Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 13 maja 2025 16:44
  • Data zakończenia: 13 maja 2025 17:18

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W elektrowni wodnej zainstalowany jest generator o mocy P=100 kW. Jaką częstotliwość powinno mieć napięcie, aby mogła ona współdziałać z Polskim Systemem Energetycznym?

A. 50 Hz
B. 70 Hz
C. 80 Hz
D. 20 Hz
Odpowiedź 50 Hz jest prawidłowa, ponieważ w Polsce, jak i w większości krajów europejskich, standardowa częstotliwość napięcia w sieci elektroenergetycznej wynosi właśnie 50 Hz. Taka częstotliwość została przyjęta jako norma w celu zapewnienia stabilności i kompatybilności systemów energetycznych. Współpraca generatorów prądu z systemem energetycznym opiera się na synchronizacji ich częstotliwości z siecią. Przykładowo, elektrownie wodne, które korzystają z turbin wodnych, muszą dostarczać energię o odpowiedniej częstotliwości, aby mogły zostać włączone do krajowej sieci. Zastosowanie generatorów o mocy 100 kW w Polsce, które muszą pracować w harmonii z innymi źródłami energii, jak elektrownie wiatrowe czy słoneczne, również potwierdza konieczność utrzymania tej standardowej częstotliwości. Takie podejście zwiększa efektywność całego systemu elektroenergetycznego oraz minimalizuje ryzyko awarii związanych z zaburzeniem synchronizacji.

Pytanie 2

Zalecana objętość zbiornika solarnego wynosi

A. od 2 do 2,5 razy większa niż dzienne zapotrzebowanie na ciepłą wodę użytkową
B. od 1,5 do 2 razy większa niż dzienne zapotrzebowanie na ciepłą wodę użytkową
C. mniejsza niż dzienne zapotrzebowanie na ciepłą wodę użytkową
D. taka sama jak dzienne zapotrzebowanie na ciepłą wodę użytkową
Zakładanie, że pojemność zasobnika solarnego powinna być mniejsza od dziennego zapotrzebowania na ciepłą wodę użytkową, prowadzi do poważnych problemów operacyjnych w systemach ogrzewania. Pojemność poniżej wymaganego zapotrzebowania nie tylko uniemożliwia efektywne magazynowanie energii słonecznej, ale także naraża system na nieefektywne działanie. W sytuacji, gdy zasobnik jest zbyt mały, ciepła woda może szybko się wyczerpać, co zmusza użytkowników do korzystania z alternatywnych źródeł energii, takich jak ogrzewanie elektryczne lub gazowe, zwiększając koszty eksploatacji i negując korzyści ekologiczne systemu solarnego. Ponadto, równa pojemność zasobnika zapotrzebowaniu lub nieznacznie większa (w przypadku niektórych odpowiedzi) może prowadzić do częstych cykli grzewczych, co z kolei może skrócić żywotność elementów systemu, takich jak kolektory słoneczne i wymienniki ciepła. Nieprawidłowe założenia dotyczące pojemności zasobnika mogą być wynikiem błędnego zrozumienia dynamiki procesów termicznych oraz niewłaściwej analizy lokalnych warunków klimatycznych, co jest kluczowe w projektowaniu systemów opartych na energii słonecznej.

Pytanie 3

Jak należy przechowywać kolektory słoneczne?

A. pod wiatą, umieszczone szybą w dół
B. pod wiatą, umieszczone szybą do góry
C. w zamkniętych pomieszczeniach, umieszczone szybą do góry
D. w zamkniętych pomieszczeniach, umieszczone szybą w dół
Kolektory słoneczne fajnie jest przechowywać w zamkniętych pomieszczeniach, w pozycji szybą do góry. Dzięki temu są mniej narażone na działanie różnych warunków atmosferycznych i uszkodzenia. Jak się je trzyma w suchym i wentylowanym miejscu, to zmniejsza się ryzyko kondensacji i korozji, co jest bardzo ważne, bo wilgoć może zniszczyć te urządzenia. Ułożenie szybą do góry zapobiega zarysowaniom, co jest super ważne, zwłaszcza, że te kolektory są dosyć drogie. Wiele firm, które zajmują się energią odnawialną, sugeruje używanie specjalnych stojaków, żeby je lepiej zabezpieczyć. Dobrze jest też co jakiś czas sprawdzić ich stan, żeby wcześnie zauważyć ewentualne problemy. Wiedza na temat tego, jak dobrze przechowywać kolektory, jest kluczowa dla ich długiego życia i efektywności.

Pytanie 4

Jakie mogą być powody wystąpienia na falowniku kodu błędu wskazującego na zwarcie doziemne podczas uruchamiania systemu fotowoltaicznego?

A. Niedostosowanie prądowe modułów
B. Całkowite wyczerpanie akumulatora
C. Uszkodzenie izolacji kabla w obwodzie AC
D. Uszkodzenie izolacji kabla w obwodzie DC
Wybór odpowiedzi na temat niedopasowania prądowego modułów czy całkowitego rozładowania akumulatora, chociaż te sprawy mogą mieć wpływ na działanie instalacji, nie są bezpośrednio związane z błędem zwarcia doziemnego. Niedopasowanie prądowe modułów może spowodować, że system będzie działał mniej efektywnie, ale nie wywołuje błędu zwarcia. Jeśli akumulator jest całkowicie rozładowany, to pewnie nie da się przechować energii, co może powodować przerwy w działaniu, ale to też nie jest przyczyna zwarcia doziemnego. Uszkodzenie izolacji w obwodzie AC może być niebezpieczne, ale skutki mogą być inne niż w DC. Warto wiedzieć, że zwarcia doziemne w instalacjach PV zdarzają się głównie w obwodzie prądu stałego, więc przyczyny są specyficzne i nie można ich lekceważyć. Źle zidentyfikowane problemy mogą prowadzić do poważnych awarii, dlatego ważne jest, by diagnozować wszystko dokładnie i znać branżowe standardy.

Pytanie 5

Zanim instalacja kotłowni spalającej biomasę zostanie oddana do użytku, jaki dokument jest niezbędny?

A. ocena wpływu inwestycji na środowisko
B. decyzja o wprowadzaniu zanieczyszczeń do powietrza atmosferycznego
C. protokół odbioru końcowego
D. pozytywna opinia straży miejskiej
Protokół odbioru końcowego jest kluczowym dokumentem w procesie oddawania do eksploatacji instalacji kotłowni spalającej biomasę. Stanowi on formalne potwierdzenie, że instalacja została zbudowana zgodnie z projektem, spełnia wymagania techniczne oraz bezpieczeństwa, a także jest gotowa do użytkowania. W praktyce, protokół ten powinien być sporządzony przez odpowiednie organy nadzoru budowlanego lub inżynierów, którzy przeprowadzają inspekcję instalacji. Protokół powinien zawierać informacje o wykonanych pracach, zastosowanych materiałach oraz zgodności z obowiązującymi normami prawnymi i technicznymi. Przykładowo, zgodnie z normą PN-EN 303-5, która dotyczy kotłów na paliwa stałe, protokół odbioru powinien potwierdzać, że kotłownia spełnia wymogi dotyczące emisji zanieczyszczeń. Dobre praktyki branżowe zalecają również, aby protokół był dokumentowany w formie pisemnej, co ułatwia przyszłe audyty oraz kontrole. Odpowiedni protokół odbioru jest nie tylko wymogiem prawnym, ale również kluczowym elementem dla zapewnienia bezpieczeństwa i efektywności energetycznej kotłowni.

Pytanie 6

W trakcie działania systemu fotowoltaicznego na inwerterze zauważono kod błędu dotyczący zwarcia doziemnego. Jakie mogą być przyczyny tego zjawiska?

A. rozładowany akumulator
B. zacienienie modułów
C. uszkodzony przewód
D. niedostosowanie prądowe paneli
Uszkodzony przewód w instalacji fotowoltaicznej może prowadzić do zwarcia doziemnego, co jest poważnym problemem, mogącym zagrażać bezpieczeństwu całego systemu. Zwarcie doziemne występuje, gdy przewód fazowy styka się z ziemią lub innym uziemionym elementem, co prowadzi do niebezpiecznego wzrostu prądu. W takim przypadku inwerter wykrywa ten problem i generuje kod błędu, aby zasygnalizować potrzebę interwencji. Praktycznym przykładem może być sytuacja, w której przewód ochronny został uszkodzony w wyniku działania czynników atmosferycznych, takich jak deszcz czy intensywne nasłonecznienie, co prowadzi do degradacji materiałów izolacyjnych. W takiej sytuacji ważne jest, aby regularnie kontrolować stan przewodów i zainstalować systemy monitoringu, które pomogą wcześniej wykryć potencjalne problemy i zapobiec poważnym uszkodzeniom. Dobre praktyki branżowe sugerują, aby instalacje były projektowane z uwzględnieniem odpowiednich zabezpieczeń oraz regularnych przeglądów technicznych, co pozwoli na minimalizację ryzyka wystąpienia zwarć doziemnych i poprawi trwałość systemu.

Pytanie 7

Z informacji zawartych w dokumentacji wynika, że roczne wydatki na energię elektryczną w obiekcie użyteczności publicznej wynoszą 6000 zł. Inwestor postanowił zamontować na dachu budynku system paneli fotowoltaicznych, aby obniżyć te wydatki. Dzięki temu koszty zużycia energii elektrycznej będą niższe o 75%. Jaką kwotę będzie płacił za energię elektryczną po przeprowadzeniu tej inwestycji?

A. 4500 zł
B. 5925 zł
C. 1500 zł
D. 5975 zł
Poprawna odpowiedź to 1500 zł, ponieważ inwestor decydując się na montaż paneli fotowoltaicznych, zmniejsza swoje roczne koszty energii elektrycznej o 75%. To oznacza, że po wdrożeniu systemu będzie płacił jedynie 25% pierwotnej kwoty rachunków. Wyliczenie jest proste: 25% z 6000 zł to 1500 zł (6000 zł x 0,25 = 1500 zł). Instalacja paneli fotowoltaicznych to nie tylko sposób na redukcję kosztów, ale również na zredukowanie śladu węglowego budynku, co jest zgodne z trendami zrównoważonego rozwoju i efektywności energetycznej. Panele fotowoltaiczne przekształcają energię słoneczną w energię elektryczną, co może znacząco obniżyć zależność od zewnętrznych dostawców energii. Przed podjęciem decyzji o inwestycji warto przeprowadzić analizę techniczną i ekonomiczną, aby oszacować potencjalne oszczędności oraz czas zwrotu z inwestycji, co jest kluczowe w kontekście długoterminowego planowania finansowego budynków użyteczności publicznej.

Pytanie 8

Największy współczynnik przewodzenia ciepła w systemach grzewczych posiada

A. PEX/AL/PEX
B. polibutylen
C. stal
D. miedź
Miedź jest materiałem o najwyższym współczynniku przewodności cieplnej spośród wymienionych opcji, co sprawia, że jest idealnym wyborem w instalacjach grzewczych. Jej przewodność cieplna wynosi około 401 W/(m·K), co jest znacząco wyższe niż w przypadku polibutylenu, stali czy PEX/AL/PEX. Dzięki tej właściwości, miedź szybko i efektywnie przekazuje ciepło, co przekłada się na lepszą wydajność systemów grzewczych. W praktyce, zastosowanie rur miedzianych w instalacjach CO (centralnego ogrzewania) pozwala na szybsze osiągnięcie pożądanej temperatury w pomieszczeniach, co jest kluczowe w kontekście komfortu użytkowników oraz oszczędności energetycznych. Miedź jest również odporna na korozję, co sprawia, że ma długą żywotność, a jej zastosowanie jest zgodne z normami branżowymi, takimi jak PN-EN 1057, regulującymi właściwości rur miedzianych. Dodatkowo, miedź posiada dobre właściwości mechaniczne, co czyni ją atrakcyjnym wyborem w różnych warunkach eksploatacyjnych.

Pytanie 9

W systemach pomp ciepła typu split czynnościom serwisowym nie podlega

A. parownik
B. filtr w układzie wodnym
C. tacka skroplin
D. obudowa pompy ciepła
Obudowa pompy ciepła jest elementem konstrukcyjnym, który nie wymaga regularnych czynności konserwacyjnych w takiej samej mierze jak inne komponenty systemu. Jej główną funkcją jest ochrona wewnętrznych mechanizmów przed niekorzystnymi warunkami atmosferycznymi oraz zapewnienie estetycznego wyglądu urządzenia. W praktyce, konserwacja obudowy pompy ciepła ogranicza się zazwyczaj do sporadycznego czyszczenia z zewnątrz oraz sprawdzania stanu ogólnego. W odróżnieniu od filtrów czy parownika, które wymagają cyklicznej wymiany lub czyszczenia, obudowa nie jest elementem, który ulega zużyciu w wyniku działania cieplno-chłodniczego. Implementacja regularnej konserwacji innych elementów, takich jak tacka skroplin, jest kluczowa dla zapewnienia efektywności energetycznej oraz prawidłowego działania całego systemu. Zgodnie z najlepszymi praktykami branżowymi, zaleca się dokumentowanie przeprowadzonych przeglądów i konserwacji, co przyczynia się do wydłużenia żywotności urządzenia.

Pytanie 10

Jakie narzędzie jest używane do pomiarów średnic rur, zaworów i kształtek, zarówno zewnętrznych, jak i wewnętrznych?

A. suwmiarka
B. dalmierz
C. kątomierz
D. anemometr
Suwmiarka to narzędzie pomiarowe, które pozwala na precyzyjne mierzenie zarówno zewnętrznych, jak i wewnętrznych średnic różnych obiektów, takich jak rury, zawory czy kształtki. W praktyce, suwmiarka wykorzystywana jest w wielu branżach, w tym w mechanice, budownictwie oraz inżynierii, gdzie dokładność pomiarów jest kluczowa dla zapewnienia jakości wykonywanych prac. Suwmiarki mogą być analogowe lub cyfrowe, co umożliwia łatwe odczytywanie wyników. Dobre praktyki zalecają użycie suwmiarek z funkcją zerowania oraz z dokładnością pomiaru wynoszącą co najmniej 0,02 mm, co jest szczególnie istotne w precyzyjnych zastosowaniach. Ponadto, obsługa suwmiarek jest dosyć intuicyjna, co czyni je narzędziem dostępnym dla szerokiego kręgu użytkowników, nawet tych początkujących w dziedzinie pomiarów. Dlatego suwmierz jest uważany za niezbędne narzędzie w każdym warsztacie czy laboratorium, gdzie wymagane są dokładne pomiary liniowe.

Pytanie 11

W przypadku, gdy źródłem ciepła są wody gruntowe lub powierzchniowe, a temperatura może być niższa od zera, którą z pomp ciepła należy zastosować?

A. woda - woda
B. solanka - woda
C. powietrze - woda
D. grunt - woda
Pompa ciepła typu solanka - woda jest odpowiednia, gdy źródłem ciepła są wody gruntowe lub powierzchniowe, szczególnie w obszarach, gdzie temperatura może spadać poniżej zera. W tym systemie ciepło jest pobierane z gruntu za pomocą obiegu solanki, która krąży w układzie zamkniętym. Zastosowanie solanki jako medium antyzamarzającego pozwala na efektywne wykorzystanie energii geotermalnej, nawet przy niskich temperaturach. Często stosuje się takie rozwiązania w budynkach jednorodzinnych, gdzie instalacja gruntowych wymienników ciepła jest w stanie zapewnić odpowiednią efektywność grzewczą. Dzięki swojej wydajności i możliwości pracy w trudnych warunkach, pompy te są zgodne z normami ECODESIGN, a ich zastosowanie pozytywnie wpływa na redukcję emisji CO2. Ponadto, wykorzystując grunt jako źródło energii, można uzyskać stabilne i przewidywalne źródło ciepła przez cały rok, co jest niezmiernie ważne w kontekście zrównoważonego rozwoju oraz oszczędności energii.

Pytanie 12

Z której strony dachu kopertowego domu jednorodzinnego powinno się zainstalować fotoogniwo, aby osiągnąć maksymalną roczną efektywność?

A. Na południowej stronie dachu
B. Na zachodniej stronie dachu
C. Na północnej stronie dachu
D. Na wschodniej stronie dachu
Montaż fotoogniwa na południowej połaci dachu kopertowego budynku jednorodzinnego jest najlepszym rozwiązaniem, ponieważ ta strona dachu otrzymuje najwięcej światła słonecznego przez cały rok. Południowa ekspozycja zapewnia maksymalną produkcję energii, zwłaszcza w miesiącach letnich, gdy słońce jest najwyżej na niebie. Oprócz tego, w czasie zimy, gdy słońce jest niżej, jednostki fotowoltaiczne na południowej stronie wciąż mogą produkować znaczną ilość energii, co przyczynia się do efektywności całorocznej. Zgodnie z najlepszymi praktykami w branży, instalacje PV powinny być skierowane w stronę, która minimalizuje cień i maksymalizuje nasłonecznienie. Przykładem zastosowania mogą być budynki jednorodzinne, które korzystają z systemów zarządzania energią, aby optymalizować zużycie energii wyprodukowanej przez fotoogniwa, co prowadzi do większych oszczędności na kosztach energii. Takie podejście jest zgodne z wytycznymi dotyczącymi efektywności energetycznej budynków, które zalecają maksymalizację wykorzystania odnawialnych źródeł energii.

Pytanie 13

Aby osiągnąć najwyższą efektywność całorocznej instalacji solarnej do podgrzewania wody użytkowej w Polsce, kolektory należy umieścić w kierunku południowym pod kątem względem poziomu wynoszącym

A. 90°
B. 70°
C. 20°
D. 45°
Ustawienie kolektorów słonecznych pod kątem 45° w kierunku południowym jest optymalne dla efektywności systemów podgrzewania wody w Polsce. Kąt ten pozwala na maksymalne wykorzystanie promieniowania słonecznego w ciągu całego roku. W praktyce oznacza to, że kolektory będą najlepiej odbierały światło słoneczne zarówno latem, kiedy słońce jest wysoko na niebie, jak i zimą, gdy znajduje się bliżej horyzontu. Dodatkowo, kąt 45° minimalizuje wpływ śniegu na powierzchnię kolektora, co jest istotne w polskim klimacie. Zgodnie z dobrą praktyką, zaleca się przeprowadzanie analizy lokalnych warunków klimatycznych oraz zacienienia, aby jeszcze bardziej dostosować kąt nachylenia. Warto również zainwestować w systemy śledzenia słońca, które mogą zwiększyć efektywność energetyczną instalacji. Przykłady udanych instalacji w Polsce pokazują, że przy odpowiednim ustawieniu kolektorów można zwiększyć wydajność systemu do nawet 30% w porównaniu do mniej optymalnych ustawień.

Pytanie 14

Pod jakim kątem powinny być ustawione na stałe kolektory słoneczne, aby zapewnić im optymalne nasłonecznienie przez cały rok?

A. 60 - 70 stopni
B. 45 - 50 stopni
C. 30 - 40 stopni
D. 75 - 80 stopni
Ustawienie kolektorów słonecznych pod kątem 45-50 stopni jest uznawane za optymalne dla ich efektywności w ciągu całego roku. Taki kąt zapewnia najlepszą ekspozycję na promieniowanie słoneczne, zarówno w okresie letnim, gdy słońce jest wyżej na niebie, jak i w zimie, kiedy znajduje się niżej. Poziom naświetlenia kolektorów jest kluczowy dla ich wydajności - odpowiedni kąt pozwala na maksymalne wykorzystanie energii słonecznej, co przekłada się na większą produkcję energii. W praktyce, wiele instalacji systemów solarnych na terenie Polski i innych krajów o podobnym klimacie stosuje właśnie ten kąt, aby zminimalizować straty związane z nieodpowiednim ustawieniem. Ponadto, zalecenia te są zgodne z wytycznymi branżowymi, które uwzględniają różne lokalizacje geograficzne oraz zmiany kątów padania promieni słonecznych w ciągu roku. Dobór odpowiedniego kąta nachylenia jest zatem kluczowym elementem projektowania systemów solarnych, wpływającym na ich efektywność i rentowność.

Pytanie 15

Kiedy powinien być przeprowadzany przegląd techniczny kotła na biomasę?

A. co dwa lata
B. jeden raz w roku, najlepiej po zakończeniu sezonu grzewczego
C. raz w roku, najlepiej przed rozpoczęciem sezonu grzewczego
D. przynajmniej dwa razy w roku
Kiedy mówimy o przeglądzie technicznym kotła na biomasę, to warto pamiętać, że najlepiej robić to raz w roku. Najlepszy moment to przed sezonem grzewczym, bo wtedy można znaleźć jakieś potencjalne usterki na czas. Takie przeglądy to nie tylko kwestia bezpieczeństwa, ale też efektywności kotła. Regularne sprawdzanie stanu technicznego kotła pomaga uniknąć problemów i wydatków w przyszłości. Przykładowo, ważne jest, żeby sprawdzić palnik, wymiennik ciepła czy systemy bezpieczeństwa. Jak wiadomo, normy, takie jak PN-EN 303-5, mówią, że te kontrole są ważne dla ochrony środowiska i bezpieczeństwa użytkowników. Nie bez znaczenia jest, żeby przeglądów dokonywali fachowcy, bo tylko oni będą w stanie zauważyć wszelkie nieprawidłowości i zasugerować, co należy poprawić.

Pytanie 16

W trakcie modernizacji elektrowni wodnej dokonano wymiany turbiny na nowy model o znamionowym przepływie Qn większym o 20%. Następnie zainstalowano rurę ssącą, co spowodowało wzrost użytecznego spadu Hu na turbinie z 1,6 m do 2 m. W rezultacie moc nominalna elektrowni Pn, wyrażona równaniem Pn = 9,81xQnxHuxη, wzrosła o około

A. 20%
B. 30%
C. 40%
D. 50%
Analiza błędnych odpowiedzi na zagadnienie dotyczące wzrostu mocy nominalnej elektrowni wodnej ujawnia typowe pomyłki w zrozumieniu wpływu zmian parametrów na wydajność systemu. Odpowiedzi, które sugerują wzrost o 20%, 30% lub 40%, ignorują kluczową rolę współzależności pomiędzy przełykiem znamionowym a spadem użytecznym w obliczeniach mocy. Warto zrozumieć, że wzrost przełyku o 20% oraz wzrost spadu użytecznego o 25% nie są niezależnymi zjawiskami, lecz komplementarnymi elementami, które należy rozpatrywać łącznie. Wiele osób błędnie zakłada, że zmiana jednego parametru wystarczy do oszacowania wzrostu mocy, co prowadzi do niedoszacowania rzeczywistego potencjału wzrostu mocy w wyniku modernizacji systemu. Kolejnym typowym błędem myślowym jest lekceważenie zasady mnożenia wpływów, co jest kluczowe w przypadku złożonych systemów, jakimi są elektrownie wodne. W praktyce, nie uwzględnianie interakcji między zmiennymi może prowadzić do nieefektywnych decyzji w zakresie modernizacji oraz niewłaściwego planowania inwestycji. Zrozumienie tych zasad jest istotne dla inżynierów oraz osób odpowiedzialnych za zarządzanie i rozwój systemów energetycznych, aby optymalnie wykorzystać dostępne zasoby i zminimalizować straty energetyczne.

Pytanie 17

Gdzie w instalacji solarnej umieszcza się zawór zwrotny?

A. za pompą solarną
B. przed pompą solarną
C. za separatorem
D. przed inwerterem
No, musimy pogadać o tym, że można źle umieścić zawór zwrotny w instalacji solarnej. To jest dość poważna sprawa, bo może prowadzić do wielu problemów, które nie tylko obniżą wydajność całego systemu, ale też mogą mu zaszkodzić. Jeśli zawór jest zainstalowany przed pompą, to może być niezła katastrofa, bo medium grzewcze może zacząć płynąć w odwrotną stronę. I wtedy mamy straty ciepła, co wiadomo, nie jest ok. Z kolei jeśli zawór jest za separatorem, też nie będzie spoko, bo jego funkcja to oddzielanie obiegów, a zawór zwrotny powinien ogarniać obieg z cyrkulacją. A do tego, jeśli jest za inwerterem, to już w ogóle mamy problem, bo inwerter nie jest przystosowany do grzania, więc może się zepsuć i narobić bałaganu. W tej dziedzinie liczy się, żeby zawór zwrotny był w miejscu, które pozwala na swobodny przepływ i chroni system przed niechcianym ruchem medium. Często takie błędy biorą się z niewiedzy na temat hydrauliki i tego, jak działają różne części systemu. Dlatego ważne, żeby projektanci i instalatorzy mieli pojęcie o tych sprawach, żeby nie wpaść w kosztowne pułapki.

Pytanie 18

Aby chronić turbinę wodną przed większymi zanieczyszczeniami, które mogą wpływać z wodą na wlot ujęcia do komory turbiny, powinno się zastosować

A. mikrosito
B. sito
C. piaskownik
D. kratę
Kraty to naprawdę fajny sposób na zabezpieczenie turbiny wodnej. Ich główną rolą jest ochrona przed różnymi zanieczyszczeniami, które mogą do wody wpadać. Oczywiście, kraty są tak zaprojektowane, żeby zatrzymywać większe rzeczy, jak gałęzie czy liście, bo inaczej mogą zaszkodzić wydajności turbiny. Z moich obserwacji wynika, że dzięki kratam, woda jest skutecznie filtrowana, zanim trafi do turbiny, co jest zgodne z tym, co mówi się na temat dobrej praktyki w inżynierii wodnej. Fajnie, że kratki mogą być z różnych materiałów, na przykład ze stali nierdzewnej, dzięki czemu są trwalsze i odporniejsze na korozję. Regularne sprawdzanie i konserwacja tych krat to kluczowa sprawa, żeby wszystko działało jak należy i żeby nie było zatorów, które mogłyby zmniejszyć przepływ i wydajność systemu.

Pytanie 19

Pierwszym zadaniem po zakończeniu montażu instalacji solarnej do ogrzewania jest

A. napełnianie jej czynnikiem
B. jej próba ciśnieniowa
C. jej odpowietrzenie
D. izolacja jej przewodów
Próba ciśnieniowa jest kluczowym etapem po zakończeniu montażu instalacji grzewczej, w tym instalacji solarnych. Jej celem jest wykrycie ewentualnych nieszczelności w systemie, co jest fundamentalne dla zapewnienia jego efektywności oraz bezpieczeństwa użytkowania. Procedura ta polega na napełnieniu systemu wodą lub innym czynnikiem roboczym pod określonym ciśnieniem i obserwowaniu, czy ciśnienie nie spada, co mogłoby wskazywać na nieszczelności. Pomiar ciśnienia powinien być przeprowadzany zgodnie z normami, takimi jak PN-EN 12828 oraz PN-EN 12976, które określają wymagania dotyczące systemów grzewczych. Przykładem zastosowania tej procedury jest instalacja, w której przed pierwszym uruchomieniem systemu słonecznego sprawdza się, czy wszystkie połączenia są szczelne, co zapobiega awariom oraz kosztownym naprawom w przyszłości. Regularne przeprowadzanie prób ciśnieniowych jest także zalecane w ramach konserwacji instalacji, aby zapewnić jej długowieczność oraz efektywność operacyjną.

Pytanie 20

Zestaw paneli fotowoltaicznych składa się z dwóch paneli fotowoltaicznych, regulatora ładowania oraz dwóch akumulatorów 12 V każdy. Aby zasilać tym zestawem urządzenia o napięciu znamionowym 12 V DC, należy podłączyć

A. akumulatory równolegle
B. panele szeregowo
C. akumulatory szeregowo
D. panele równolegle
Poprawna odpowiedź to akumulatory połączone równolegle, co umożliwia uzyskanie niezmiennego napięcia 12 V przy zwiększonej pojemności. Takie połączenie pozwala na zachowanie napięcia każdego z akumulatorów na poziomie 12 V, co jest kluczowe dla urządzeń zasilanych tym napięciem. W praktyce, łącząc akumulatory równolegle, sumujemy ich pojemności, co zwiększa czas pracy zestawu fotowoltaicznego, a jednocześnie nie zmienia napięcia wyjściowego. Na przykład, dwa akumulatory 12 V o pojemności 100 Ah po połączeniu równolegle dadzą 12 V i 200 Ah, co oznacza, że urządzenia mogą być zasilane przez dłuższy czas. Tego rodzaju połączenie jest zgodne z najlepszymi praktykami w dziedzinie energii odnawialnej, zapewniając stabilność zasilania oraz dłuższą żywotność akumulatorów. Równoległe połączenie akumulatorów jest powszechnie stosowane w systemach solarnych, co pozwala na efektywniejsze zarządzanie energią oraz minimalizowanie ryzyka nadmiernego rozładowania jednego z akumulatorów.

Pytanie 21

Na podstawie przedstawionych w tabeli danych technicznych płaskich kolektorów słonecznych wskaż, który z nich ma najwyższą sprawność optyczną.

Transmisyjność pokrywy przezroczystej0,920,900,860,90
Emisyjność absorbera0,100,900,800,15
Absorpcyjność absorbera0,950,880,900,90
ABCD

A. B.
B. C.
C. A.
D. D.
Kolektor A został wskazany jako ten z najwyższą sprawnością optyczną, co jest kluczowym wskaźnikiem jego wydajności. Sprawność optyczna mierzy zdolność kolektora do absorpcji światła słonecznego, co jest niezbędne dla efektywnego przetwarzania energii słonecznej na energię cieplną. Wartości te są określane przez iloczyn transmisyjności pokrywy przezroczystej oraz absorpcyjności absorbera. Kolektor A wykazuje najwyższe wartości tych parametrów, co można przypisać zastosowaniu nowoczesnych materiałów o wysokiej transmisyjności oraz nanoszenia powłok selektywnych na powierzchni absorbera. W praktyce, wysoka sprawność optyczna przekłada się na lepsze wyniki w kontekście efektywności energetycznej instalacji solarnych, co może prowadzić do znacznych oszczędności w kosztach eksploatacyjnych i zwiększenia zwrotu z inwestycji. Standardy branżowe, takie jak EN 12975, regulują sposób pomiaru tych parametrów, co potwierdza rzetelność przedstawionych wyników. Zrozumienie sprawności optycznej jest zatem kluczowe dla inżynierów zajmujących się projektowaniem systemów solarnych.

Pytanie 22

Skraplacz to urządzenie

A. przekształcające energię elektryczną na cieplną.
B. oddające ciepło do systemu.
C. pobierające ciepło z otoczenia.
D. przekształcające energię cieplną na elektryczną.
Skraplacz jest kluczowym elementem systemów chłodniczych i klimatyzacyjnych, którego podstawową funkcją jest oddawanie energii cieplnej do otoczenia. Działa na zasadzie kondensacji, która zachodzi, gdy gaz chłodniczy, przechodząc z fazy gazowej do ciekłej, oddaje ciepło. Przykładowo, w systemach klimatyzacyjnych, skraplacz odprowadza ciepło z wnętrza budynku na zewnątrz, co pozwala na utrzymanie komfortowej temperatury wewnętrznej. Z perspektywy inżynieryjnej, dobrze zaprojektowany skraplacz powinien charakteryzować się wysoką efektywnością wymiany ciepła oraz niskim oporem przepływu. W praktyce oznacza to zastosowanie odpowiednich materiałów i technologii, takich jak stosowanie rur miedzianych lub aluminium, które dobrze przewodzą ciepło. Warto również wspomnieć o standardach branżowych, takich jak ASHRAE, które określają najlepsze praktyki w projektowaniu i użytkowaniu systemów chłodniczych, w tym skraplaczy.

Pytanie 23

Jakie narzędzia są potrzebne do montażu instalacji w systemie PEX skręcanym?

A. obcinak do rur, gratownik oraz zaciskarka
B. obcinak do rur, gratownik i zestaw kluczy płaskich
C. kalibrator do rur z fazownikiem, obcinak do rur oraz zestaw kluczy płaskich
D. kalibrator do rur z fazownikiem, obcinak do rur oraz zaciskarka
No więc, wybierając kalibrator do rur z fazownikiem, obcinak do rur oraz zestaw kluczy płaskich, robisz naprawdę dobry krok w stronę prawidłowego montażu instalacji w systemie PEX. Kalibrator pomoże Ci super dopasować końcówkę rury PVC do złączek, co jest mega ważne, żeby wszystko było szczelne. Obcinak pozwala na precyzyjne cięcie rur PEX, więc nie musisz się martwić, że coś będzie krzywo, co mogłoby wprowadzić jakieś niepożądane zanieczyszczenia do systemu. A klucze płaskie? Bez nich ani rusz, bo dokręcanie połączeń to podstawa, żeby nic nie przeciekało. Jak dobrze to wszystko zrobisz, to unikniesz wycieków i problemów z instalacją, co w sumie jest najważniejsze dla bezpiecznego i sprawnego działania systemów wodno-kanalizacyjnych. Zresztą, dobrze wykonane połączenia na pewno przyczynią się do dłuższej żywotności całej instalacji, co jest zgodne z tym, co mówi się w branży.

Pytanie 24

Jakie informacje mają kluczowe znaczenie przy przygotowywaniu oferty na instalację pompy ciepła w budynku jednorodzinnym?

A. Lokalizacja instalacji, koszt zakupu sprzętu i materiałów
B. Ilość i wynagrodzenie zatrudnionych pracowników, wydatki wykonawcy i planowany zysk oraz termin realizacji
C. Rodzaje instalowanych urządzeń, stawka za montaż oraz ilości potrzebnych materiałów
D. Czas potrzebny na montaż, liczba roboczogodzin pracowników
Patrząc na podane odpowiedzi, widać, że skupiły się na rzeczach, które nie są kluczowe w ofercie na montaż pompy ciepła. Miejsce instalacji niby ważne dla logistyki, ale to nie jest to, co powinno dominować. Cena zakupów urządzeń jest istotna, ale bez wiedzy o konkretnych urządzeniach, klient nie zrozumie całej oferty. Czas montażu i liczba roboczogodzin mogą być ważne, ale bez konkretów o urządzeniach i ich cenach, to wszystko traci sens. Liczba pracowników i ich wynagrodzenie to też coś, ale to nie najważniejsza rzecz w ofercie. Musisz pamiętać, że właściwe oferty powinny mieć na celu przede wszystkim techniczne aspekty instalacji i transparentność finansową. Ignorując te kluczowe rzeczy, można wyjść z błędnymi wnioskami, co może całkowicie zniekształcić zapotrzebowanie projektu i oczekiwania klienta.

Pytanie 25

Na podstawie danych zawartych w tabeli określ roczny uzysk energii z elektrowni wiatrowej w instalacji o mocy 1500 kW i średniej prędkości wiatru 7 m/s.

Wielkość instalacjiRoczny uzysk energii w MWh
wirnikmocV = 5 m/s6 m/s7 m/s8 m/s9 m/s
30 m200 kW320500670820950
40 m500 kW610970136017302050
55 m1000 kW11501840257032803920
65 m1500 kW15202600375048605860
80 m2500 kW23804030583077009220
120 m5000 kW53009000130001700020000

A. 4 830 MWh
B. 2 600 MWh
C. 1 520 MWh
D. 3 750 MWh
Roczny uzysk energii z elektrowni wiatrowej można obliczyć, uwzględniając moc instalacji oraz średnią prędkość wiatru. W przypadku instalacji o mocy 1500 kW i średniej prędkości wiatru wynoszącej 7 m/s, roczny uzysk energii wynosi 3750 MWh. Obliczenia bazują na standardzie IEC 61400, który określa metody oceny wydajności turbin wiatrowych. Przykładowo, przy takiej prędkości wiatru, turbiny wiatrowe generują znaczną ilość energii, co czyni je efektywnym rozwiązaniem w zakresie odnawialnych źródeł energii. W praktyce, elektrownie wiatrowe są kluczowe w realizacji celów związanych z ograniczeniem emisji CO2 i przejściem na zrównoważone źródła energii. Warto również wspomnieć o roli analizy zasobów wiatrowych, która jest niezbędna do optymalizacji lokalizacji elektrowni oraz ich wydajności.

Pytanie 26

W jakich urządzeniach wykorzystuje się rurkę ciepła?

A. Biogazowych fermentatorach
B. Modułach fotowoltaicznych
C. Kolektorach słonecznych cieczowych
D. Kolektorach słonecznych powietrznych
Cieczowe kolektory słoneczne wykorzystują rurki ciepła jako efektywny element transferu ciepła. Te urządzenia są zaprojektowane do absorpcji energii słonecznej, a rurki ciepła działają na zasadzie efektywnej wymiany ciepła pomiędzy absorberem a czynnikiem roboczym, którym jest zazwyczaj woda lub inny płyn. Rurki ciepła działają na zasadzie zmiany stanu czynnika roboczego: ciecz w rurce odparowuje pod wpływem ciepła, co powoduje wzrost ciśnienia i przemieszczenie pary do części chłodnej rurki, gdzie skrapla się, oddając ciepło do obiegu. Dzięki temu mechanizmowi, rurki ciepła charakteryzują się wysoką efektywnością i szybkością odpowiedzi na zmiany poziomu nasłonecznienia. W praktyce oznacza to, że cieczowe kolektory słoneczne z rurkami ciepła mogą być stosowane do ogrzewania wody użytkowej, wspomagania systemów grzewczych w budynkach, a także w aplikacjach przemysłowych, takich jak ogrzewanie procesów technologicznych. Stosowanie rur ciepła w cieczowych kolektorach słonecznych jest rekomendowane przez takie organizacje jak Solar Energy Industries Association, co potwierdza ich niezawodność i wydajność w zastosowaniach domowych i przemysłowych.

Pytanie 27

Jakie materiały mogą być zastosowane do wykonania absorbera w panelach słonecznych?

A. aluminium lub miedzi
B. aluminium lub mosiądzu
C. miedzi lub żeliwa
D. plastiku lub stali
Absorber w kolektorach słonecznych jest kluczowym elementem, który odpowiada za przechwytywanie promieniowania słonecznego i przekształcanie go w ciepło. Materiały takie jak aluminium i miedź charakteryzują się doskonałymi właściwościami przewodzenia ciepła, co czyni je idealnymi do zastosowania w tych systemach. Aluminium jest lekkie, odporne na korozję oraz łatwe w obróbce, co sprawia, że jest powszechnie stosowane w budowie absorberów. Miedź, z kolei, ma jeszcze lepsze właściwości przewodzenia ciepła, co pozwala na szybsze i efektywniejsze przekazywanie energii cieplnej. Dobre praktyki branżowe zalecają używanie tych materiałów, aby zapewnić maksymalną efektywność kolektorów słonecznych, co jest kluczowe w kontekście odnawialnych źródeł energii i efektywności energetycznej budynków. Warto także zauważyć, że odpowiedni dobór materiałów wpływa na trwałość systemu oraz jego zdolność do pracy w zmiennych warunkach atmosferycznych.

Pytanie 28

Ciepło pozyskiwane z otoczenia do produkcji ciepłej wody użytkowej jest używane przez

A. wymiennik ciepła
B. pompę ciepła
C. kolektor płaski
D. ogniwo fotowoltaiczne
Prawidłowa odpowiedź to pompa ciepła, która jest urządzeniem służącym do przenoszenia ciepła z jednego miejsca do innego, wykorzystując energię termalną zawartą w otoczeniu. Pompy ciepła mogą pobierać ciepło z powietrza, wody lub gruntu, co czyni je wszechstronnym rozwiązaniem dla systemów ogrzewania i przygotowania ciepłej wody użytkowej. W praktyce pompy ciepła są szeroko stosowane w budownictwie ekologicznym i w domach z systemami OZE, co pozwala na znaczne ograniczenie kosztów energii oraz redukcję emisji CO2. Dzięki wysokiej efektywności energetycznej, pompy ciepła mogą osiągnąć współczynniki wydajności (COP) wynoszące 3-5, co oznacza, że na każdy 1 kWh zużytej energii elektrycznej są w stanie wytworzyć 3-5 kWh ciepła. Zastosowanie pomp ciepła w systemach przygotowania ciepłej wody użytkowej jest więc zarówno ekonomiczne, jak i ekologiczne, zgodne z zasadami zrównoważonego rozwoju i certyfikacjami takimi jak BREEAM czy LEED.

Pytanie 29

Jeśli prędkość wiatru zwiększyła się dwukrotnie, to turbina wiatrowa będzie mogła wygenerować

A. osiem razy więcej energii
B. szesnaście razy więcej energii
C. dwa razy więcej energii
D. cztery razy więcej energii
Odpowiedź "osiem razy więcej energii" jest prawidłowa, ponieważ moc generowana przez turbinę wiatrową jest proporcjonalna do sześcianu prędkości wiatru. Zgodnie z równaniem moc = 1/2 * gęstość powietrza * powierzchnia wirnika * prędkość^3, zauważamy, że podwajając prędkość wiatru (2v), moc staje się (1/2 * gęstość powietrza * powierzchnia wirnika * (2v)^3), co sprowadza się do 8 * (1/2 * gęstość powietrza * powierzchnia wirnika * v^3). W praktyce oznacza to, że nawet niewielkie zmiany w prędkości wiatru mogą znacząco wpłynąć na generowaną moc. To zjawisko jest kluczowe w projektowaniu i eksploatacji turbin wiatrowych, co potwierdzają liczne badania i dane operacyjne, które pokazują, że optymalizacja ustawienia turbin względem kierunku i siły wiatru może przynieść znaczne korzyści w zakresie efektywności energetycznej. Dlatego też, znajomość tych zależności jest istotna dla inżynierów i specjalistów pracujących w branży energetyki odnawialnej.

Pytanie 30

Diody bypass w systemie fotowoltaicznym zazwyczaj są instalowane

A. między łańcuchem paneli a akumulatorem
B. pomiędzy dwoma panelami w stringu
C. w skrzynce przyłączeniowej panelu fotowoltaicznego
D. na końcu rzędu paneli
Diody bypass w instalacji fotowoltaicznej są kluczowymi elementami, które zapewniają optymalną wydajność paneli słonecznych. Montuje się je w puszce przyłączeniowej panelu fotowoltaicznego, co pozwala na ich skuteczne działanie w sytuacjach, gdy jeden z ogniw panelu ulegnie zaciemnieniu lub uszkodzeniu. Dzięki diodom bypass, prąd może płynąć z pominięciem niedziałającego ogniwa, co minimalizuje straty mocy i pozwala na dalsze generowanie energii przez pozostałe sprawne ogniwa. Zastosowanie tych diod zgodnie z normami branżowymi, takimi jak IEC 61215 dla paneli słonecznych, jest powszechną praktyką, która zapewnia długoterminową niezawodność instalacji. Przykładowo, w przypadku instalacji solarnych na dachach z drzewami w pobliżu, gdzie cień może padać na część paneli, diody bypass pomagają utrzymać wydajność systemu, co jest krytyczne dla jego zwrotu z inwestycji. Warto również zauważyć, że odpowiednie umiejscowienie tych diod może wpływać na gwarancję paneli, dlatego ich instalacja powinna być przeprowadzona zgodnie z zaleceniami producenta.

Pytanie 31

Wybór lokalizacji dla elektrowni wiatrowej wymaga analizy miejscowego planu zagospodarowania przestrzennego, który można znaleźć w

A. Starostwie Powiatowym
B. Urzędzie Marszałkowskim
C. Urzędzie Wojewódzkim
D. Urzędzie Miasta (lub Gminy)
Zrozumienie, gdzie można znaleźć miejscowy plan zagospodarowania przestrzennego, jest kluczowe dla prawidłowego planowania inwestycji, takich jak elektrownie wiatrowe. Wybór Starostwa Powiatowego jako instytucji odpowiedzialnej za ten dokument jest błędny, ponieważ Starostwo zajmuje się innymi aspektami administracyjnymi, takimi jak wydawanie pozwoleń budowlanych czy nadzór nad prawidłowością realizowanych inwestycji, ale nie prowadzi miejscowych planów zagospodarowania przestrzennego, które są kompetencją gmin. Przypisanie tej odpowiedzialności Urzędowi Marszałkowskiemu również jest niepoprawne, gdyż ta instytucja zajmuje się planowaniem regionalnym i strategią rozwoju województwa, a nie bezpośrednim zarządzaniem planami na poziomie lokalnym. Urząd Wojewódzki, podobnie jak Marszałkowski, ma bardziej ogólny zasięg działań i nie jest odpowiedzialny za lokalne regulacje dotyczące zagospodarowania przestrzennego. W każdym przypadku, niewłaściwe zrozumienie roli tych instytucji może prowadzić do opóźnień w projektowaniu i realizacji inwestycji, a także do nieefektywnego wykorzystania zasobów. Właściwe zidentyfikowanie źródeł informacji i ich funkcji jest kluczowe dla sukcesu projektów budowlanych i powinno być traktowane jako fundament każdej decyzji inwestycyjnej.

Pytanie 32

Jakie narzędzie powinno być zastosowane do eliminacji zadziorów powstających po przecięciu rury polietylenowej o średnicy 40 mm?

A. Frezu
B. Nażynki
C. Tarnika
D. Gratownika
Gratownik jest narzędziem zaprojektowanym specjalnie do usuwania zadziorów oraz nierówności na krawędziach materiałów, w tym rur z polietylenu. Jego zastosowanie jest kluczowe w procesie obróbki rur, ponieważ zadzior to ostry, wystający fragment materiału, który może prowadzić do uszkodzeń podczas dalszej instalacji lub eksploatacji. W praktyce, gratownik umożliwia uzyskanie gładkiej krawędzi, co jest istotne z punktu widzenia bezpieczeństwa i funkcjonalności systemów rurociągowych. Zgodnie z normami branżowymi, takim jak PN-EN 1555, zaleca się stosowanie gratowników po każdej operacji cięcia, aby zminimalizować ryzyko przecieków i awarii. Dobre praktyki wskazują, że prawidłowe użycie gratownika poprawia nie tylko estetykę wykonania, ale również wydłuża żywotność instalacji. Warto również zaznaczyć, że gratowanie powinno być częścią standardowego procesu przygotowania przed montażem rur, co pozwala na uniknięcie potencjalnych problemów w przyszłości.

Pytanie 33

Do kotła na biogaz nie można zainstalować centralnego ogrzewania z rur

A. z ocynkowanej stali.
B. z twardej miedzi.
C. z czarnej stali przewodowej.
D. z czarnej stali ze szwem.
Odpowiedź stalowych rur ocynkowanych jako nieodpowiednich do instalacji centralnego ogrzewania w systemach z kotłami na biogaz wynika z faktu, że ocynkowane rury, ze względu na swoją powłokę, mogą nadmiernie reagować z substancjami chemicznymi obecnymi w biogazie, co prowadzi do korozji wewnętrznej. W praktyce, najlepszym rozwiązaniem są rury wykonane z materiałów odpornych na korozję, takich jak stal nierdzewna czy rury z tworzyw sztucznych. W kontekście systemów grzewczych, ważne jest, aby materiały były zgodne z normami i zaleceniami branżowymi, jak PN-EN 12828, które wskazują na konieczność stosowania rozwiązań odpornych na działanie mediów agresywnych. Użycie rur ocynkowanych w systemach z biogazem może prowadzić do problemów z wydajnością oraz koniecznością kosztownych napraw w przyszłości.

Pytanie 34

Jakie materiały należy wykorzystać do naprawy izolacji przewodów w instalacji niskonapięciowej?

A. koszulki termokurczliwe
B. tereszpan
C. taśmę bawełnianą
D. preszpan
Koszulki termokurczliwe to materiał, który po nałożeniu na przewód elektryczny i podgrzaniu zmienia swoje właściwości, kurcząc się i mocno przylegając do izolacji. Dzięki temu tworzą one szczelną barierę, która chroni przed uszkodzeniami mechanicznymi oraz zapewnia odpowiednią izolację elektryczną. Zastosowanie koszulek termokurczliwych jest szczególnie istotne w instalacjach niskiego napięcia, gdzie bezpieczeństwo jest kluczowe. W praktyce, koszulki te są wykorzystywane do naprawy uszkodzeń izolacji, łączenia przewodów oraz ochrony przed wilgocią i innymi czynnikami zewnętrznymi. Stosowanie tego materiału jest zgodne z normami IEC 60068 oraz IEC 60332, które określają wymagania dotyczące materiałów izolacyjnych. Warto również zaznaczyć, że dobór odpowiednich koszulek termokurczliwych powinien uwzględniać ich średnicę, temperaturę kurczenia oraz klasyfikację ogniową, co pozwala na zapewnienie długotrwałej i bezpiecznej pracy instalacji.

Pytanie 35

Które z wymienionych typów ogniw fotowoltaicznych wyróżnia się najwyższą sprawnością?

A. a-Si
B. Monokrystaliczne
C. Polikrystaliczne
D. CdTe
Ogniwa fotowoltaiczne monokrystaliczne rzeczywiście charakteryzują się najwyższą sprawnością w porównaniu do innych typów ogniw. Ich struktura krystaliczna, składająca się z jednego, ciągłego kryształu krzemu, umożliwia lepsze przewodzenie prądu, co bezpośrednio przekłada się na większą efektywność konwersji energii słonecznej na energię elektryczną. Monokrystaliczne ogniwa są w stanie osiągać sprawności rzędu 20-25%, co czyni je najbardziej popularnym wyborem w instalacjach fotowoltaicznych, szczególnie tam, gdzie przestrzeń na panele jest ograniczona. W praktyce, zastosowanie ogniw monokrystalicznych znajduje się w wielu projektach, od domów jednorodzinnych po duże farmy słoneczne, co wskazuje na ich uniwersalność i efektywność. Dodatkowo, z uwagi na ich trwałość, która może wynosić ponad 25 lat, inwestycja w te ogniwa zapewnia długoterminowe korzyści oraz zwrot kosztów. W branży energii odnawialnej monokrystaliczne ogniwa są często rekomendowane jako optymalne rozwiązanie, co potwierdzają standardy jakościowe i certyfikaty produkcyjne.

Pytanie 36

Jakie urządzenia stosuje się w celu zabezpieczenia modułów fotowoltaicznych połączonych w równoległe łańcuchy przed prądem zwarciowym?

A. bezpieczniki topikowe o charakterystyce gPV
B. wyłączniki różnicowo-prądowe
C. rozłączniki instalacyjne
D. ograniczniki przepięć
Bezpieczniki topikowe gPV, czyli te do instalacji fotowoltaicznych, są super ważne, bo chronią całą instalację przed zwarciami i przeciążeniami. Ich konstrukcja pozwala naprawdę szybko wychwycić, jak coś jest nie tak z prądem w obwodach. I to jest kluczowe, zwłaszcza w systemach równoległych, gdzie jeden moduł może się zepsuć lub przeciążyć. Gdy mamy do czynienia z dużymi napięciami, zgodnie z normą IEC 60269-1, te bezpieczniki potrafią wyłączyć obwód bez zbędnych opóźnień, co bardzo ratuje przed dalszymi uszkodzeniami. Na przykład w dużych instalacjach komercyjnych, które mają sporo modułów połączonych równolegle, te gPV są naprawdę niezbędne, bo minimalizują ryzyko pożaru i uszkodzeń urządzeń. Używanie ich w tych systemach to też zgodność z europejskimi normami, które mówią o tym, jakie środki ochrony powinny być stosowane. Więc wybierając, jak zabezpieczyć naszą instalację, musimy to dobrze przemyśleć, żeby działała długo i bezpiecznie.

Pytanie 37

W rozwinięciu systemu grzewczego na energię słoneczną w skali 1:50, długość odcinka pionowego z miedzi wynosi 100 mm. Jaką długość przewodu miedzianego trzeba nabyć do zainstalowania tego pionu?

A. 0,5 m
B. 5,0 m
C. 500,0 m
D. 50,0 m
Odpowiedź 5,0 m jest poprawna, ponieważ skala 1:50 oznacza, że każdy 1 mm na rysunku odpowiada 50 mm w rzeczywistości. Dlatego długość pionu miedzianego wynosząca 100 mm na planie należy przeliczyć na metry, co daje 0,1 m. Następnie, aby uzyskać rzeczywistą długość, musimy pomnożyć tę wartość przez 50. W rezultacie 0,1 m x 50 = 5,0 m. W praktyce, taka umiejętność przeliczania wymiarów jest niezbędna przy projektowaniu instalacji grzewczych, aby zapewnić odpowiednią ilość materiałów do montażu. Ponadto, znajomość skali jest kluczowa w kontekście standardów branżowych, takich jak PN-EN 12831, które dotyczą obliczeń zapotrzebowania na ciepło budynków. Wiedza ta pozwala na precyzyjne oszacowanie potrzebnych materiałów i zminimalizowanie strat materiałowych, co jest istotne z perspektywy efektywności kosztowej i środowiskowej.

Pytanie 38

Który z typów kolektorów słonecznych, używany w systemie do wspierania ogrzewania wody użytkowej i ogrzewania obiektu, charakteryzuje się najwyższą efektywnością w czasie wspomagania ogrzewania obiektu?

A. Płaski gazowy
B. Rurowy próżniowy
C. Rurowy typu heat-pipe
D. Płaski cieczowy
Płaskie kolektory cieczowe to dość popularne rozwiązanie, ale mają swoje wady, jeśli chodzi o wydajność przy chłodnych temperaturach. Ich konstrukcja polega na tym, że słońce nagrzewa płaską powierzchnię. Jednak zimą często straty ciepła przez konwekcję i promieniowanie powodują, że działają gorzej. Kolektory gazowe, chociaż mogą wyglądać na nowoczesne, są z reguły mało efektywne w porównaniu do rurowych, a ich zastosowanie w domach to raczej wyjątek. Poza tym, rurowe kolektory próżniowe są skuteczne, ale heat-pipe mają lepsze wyniki w niskich temperaturach. W praktyce ludzie często myślą, że większa powierzchnia absorpcyjna to zawsze lepsza wydajność, ale to nie do końca prawda. Efektywność systemu grzewczego zależy od wielu rzeczy, nie tylko od powierzchni, ale też od tego, jak dobrze dobrano technologię i jakie są warunki dookoła.

Pytanie 39

Pompa ciepła typu sprężarkowego określana jest jako rewersyjna, gdy jest zainstalowana w obiekcie

A. ma sprężarkę umieszczoną na zewnątrz budynku
B. ma modulowaną moc grzewczą sprężarki
C. ma 4 wymienniki ciepła
D. może zimą pełnić funkcje grzewcze, a latem chłodnicze
Sprężarkowa pompa ciepła nazywana jest rewersyjną, ponieważ może w zależności od potrzeb zmieniać kierunek przepływu czynnika chłodniczego, co pozwala jej pełnić różne funkcje: zimą jako urządzenie grzewcze, a latem jako system chłodzący. W praktyce oznacza to, że pompa ciepła może efektywnie wykorzystać energię z otoczenia do ogrzewania pomieszczeń, pobierając ciepło z powietrza, gruntu lub wody, a w okresie letnim może tę energię odprowadzać, schładzając budynek. Współczesne systemy oparte na tej technologii są zgodne z normami efektywności energetycznej, co czyni je ekologicznymi i ekonomicznymi rozwiązaniami. Przykładem zastosowania mogą być budynki mieszkalne, biura czy obiekty przemysłowe, które dzięki zastosowaniu rewersyjnych pomp ciepła mogą zredukować koszty eksploatacji oraz emisję dwutlenku węgla. Warto zauważyć, że rewersyjne pompy ciepła przyczyniają się do zrównoważonego rozwoju, co jest istotne w kontekście globalnych wyzwań związanych ze zmianami klimatycznymi.

Pytanie 40

W jakim dokumencie znajdują się informacje dotyczące montażu oraz użytkowania kotła na biomasę?

A. W deklaracji zgodności
B. W dokumentacji techniczno-ruchowej
C. W aprobacie technicznej
D. W karcie gwarancyjnej
Dokumentacja techniczno-ruchowa to kluczowy dokument, w którym zawarte są szczegółowe informacje dotyczące montażu, eksploatacji oraz konserwacji kotła na biomasę. W tym dokumencie użytkownik znajdzie instrukcje dotyczące instalacji, parametrów technicznych, zasad użytkowania oraz procedur bezpieczeństwa. Dobrze opracowana dokumentacja techniczno-ruchowa jest zgodna z normami branżowymi, takimi jak PN-EN 303-5, które określają wymagania dotyczące efektywności energetycznej oraz emisji zanieczyszczeń. Przykładowo, w dokumentacji mogą być zawarte schematy instalacji oraz wskazówki dotyczące optymalnych warunków pracy kotła, co jest niezbędne dla osiągnięcia najwyższej sprawności. Stosowanie się do zaleceń zawartych w tym dokumencie pozwala na bezpieczne i efektywne użytkowanie kotła, minimalizując ryzyko awarii oraz zapewniając zgodność z przepisami prawa.