zarządzanie partycjami, co jest zadaniem administratora systemu operacyjnego oraz narzędzi do partycjonowania dysków. Funkcjonalności takie jak diagnostyka, defragmentacja i checkdisk dotyczą utrzymania i konserwacji systemu plików, ale nie są związane bezpośrednio z przydziałami dyskowymi. Wprowadzanie w błąd i mylenie tych pojęć może prowadzić do nieefektywnego zarządzania zasobami dyskowymi, co w dłuższym okresie może wpływać na wydajność systemu i zadowolenie użytkowników. Dlatego zrozumienie różnicy między tymi konceptami jest kluczowe dla prawidłowego zarządzania systemami Windows.

Pytanie 10

Na płycie głównej z gniazdem pokazanym na fotografii możliwe jest zainstalowanie procesora

Ilustracja do pytania
A. AMD Sempron 2800+, 1600 MHz, s-754
B. AMD FX-6300, s-AM3+, 3.5GHz, 14MB
C. Intel Xeon E3-1240V5, 3.9GHz, s-1151
D. Intel i9-7940X, s-2066 3.10GHz 19.25MB
Gniazdo AM3+ na płycie głównej jest zgodne z procesorami AMD, takimi jak AMD FX-6300. Gniazdo AM3+ jest ulepszoną wersją gniazda AM3, oferującą lepsze wsparcie dla procesorów z większą liczbą rdzeni i wyższymi częstotliwościami taktowania. Procesory FX są znane ze swojej wielowątkowości, co czyni je atrakcyjnymi dla użytkowników, którzy korzystają z aplikacji wymagających dużej mocy obliczeniowej, takich jak renderowanie grafiki 3D czy edycja wideo. Instalacja zgodnego procesora w odpowiednim gnieździe jest kluczowa dla stabilności i wydajności systemu. Wybierając odpowiedni procesor, użytkownik może skorzystać z możliwości overclockingu, co jest popularne w przypadku serii FX. Zastosowanie procesora w odpowiednim gnieździe zgodnym z jego specyfikacją techniczną zapewnia optymalne działanie systemu oraz długowieczność komponentów, co jest zgodne z dobrymi praktykami branżowymi. Zapewnia to także łatwiejsze aktualizacje i modernizacje, co jest istotnym aspektem planowania zasobów IT.

Pytanie 11

Impulsator pozwala na diagnozowanie uszkodzonych układów logicznych komputera między innymi poprzez

A. analizę stanów logicznych obwodów cyfrowych
B. sprawdzenie stanu wyjściowego układu
C. wprowadzenie na wejście układu stanu wysokiego
D. kalibrację mierzonych parametrów elektrycznych
Odczytanie stanu wyjściowego układu nie jest funkcją impulsatora, lecz jest zadaniem narzędzi pomiarowych, takich jak multimetru lub oscyloskopu. Te urządzenia pozwalają na bezpośredni pomiar napięcia na wyjściu układów logicznych, jednak nie są skonstruowane do wprowadzania sygnałów na wejście. Podawanie na wejście układu stanu wysokiego jest kluczowe dla testów, ale samo odczytanie stanu wyjściowego nie dostarcza informacji o wydajności układu w reakcji na zmiany sygnałów. Kalibracja mierzonych wielkości elektrycznych dotyczy raczej precyzyjnych pomiarów parametrów elektrycznych, a nie testowania logiki układów. Kalibracja jest procesem dostosowywania urządzenia pomiarowego, by uzyskać dokładne wyniki, ale nie ma związku z bezpośrednim testowaniem układów logicznych. Badanie stanów logicznych obwodów cyfrowych jest ogólnym określeniem działań związanych z analizą, lecz nie odnosi się bezpośrednio do funkcji impulsatora. Typowym błędem jest mylenie funkcji testowania z pomiarem, co prowadzi do nieprawidłowych wniosków dotyczących zastosowania impulsatorów. W rzeczywistości, impulsator koncentruje się na wprowadzaniu sygnałów, a nie na pasywnym obserwowaniu wyjść układów.

Pytanie 12

Do wymiany uszkodzonych kondensatorów w karcie graficznej potrzebne jest

A. żywica epoksydowa
B. klej cyjanoakrylowy
C. wkrętak krzyżowy oraz opaska zaciskowa
D. lutownica z cyną i kalafonią
Wymiana uszkodzonych kondensatorów na karcie graficznej wymaga precyzyjnych narzędzi, a lutownica z cyną i kalafonią jest kluczowym elementem tego procesu. Lutownica dostarcza odpowiednią temperaturę, co jest niezbędne do stopienia cyny, która łączy kondensator z płytą główną karty graficznej. Kalafonia pełni rolę topnika, ułatwiając równomierne pokrycie miedzi lutowiem oraz poprawiając przyczepność, co jest istotne dla długotrwałej niezawodności połączenia. Używając lutownicy, ważne jest, aby pracować w dobrze wentylowanym pomieszczeniu i stosować techniki, które minimalizują ryzyko uszkodzenia innych komponentów, np. poprzez stosowanie podstawki do lutowania, która izoluje ciepło. Obecne standardy w naprawie elektroniki, takie jak IPC-A-610, zalecają również przeprowadzenie testów połączeń po zakończeniu lutowania, aby upewnić się, że nie występują zimne luty lub przerwy w połączeniach. Takie podejście zapewnia nie tylko poprawne działanie karty graficznej, ale również wydłuża jej żywotność.

Pytanie 13

Jakie napięcie jest dostarczane przez płytę główną do pamięci typu SDRAM DDR3?

A. 1,2V
B. 2,5V
C. 1,5V
D. 3,3V
Odpowiedzi 1,2V, 2,5V i 3,3V są niewłaściwe w kontekście zasilania pamięci SDRAM DDR3. Wybór 1,2V jest często związany z pamięciami typu DDR4, które rzeczywiście operują na niższym napięciu, co czyni je bardziej efektywnymi pod względem energetycznym w porównaniu do DDR3. Jednak, dla DDR3, zasilanie z napięciem 1,2V nie zapewnia stabilności, co może prowadzić do błędów w danych oraz niestabilnego działania systemu. Z kolei odpowiedź 2,5V była standardem dla pamięci DDR2 i jest już przestarzała w kontekście nowoczesnych technologii pamięci. Użycie tak wysokiego napięcia w przypadku DDR3 mogłoby skutkować uszkodzeniem komponentów, a także zwiększonym wydzielaniem ciepła, co negatywnie wpływa na ogólną wydajność i żywotność sprzętu. Odpowiedź 3,3V również nie jest odpowiednia, ponieważ takie napięcie jest stosowane głównie w starszych systemach i dla niektórych typów chipów, ale nie w DDR3. Wybierając niewłaściwe napięcie, można napotkać problemy z kompatybilnością i stabilnością systemu, co jest typowym błędem myślowym, gdzie użytkownicy mogą mylnie porównywać różne standardy pamięci bez zrozumienia ich specyfikacji. Dlatego kluczowe jest, aby dobrze zrozumieć różnice w napięciach operacyjnych dla różnych typów pamięci oraz ich wpływ na wydajność i stabilność systemu.

Pytanie 14

Który standard w połączeniu z odpowiednią kategorią kabla skrętki jest skonfigurowany w taki sposób, aby umożliwiać maksymalny transfer danych?

A. 1000BASE-T oraz Cat 5
B. 10GBASE-T oraz Cat 5
C. 1000BASE-T oraz Cat 3
D. 10GBASE-T oraz Cat 7
Odpowiedzi, które łączą standardy 10GBASE-T i 1000BASE-T z kablami kategorii 5 czy 3 są po prostu błędne. Wiąże się to z dużymi różnicami w wymaganiach co do wydajności i jakości sygnału. Standard 1000BASE-T radzi sobie z transferami do 1 Gb/s i jest zgodny z kablami kategorii 5, ale na pewno nie wystarczy do 10 Gb/s, co dzisiaj jest kluczowe. Kategoria 5 ma sporo ograniczeń, przez co sygnał się pogarsza, szczególnie przy wyższych prędkościach. Dlatego nie nadaje się do środowisk, gdzie ważny jest 10GBASE-T, który wymaga przynajmniej kabla kategorii 6a. Co do kategorii 3, to była fajna kiedyś, ale dzisiaj to totalna porażka dla 1000BASE-T i 10GBASE-T, bo tam maksymalna przepustowość to tylko 10 Mb/s. Często ludzie mylą te standardy i nie znają specyfikacji kabli. Wybierając odpowiednie medium transmisyjne, trzeba myśleć o niezawodności i wydajności sieci, bo to podstawa każdej dobrej infrastruktury.

Pytanie 15

Na ilustracji przedstawiono końcówkę wkrętaka typu

Ilustracja do pytania
A. torx
B. tri-wing
C. imbus
D. krzyżowego
Grot typu torx charakteryzuje się specyficznym kształtem sześcioramiennej gwiazdy co odróżnia go od innych typów wkrętaków. Został zaprojektowany aby zapewnić lepsze przenoszenie momentu obrotowego co jest istotne w zastosowaniach przemysłowych i motoryzacyjnych. Wkrętaki torx są powszechnie stosowane w przemyśle elektronicznym i komputerowym gdzie wymagana jest precyzja i bezpieczeństwo montażu. Standardy branżowe podkreślają ich odporność na wyślizgiwanie się z łba śruby co zmniejsza ryzyko uszkodzenia powierzchni wokół łączenia. W praktyce wkrętaki torx są używane w montażu urządzeń elektrycznych i mechanicznych gdzie wymagana jest trwałość i niezawodność połączeń. Dzięki swojej konstrukcji umożliwiają zastosowanie wyższego momentu obrotowego bez ryzyka uszkodzenia elementów co jest często wymagane w profesjonalnych warsztatach i liniach montażowych. Używanie narzędzi torx zgodnie z zaleceniami producentów przyczynia się do wydłużenia żywotności sprzętu oraz poprawy efektywności procesów produkcyjnych.

Pytanie 16

Rozmiar plamki na monitorze LCD wynosi

A. wielkości obszaru, na którym wyświetlane jest 1024 piksele
B. odległości między początkiem jednego piksela a początkiem kolejnego
C. wielkości pojedynczego piksela wyświetlanego na ekranie
D. wielkości obszaru, na którym można pokazać jedną składową koloru RGB
Wybór odpowiedzi dotyczącej wielkości jednego piksela wyświetlanego na ekranie wprowadza w błąd, ponieważ plamka nie jest równoznaczna z pojedynczym pikselem. Plamka odnosi się do odległości między pikselami, a nie do ich pojedynczej wielkości. Pojęcie plamki jest istotne w kontekście rozdzielczości ekranu oraz możliwości wyświetlania szczegółowych obrazów. Z kolei odpowiedź sugerująca, że plamka to obszar, w którym wyświetla się 1024 piksele, jest niepoprawna, ponieważ liczba pikseli nie określa wielkości plamki. Obszar wyświetlania pikseli zależy od rozdzielczości oraz technologii wyświetlania, a nie od założonej liczby pikseli. Ostatnia odpowiedź, mówiąca o wielkości obszaru, na którym można wyświetlić jedną składową koloru RGB, również jest nieadekwatna, ponieważ plamka nie odnosi się bezpośrednio do składowych kolorów, ale do przestrzeni pikselowej na ekranie. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków obejmują mylenie jednostek i ich funkcji oraz niepełne zrozumienie fizycznych zasad działania ekranów LCD. Właściwe zrozumienie rozdzielczości i wielkości plamki jest kluczowe dla oceny jakości wyświetlanych obrazów, co jest istotne dla grafików, projektantów oraz inżynierów zajmujących się technologią wyświetlania.

Pytanie 17

Na diagramie płyty głównej, który znajduje się w dokumentacji laptopa, złącza oznaczone numerami 8 i 9 to

Ilustracja do pytania
A. Serial ATA
B. cyfrowe audio
C. M.2
D. USB 3.0
Złącza Serial ATA, często określane jako SATA, są standardem interfejsu służącego do podłączania dysków twardych, dysków SSD oraz napędów optycznych do płyt głównych komputerów. Ich główną zaletą jest wysoka przepustowość, która w przypadku standardu SATA III sięga nawet 6 Gb/s. Złącza te charakteryzują się wąskim, płaskim kształtem, co umożliwia łatwe i szybkie podłączanie oraz odłączanie urządzeń. SATA jest powszechnie stosowany w komputerach stacjonarnych, laptopach oraz serwerach, co czyni go jednym z najczęściej używanych interfejsów w branży IT. W przypadku płyt głównych laptopów, złącza oznaczone na schemacie jako 8 i 9 są typowymi portami SATA, co pozwala na bezproblemową integrację z wewnętrznymi urządzeniami pamięci masowej. W codziennym użytkowaniu zrozumienie funkcji i możliwości złączy SATA jest kluczem do efektywnego zarządzania przestrzenią dyskową urządzenia, a także do optymalizacji jego wydajności poprzez zastosowanie odpowiednich konfiguracji, takich jak RAID. Warto również wspomnieć, że złącza SATA obsługują funkcję hot swapping, co umożliwia wymianę dysków bez konieczności wyłączania systemu, co jest szczególnie korzystne w środowiskach serwerowych.

Pytanie 18

Domyślnie w programie Eksplorator Windows przy użyciu klawisza F5 uruchamiana jest funkcja

A. kopiowania
B. rozpoczynania drukowania zrzutu ekranowego
C. otwierania okna wyszukiwania
D. odświeżania zawartości aktualnego okna
Klawisz F5 w programie Eksplorator Windows jest standardowo używany do odświeżania zawartości bieżącego okna. Funkcja ta jest niezwykle istotna w kontekście zarządzania plikami i folderami, gdyż umożliwia aktualizację widoku, co jest niezbędne w przypadku wprowadzania zmian w systemie plików. Na przykład, gdy dodasz lub usuniesz pliki z wybranego folderu, naciśnięcie F5 pozwala na natychmiastowe zaktualizowanie wyświetlanej listy, co zwiększa efektywność pracy. Warto również zauważyć, że odświeżanie jest praktyką zalecaną w standardach użytkowania systemów operacyjnych, aby zapewnić, że użytkownik zawsze dysponuje aktualnymi danymi. Ponadto, w kontekście programowania, wiele aplikacji przyjmuje podobne skróty klawiszowe dla odświeżania widoku, co świadczy o ujednoliceniu dobrych praktyk w interfejsach użytkownika.

Pytanie 19

Aby serwer mógł przesyłać dane w zakresach częstotliwości 2,4 GHz oraz 5 GHz, konieczne jest zainstalowanie w nim karty sieciowej działającej w standardzie

A. 802.11a
B. 802.11g
C. 802.11b
D. 802.11n
Wybór standardów 802.11a, 802.11b oraz 802.11g do obsługi transmisji na pasmach 2,4 GHz i 5 GHz jest niewłaściwy. Standard 802.11a działa wyłącznie w paśmie 5 GHz, co ogranicza jego zastosowanie w środowiskach, gdzie pasmo 2,4 GHz jest równie istotne, na przykład w domowych sieciach Wi-Fi. Podobnie standard 802.11b jest przypisany wyłącznie do pasma 2,4 GHz, co uniemożliwia korzystanie z pasma 5 GHz i ogranicza prędkość transferu danych do maksymalnie 11 Mbps. Standard 802.11g, choć obsługuje pasmo 2,4 GHz i oferuje wyższe prędkości (do 54 Mbps), nadal nie jest w stanie wykorzystać obu pasm jednocześnie. Zastosowanie tych starszych standardów może prowadzić do wąskich gardeł w sieci, zwłaszcza w środowiskach z dużą liczbą użytkowników i urządzeń. W dobie wzrastającej liczby urządzeń IoT oraz wymagań dotyczących szybkości i jakości połączenia, wybór technologii 802.11n, która pozwala na efektywne wykorzystanie zarówno 2,4 GHz, jak i 5 GHz, staje się kluczowy. Niezrozumienie różnic pomiędzy tymi standardami może prowadzić do nieefektywnego projektowania sieci oraz frustracji użytkowników z powodu niskiej wydajności połączeń bezprzewodowych.

Pytanie 20

Powszechnie stosowana forma oprogramowania, która funkcjonuje na zasadzie "najpierw wypróbuj, a potem kup", to

A. Shareware
B. Freeware
C. OEM
D. Software
Wybór jakiejkolwiek z pozostałych opcji prowadzi do mylnych wniosków o charakterze dystrybucji oprogramowania. Odpowiedź "Software" jest zbyt ogólna, ponieważ odnosi się do wszelkiego rodzaju programów komputerowych, niezależnie od ich modelu licencjonowania. Nie precyzuje, czy dane oprogramowanie jest dostępne na zasadzie próbnej, czy wymaga zakupu, co wprowadza w błąd. "OEM" (Original Equipment Manufacturer) to model, w którym oprogramowanie jest dostarczane z nowymi urządzeniami, zazwyczaj w niższej cenie, ale nie pozwala na próbne korzystanie przed zakupem. Oprogramowanie OEM jest ograniczone w zakresie przenoszenia licencji na inne urządzenia, co czyni go innym od shareware. Z kolei "Freeware" odnosi się do programów, które są dostępne bezpłatnie i bez ograniczeń, co nie zgadza się z zasadą „najpierw wypróbuj, a potem kup”. Freeware nie wymaga żadnych opłat, a jego użytkownicy mogą korzystać z pełnej wersji bez konieczności zakupu. Typowe błędy myślowe prowadzące do takich wniosków to zbytnie uproszczenie pojęcia dystrybucji oprogramowania oraz brak zrozumienia różnic między różnymi modelami licencjonowania. W obliczu różnorodności opcji, kluczowe jest zrozumienie, że każdy model ma swoje specyfikacje i zastosowania, co wpływa na wybór odpowiedniego oprogramowania w codziennym użytkowaniu.

Pytanie 21

Aby skonfigurować ruter i wprowadzić parametry połączenia od dostawcy internetowego, którą sekcję oznaczoną numerem należy wybrać?

Ilustracja do pytania
A. 4
B. 3
C. 2
D. 1
Obszar oznaczony numerem 2 odnosi się do sekcji WAN na interfejsie konfiguracji rutera. WAN czyli Wide Area Network to sekcja, w której definiujemy kluczowe parametry połączenia z dostawcą usług internetowych. Zawiera ustawienia takie jak typ połączenia (PPPoE DHCP statyczny IP) adresy DNS czy MTU. Konfiguracja tych parametrów jest niezbędna do uzyskania dostępu do Internetu poprzez ruter. Dobre praktyki branżowe sugerują wykorzystanie ustawień dostarczonych przez ISP aby zapewnić stabilne i bezpieczne połączenie. Często w tej sekcji można znaleźć opcje związane z klonowaniem adresu MAC co może być wymagane przez niektórych dostawców do autoryzacji połączenia. Znajomość konfiguracji WAN jest kluczowa dla administratorów sieci ponieważ poprawne ustawienie tych parametrów bezpośrednio wpływa na wydajność i niezawodność sieci. Również zabezpieczenie sekcji WAN przed nieautoryzowanymi dostępami jest istotnym elementem zarządzania siecią.

Pytanie 22

Jakie polecenie w systemie Linux jest potrzebne do stworzenia archiwum danych?

A. date
B. cal
C. grep
D. tar
Polecenie 'tar' to naprawdę przydatne narzędzie w systemach Unix i Linux, które pozwala na tworzenie archiwów danych. Możesz zgrupować mnóstwo plików i folderów w jeden, co jest mega pomocne, gdy chcesz zaoszczędzić miejsce lub przenieść je gdzieś indziej. Na przykład, żeby stworzyć archiwum, możesz użyć czegoś takiego jak 'tar -cvf archiwum.tar /ścieżka/do/katalogu'. Opcja '-c' oznacza, że tworzysz archiwum, '-v' pokaże ci, co się dzieje, a '-f' pozwala nadać nazwę temu archiwum. Dodatkowo, fajnie jest to połączyć z kompresją, na przykład z gzip, używając '-z' ('tar -czvf archiwum.tar.gz /ścieżka/do/katalogu'). To jest naprawdę dobre podejście do zarządzania danymi, bo pozwala na efektywne przechowywanie oraz szybkie przywracanie danych, co jest super ważne przy backupach i migracjach.

Pytanie 23

Na ilustracji zaprezentowano zrzut ekranu z wykonanej analizy

Ilustracja do pytania
A. czas dostępu do nośnika optycznego
B. czas przepełniania buforu systemowego
C. czas dostępu do dysku HDD
D. czas oczekiwania pamięci
Czas opróżniania buforu systemowego nie ma nic wspólnego z tym, co jest pokazane na zrzucie ekranu, bo ten temat bardziej dotyczy tego, jak dane są zarządzane między różnymi poziomami pamięci podręcznej. To, co się dzieje wewnątrz procesora i pamięci, nie jest z reguły widoczne dla użytkowników. Czas dostępu do napędu optycznego, czyli jak szybko można odczytać dane z płyt CD czy DVD, również nie ma związku z pamięcią RAM, więc nie wpływa na to, jak długo procesor czeka na dane. Dzisiaj napędy optyczne są mniej popularne i rzadko wpływają na ogólną wydajność systemu. Ponadto, czas dostępu do dysku twardego to zupełnie inna kwestia niż czas oczekiwania na dane z pamięci RAM. Chociaż szybkie dane z dysków SSD NVMe pomagają, to zawsze są różnice między czasem oczekiwania na dane z dysku a czasem oczekiwania w pamięci RAM. Często ludzie mylą różne typy pamięci, co prowadzi do nieporozumień, więc warto mieć na uwadze, że każda z tych odpowiedzi dotyczy innego aspektu technologii komputerowej i nie można ich zamieniać.

Pytanie 24

Do interfejsów pracujących równolegle należy interfejs

A. RS-232
B. AGP
C. FireWire
D. DVI
FireWire, znany również jako IEEE 1394, jest interfejsem szeregowym, który zapewnia wysoką prędkość transferu danych dla urządzeń peryferyjnych, takich jak kamery cyfrowe oraz zewnętrzne dyski twarde. Umożliwia przesyłanie danych w trybie pełnodupleksowym, co oznacza, że dane mogą być wysyłane i odbierane jednocześnie, jednak nie działa w trybie równoległym. Różnica ta jest kluczowa, ponieważ FireWire nie korzysta z równoległego przesyłania danych, jak AGP. RS-232 to standard interfejsu szeregowego, który był szeroko stosowany w komunikacji między komputerami a urządzeniami peryferyjnymi, takimi jak modemy, ale także nie jest interfejsem równoległym. DVI (Digital Visual Interface) to z kolei standard wideo, który może przesyłać sygnał cyfrowy, ale również nie implementuje przesyłania danych w sposób równoległy. Zrozumienie tych różnic jest kluczowe w kontekście wyboru odpowiednich interfejsów do określonych zastosowań. Często zdarza się, że mylenie interfejsów szeregowych z równoległymi prowadzi do nieefektywnych rozwiązań w projektach technicznych. W praktyce, wybór niewłaściwego interfejsu może wpłynąć na wydajność systemu, zwłaszcza w obszarze aplikacji wymagających wysokiej przepustowości, takich jak renderowanie grafiki czy transmisje wideo.

Pytanie 25

W jakiej usłudze wykorzystywany jest protokół RDP?

A. pulpitu zdalnego w systemie Windows
B. terminalowej w systemie Linux
C. SCP w systemie Windows
D. poczty elektronicznej w systemie Linux
Protokół RDP to naprawdę ważne narzędzie w Windowsie. Dzięki niemu możemy zdalnie podłączyć się do innego komputera i robić różne rzeczy – od zarządzania systemem po uruchamianie programów i dostęp do plików. W praktyce, wielu adminów IT korzysta z RDP, żeby efektywnie wspierać użytkowników i zarządzać serwerami. RDP potrafi przesyłać dźwięk, udostępniać drukarki, a nawet przenosić pliki między naszym komputerem a tym zdalnym. W dobie pracy zdalnej wiele firm stawia na to rozwiązanie, bo czasy się zmieniają, a zdalne biura rosną w siłę. A jeśli chodzi o bezpieczeństwo, to RDP też daje radę – szyfrowanie danych i autoryzacja użytkowników pomagają w ochronie informacji, co jest istotne dla każdej organizacji.

Pytanie 26

Pierwszą usługą, która jest instalowana na serwerze, to usługa domenowa w Active Directory. W trakcie instalacji kreator automatycznie poprosi o zainstalowanie usługi serwera.

A. DNS
B. WEB
C. FTP
D. DHCP
FTP (File Transfer Protocol) jest protokołem służącym do przesyłania plików w sieci, a jego zastosowanie dotyczy głównie transferu danych pomiędzy serwerami a klientami. FTP nie pełni roli usługi domenowej, dlatego nie jest wymagany podczas instalacji Active Directory. Podobnie, usługa WEB, odnosząca się do hostowania stron internetowych, jest niezwiązana z zarządzaniem domenami w Active Directory, a jej funkcjonalność nie obejmuje rozwiązywania nazw ani adresów w sieci. Z kolei DHCP (Dynamic Host Configuration Protocol) jest usługą odpowiedzialną za automatyczne przydzielanie adresów IP urządzeniom w sieci, ale nie jest tożsama z funkcją DNS. Często błędnym myśleniem jest mylenie tych usług, gdyż wszystkie mają swoje specyficzne zastosowania w infrastrukturze sieciowej, ale każda z nich pełni inną rolę. W praktyce, nieprawidłowe przypisanie tych usług do procesu instalacji Active Directory może prowadzić do wielu problemów, takich jak błędne przypisanie adresów IP, trudności w komunikacji między urządzeniami oraz problemy z dostępem do zasobów sieciowych. Ostatecznie, zrozumienie różnic między tymi usługami oraz ich odpowiednim zastosowaniem w kontekście Active Directory jest kluczowe dla zapewnienia prawidłowego funkcjonowania infrastruktury IT.

Pytanie 27

Podczas wymiany uszkodzonej karty graficznej, która współpracowała z monitorem posiadającym jedynie wejście analogowe, jaką kartę należy wybrać?

A. Sapphire Radeon R7 250X FLEX, 1GB GDDR5 (128 Bit), HDMI, 2xDVI, DP, LITE
B. Sapphire Radeon R7 250, 1GB GDDR5 (128 Bit), microHDMI, DVI, miniDP LP, BULK
C. ZOTAC GeForce GT 730 Synergy Edition, 4GB DDR3 (128 Bit), 2xDVI, miniHDMI
D. Gigabyte GeForce GT 740 OC, 1GB GDDR5 (128 Bit), HDMI, DVI, D-Sub
Wybór innych kart graficznych, takich jak Sapphire Radeon R7 250X FLEX, ZOTAC GeForce GT 730 Synergy Edition czy Sapphire Radeon R7 250, jest błędny ze względu na brak analogowego złącza D-Sub. Karty te oferują różne porty, takie jak HDMI, DVI czy DisplayPort, ale nie zapewniają połączenia, które jest niezbędne do współpracy z monitorami mającymi jedynie wejście analogowe. Użytkownicy często mogą mylnie sądzić, że DVI to wystarczające złącze, nie zdając sobie sprawy, że typ DVI-D nie obsługuje sygnału analogowego, co czyni go nieodpowiednim dla starszych monitorów bez wbudowanego dekodera. Często popełnianym błędem jest niedostateczne zrozumienie różnicy pomiędzy analogowymi a cyfrowymi sygnałami wideo; nie wszystkie porty DVI są stworzone do przekazywania sygnałów analogowych. Ponadto, mimo że karty z portem HDMI mogą współpracować z odpowiednimi adapterami, to złącze D-Sub pozostaje kluczowym elementem w kontekście starszej technologii. Dlatego wybierając kartę graficzną, warto skupić się na jej specyfikacji i dostępnych złączach, by uniknąć problemów podczas podłączania sprzętu. Pominięcie tego aspektu może prowadzić do frustracji oraz dodatkowych kosztów związanych z zakupem niezbędnych adapterów lub całkowitą wymianą monitorów.

Pytanie 28

Umowa, na podstawie której użytkownik ma między innymi dostęp do kodu źródłowego oprogramowania w celu jego analizy i ulepszania, to licencja

A. MOLP
B. OLP
C. GNU GPL
D. OEM
OLP i MOLP to programy licencjonowania, ale nie dają użytkownikom dostępu do kodu źródłowego. OLP to umowa, która skupia się na sprzedaży oprogramowania, ale użytkownik nie może go zmieniać. MOLP to coś od Microsoftu, gdzie można kupić licencje, ale też bez kodu źródłowego. A OEM to licencje, które producent sprzętu daje razem z jego urządzeniem. Te licencje są dość ograniczone i nie dają możliwości modyfikowania kodu. Dlatego, w porównaniu do GNU GPL, te programy są w zasadzie inne, bo GNU GPL promuje wolność dostępu do kodu i jego zmiany. Wybór złej licencji może prowadzić do kłopotów z rozwijaniem oprogramowania, co jest kluczowe w dzisiejszym świecie technologii, który szybko się zmienia.

Pytanie 29

Jakie polecenie w systemie Linux umożliwia wyświetlenie identyfikatora użytkownika?

A. who
B. id
C. users
D. whoami
Wybór innych odpowiedzi sugeruje niepełne zrozumienie funkcji poszczególnych poleceń w systemie Linux. Odpowiedź 'whoami' zwraca jedynie nazwę użytkownika aktualnie zalogowanej sesji, co jest przydatne, ale nie dostarcza pełnych informacji o identyfikatorze użytkownika. 'who' z kolei wyświetla listę wszystkich zalogowanych użytkowników w systemie, co także nie odnosi się bezpośrednio do identyfikacji konkretnego użytkownika. Odpowiedź 'users' pokazuje jedynie listę użytkowników obecnie zalogowanych, lecz nie ujawnia szczegółowych danych dotyczących ich identyfikacji. Typowym błędem jest mylenie nazw użytkowników z ich identyfikatorami, co może prowadzić do nieprawidłowych założeń w kontekście zarządzania systemem. W praktyce, zrozumienie różnicy pomiędzy tymi poleceniami jest kluczowe dla administrowania systemem i efektywnego zarządzania uprawnieniami. Użytkownicy mogą łatwo pomylić te polecenia, myśląc, że oferują one podobne funkcje, co jest nieprawidłowe, a to z kolei może prowadzić do nieefektywnej pracy w systemie. Kluczowe w nauce korzystania z Linuxa jest rozróżnianie pomiędzy różnymi poleceniami, co pozwala na skuteczniejsze i bezpieczniejsze zarządzanie zasobami.

Pytanie 30

Zatrzymując pracę na komputerze, możemy szybko wznowić działania po wybraniu w systemie Windows opcji

A. wylogowania
B. stanu wstrzymania
C. uruchomienia ponownego
D. zamknięcia systemu
Opcja 'stanu wstrzymania' w systemie Windows to funkcja, która pozwala na szybkie wstrzymanie pracy komputera, co umożliwia użytkownikowi powrót do tej samej sesji pracy w bardzo krótkim czasie. Gdy komputer jest w stanie wstrzymania, zawartość pamięci RAM jest zachowywana, co oznacza, że wszystkie otwarte aplikacje i dokumenty pozostają w takim samym stanie, w jakim były przed wstrzymaniem. Przykładem zastosowania może być sytuacja, gdy użytkownik chce na chwilę odejść od komputera, na przykład na przerwę, i chce szybko wznowić pracę bez potrzeby ponownego uruchamiania programów. Stan wstrzymania jest zgodny z najlepszymi praktykami zarządzania energią, ponieważ komputer zużywa znacznie mniej energii w tym trybie, co jest korzystne zarówno dla środowiska, jak i dla użytkowników, którzy korzystają z laptopów. Warto również zaznaczyć, że funkcja ta może być używana w połączeniu z innymi ustawieniami oszczędzania energii, co pozwala na optymalne zarządzanie zasobami systemowymi.

Pytanie 31

Aby telefon VoIP działał poprawnie, należy skonfigurować adres

A. IP
B. centrali ISDN
C. rozgłoszeniowy.
D. MAR/MAV
Rozważając inne dostępne odpowiedzi, można zauważyć, że rozgłoszeniowy adres nie jest kluczowy dla działania telefonu VoIP. Chociaż rozgłoszenia mogą być użyteczne w niektórych typach komunikacji sieciowej, VoIP bazuje na indywidualnym adresowaniu pakietów danych, co oznacza, że przesyłane informacje są kierowane bezpośrednio do konkretnego urządzenia, a nie są rozgłaszane do wszystkich urządzeń w sieci. Centrala ISDN (Integrated Services Digital Network) jest rozwiązaniem przestarzałym dla nowoczesnych systemów telekomunikacyjnych, które nie wykorzystują technologii internetowej, co czyni ją niewłaściwym wyborem dla VoIP, który opiera się na technologii IP. MAR (Media Access Register) i MAV (Media Access Voice) to terminy, które nie są powszechnie stosowane w kontekście VoIP i nie mają wpływu na jego działanie. W rzeczywistości, błędne zrozumienie technologii VoIP może prowadzić do mylnych wniosków o konieczności używania rozwiązań, które nie są zgodne z aktualnymi standardami branżowymi. Kluczowe jest zrozumienie, że współczesne systemy telefoniczne oparte na technologii VoIP w pełni wykorzystują infrastrukturę internetową, co wymaga prawidłowego skonfigurowania adresów IP, aby zapewnić optymalną jakość i niezawodność połączeń.

Pytanie 32

Który z wymienionych składników stanowi element pasywny w sieci?

A. Karta sieciowa
B. Panel krosowy
C. Wzmacniak
D. Przełącznik
Wzmacniak, przełącznik oraz karta sieciowa to elementy aktywne, które mają kluczowe znaczenie w przetwarzaniu sygnału oraz zarządzaniu danymi w sieci komputerowej. Wzmacniak, na przykład, służy do zwiększenia siły sygnału, co jest istotne w przypadku długich połączeń, gdzie utrata sygnału może prowadzić do zakłóceń lub przerw w komunikacji. Zastosowanie wzmacniaków jest najczęściej widoczne w sieciach, gdzie wymagane jest przesyłanie sygnału na większe odległości, na przykład w systemach telekomunikacyjnych. Przełącznik natomiast jest urządzeniem, które łączy różne segmenty sieci i decyduje, jak dane są przesyłane między nimi. Umożliwia on efektywne zarządzanie ruchem danych, co jest niezbędne w sieciach lokalnych, gdzie wiele urządzeń komunikuje się jednocześnie. Karta sieciowa, jako interfejs między komputerem a siecią, odpowiada za odbieranie i wysyłanie danych, a także przetwarzanie sygnałów. Wszystkie te urządzenia wykonują aktywne funkcje, co odróżnia je od elementów pasywnych, takich jak panel krosowy. Typowym błędem myślowym jest mylenie funkcji pasywnych z aktywnymi, co może prowadzić do niewłaściwego doboru komponentów w projektach sieciowych. Zrozumienie różnicy między tymi dwoma rodzajami elementów jest kluczowe dla każdego specjalisty zajmującego się infrastrukturą sieciową.

Pytanie 33

Jaką topologię fizyczną sieci ilustruje zamieszczony rysunek?

Ilustracja do pytania
A. Gwiazdy
B. Podwójnego pierścienia
C. Magistrali
D. Pełnej siatki
Topologia magistrali jest strukturą sieci, w której wszystkie urządzenia są podłączone do jednego wspólnego przewodu, zwłaszcza w starszych technologiach takich jak Ethernet 10Base-2. Jednak jej wada polega na tym, że awaria jednego odcinka przewodu może sparaliżować całą sieć, a problemy z terminacją sygnału mogą prowadzić do kolizji danych. Z kolei topologia pełnej siatki charakteryzuje się tym, że każde urządzenie jest połączone bezpośrednio z każdym innym, co zapewnia redundancję i wysoką dostępność, ale jest kosztowne i skomplikowane w implementacji, zwłaszcza w dużych sieciach. Topologia podwójnego pierścienia jest bardziej zaawansowaną wersją topologii pierścienia z dodatkowym pierścieniem zapasowym, który zwiększa niezawodność, jednak nadal każde urządzenie jest połączone z dwoma sąsiednimi urządzeniami, co w przypadku awarii jednego z nich może prowadzić do problemów z przepływem danych. Błędne wybranie jednej z tych topologii w kontekście rysunku wynika zazwyczaj z niedokładnego rozpoznania centralnego punktu połączenia, który jest kluczową cechą topologii gwiazdy, a nie występuje w innych wymienionych strukturach.

Pytanie 34

W którym systemie operacyjnym może pojawić się komunikat podczas instalacji sterowników dla nowego urządzenia?

System.......nie może zweryfikować wydawcy tego sterownika. Ten sterownik nie ma podpisu cyfrowego albo podpis nie został zweryfikowany przez urząd certyfikacji. Nie należy instalować tego sterownika, jeżeli nie pochodzi z oryginalnego dysku producenta lub od administratora systemu.

A. Linux
B. Unix
C. Windows XP
D. Windows 98
Linux i Unix to systemy operacyjne typu open-source, które posiadają odmienne podejście do instalacji i zarządzania sterownikami w porównaniu do systemów Windows. W szczególności, w przypadku Linuxa, sterowniki są często częścią jądra systemu i zarządzane są poprzez menedżery pakietów specyficzne dla danej dystrybucji. Systemy te nie wyświetlają podobnych komunikatów związanych z podpisami cyfrowymi jak Windows XP, ze względu na bardziej zdecentralizowany model rozwoju i dystrybucji oprogramowania. Z kolei Unix, jako rodzina systemów operacyjnych, również implementuje sterowniki na poziomie jądra i nie korzysta z takiego mechanizmu weryfikacji podpisów cyfrowych jak w Windows XP. Windows 98, jako wcześniejsza wersja systemu operacyjnego, nie posiadał zintegrowanego mechanizmu wymuszającego weryfikację podpisów cyfrowych dla sterowników. To oznacza, że użytkownicy mogli instalować niepodpisane sterowniki bez ostrzeżeń ze strony systemu. W praktyce, brak tego mechanizmu oznaczał większe ryzyko instalacji potencjalnie niebezpiecznego oprogramowania, co często prowadziło do problemów z kompatybilnością i stabilnością systemu. W przypadku Windows 98, instalacja sterowników opierała się głównie na zaufaniu do źródła pochodzenia oprogramowania, co było mniej bezpieczne niż rozwiązania wprowadzone później w Windows XP. To wszystko wskazuje, że wybór odpowiedzi Windows XP jest najbardziej zgodny z realiami funkcjonowania systemów operacyjnych w kontekście zarządzania bezpieczeństwem sterowników i ich instalacji w tamtym okresie historycznym. Wprowadzenie podpisów cyfrowych było ważnym krokiem w kierunku zwiększenia bezpieczeństwa komputerowego, co zostało zaimplementowane właśnie w Windows XP i było częścią większej strategii Microsoftu w zakresie ochrony użytkowników przed zagrożeniami wynikającymi z instalacji nieautoryzowanego oprogramowania.

Pytanie 35

Na ilustracji widać patchpanel - panel krosowy kategorii 5E bez ekranowania, który posiada złącze szczelinowe typu LSA. Jakie narzędzie należy zastosować do wkładania kabli w te złącza?

Ilustracja do pytania
A. narzędzie zaciskowe 8P8C
B. narzędzie uderzeniowe
C. narzędzie JackRapid
D. narzędzie zaciskowe BNC
Narzędzie zaciskowe 8P8C jest używane głównie do zaciskania wtyków RJ-45 na końcach kabli ethernetowych, a nie do montażu kabli w złączach szczelinowych typu LSA. Wtyki te są stosowane na końcach przewodów, umożliwiając ich podłączenie do gniazd sieciowych czy urządzeń. Narzędzie zaciskowe BNC z kolei służy do montażu złączy BNC na kablach koncentrycznych, które są wykorzystywane w systemach telewizji przemysłowej czy sygnalizacji RF, co oznacza, że jego zastosowanie jest całkowicie odmienne od wymagań dla patchpaneli kategorii 5E. Narzędzie JackRapid, choć podobne w funkcji do narzędzia uderzeniowego, jest dedykowane do bardziej specyficznych zadań, jak montaż gniazd RJ-45, gdzie zapewnia szybsze i bardziej ergonomiczne działanie. Często pojawiający się błąd polega na myleniu specyfiki narzędzi używanych w różnorodnych instalacjach telekomunikacyjnych i sieciowych. Każde z nich ma swoje unikalne zastosowanie, wynikające z konstrukcji i przeznaczenia, co jest kluczowe dla prawidłowego wykonania połączeń oraz zachowania standardów branżowych. Nieprawidłowy dobór narzędzia może prowadzić do uszkodzeń sprzętu i niewłaściwego działania sieci, co z kolei może generować dodatkowe koszty związane z naprawami.

Pytanie 36

Diagnostykę systemu Linux można przeprowadzić używając polecenia

Ilustracja do pytania
A. cat
B. pwd
C. lscpu
D. whoami
Polecenie lscpu w systemie Linux służy do wyświetlania informacji o architekturze CPU oraz konfiguracji procesora. Jest to narzędzie, które dostarcza szczegółowych danych o liczbie rdzeni ilości procesorów wirtualnych technologii wspieranej przez procesorach czy też o specyficznych cechach takich jak BogoMIPS czy liczba wątków na rdzeń. Wartości te są nieocenione przy diagnozowaniu i optymalizacji działania systemu operacyjnego oraz planowaniu zasobów dla aplikacji wymagających intensywnych obliczeń. Polecenie to jest szczególnie przydatne dla administratorów systemów oraz inżynierów DevOps, którzy muszą dostosowywać parametry działania aplikacji do dostępnej infrastruktury sprzętowej. Zgodnie z dobrymi praktykami analizy systemowej regularne monitorowanie i rejestrowanie tych parametrów pozwala na lepsze zrozumienie działania systemu oraz efektywne zarządzanie zasobami IT. Dodatkowo dzięki temu narzędziu można także zweryfikować poprawność konfiguracji sprzętowej po wdrożeniu nowych rozwiązań technologicznych co jest kluczowe dla zapewnienia wysokiej dostępności i wydajności usług IT.

Pytanie 37

Wykonanie polecenia attrib +h +s +r przykład.txt w terminalu systemu Windows spowoduje

A. przypisanie do pliku przykład.txt atrybutów: ukryty, systemowy, tylko do odczytu
B. przypisanie do pliku przykład.txt atrybutów: ukryty, skompresowany, tylko do odczytu
C. ochronę pliku przykład.txt hasłem hsr
D. zapisanie tekstu hsr w pliku przykład.txt
Odpowiedzi, które nie odnoszą się do funkcji polecenia attrib, zawierają szereg nieporozumień dotyczących jego działania. Na przykład, stwierdzenie, że polecenie zapisuje ciąg znaków hsr w pliku, jest całkowicie błędne. Polecenie attrib nie wykonuje operacji zapisu, a jedynie zmienia właściwości pliku. Również koncepcja zabezpieczenia pliku hasłem hsr jest myląca, ponieważ atrybuty nadawane przez attrib nie mają nic wspólnego z zabezpieczeniami hasłowymi. Użytkownicy często mylą funkcje atrybutów z innymi metodami ochrony danych, co prowadzi do nieprawidłowych wniosków. Ponadto, wskazywanie, że atrybuty to skompresowany zamiast systemowy, nie uwzględnia istotnych różnic między rodzajami atrybutów. Atrybut 'skompresowany' dotyczy mechanizmu redukcji rozmiaru pliku, co nie jest przedmiotem działania polecenia attrib w tym kontekście. Warto zaznaczyć, że zarządzanie atrybutami plików jest kluczowym aspektem administracji systemami, a zrozumienie ich funkcji pozwala na bardziej efektywne zarządzanie danymi oraz ich zabezpieczanie.

Pytanie 38

Aby przekształcić zeskanowany obraz w tekst, należy użyć oprogramowania, które wykorzystuje metody

A. OCR
B. OMR
C. DTP
D. DPI
Wybór innych opcji, takich jak DPI, DTP czy OMR, nie jest właściwy w kontekście przekształcania zeskanowanego obrazu na tekst. DPI, czyli dots per inch, odnosi się do rozdzielczości obrazu i nie ma bezpośredniego związku z samym procesem rozpoznawania znaków. Wysoka wartość DPI może poprawić jakość zeskanowanego obrazu, ale nie zmienia samej natury informacji, która jest przetwarzana przez OCR. DTP (Desktop Publishing) to proces tworzenia publikacji przy użyciu oprogramowania graficznego, skupiający się na układzie i estetyce, a nie na rozpoznawaniu tekstu. OMR (Optical Mark Recognition) to technologia wykorzystywana do wykrywania zaznaczeń na formularzach, na przykład w testach wielokrotnego wyboru, nie zaś do odczytu tekstu. Typowym błędem myślowym jest mylenie tych technologii jako zamienników OCR, co prowadzi do nieporozumień w zakresie ich zastosowania. Każda z tych technologii ma swoje specyficzne przeznaczenie i zastosowanie. Równocześnie, dobrze jest pamiętać o standardach branżowych dotyczących digitalizacji dokumentów, które podkreślają znaczenie używania odpowiednich narzędzi w zależności od postawionych celów.

Pytanie 39

Jak nazywa się bezklasowa metoda podziału przestrzeni adresowej IPv4?

A. IMAP
B. MASK
C. CIDR
D. VLAN
W kontekście adresacji IP, pojęcia związane z podziałem przestrzeni adresowej są kluczowe dla efektywnego zarządzania sieciami. Odpowiedzi takie jak MASK, IMAP i VLAN odnoszą się do różnych aspektów technologii sieciowych, ale nie są bezklasowymi metodami podziału przestrzeni adresowej IPv4. MASK odnosi się do maski podsieci, która jest używana w połączeniu z adresami IP do określenia, która część adresu jest używana jako identyfikator sieci, a która jako identyfikator hosta. Maska podsieci jest istotna, ale nie zmienia fundamentalnej struktury adresowania, jaką wprowadza CIDR. IMAP, z drugiej strony, to protokół do zarządzania pocztą elektroniczną i nie ma bezpośredniego związku z adresacją IP. VLAN to technologia umożliwiająca tworzenie logicznych sieci w obrębie infrastruktury fizycznej, ale również nie jest metodą podziału przestrzeni adresowej. Zrozumienie tych koncepcji jest istotne, ponieważ każda z nich pełni odmienną rolę w architekturze sieciowej. Typowe błędy myślowe, które mogą prowadzić do mylenia tych terminów, obejmują nieznajomość różnicy między zarządzaniem adresami IP a innymi aspektami funkcjonowania sieci. Kluczem do skutecznego wykorzystania technologii sieciowych jest zrozumienie specyfiki i zastosowania poszczególnych pojęć.

Pytanie 40

Na wskazanej płycie głównej możliwe jest zainstalowanie procesora w obudowie typu

Ilustracja do pytania
A. SPGA
B. PGA
C. LGA
D. SECC
Na ilustracji przedstawiono gniazdo procesora typu LGA czyli Land Grid Array. To rozwiązanie charakteryzuje się tym że piny znajdują się na płycie głównej a nie na procesorze co zmniejsza ryzyko ich uszkodzenia podczas instalacji. To rozwiązanie jest często stosowane w procesorach Intel co czyni je popularnym wyborem w komputerach stacjonarnych. Gniazda LGA zapewniają lepszy kontakt elektryczny i są bardziej wytrzymałe co jest istotne w kontekście wysokiej wydajności i stabilności systemów komputerowych. W praktyce montaż procesora w gnieździe LGA jest prostszy i szybszy ponieważ wymaga jedynie ustawienia procesora w odpowiedniej pozycji i zamknięcia specjalnej pokrywy zabezpieczającej. Dzięki tym cechom standard LGA jest preferowany w branży IT zarówno w komputerach osobistych jak i serwerach co jest zgodne z dobrymi praktykami projektowania nowoczesnych systemów komputerowych. Zrozumienie różnic w typach gniazd pozwala na lepsze planowanie konfiguracji sprzętowych dostosowanych do specyficznych potrzeb użytkownika.