Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 9 maja 2025 09:29
  • Data zakończenia: 9 maja 2025 09:46

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Największy współczynnik przewodzenia ciepła w systemach grzewczych posiada

A. miedź
B. polibutylen
C. stal
D. PEX/AL/PEX
Miedź jest materiałem o najwyższym współczynniku przewodności cieplnej spośród wymienionych opcji, co sprawia, że jest idealnym wyborem w instalacjach grzewczych. Jej przewodność cieplna wynosi około 401 W/(m·K), co jest znacząco wyższe niż w przypadku polibutylenu, stali czy PEX/AL/PEX. Dzięki tej właściwości, miedź szybko i efektywnie przekazuje ciepło, co przekłada się na lepszą wydajność systemów grzewczych. W praktyce, zastosowanie rur miedzianych w instalacjach CO (centralnego ogrzewania) pozwala na szybsze osiągnięcie pożądanej temperatury w pomieszczeniach, co jest kluczowe w kontekście komfortu użytkowników oraz oszczędności energetycznych. Miedź jest również odporna na korozję, co sprawia, że ma długą żywotność, a jej zastosowanie jest zgodne z normami branżowymi, takimi jak PN-EN 1057, regulującymi właściwości rur miedzianych. Dodatkowo, miedź posiada dobre właściwości mechaniczne, co czyni ją atrakcyjnym wyborem w różnych warunkach eksploatacyjnych.

Pytanie 2

Jakiego rodzaju złączkę powinno się zastosować do łączenia paneli słonecznych?

A. URI
B. MC4
C. WAGO
D. UDW2
Złączki MC4 są standardem w branży fotowoltaicznej, a ich zastosowanie w łączeniu paneli słonecznych jest powszechnie uznawane za najlepszą praktykę. Wyróżniają się one wysoką odpornością na warunki atmosferyczne oraz łatwością montażu, co czyni je idealnym rozwiązaniem dla instalacji PV. Złączki te są zaprojektowane tak, aby zapewnić szczelne i bezpieczne połączenia, co minimalizuje ryzyko korozji i utraty wydajności systemu. Dzięki zastosowaniu złączek MC4, można osiągnąć wysoką wydajność energetyczną oraz długoterminową niezawodność instalacji. Przykładem ich zastosowania jest łączenie modułów w systemach grid-tied, gdzie istotne jest, aby połączenia były stabilne i odporne na działanie promieni UV oraz niskich temperatur. Dodatkowo, złącza MC4 są kompatybilne z szeroką gamą produktów na rynku, co zwiększa ich uniwersalność i ułatwia integrację z innymi komponentami systemu fotowoltaicznego. Używanie złączek MC4 jest zgodne z normami międzynarodowymi, takimi jak IEC 62852, co dodatkowo potwierdza ich wysoką jakość i bezpieczeństwo.

Pytanie 3

Aby biogaz produkowany w biogazowni był odpowiedni do spalania, należy go wcześniej właściwie przystosować. Głównie usuwa się z niego szkodliwy

A. siarkowodoru
B. dwutlenek węgla
C. wodoru
D. tlenek węgla
Siarkowodór jest kluczowym zanieczyszczeniem, które musi być usunięte z biogazu przed jego spalaniem. Jego obecność w biogazie stanowi poważne zagrożenie dla efektywności i bezpieczeństwa procesów energetycznych. Siarkowodór jest związkiem o silnych właściwościach korozjogennych, co oznacza, że może powodować poważne uszkodzenia elementów metalowych, takich jak silniki, rury oraz komory spalania. W praktyce, oczyszczanie biogazu ze siarkowodoru odbywa się za pomocą różnych metod, takich jak absorpcja chemiczna, adsorpcja na węglu aktywnym, czy też wykorzystanie bioreaktorów, w których mikroorganizmy przetwarzają H2S na mniej szkodliwe substancje. Stosowanie odpowiednich technologii oczyszczania jest niezbędne, aby zapewnić długotrwałą i bezawaryjną pracę instalacji biogazowych. Dobre praktyki w branży podkreślają znaczenie regularnego monitorowania jakości biogazu oraz dostosowywania procesów oczyszczania w zależności od zmieniających się warunków operacyjnych. Efektywne usunięcie siarkowodoru nie tylko wydłuża żywotność urządzeń, ale również zwiększa efektywność energetyczną całego systemu.

Pytanie 4

Jakie informacje mają kluczowe znaczenie przy przygotowywaniu oferty na instalację pompy ciepła w budynku jednorodzinnym?

A. Lokalizacja instalacji, koszt zakupu sprzętu i materiałów
B. Ilość i wynagrodzenie zatrudnionych pracowników, wydatki wykonawcy i planowany zysk oraz termin realizacji
C. Rodzaje instalowanych urządzeń, stawka za montaż oraz ilości potrzebnych materiałów
D. Czas potrzebny na montaż, liczba roboczogodzin pracowników
Wiesz, najważniejsze w ofercie na montaż pompy ciepła to te rzeczy, które mówią o tym, jakie urządzenia będą montowane, ich ceny i ilości materiałów. To tak jak fundamenty w budowie – bez nich nic się nie uda. Znając nazwy urządzeń, masz lepszy obraz tego, co dokładnie będzie użyte i jak to wpłynie na całą instalację. Klient musi wiedzieć, co dostaje, a także co do wydajności. Właściwa cena montażu to też ważny temat – precyzyjne określenie kosztów zapobiega nieporozumieniom na każdym kroku. No i nie zapominajmy o materiałach – ich ilości są kluczowe, żeby dobrze zaplanować zakupy i nie przepłacać. Prawdziwe profesjonalne podejście to przejrzystość i rzetelność, bo klient chce wiedzieć, co się dzieje. Niezły trik to też wspomnieć o normach, jak PN-EN 14511, bo to dodaje wiarygodności. Po prostu warto o tym pamiętać!

Pytanie 5

W Katalogach Nakładów Rzeczowych (KNR) jednostką miary nakładów pracy sprzętu jest

A. r-g
B. godzina
C. robocizna
D. m-g
M-g, czyli miesiąc roboczy, jest standardową jednostką nakładów pracy sprzętu w Katalogach Nakładów Rzeczowych (KNR). Umożliwia ona precyzyjne określenie czasu, jaki sprzęt powinien być wykorzystywany w danym projekcie. Przy obliczaniu kosztów inwestycji budowlanych, m-g staje się kluczowym elementem, gdyż pozwala na efektywne planowanie zasobów i harmonogramów. Przykładowo, jeśli w projekcie budowy drogi oszacowano wykorzystanie koparki na 3 m-g, oznacza to, że sprzęt powinien być cały czas dostępny przez trzy miesiące robocze. W praktyce, takie oszacowania są niezwykle ważne, aby uniknąć opóźnień i nadmiernych kosztów związanych z wynajmem lub obsługą sprzętu. Stosowanie m-g jako jednostki nakładów pracy pozwala również na lepsze porównanie efektywności różnych sprzętów oraz optymalizację ich wykorzystania w różnych projektach budowlanych, co jest zgodne z najlepszymi praktykami zarządzania projektami.

Pytanie 6

Do uzupełnienia systemu solarnego, który wspomaga produkcję ciepłej wody użytkowej, powinno się zastosować

A. wodę destylowaną
B. roztwór soli kuchennej
C. mieszaninę glikolu propylenowego i wody
D. wodę z instalacji kotła centralnego ogrzewania
Mieszanina glikolu propylenowego i wody jest optymalnym wyborem do napełnienia instalacji solarnej wspomagającej wytwarzanie ciepłej wody użytkowej. Glikol propylenowy działa jako środek antyzamarzający, co jest kluczowe w przypadku systemów solarnych, szczególnie w chłodniejszych klimatach. Dzięki jego stosunkowo niskiej toksyczności, glikol propylenowy jest bezpieczny dla środowiska i zdrowia, co czyni go preferowanym rozwiązaniem. Taki roztwór nie tylko zapobiega zamarzaniu cieczy w instalacji, ale także zwiększa efektywność przenoszenia ciepła. W praktyce, mieszanka ta pozwala na dłuższe eksploatowanie systemu solarnego bez ryzyka uszkodzeń spowodowanych niskimi temperaturami. W standardach branżowych i zaleceniach producentów instalacji solarnych, tego rodzaju roztwory są powszechnie polecane, co podkreśla ich znaczenie w zapewnieniu niezawodności i wydajności systemu."

Pytanie 7

W przypadku bardzo dużych różnic poziomu wody (H>500 m) optymalnym rozwiązaniem jest wykorzystanie turbiny wodnej

A. Kaplana
B. Peltona
C. Francisa
D. Deriaza
Wybór turbin do wykorzystania w dużych spadkach wodnych musi opierać się na znanych zasadach mechaniki płynów i charakterystyce działania różnych typów turbin. Turbiny Francisa, choć są wszechstronne i mogą być używane w szerokim zakresie spadków, nie są optymalne w sytuacjach, gdzie wysokość spadku wody przekracza 500 metrów. Ich konstrukcja bazuje na zasadzie osiowego przepływu, co czyni je mniej efektywnymi w warunkach dużych prędkości spływu. Zastosowanie turbiny Deriaza, mimo że jest innowacyjne i może działać w niektórych warunkach, nie jest powszechnie preferowane w przypadku dużych spadków, ponieważ nie dysponuje odpowiednią efektywnością w takich konfiguracjach. Turbiny Kaplana, mimo że doskonale sprawdzają się w niskich spadkach, nie są projektowane do wysokich różnic wysokości, ponieważ ich mechanizm działania opiera się na zasadzie przepływu osiowego i są bardziej odpowiednie dla dużych przepływów wody. Wybór niewłaściwej turbiny w kontekście konkretnego zastosowania może prowadzić do znaczącej utraty wydajności, co jest krytycznym błędem w projektowaniu systemów hydroenergetycznych. Zrozumienie tych zasad oraz ich praktyczne zastosowanie są kluczowe dla efektywności i rentowności projektów energetycznych opartych na energii wodnej.

Pytanie 8

Turbina wiatrowa typu VAWT charakteryzuje się osią obrotu

A. kośną
B. zmienną
C. pionową
D. poziomą
Turbina wiatrowa typu VAWT (Vertical Axis Wind Turbine) jest zaprojektowana w taki sposób, aby jej oś obrotu była pionowa. Taki układ konstrukcyjny ma kilka istotnych zalet, które czynią go atrakcyjnym rozwiązaniem w zastosowaniach wiatrowych. Przede wszystkim, pionowa oś obrotu pozwala na efektywniejsze wykorzystywanie wiatru z różnych kierunków, co jest szczególnie ważne w obszarach, gdzie kierunek wiatru jest zmienny. Dodatkowo, turbiny VAWT są mniej wrażliwe na turbulencje, co zwiększa ich wydajność w warunkach miejskich. Można je instalować w miejscach o ograniczonej przestrzeni, a ich konstrukcja zwykle nie wymaga skomplikowanych systemów kierowania, jak ma to miejsce w turbinach HAWT (Horizontal Axis Wind Turbines). Przykłady zastosowania turbin typu VAWT obejmują instalacje na dachach budynków oraz w parkach wiatrowych w miastach, gdzie tradycyjne turbiny mogą być mniej efektywne.

Pytanie 9

W przypadku tworzenia kosztorysu ofertowego nie uwzględnia się

A. koszty rzeczowe robocizny, materiałów oraz pracy sprzętu
B. zapisy z książki obmiarów zatwierdzone przez inspektora nadzoru
C. dokumentację projektową oraz dane wyjściowe do projektowania
D. ceny jednostkowe oraz narzuty dotyczące kosztów pośrednich i zysku
Odpowiedź dotycząca zapisów z książki obmiarów zatwierdzonych przez inspektora nadzoru jest prawidłowa, ponieważ te zapisy są specyficzne dla realizacji danego projektu i nie są stosowane w kontekście sporządzania kosztorysu ofertowego. Kosztorys ofertowy w praktyce budowlanej opiera się na kosztach rynkowych, które obejmują ceny jednostkowe robocizny, materiałów oraz pracy sprzętu, a także narzuty dotyczące kosztów pośrednich i zysku. Kluczowym elementem jest dokumentacja projektowa, która dostarcza niezbędnych danych do oszacowania kosztów inwestycji. Warto również zaznaczyć, że w procesie ofertowania należy brać pod uwagę aktualne wartości rynkowe komponentów budowlanych, co jest zgodne z zasadami rynkowymi oraz standardami kosztorysowania. Dobrą praktyką w kosztorysowaniu jest regularne aktualizowanie baz danych o ceny, co pozwala na precyzyjne odzwierciedlenie rzeczywistych kosztów w ofertach. Używając takich danych, firmy budowlane mogą skuteczniej konkurować na rynku oraz unikać błędów w ocenie kosztów realizacji projektów.

Pytanie 10

Materiał o najwyższym współczynniku absorpcji spośród wymienionych to

A. blacha aluminiowa
B. czarny chrom
C. blacha miedziana
D. czarna farba
Czarny chrom to naprawdę ciekawy materiał, bo ma super wysoką zdolność do pochłaniania światła. Dlatego świetnie sprawdza się wszędzie tam, gdzie potrzebujemy zminimalizować odbicie. Jak pomyślisz o optyce, to czarny chrom często trafia do filtrów optycznych czy różnych części aparatów fotograficznych. W porównaniu do czarnej farby, która też jest dobra, czarny chrom radzi sobie znacznie lepiej, jeśli chodzi o efektywność absorpcji. To dlatego w przemyśle często sięga się po czarny chrom, zwłaszcza w projektach, które wymagają precyzyjnego działania. W instrumentach naukowych i technologicznych jego jakość i działanie są naprawdę kluczowe.

Pytanie 11

Kolor izolacji przewodu łączącego regulator ładowania z dodatnim biegunem akumulatora powinien być

A. czerwony
B. brązowy
C. niebieski
D. czarny
Izolacja przewodu łączącego regulator ładowania z dodatnim zaciskiem akumulatora powinna być w kolorze czerwonym, co jest zgodne z szeroko przyjętymi standardami w branży motoryzacyjnej oraz elektroinstalacyjnej. Kolor czerwony zazwyczaj oznacza przewody zasilające lub dodatnie, co ma na celu ułatwienie identyfikacji i eliminację błędów podczas instalacji. Przykładem dobrych praktyk może być instalacja w systemach fotowoltaicznych, gdzie przewody dodatnie są również oznaczone kolorem czerwonym, co ułatwia ich odróżnienie od przewodów ujemnych, zazwyczaj czarnych. W ten sposób zwiększa się bezpieczeństwo użytkowania, minimalizując ryzyko zwarcia czy błędnego podłączenia. Warto również pamiętać, że zgodnie z normami IEC (International Electrotechnical Commission), stosowanie odpowiednich kolorów dla przewodów zasilających jest istotnym elementem nie tylko dla bezpieczeństwa, ale także dla ułatwienia diagnostyki i serwisowania systemów elektrycznych.

Pytanie 12

Aby uniknąć wydostawania się wody z zasobnika podczas wymiany zużytej anody, która znajduje się w górnej części zasobnika, należy zakręcić zawór na

A. wlocie zasobnika i wypuścić około 4 l wody z zasobnika
B. wylocie zasobnika i opróżnić zasobnik
C. wlocie oraz na wylocie zasobnika i wypuścić około 4 l wody z zasobnika
D. wlocie oraz na wylocie zasobnika i opróżnić zasobnik
Zamknięcie tylko wylotu lub wlotu zasobnika może prowadzić do poważnych problemów związanych z bezpieczeństwem i funkcjonalnością systemu. W przypadku, gdy zamkniemy tylko jeden z zaworów, a zasobnik pozostanie wypełniony wodą, może dojść do niebezpiecznego wzrostu ciśnienia wewnętrznego, co stwarza ryzyko uszkodzenia zasobnika lub związanych z nim komponentów. Opróżnienie zasobnika do zera często jest niepraktyczne oraz czasochłonne, a oprócz tego może prowadzić do niepotrzebnych strat wody oraz kosztów. Z kolei pominięcie wypuszczenia wody przy zamknięciu tylko na wlocie sprawia, że woda pozostaje w zasobniku, co nie pozwala na efektywne przeprowadzenie wymiany anody. Wymiana anody w zasobniku powinno być przeprowadzane według dobrych praktyk, które nakładają obowiązek wykonania wszystkich kroków minimalizujących ryzyko wycieków. Kluczowe jest zrozumienie, że każde nieprawidłowe działanie może prowadzić do uszkodzenia instalacji oraz potencjalnych wypadków, dlatego ważne jest, aby podczas takich operacji przestrzegać ustalonych procedur i standardów bezpieczeństwa.

Pytanie 13

Jak nazywa się jednostka określająca zużycie energii elektrycznej?

A. h/kW
B. KW/h
C. kWh
D. kW
Poprawna odpowiedź to kWh, czyli kilowatogodzina, która jest standardową jednostką stosowaną do pomiaru zużycia energii elektrycznej. Jednostka ta wskazuje, ile energii zużywa urządzenie o mocy jednego kilowata przez jedną godzinę. Przykładowo, jeśli żarówka o mocy 100 W działa przez 10 godzin, zużyje 1 kWh energii (100 W * 10 h = 1000 W = 1 kWh). W praktyce, wiedza na temat zużycia energii elektrycznej jest kluczowa dla efektywnego zarządzania energią zarówno w domach, jak i w przedsiębiorstwach. Umożliwia to nie tylko lepsze planowanie budżetu na energię, ale także identyfikację możliwości oszczędności. W branży energetycznej, przy pomiarach zużycia energii, kWh jest uznawana za normę, co jest potwierdzone m.in. przez Międzynarodową Organizację Normalizacyjną (ISO). Warto również zwrócić uwagę, że zrozumienie jednostek zużycia energii jest istotne w kontekście zrównoważonego rozwoju i ochrony środowiska.

Pytanie 14

Czym jest mostek termiczny?

A. częścią przegrody budowlanej, w której instalowane jest ogrzewanie ścienne
B. przepustem w przegrodzie budowlanej, którym prowadzi się rury do dolnego źródła ciepła
C. elementem przegrody budowlanej, przez który dochodzi do utraty ciepła
D. otworem w przegrodzie budowlanej, który prowadzi rury do kolektora
Mostek termiczny jest istotnym elementem w konstrukcji przegrody budowlanej, który prowadzi do niepożądanej utraty ciepła. W praktyce oznacza to, że w miejscach, gdzie materiał budowlany ma różne właściwości termiczne, może dojść do powstania mostków, które obniżają efektywność energetyczną budynku. Na przykład, mostki termiczne często występują w miejscach, gdzie materiale budowlanym przechodzą rury, w narożnikach lub na styku różnych materiałów. Zgodnie z normami budowlanymi, takich jak PN-EN ISO 10077, projektanci muszą identyfikować te miejsca i stosować odpowiednie materiały izolacyjne, aby zminimalizować straty ciepła. W praktyce, zastosowanie zaawansowanych technik budowlanych, takich jak termografia, pozwala na lokalizację mostków termicznych, co z kolei umożliwia ich usunięcie lub zredukowanie. Właściwe zarządzanie mostkami termicznymi jest kluczowe dla osiągnięcia wysokiej efektywności energetycznej obiektów budowlanych oraz spełnienia wymogów dotyczących oszczędzania energii.

Pytanie 15

Jakie rodzaje kolektorów słonecznych są najbardziej odpowiednie do montażu w orientacji pionowej?

A. Z selektywną powłoką absorbera.
B. Płaskie.
C. Próżniowe o bezpośrednim przepływie przez absorber.
D. Z przykryciem ze szkła antyrefleksyjnego.
Próżniowe kolektory słoneczne o bezpośrednim przepływie przez absorber są najbardziej efektywne w montażu w pozycji pionowej, ze względu na swoją konstrukcję, która minimalizuje straty ciepła. Próżniowe kolektory składają się z dwóch warstw szklanych, tworzących próżnię, co ogranicza przewodnictwo cieplne i konwekcję. Przy pionowym montażu, te urządzenia mogą efektywnie zbierać energię słoneczną nawet przy niskim kącie padania promieni słonecznych, co jest kluczowe w okresach zimowych lub w regionach o ograniczonej ilości słońca. Dzięki bezpośredniemu przepływowi przez absorber, woda lub inny czynnik roboczy szybko nagrzewają się, co zwiększa efektywność systemu. Przykładem zastosowania mogą być budynki, gdzie przestrzeń na dachach jest ograniczona, a pionowy montaż pozwala na maksymalne wykorzystanie dostępnej powierzchni. Dobre praktyki branżowe wskazują, że instalacja takich kolektorów powinna uwzględniać lokalne warunki atmosferyczne oraz kąt nachylenia, aby zoptymalizować ich wydajność.

Pytanie 16

Jaką maksymalną różnicę temperatur Δt pomiędzy kolektorem a zbiornikiem solarnym należy osiągnąć, aby uruchomić pompę solarną?

A. 33 °C
B. 25 °C
C. 20 °C
D. 15 °C
Odpowiedź 15 °C jest poprawna, ponieważ maksymalna różnica temperatur, która uruchamia pompę solarną, powinna być utrzymywana w optymalnym zakresie w celu zapewnienia efektywności układu solarnego. W praktycznych zastosowaniach systemów solarnych, różnica ta jest kluczowa dla efektywnego transportu ciepła z kolektora do zasobnika. W przypadku zbyt dużej różnicy temperatur, może dojść do nieefektywnego działania systemu, co prowadzi do strat energii oraz zwiększa ryzyko uszkodzenia komponentów systemu. Standardy branżowe, takie jak EN 12976, wskazują na znaczenie monitorowania i regulacji różnic temperatur w systemach solarnych. Przykładowo, w nowoczesnych instalacjach solarnych, różnica 15 °C zapewnia optymalne warunki do wymiany ciepła, co skutkuje lepszym wykorzystaniem energii słonecznej i zwiększeniem efektywności energetycznej budynku. Takie podejście jest zgodne z najlepszymi praktykami projektowymi i eksploatacyjnymi w branży OZE.

Pytanie 17

W dokumentacji dotyczącej montażu zasobnika c.w.u. wskazano, że należy go zainstalować w sposób, który pozwala na jego odłączenie. Zasobnik wyposażony jest w króćce z gwintem wewnętrznym. Do realizacji takiego połączenia trzeba zastosować

A. złączkę prostą z gwintem zewnętrznym
B. nypla
C. złączkę prostą z gwintem wewnętrznym
D. śrubunek
Wybór śrubunku jako odpowiedzi jest poprawny, ponieważ jest to element, który umożliwia połączenie dwóch rur w sposób, który jednocześnie pozwala na ich rozłączenie i ponowne podłączenie. Śrubunek składa się z dwóch części: nakrętki i złączki, które mogą być łatwo odkręcone, co ułatwia konserwację i naprawy instalacji. Dodatkowo, śrubunki są powszechnie stosowane w instalacjach wodociągowych oraz grzewczych, gdzie wymagane jest elastyczne podejście do montażu i demontażu. W praktyce, zastosowanie śrubunków pozwala na łatwą wymianę zasobników c.w.u. w przypadku ich awarii lub modernizacji systemu. Warto również zaznaczyć, że stosowanie odpowiednich materiałów i standardów (np. PN-EN 10088-1) przy produkcji śrubunków zapewnia ich trwałość i niezawodność, co przekłada się na bezpieczeństwo eksploatacji instalacji.

Pytanie 18

W czasie zimy w Polsce kolektory słoneczne osiągają najefektywniejszą pracę, gdy są skierowane na południe oraz ustawione pod kątem

A. 21°-45° od poziomu
B. 60°-70° od poziomu
C. 5°-20° od poziomu
D. 46°-59° od poziomu
Ustawienie kolektorów słonecznych pod kątem mniejszym niż 60° od poziomu w okresie zimowym jest nieoptymalne, ponieważ w Polsce promieniowanie słoneczne w tym czasie pada pod mniejszym kątem. Wybierając kąt 21°-45° od poziomu, użytkownik może napotkać problemy związane z nieefektywnym zbieraniem energii słonecznej. Tego rodzaju kąt nie pozwala na odpowiednie nachylenie kolektorów, co skutkuje znacznymi stratami energetycznymi. Ponadto, ustawienia w zakresie 5°-20° od poziomu są całkowicie niewystarczające, ponieważ w zimie słońce znajduje się znacznie niżej na niebie, przez co kolektory umieszczone w tak małym kącie będą odbierać minimalne ilości promieniowania. Zbyt niski kąt prowadzi również do problemów z gromadzeniem śniegu i lodu na powierzchni kolektorów, co jeszcze bardziej ogranicza ich wydajność. Właściwe zrozumienie kątów nachylenia kolektorów jest kluczowe dla ich efektywności i długowieczności. Ustawienie pod niewłaściwym kątem to typowy błąd w projektowaniu instalacji solarnych, który może być wynikiem braku wiedzy na temat sezonowych zmian w kącie padania promieni słonecznych. Dbanie o odpowiednią orientację i kąt nachylenia kolektorów jest zgodne z najlepszymi praktykami branżowymi, które zalecają dostosowywanie tych parametrów do lokalnych warunków klimatycznych oraz specyfiki geograficznej.

Pytanie 19

Stacja napełniająca zasilana energią słoneczną działa z prędkością 3 dm³/s. Jaką maksymalną objętość może napełnić w przeciągu dwóch godzin?

A. 6,00 m³
B. 10,80 m³
C. 21,60 m³
D. 32,40 m³
Stacja napełniająca o wydajności 3 dm³/s oznacza, że jest w stanie napełnić 3 decymetry sześcienne w każdą sekundę. Przez dwie godziny, co równa się 7200 sekund, całkowita objętość napełniona wynosi 3 dm³/s × 7200 s = 21600 dm³, co po przeliczeniu na metry sześcienne daje 21,6 m³. Zrozumienie przeliczeń jednostek objętości jest kluczowe w inżynierii i zarządzaniu projektami, gdzie precyzyjne obliczenia są niezbędne do efektywnego planowania. W praktyce, obliczenie przepływu cieczy i wydajności urządzeń jest stosowane w systemach hydraulicznych, instalacjach wodociągowych oraz wielu innych branżach, gdzie zarządzanie zasobami wodnymi jest priorytetem. Dobre praktyki inżynieryjne zalecają regularne monitorowanie wydajności systemów napełniających, aby zapewnić ich optymalną efektywność oraz zminimalizować straty. Warto również znać normy dotyczące zużycia wody i energii, co jest istotne w kontekście zrównoważonego rozwoju.

Pytanie 20

Gdzie w systemie grzewczym z kotłem posiadającym automatyczny podajnik paliwa powinno się zainstalować zabezpieczenie przed zbyt niskim poziomem wody?

A. Na powrocie, 10 cm ponad najwyższą częścią kotła
B. Na powrocie, 10 cm pod najwyższą częścią kotła
C. Na zasilaniu, 10 cm ponad najwyższą częścią kotła
D. Na zasilaniu, 10 cm pod najwyższą częścią kotła
Zamontowanie zabezpieczenia przed niskim poziomem wody w niewłaściwych miejscach, takich jak na powrocie 10 cm powyżej lub poniżej najwyższej części kotła, może prowadzić do poważnych problemów operacyjnych. Przede wszystkim zabezpieczenie umieszczone na powrocie nie będzie skutecznie monitorować poziomu wody, co jest kluczowe w systemach z automatycznym podajnikiem paliwa. Powrót to miejsce, gdzie woda wraca z obiegu grzewczego, i takie umiejscowienie nie gwarantuje, że kotłownia zawsze będzie miała odpowiednią ilość wody. Z tego powodu, może dojść do sytuacji, w której kocioł, mimo że na powrocie jest woda, działa na sucho, ponieważ pompa nie jest w stanie dostarczyć jej wystarczającej ilości z zasilania. Ponadto, umiejscowienie zabezpieczenia na zasilaniu, 10 cm poniżej najwyższej części kotła, również stwarza ryzyko, gdyż kocioł może działać w sytuacji, gdy poziom wody spadnie poniżej bezpiecznego marginesu. W takich przypadkach, woda w kotle nie jest wystarczająco chłodzona, co prowadzi do przegrzewania się urządzenia i potencjalnych uszkodzeń. Dlatego ważne jest, aby stosować się do zaleceń producentów i norm branżowych, które jasno wskazują, że zabezpieczenie powinno być montowane na zasilaniu, aby efektywnie kontrolować poziom wody i zapewnić optymalną pracę całego systemu grzewczego.

Pytanie 21

Aby połączyć dwie stalowe rury o identycznej średnicy z gwintem zewnętrznym, jakie złącze należy zastosować?

A. złączki wkrętnej, znanej jako nypl.
B. łącznika zaprasowywanego.
C. łącznika zaprasowywano-gwintowanego.
D. złączki nakrętnej, określanej jako mufy.
Złączka nakrętna, czyli mufa, jest idealnym rozwiązaniem do łączenia dwóch stalowych rur o tej samej średnicy, które zakończone są gwintem zewnętrznym. Mufa dysponuje wewnętrznymi gwintami, co pozwala na ich nakręcenie na zewnętrzne gwinty rur. Tego rodzaju połączenie jest niezwykle trwałe i pozwala na uzyskanie szczelności, co jest kluczowe w instalacjach hydraulicznych i grzewczych. W praktyce, mufa jest często stosowana w systemach wodociągowych oraz w instalacjach gazowych, gdzie bezpieczeństwo i szczelność są niezbędne. Dobrą praktyką jest również stosowanie odpowiednich smarów lub uszczelek podczas montażu, aby zminimalizować ryzyko nieszczelności. Warto zaznaczyć, że zgodnie z normami branżowymi, zastosowanie mufy w takich sytuacjach jest powszechnie akceptowane i rekomendowane przez specjalistów w dziedzinie hydrauliki. Dzięki temu połączenie jest nie tylko funkcjonalne, ale również spełnia wysokie standardy bezpieczeństwa.

Pytanie 22

Jeśli całkowity opór cieplny przegrody wynosi 4,00 (m2-K)/W, to jaką wartość ma współczynnik przenikania ciepła?

A. 0,35 W/(m2-K)
B. 0,25 W/(m2-K)
C. 0,50 W/(m2K)
D. 0,10 W/(m2-K)
Współczynnik przenikania ciepła, oznaczany jako U, jest odwrotnością całkowitego oporu cieplnego R przegrody. Całkowity opór cieplny to suma oporów poszczególnych warstw materiałów budowlanych. Wzór na obliczenie współczynnika przenikania ciepła przedstawia się jako U = 1/R. W tym przypadku, mając całkowity opór cieplny R równy 4,00 (m2-K)/W, obliczamy U jako U = 1/4,00 = 0,25 W/(m2-K). W praktyce oznacza to, że przez każdy metr kwadratowy przegrody o tym oporze cieplnym przepływa 0,25 wata ciepła przy różnicy temperatur wynoszącej 1 K. Wartość współczynnika U ma istotne znaczenie w kontekście projektowania budynków, ponieważ pozwala ocenić efektywność energetyczną przegrody. Zgodnie z normami budowlanymi, niższe wartości U są pożądane, co wskazuje na lepsze właściwości izolacyjne. Przykładowo, w budynkach pasywnych współczynnik U dla ścian zewnętrznych nie powinien przekraczać 0,15 W/(m2-K).

Pytanie 23

Pod jakim kątem powinny być ustawione na stałe kolektory słoneczne, aby zapewnić im optymalne nasłonecznienie przez cały rok?

A. 45 - 50 stopni
B. 30 - 40 stopni
C. 75 - 80 stopni
D. 60 - 70 stopni
Ustawianie kolektorów słonecznych pod kątami 75-80 stopni, 60-70 stopni czy 30-40 stopni nie jest zalecane, ponieważ powoduje znaczne ograniczenie ich efektywności w pozyskiwaniu energii słonecznej. Kąt nachylenia 75-80 stopni jest zbyt stromy, co może prowadzić do zacienienia kolektorów, zwłaszcza w okresie letnim, kiedy słońce znajduje się wysoko na niebie. Takie ustawienie nie tylko zmniejsza efektywność ich pracy, ale także może prowadzić do zjawisk takich jak kondensacja, która w dłuższej perspektywie może uszkodzić system. Kolektory ustawione pod kątem 60-70 stopni również nie będą w stanie optymalnie wykorzystać energii słonecznej w różnych porach roku, ze względu na zmieniający się kąt padania promieni. Z kolei kąt 30-40 stopni, chociaż bardziej zbliżony do optymalnego, nie zapewnia wystarczającego nasłonecznienia w miesiącach zimowych, co negatywnie wpływa na ogólną wydajność systemu. Błędem myślowym jest przekonanie, że większy kąt nachylenia automatycznie przyniesie lepsze wyniki. W rzeczywistości, wybór odpowiedniego kąta powinien być wynikiem analizy lokalnych warunków klimatycznych oraz specyfiki instalacji, a także zależny od celu, jaki chcemy osiągnąć z systemu solarnego.

Pytanie 24

Które urządzenie jest używane do wymuszania obiegu cieczy solarnej w systemie?

A. zawór regulacyjny
B. pompa
C. kolektor słoneczny
D. zbiornik wyrównawczy
Pompa w instalacji solarnej odgrywa kluczową rolę w wymuszaniu obiegu cieczy solarnej, co jest niezbędne do efektywnego transportu ciepła z kolektorów do systemu grzewczego. Działa na zasadzie mechanicznego przemieszczenia cieczy, co pozwala na utrzymanie optymalnego przepływu, a tym samym zapewnienie wysokiej efektywności energetycznej całego systemu. Pompy są projektowane z myślą o różnorodnych zastosowaniach, w tym do pracy w warunkach zmiennego obciążenia, co jest typowe dla systemów solarnych, gdzie ilość dostępnej energii cieplnej jest uzależniona od warunków atmosferycznych. Standardy takie jak EN 16297-1 dotyczące pomiarów efektywności pomp podkreślają znaczenie ich właściwego doboru i instalacji, co wpływa na trwałość i niezawodność systemu. Przykładem może być pompa obiegowa, która zapewnia stabilny przepływ w instalacjach z kolektorami słonecznymi, co pozwala na skuteczne wykorzystanie energii odnawialnej.

Pytanie 25

Korzystając z danych zamieszczonych w tabeli, wskaż kolektor słoneczny o najwyższej sprawności optycznej.

Rodzaj parametruKolektor 1Kolektor 2Kolektor 3Kolektor 4
Transmisyjność pokrywy przezroczystej0,920,920,860,86
Emisyjność absorbera0,050,850,120,05
Absorpcyjność absorbera0,950,850,950,04

A. Kolektor 3.
B. Kolektor 1.
C. Kolektor 4.
D. Kolektor 2.
Kolektor 1 został wybrany jako ten o najwyższej sprawności optycznej, co jest wynikiem starannej analizy trzech kluczowych parametrów: transmisyjności pokrywy przezroczystej, emisyjności absorbera oraz absorpcyjności absorbera. W praktyce, wysoka transmisyjność oznacza, że większa ilość promieniowania słonecznego przenika przez pokrywę do wnętrza kolektora, co zwiększa efektywność jego działania. Emisyjność absorbera odnosi się do zdolności materiału do emitowania energii cieplnej; niski współczynnik emisyjności jest pożądany, ponieważ minimalizuje straty ciepła. Absorpcja energii słonecznej przez absorber jest kluczowa dla efektywności kolektora. Kolektor 1 osiąga najwyższe wartości w tych trzech kategoriach, co czyni go idealnym wyborem do zastosowań, takich jak ogrzewanie wody użytkowej czy wspomaganie systemów grzewczych w budynkach. W odniesieniu do standardów branżowych, takie podejście do oceny kolektorów słonecznych jest zgodne z normami IEC i ISO, które promują efektywność i zrównoważony rozwój technologii odnawialnych.

Pytanie 26

W jaki sposób oraz w jakim miejscu powinno się zainstalować fotoogniwo, aby osiągnąć najlepszą wydajność przez cały rok?

A. Prostopadle, na południowej ścianie obiektu
B. Pod kątem 55 stopni do poziomu gruntu, na południowej części dachu
C. W poziomie, na tarasie
D. Pod kątem 45 stopni do poziomu gruntu, na wschodniej części dachu
Montaż fotoogniw pod kątem 55 stopni do powierzchni terenu na południowej połaci dachu jest optymalnym rozwiązaniem, które zapewnia maksymalną efektywność ich pracy przez cały rok. Pod kątem 55 stopni panel słoneczny jest w stanie lepiej wykorzystać promieniowanie słoneczne, szczególnie w miesiącach zimowych, kiedy Słońce znajduje się nisko na horyzoncie. Południowa ekspozycja dachu zapewnia, że panele będą miały największy dostęp do światła słonecznego w ciągu dnia, co przekłada się na wyższą produkcję energii. Warto również zauważyć, że taki kąt montażu minimalizuje ryzyko gromadzenia się śniegu i zanieczyszczeń na powierzchni paneli, co mogłoby wpłynąć na ich wydajność. Dodatkowo, stosowanie się do zaleceń branżowych dotyczących montażu, takich jak standardy IEC 61215 i IEC 61730, gwarantuje bezpieczeństwo i trwałość instalacji. Odpowiedni dobór kąta i miejsca montażu jest kluczowy dla długoterminowej efektywności systemów fotowoltaicznych oraz ich opłacalności ekonomicznej.

Pytanie 27

Najkorzystniejszą strefą energetyczną pod względem wiatru jest województwo

A. dolnośląskie
B. małopolskie
C. pomorskie
D. lubelskie
Województwo pomorskie jest uznawane za najlepszą strefę energetyczną pod względem wiatru w Polsce z uwagi na korzystne warunki klimatyczne, które sprzyjają produkcji energii z wiatru. Region ten charakteryzuje się dużą średnią prędkością wiatru, co jest kluczowym czynnikiem dla efektywności farm wiatrowych. Zgodnie z normami branżowymi, instalacje wiatrowe powinny być lokowane w obszarach, gdzie średnie roczne prędkości wiatru wynoszą co najmniej 5 m/s, co w pomorskim jest często przekraczane. Przykłady udanych projektów wiatrowych w tym regionie, takie jak farmy wiatrowe na Bałtyku, potwierdzają opłacalność inwestycji w odnawialne źródła energii. Dobre praktyki w tym zakresie obejmują przeprowadzenie dokładnych badań wiatrowych oraz analizę wpływu na środowisko, co jest niezbędne do uzyskania pozwolenia na budowę. W rezultacie, pomorskie staje się liderem w produkcji energii wiatrowej, co przyczynia się do osiągania celów związanych z zrównoważonym rozwojem i redukcją emisji CO2.

Pytanie 28

Do zrealizowania montażu instalacji solarnych z rurą miedzianą należy wykorzystać

A. obcinarki krążkowej, gratownika, palnika
B. piłki, gwintownicy z narzynkami, kluczy hydraulicznych
C. nożyc, rozwiertaka, zaciskarki promieniowej
D. nożyc, gratownika, zgrzewarki
Obcinarka krążkowa, gratownik i palnik stanowią zestaw narzędzi niezbędnych do prawidłowego montażu instalacji solarnej z rur miedzianych. Obcinarka krążkowa jest kluczowym narzędziem, które umożliwia precyzyjne cięcie rur miedzianych, co jest istotne dla zachowania integralności systemu oraz unikania uszkodzeń. Użycie gratownika pozwala na usunięcie zadziorów, które mogą wystąpić po cięciu, co jest ważne dla uzyskania szczelnych połączeń. Palnik służy do lutowania, co jest standardową praktyką przy łączeniu elementów instalacji wykonanych z miedzi. Lutowanie miedzi jest powszechnie uznawane za jeden z najskuteczniejszych sposobów łączenia, zapewniający wysoką wytrzymałość połączeń i odporność na wysokie temperatury. W kontekście montażu instalacji solarnych, gdzie rury miedziane są często używane ze względu na ich doskonałe właściwości przewodzenia ciepła, wykorzystanie odpowiednich narzędzi jest kluczowe dla efektywności całego systemu. Dobrze wykonane połączenia zapewniają długotrwałe i bezproblemowe działanie instalacji. Takie podejście jest zgodne z najlepszymi praktykami branżowymi i standardami jakości.

Pytanie 29

Podstawą do stworzenia szczegółowego kosztorysu instalacji pompy ciepła są

A. aprobacje techniczne
B. harmonogramy prac
C. katalogi nakładów rzeczowych
D. atestacje higieniczne
Podstawą opracowania kosztorysu szczegółowego instalacji pompy ciepła są katalogi nakładów rzeczowych, które stanowią kluczowe narzędzie dla inżynierów i kosztorysantów. Katalogi te zawierają szczegółowe informacje na temat kosztów materiałów, robocizny i innych nakładów, co pozwala na precyzyjne oszacowanie całkowitego kosztu inwestycji. Przykładowo, przy instalacji pompy ciepła ważne jest uwzględnienie kosztów nie tylko samej pompy, ale także materiałów niezbędnych do montażu, takich jak rury, izolacje, czy armatura. Korzystanie z aktualnych katalogów, takich jak KNR (Katalogi Nakładów Rzeczowych) lub ZK (Zbiory Kosztorysowe), zapewnia, że kosztorys będzie zgodny z rynkowymi standardami i rzeczywistymi cenami, co jest niezbędne dla efektywnego zarządzania budżetem projektu. Dobre praktyki w tej dziedzinie obejmują również regularne aktualizowanie danych w kosztorysach oraz analizowanie cen rynkowych, co umożliwia dostosowanie kosztorysu do zmieniających się warunków rynkowych.

Pytanie 30

Co oznacza symbol PE-HD na rurze?

A. polietylen o niskiej gęstości
B. homopolimer polietylenu
C. polietylen o wysokiej gęstości
D. polietylen o średniej gęstości
Oznaczenie PE-HD odnosi się do polietylenu wysokiej gęstości, który jest jednym z najczęściej stosowanych tworzyw sztucznych w branży budowlanej oraz przemysłowej. PE-HD charakteryzuje się wysoką odpornością na chemikalia, działanie wysokich temperatur oraz promieniowanie UV, co czyni go idealnym materiałem do produkcji rur wykorzystywanych w różnych systemach wodociągowych, kanalizacyjnych oraz gazowych. Dzięki swojej gęstości i strukturze, PE-HD ma również dobrą odporność na uszkodzenia mechaniczne, co jest szczególnie ważne w przypadku instalacji w trudnych warunkach. Standardy ISO 4427 oraz EN 12201 określają wymagania techniczne dla rur PE-HD, co zapewnia ich wysoką jakość oraz niezawodność. W praktyce, rury oznaczone jako PE-HD są powszechnie stosowane do transportu wody pitnej oraz ścieków, a także w systemach irygacyjnych. Warto również zauważyć, że proces recyklingu PE-HD jest stosunkowo prosty, co przyczynia się do zrównoważonego rozwoju i ochrony środowiska.

Pytanie 31

Jak należy łączyć miedziane rury z rurami ze stali ocynkowanej?

A. Używa się specjalnej złączki mosiężnej jako przejściowej
B. Lutuje się stalową złączkę do miedzianej rury
C. Zaciska się miedzianą rurę na stalowej rurze
D. Lutuje się miedzianą złączkę do stalowej rury
Stosowanie specjalnej przejściowej złączki mosiężnej jest właściwym rozwiązaniem przy łączeniu rur miedzianych ze stalowymi. Mosiądz, będący stopem miedzi i cynku, stanowi doskonały materiał do takich zastosowań, ponieważ łączy w sobie korzystne właściwości obu metali. Złączki mosiężne zapewniają trwałe i szczelne połączenia, które są odporne na korozję oraz różnice temperatur. W praktyce, w instalacjach wodociągowych czy grzewczych, gdzie często występują różne materiały, zastosowanie mosiądzu jako łącznika minimalizuje ryzyko wystąpienia reakcji galwanicznych, które mogą prowadzić do osłabienia połączeń. Ważne jest, aby podczas montażu zapewnić odpowiednią jakość złączek oraz przestrzegać norm i standardów branżowych, takich jak PN-EN 1254, które regulują kwestie dotyczące materiałów i metod łączenia rur. Dobrą praktyką jest również stosowanie uszczelek, aby zapewnić szczelność połączenia, co jest kluczowe w instalacjach hydraulicznych.

Pytanie 32

Podczas przewozu pompy ciepła szczególnie ważne jest, aby zwrócić uwagę na jej wrażliwość na

A. przechylania
B. niską temperaturę
C. promienie słoneczne
D. wilgotność powietrza
Podczas transportu pompy ciepła szczególnie istotne jest unikanie ich przechylania, ponieważ te urządzenia są wrażliwe na zmiany pozycji, które mogą prowadzić do uszkodzenia ich wewnętrznych komponentów. Przechylanie pompy ciepła może powodować przesunięcia lub uszkodzenia sprężarki, wymienników ciepła oraz systemu chłodzenia. W praktyce, zaleca się transport pompy w pozycji pionowej, aby zminimalizować ryzyko takich uszkodzeń. Warto również pamiętać, że podczas załadunku i rozładunku urządzenia, należy stosować odpowiednie uchwyty i podpory, aby zapewnić stabilność. Dobre praktyki w branży dotyczące transportu pomp ciepła obejmują również stosowanie specjalistycznych opakowań, które amortyzują wstrząsy i drgania. W przypadku transportu na dłuższych dystansach, warto również monitorować warunki atmosferyczne, aby zapewnić, że urządzenie nie jest narażone na niekorzystne czynniki zewnętrzne, ale kluczowe pozostaje zachowanie odpowiedniej pozycji podczas transportu.

Pytanie 33

Skraplacz to urządzenie

A. pobierające ciepło z otoczenia.
B. przekształcające energię elektryczną na cieplną.
C. przekształcające energię cieplną na elektryczną.
D. oddające ciepło do systemu.
Skraplacz jest kluczowym elementem systemów chłodniczych i klimatyzacyjnych, którego podstawową funkcją jest oddawanie energii cieplnej do otoczenia. Działa na zasadzie kondensacji, która zachodzi, gdy gaz chłodniczy, przechodząc z fazy gazowej do ciekłej, oddaje ciepło. Przykładowo, w systemach klimatyzacyjnych, skraplacz odprowadza ciepło z wnętrza budynku na zewnątrz, co pozwala na utrzymanie komfortowej temperatury wewnętrznej. Z perspektywy inżynieryjnej, dobrze zaprojektowany skraplacz powinien charakteryzować się wysoką efektywnością wymiany ciepła oraz niskim oporem przepływu. W praktyce oznacza to zastosowanie odpowiednich materiałów i technologii, takich jak stosowanie rur miedzianych lub aluminium, które dobrze przewodzą ciepło. Warto również wspomnieć o standardach branżowych, takich jak ASHRAE, które określają najlepsze praktyki w projektowaniu i użytkowaniu systemów chłodniczych, w tym skraplaczy.

Pytanie 34

Na jakiej głębokości układa się rury gruntowego wymiennika ciepła w instalacji pompy cieplnej?

A. 2,2-2,8 m
B. 1,6-2,2 m
C. 0,6-1,2 m
D. 1,0-1,6 m
Rury gruntowego wymiennika ciepła w instalacjach pomp ciepła układa się zazwyczaj na głębokości od 1,0 do 1,6 m. Taki zakres głębokości jest preferowany, ponieważ zapewnia optymalne warunki do wymiany ciepła pomiędzy gruntem a płynem roboczym w systemie. Grunt na tej głębokości ma stabilną temperaturę, co jest kluczowe dla efektywności działania pompy ciepła. W praktyce, głębokość układania rur wpływa na wydajność systemu, zwłaszcza w kontekście lokalnych warunków geotermalnych oraz właściwości gruntu. Zbyt płytkie ułożenie rur może prowadzić do nieefektywnej wymiany ciepła, szczególnie w okresach dużego zapotrzebowania na energię grzewczą. Z kolei zbyt głębokie ułożenie może wiązać się z większymi kosztami inwestycyjnymi oraz trudnościami w instalacji. Warto zaznaczyć, że normy budowlane oraz najlepsze praktyki branżowe sugerują uwzględnienie lokalnych warunków geologicznych i klimatycznych przy projektowaniu systemów gruntowych wymienników ciepła.

Pytanie 35

W jednym cyklu obiegu wody nie wolno łączyć rur ze stali ocynkowanej z rurami

A. miedzianymi
B. polipropylenowymi
C. polietylenowymi sieciowanymi
D. polietylenowymi warstwowymi
Połączenie rur ze stali ocynkowanej z rurami miedzianymi jest niewłaściwe z powodu różnic w przewodnictwie elektrycznym i reakcji chemicznych, które mogą wystąpić między tymi dwoma materiałami. Stal ocynkowana, która jest pokryta warstwą cynku, może wchodzić w reakcje galwaniczne z miedzią, co prowadzi do korozji i uszkodzenia rur. Przykładowo, w instalacjach wodociągowych, gdzie pojawia się obecność elektrolitów, taka korozja może znacznie osłabić integralność systemu, prowadząc do wycieków i awarii. Dlatego w praktyce inżynierskiej stosuje się standardy, które zalecają unikanie takich połączeń. Dobre praktyki dotyczące projektowania instalacji hydraulicznych obejmują także stosowanie odpowiednich złączek i przejściówek, które są zaprojektowane w sposób, który minimalizuje ryzyko korozji. Na przykład, zamiast łączyć rury miedziane z ocynkowanymi, lepiej jest zastosować rury z tworzyw sztucznych, które nie wchodzą w reakcje chemiczne z metalami i są bardziej odporne na korozję.

Pytanie 36

Do prac związanych z konserwacją układu solarnego nie wlicza się

A. zweryfikowania i ewentualnego uzupełnienia czynnika w obiegu solarnym.
B. wymiany czynnika grzewczego w obiegu solarnym.
C. czyszczenia zbiornika.
D. sprawdzenia stanu izolacji rur w obiegu solarnym.
Czynności konserwacji obiegu solarnego obejmują różnorodne działania, mające na celu zapewnienie ciągłości i efektywności działania całego systemu. Kontrola stanu izolacji rur obiegu solarnego jest kluczowa, ponieważ dobrze izolowane rury minimalizują straty ciepła, co bezpośrednio wpływa na efektywność energetyczną systemu. Niezbędne jest regularne sprawdzanie izolacji, aby uniknąć niepotrzebnych strat energii, które mogą prowadzić do wyższych kosztów eksploatacji. Sprawdzenie i ewentualne uzupełnienie czynnika w obiegu solarnym to również istotny element konserwacji. Czynnik roboczy w obiegu solarnym musi być utrzymywany na odpowiednim poziomie, aby zapewnić efektywne przekazywanie ciepła z kolektorów do zasobnika. Niedobór czynnika może prowadzić do obniżenia wydajności, a w skrajnych przypadkach do uszkodzenia układu. Wymiana czynnika grzewczego, choć mniej typowa, może być również konieczna w przypadku degradacji lub zanieczyszczenia czynnika, co wpływa na właściwe funkcjonowanie systemu. Błędem jest myślenie, że te działania są zbędne lub nie mają wpływu na efektywność całego systemu solarnego. Ignorowanie ich może prowadzić do kosztownych awarii oraz zmniejszenia efektywności energetycznej instalacji.

Pytanie 37

W przypadku modułów ogniw fotowoltaicznych połączonych szeregowo, całkowite zacienienie jednego ogniwa skutkuje

A. zmniejszeniem mocy modułu o 50%
B. zmniejszeniem mocy modułu do zera
C. dwukrotnym wzrostem napięcia modułu
D. odłączeniem modułu
Zacienienie ogniwa w module, który jest połączony szeregowo, może prowadzić do tego, że moc całego modułu spada do zera. Dlaczego tak się dzieje? Bo w układzie szeregowym prąd jest taki sam przez każde ogniwo. Kiedy jedno ogniwo jest zacienione, jego wydajność spada, co po prostu ogranicza przepływ prądu przez cały łańcuszek ogniw. W praktyce często używa się diod bypass w systemach fotowoltaicznych, żeby trochę zminimalizować straty mocy, kiedy przychodzi częściowe zacienienie. Ale jeśli jedno ogniwo jest w 100% zacienione, to ono przestaje produkować energię. Warto pamiętać, że instalacje fotowoltaiczne powinny być projektowane z myślą o potencjalnych przeszkodach, które mogą rzucać cień, bo to zdecydowanie pomoże zwiększyć ich efektywność. Dobrze jest też regularnie sprawdzać wydajność systemu i dbać o jego czystość, co na pewno pomoże w lepszej produkcji energii.

Pytanie 38

Na jakim dokumencie oferent przetargu na montaż instalacji fotowoltaicznej w budynku szkoły opiera swoją propozycję?

A. Plan zagospodarowania przestrzennego
B. Specyfikacja istotnych warunków zamówienia
C. Rachunki za energię elektryczną szkoły
D. Projekt budowlany szkoły
Specyfikacja istotnych warunków zamówienia (SIWZ) jest kluczowym dokumentem w procesie przetargowym, który szczegółowo określa wymagania dotyczące przedmiotu zamówienia, w tym wypadku montażu instalacji fotowoltaicznej. Dokument ten zawiera nie tylko opis zamówienia, ale także kryteria oceny ofert, warunki udziału w postępowaniu oraz inne istotne informacje, które są niezbędne do przygotowania oferty. Przykładowo, SIWZ może zawierać specyfikacje techniczne dotyczące parametrów instalacji, wymagane certyfikaty, oraz wymogi dotyczące dokumentacji powykonawczej. Dzięki temu, oferent ma pełną wiedzę na temat oczekiwań zamawiającego, co pozwala na składanie ofert zgodnych z wymaganiami oraz na właściwe oszacowanie kosztów. W praktyce, stosowanie SIWZ jako podstawy do opracowania oferty jest zgodne z ustawą Prawo zamówień publicznych, co zapewnia transparentność i uczciwość postępowań przetargowych.

Pytanie 39

Montaż paneli fotowoltaicznych na dachu o płaskiej powierzchni zrealizował instalator w towarzystwie dwóch asystentów. Stawka wynagrodzenia instalatora to 48,00 zł, a stawka asystenta wynosi 25,00 zł za każdą godzinę pracy. Jaka jest kosztorysowa wartość robocizny, jeśli czas pracy wynosi 5 godzin?

A. 490,00 zł
B. 98,00 zł
C. 605,00 zł
D. 365,00 zł
Aby obliczyć kosztorysową wartość robocizny przy montażu paneli fotowoltaicznych, należy uwzględnić stawki robocze dla instalatora oraz pomocników. Instalator otrzymuje 48,00 zł za godzinę, a każdy z dwóch pomocników 25,00 zł za godzinę. Przy nakładzie robocizny wynoszącym 5 godzin, obliczenia przeprowadzamy w następujący sposób: koszt pracy instalatora wynosi 5 godzin x 48,00 zł = 240,00 zł. Koszt pracy dwóch pomocników wynosi 5 godzin x 25,00 zł x 2 = 250,00 zł. Łączny kosztorys robocizny wynosi zatem 240,00 zł + 250,00 zł = 490,00 zł. Tego rodzaju kalkulacje są kluczowe w branży odnawialnych źródeł energii, ponieważ pomagają w dokładnym oszacowaniu kosztów projektu oraz w planowaniu budżetu. Praktyczne zastosowanie takich obliczeń pozwala na precyzyjne zarządzanie kosztami, co jest zgodne z dobrymi praktykami w zakresie zarządzania projektami budowlanymi oraz finansami.

Pytanie 40

W trakcie instalacji płaskich kolektorów słonecznych w słoneczny dzień należy je osłonić, aby zabezpieczyć

A. kolektory przed zniszczeniem w wyniku upadku
B. przezroczyste pokrywy przed zanieczyszczeniem
C. pokrycie dachu przed odkształceniami termicznymi
D. monterów przed oparzeniami
Podczas montażu płaskich kolektorów słonecznych w słoneczny dzień, istnieje ryzyko, że powierzchnie kolektorów mogą się nagrzewać do wysokich temperatur, co stwarza zagrożenie poparzeniem dla monterów. Odpowiednia ochrona pracowników podczas takich prac jest kluczowa. Przykładowo, przykrycie kolektorów materiałem izolacyjnym lub nieprzezroczystym może znacząco obniżyć ich temperaturę, co przekłada się na bezpieczeństwo. Dbanie o zdrowie i bezpieczeństwo pracowników jest zgodne z wytycznymi BHP oraz standardami pracy w obszarze instalacji systemów odnawialnych źródeł energii. Ważne jest, aby osoby montujące kolektory były świadome potencjalnych zagrożeń związanych z ich pracą w silnym słońcu, co obejmuje nie tylko ryzyko poparzeń, ale również udaru słonecznego. Dlatego stosowanie odpowiednich środków ochrony, takich jak odzież ochronna oraz odpowiednie techniki pracy, jest niezbędne w tego typu instalacjach.