Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 5 czerwca 2025 08:58
  • Data zakończenia: 5 czerwca 2025 09:17

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby w zbiorniku buforowym umożliwić dostarczanie na różnych poziomach czynnika o określonej temperaturze, trzeba zainstalować

A. zespół pompowy
B. regulator przepływu
C. odpowietrznik
D. stratyfikator
Stratyfikator jest urządzeniem wykorzystywanym w zbiornikach buforowych, które pozwala na efektywne zarządzanie różnymi poziomami temperatury czynnika. Działa on na zasadzie oddzielania warstw cieczy o różnych temperaturach, co umożliwia ich jednoczesne przechowywanie i pobieranie. Dzięki zastosowaniu stratyfikatora możliwe jest uzyskanie lepszej efektywności energetycznej, a także minimalizacja strat ciepła. W praktyce, stratyfikatory są stosowane w systemach ogrzewania i chłodzenia, gdzie kluczowe jest dostarczanie czynnika o odpowiedniej temperaturze do różnych odbiorników. Na przykład, w systemach ogrzewania budynków, stratyfikator pozwala na pobieranie ciepłej wody na górze zbiornika, podczas gdy zimniejsza woda pozostaje w dolnej warstwie. Takie podejście jest zgodne z dobrymi praktykami inżynieryjnymi, które promują efektywność energetyczną i optymalizację procesów technologicznych, co przekłada się na oszczędności kosztów eksploatacyjnych.

Pytanie 2

W jakich urządzeniach wykorzystuje się rurkę ciepła?

A. Biogazowych fermentatorach
B. Kolektorach słonecznych cieczowych
C. Kolektorach słonecznych powietrznych
D. Modułach fotowoltaicznych
Cieczowe kolektory słoneczne wykorzystują rurki ciepła jako efektywny element transferu ciepła. Te urządzenia są zaprojektowane do absorpcji energii słonecznej, a rurki ciepła działają na zasadzie efektywnej wymiany ciepła pomiędzy absorberem a czynnikiem roboczym, którym jest zazwyczaj woda lub inny płyn. Rurki ciepła działają na zasadzie zmiany stanu czynnika roboczego: ciecz w rurce odparowuje pod wpływem ciepła, co powoduje wzrost ciśnienia i przemieszczenie pary do części chłodnej rurki, gdzie skrapla się, oddając ciepło do obiegu. Dzięki temu mechanizmowi, rurki ciepła charakteryzują się wysoką efektywnością i szybkością odpowiedzi na zmiany poziomu nasłonecznienia. W praktyce oznacza to, że cieczowe kolektory słoneczne z rurkami ciepła mogą być stosowane do ogrzewania wody użytkowej, wspomagania systemów grzewczych w budynkach, a także w aplikacjach przemysłowych, takich jak ogrzewanie procesów technologicznych. Stosowanie rur ciepła w cieczowych kolektorach słonecznych jest rekomendowane przez takie organizacje jak Solar Energy Industries Association, co potwierdza ich niezawodność i wydajność w zastosowaniach domowych i przemysłowych.

Pytanie 3

Gdzie powinien być umiejscowiony odpowietrznik w instalacji grzewczej zasilanej energią słoneczną?

A. bezpośrednio za pompą
B. w najniższym punkcie instalacji
C. za zaworem bezpieczeństwa
D. w najwyższym punkcie instalacji
Odpowietrznik w słonecznej instalacji grzewczej powinien być umieszczony w najwyższym punkcie instalacji, co jest zgodne z ogólnymi zasadami projektowania systemów grzewczych. Umieszczenie odpowietrznika w najwyższym miejscu umożliwia skuteczne usuwanie powietrza z systemu, które gromadzi się na skutek nagrzewania wody oraz zmieniających się ciśnień. W praktyce, powietrze w instalacji może prowadzić do zakłóceń w obiegu wody, co z kolei może obniżać efektywność systemu grzewczego oraz powodować hałasy. Dlatego w dobrych praktykach branżowych wskazuje się na konieczność umieszczania odpowietrzników w punktach, gdzie gromadzi się powietrze, co najczęściej jest właśnie najwyższy punkt instalacji. Zgodnie z normami, takie rozwiązanie nie tylko zwiększa wydajność, ale również wydłuża żywotność całego systemu. Przykładem mogą być instalacje, w których zastosowano automatyczne odpowietrzniki, które w sposób samoczynny usuwają nadmiar powietrza, co jest korzystne zwłaszcza w większych układach.

Pytanie 4

Podczas łączenia modułów fotowoltaicznych w układzie szeregowym, jakie efekty się uzyskuje?

A. zmniejszenie napięcia i zwiększenie natężenia prądu
B. zwiększenie natężenia prądu i zwiększenie mocy
C. zwiększenie napięcia i zwiększenie mocy
D. zwiększenie napięcia i zwiększenie natężenia prądu
Łączenie modułów fotowoltaicznych szeregowo prowadzi do zwiększenia napięcia systemu, co jest kluczowe dla efektywności instalacji. W przypadku modułów o napięciu 30 V każdy, po połączeniu szeregowo trzech takich modułów, otrzymujemy napięcie 90 V. Wzrost napięcia ma istotne znaczenie, gdyż umożliwia bardziej efektywne przesyłanie energii na większe odległości oraz zmniejsza straty związane z oporem przewodów. Zwiększenie napięcia w systemie wpływa również na wzrost mocy, ponieważ moc jest iloczynem napięcia i natężenia prądu (P = U * I). W praktyce, stosując moduły połączone szeregowo, można łatwiej dostosować system do wymagań inwertera oraz ograniczyć ilość przewodów i złączy, co z kolei zmniejsza ryzyko awarii oraz obniża koszty instalacji. Warto również zaznaczyć, że zgodne z normami instalacje fotowoltaiczne powinny uwzględniać odpowiednie zabezpieczenia, takie jak bezpieczniki i wyłączniki, aby chronić system przed przetężeniem oraz przeciążeniem. Takie podejście jest zgodne z najlepszymi praktykami w branży, co przekłada się na zwiększenie niezawodności oraz bezpieczeństwa systemu.

Pytanie 5

W jakim dokumencie powinny być odnotowane wszystkie działania wykonane przez montera pompy ciepła w trakcie realizacji gwarancyjnych prac serwisowych?

A. Na fakturze za wykonaną pracę
B. W dokumentacji techniczno-ruchowej
C. W karcie gwarancyjnej
D. W instrukcji serwisowej
Karta gwarancyjna to naprawdę ważny dokument. Powinna zawierać wszystkie istotne informacje o tym, co robił monter w trakcie serwisu w czasie gwarancji. Zgodnie z branżowymi standardami oraz normami ISO, ta dokumentacja służy jako dowód, że serwis został wykonany, co chroni prawa konsumenta. W karcie gwarancyjnej zapisujemy nie tylko daty serwisu, ale też dokładny opis prac, jakie były wykonane, jak i uwagi o stanie technicznym sprzętu oraz sugestie na przyszłość. Na przykład, jeśli monter zauważył jakieś problemy z pompą ciepła, to powinien to dokładnie opisać w karcie, żeby w razie czego ułatwić przyszłe naprawy. No i w branży HVAC naprawdę ważne jest, żeby wszystkie działania serwisowe były dokładnie udokumentowane. Robi to nie tylko dla ochrony praw konsumentów, ale też podnosi odpowiedzialność wykonawcy.

Pytanie 6

Rozmieszczenie podłączeń urządzeń oraz armatury w instalacji ilustrują rysunki

A. lokalnych
B. schematycznych
C. przybliżonych
D. dokładnych
Odpowiedź "schematycznych" jest prawidłowa, ponieważ schematy instalacji przedstawiają ogólny układ i połączenia pomiędzy urządzeniami w instalacjach budowlanych, takich jak instalacje elektryczne, wodociągowe czy grzewcze. Schematy te są kluczowe dla inżynierów i techników, ponieważ ułatwiają zrozumienie zasady działania systemu oraz kolejności podłączeń. W praktyce, schematyczne rysunki stosowane są podczas projektowania i instalacji, co pozwala na szybsze lokalizowanie problemów oraz planowanie serwisów. W branży budowlanej istnieją standardy, takie jak normy ISO i PN, które regulują sposób tworzenia takich schematów, co zapewnia ich jednolitość i zrozumiałość dla wszystkich użytkowników. Przykładem może być schemat instalacji elektrycznej, który ilustruje rozmieszczenie gniazdek, włączników oraz źródeł światła, co jest niezbędne do poprawnego wykonania instalacji oraz późniejszego jej użytkowania.

Pytanie 7

Jaką objętość może uzupełnić solarna stacja napełniająca, działająca z efektywnością 3 dm3/s, w ciągu dwóch godzin?

A. 21,60 m3
B. 6,00 m3
C. 32,40 m3
D. 10,80 m3
Poprawna odpowiedź to 21,60 m³, co można obliczyć w sposób następujący: stacja napełniająca ma wydajność 3 dm³/s. Aby obliczyć, ile wody stacja może napełnić w ciągu dwóch godzin, najpierw przeliczamy czas na sekundy. Dwa godziny to 2 × 60 minut × 60 sekund = 7200 sekund. Następnie obliczamy całkowitą objętość wody, mnożąc wydajność przez czas: 3 dm³/s × 7200 s = 21600 dm³. Przy przeliczeniu jednostek z dm³ na m³ (1 m³ = 1000 dm³) otrzymujemy 21,60 m³. W praktyce taki kalkulator objętości jest niezwykle przydatny przy projektowaniu systemów nawadniających, instalacji wodociągowych czy też w kontekście zarządzania zasobami wodnymi, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla efektywności i oszczędności. Wiedza o wydajności systemów napełniających jest również istotna w regulacjach dotyczących ochrony środowiska oraz zasobów wodnych.

Pytanie 8

Jakich informacji nie jest konieczne zawarcie w "Księdze obmiaru" przy instalacji ogniwa fotowoltaicznego?

A. Kubatury pomieszczenia
B. Jednostki pomiarowej
C. Liczby zainstalowanych urządzeń
D. Typu urządzeń
Książka obmiaru dla montażu ogniwa fotowoltaicznego jest dokumentem, który ma za zadanie szczegółowe zarejestrowanie informacji dotyczących zamontowanych urządzeń oraz ich parametrów technicznych. W kontekście tej książki, informacje dotyczące ilości zamontowanych urządzeń, rodzaju urządzeń oraz jednostek miary są kluczowe. Ilość zamontowanych paneli fotowoltaicznych oraz ich rodzaj (np. monokrystaliczne, polikrystaliczne) mają bezpośredni wpływ na efektywność systemu oraz jego zgodność z przyjętymi normami. Jednostki miary są istotne do precyzyjnego określenia wydajności, mocy oraz rozmiarów komponentów instalacji. Natomiast kubatura pomieszczenia, w którym znajdują się urządzenia, nie jest informacją niezbędną w kontekście księgi obmiaru, ponieważ nie ma bezpośredniego wpływu na funkcjonowanie paneli fotowoltaicznych. Przykładowo, w przypadku montażu paneli na dachu, kubatura pomieszczenia nie ma znaczenia dla samej wydajności instalacji. Zgodnie z najlepszymi praktykami branżowymi, Książka obmiaru powinna być starannie prowadzona, aby zapewnić zgodność z wymaganiami prawnymi oraz normami jakości.

Pytanie 9

Odbiór części robót, które zostają zakryte, należy zaliczyć do odbiorów

A. przejściowych
B. częściowych
C. pogwarancyjnych
D. końcowych
Odpowiedź częściowych jest poprawna, ponieważ odbiór fragmentu robót, które ulegają zakryciu, jest częścią procesu odbiorowego, który ma na celu potwierdzenie, że zrealizowane prace są zgodne z umową oraz obowiązującymi normami. Odbiór częściowy dotyczy fragmentów robót, które mogą być już wykonane, a ich zakrycie uniemożliwia późniejszą ocenę jakości wykonania. W praktyce, na przykład podczas budowy budynku, instalacje elektryczne czy hydrauliczne muszą być odebrane przed ich zasłonięciem przez ściany, co pozwala na zweryfikowanie ich zgodności z projektem oraz jakości wykonania. Taki odbiór jest zgodny z normami budowlanymi oraz dobrymi praktykami w zarządzaniu projektami budowlanymi, które zalecają regularne i etapowe sprawdzanie wykonania robót. W przypadku problemów stwierdzonych podczas odbioru częściowego, wykonawca ma możliwość ich naprawy przed przystąpieniem do dalszych etapów budowy, co chroni inwestora przed późniejszymi kosztami napraw.

Pytanie 10

Do instalacji ogrzewania podłogowego zasilanego pompą ciepła wykorzystuje się rury

A. żeliwne
B. z tworzywa sztucznego
C. kamionkowe
D. stalowe
Instalację ogrzewania podłogowego zasilaną z pompy ciepła wykonuje się najczęściej z rur z tworzywa sztucznego, takich jak polietylen (PE) lub polipropylen (PP). Te materiały charakteryzują się doskonałą odpornością na korozję, co jest kluczowe w systemach, w których krążą płyny o różnej chemicznej charakterystyce. Ponadto, rury z tworzywa sztucznego mają dobre właściwości izolacyjne, co pozwala na efektywne wykorzystanie energii z pompy ciepła. Elastyczność tych materiałów ułatwia montaż, pozwalając na łatwe formowanie i dostosowanie do najbardziej wymagających układów. W praktyce, stosując rury z tworzywa sztucznego, można zredukować ilość połączeń i złączy, co z kolei zmniejsza ryzyko wycieków. Standardy branżowe, takie jak PN-EN 1264 dotyczące ogrzewania podłogowego, podkreślają zalety używania tych materiałów i ich zgodność z nowoczesnymi technologiami ogrzewania. Dodatkowo, ich lekkość w porównaniu do rur stalowych czy żeliwnych sprawia, że instalacja staje się prostsza i szybsza, co jest nieocenione w praktyce budowlanej.

Pytanie 11

Podczas realizacji próby szczelności systemu solarnego ciśnienie kontrolne w każdym punkcie instalacji powinno być wyższe od ciśnienia atmosferycznego o minimum

A. 4 bary
B. 1 bar
C. 2 bary
D. 3 bary
Odpowiedź 1 bar jest poprawna, ponieważ podczas przeprowadzania próby szczelności obiegu solarnego, ciśnienie kontrolne musi być wyższe od ciśnienia atmosferycznego o co najmniej 1 bar. Takie wymaganie ma na celu zapewnienie, że w instalacji nie występują nieszczelności, które mogłyby prowadzić do wycieków płynu solarnego. Praktyka ta jest zgodna z normami branżowymi, które podkreślają znaczenie utrzymania odpowiedniego ciśnienia, aby zminimalizować ryzyko awarii systemu. Na przykład, w przypadku instalacji z niskotemperaturowymi kolektorami słonecznymi, utrzymanie ciśnienia na poziomie co najmniej 1 bara pomaga również w ochronie przed zjawiskiem kawitacji, które może uszkodzić pompy i inne elementy systemu. Dodatkowo, w trakcie długoterminowej eksploatacji, regularne kontrole ciśnienia i działania profilaktyczne zapewniają dłuższą żywotność i efektywność całego systemu solarnym.

Pytanie 12

Realizacja budowy hybrydowej latarni ulicznej o wysokości 10 metrów oraz mocy 40W

A. wymaga zgłoszenia budowy
B. wymaga akceptacji sąsiadów
C. może być przeprowadzona bez uzgodnień
D. wymaga pozwolenia na budowę
Stwierdzenie, że budowa latarni hybrydowej może być realizowana bez zgody, jest mylne, ponieważ ignoruje kluczowe aspekty regulacyjne związane z inwestycjami budowlanymi. W każdym przypadku, nawet jeśli wydaje się, że obiekt jest niewielki lub nieinwazyjny, jego obecność wpływa na otoczenie, co obliguje inwestora do uzyskania zgody. Zgoda sąsiadów jest często mylnie postrzegana jako kluczowy element, jednak w rzeczywistości sama jej obecność nie wystarcza. Nawet jeśli sąsiedzi nie mają obiekcji, brak formalnego pozwolenia na budowę skutkuje naruszeniem przepisów prawa budowlanego. Zgłoszenie budowlane to kolejny nieprawidłowy kierunek myślenia, ponieważ dotyczy sytuacji, w których inwestycje są na tyle małe, że mogą nie wymagać pełnego pozwolenia, co nie ma zastosowania w przypadku latarni hybrydowej. Wszelkie prace budowlane, które mają wpływ na użytkowanie terenu, powinny być zgodne z normami budowlanymi oraz zasadami ochrony środowiska, co wiąże się z koniecznością uzyskania pozwolenia na budowę. Należy zatem zawsze konsultować się z lokalnymi władzami, aby upewnić się, że spełnione są wszystkie wymagania prawne i techniczne.

Pytanie 13

Czynnik przenoszący ciepło z dolnego źródła do pompy oraz z pompy do instalacji o oznaczeniu A/A dotyczy pomp ciepła, w których dolnym źródłem ciepła jest

A. woda powierzchniowa lub głębinowa, a górnym powietrze wewnętrzne lub woda grzewcza; czynnikiem pośredniczącym jest woda
B. grunt, a górnym powietrze wewnętrzne; czynnikiem pośredniczącym między dolnym źródłem ciepła a pompą ciepła jest roztwór glikolu, natomiast między pompą ciepła a górnym źródłem ciepła powietrze
C. powietrze wywiewane, natomiast górnym powietrze wewnętrzne; czynnikiem pośredniczącym jest czynnik roboczy pompy ciepła
D. grunt, a górnym powietrze wewnętrzne lub woda grzewcza; w instalacji dolnego źródła krąży solanka, natomiast w instalacji grzewczej krąży woda
Zrozumienie roli, jaką odgrywają różne źródła ciepła w systemach pomp ciepła, jest kluczowe dla ich prawidłowej eksploatacji. Wiele z nieprawidłowych odpowiedzi wskazuje na mylenie dolnych i górnych źródeł ciepła oraz na niepoprawne określenie czynników pośredniczących. Na przykład, podawanie gruntu jako dolnego źródła ciepła w kontekście pompy ciepła z powietrzem wewnętrznym jako górnym jest błędne, ponieważ grunt i powietrze to dwa różne źródła energii, które nie mogą być używane jednocześnie w taki sposób bez odpowiednich systemów pośredniczących. Ponadto, błędne odpowiedzi sugerują, że czynnikiem pośredniczącym w systemie jest substancja taka jak woda lub solanka, co nie odnosi się do standardów dla pomp ciepła powietrze-powietrze, które wykorzystują czynnik roboczy, najczęściej w formie gazu chłodniczego, w celu transportu energii cieplnej. Często popełnianym błędem jest również mylenie typu pompy ciepła, co prowadzi do niewłaściwych wniosków na temat efektywności i zastosowania systemu. Zrozumienie różnorodności źródeł ciepła oraz ich właściwości jest niezbędne dla efektywnego projektowania i eksploatacji systemów grzewczych, a także dla zapewnienia ich zgodności z obowiązującymi normami energetycznymi.

Pytanie 14

Który z poniższych czynników może powodować głośną pracę pompy obiegowej podczas startu słonecznej instalacji grzewczej?

A. Niska temperatura cieczy solarnej
B. Nieprawidłowo dobrana średnica rur instalacyjnych
C. Duża ilość powietrza w systemie
D. Niewłaściwy rodzaj cieczy solarnej
Poprawna odpowiedź wynika z faktu, że duża ilość powietrza w instalacji solarnej może prowadzić do powstawania pęcherzy powietrznych, które przemieszcza się przez pompę obiegową, potęgując hałas podczas jej pracy. Powietrze w systemie obiegowym może również ograniczać przepływ płynu solarnego, co wpływa na wydajność całego układu grzewczego. Standardy branżowe, takie jak normy ISO dotyczące instalacji grzewczych, podkreślają znaczenie odpowiedniego odpowietrzania systemu, co jest kluczowe dla jego prawidłowego funkcjonowania. W praktyce, aby uniknąć problemów z hałasami generowanymi przez pompę, zaleca się regularne sprawdzanie systemu na obecność powietrza oraz stosowanie odpowiednich zaworów odpowietrzających. Dbałość o poprawne odpowietrzanie instalacji nie tylko zwiększa komfort użytkowania, ale również wydłuża żywotność pompy i całego systemu grzewczego.

Pytanie 15

Rury powinny być zabezpieczone przed działaniem promieni słonecznych podczas składowania

A. ze stali ocynkowanej
B. z miedzi
C. ze stali nierdzewnej
D. z tworzyw sztucznych
Rury ze stali nierdzewnej, miedzi i stali ocynkowanej mają różne właściwości, które nie zawsze dobrze się sprawdzają w słońcu. Stal nierdzewna jest odporna na korozję, ale w wysokich temperaturach może się deformować, co nie jest najlepsze. Miedź weźmie patynę na powierzchni, co wpływa na estetykę. Stal ocynkowana, mimo że ma warstwę ochronną, też może korodować, jeśli cynk się uszkodzi. Nie powinno się zakładać, że te materiały nie potrzebują ochrony podczas składowania. Właściwie każda rura powinna być zabezpieczona przed słońcem, a w przypadku metali, takich jak stal i miedź, warto pomyśleć o specyficznych środkach ochrony antykorozyjnej. Dobrze jest dobierać materiały nie tylko pod kątem ich właściwości, ale także myśleć o tym, w jakich warunkach będą przechowywane i używane. Wiedza o tych rzeczach jest kluczowa, żeby wszystko działało jak należy.

Pytanie 16

Jakie problemy mogą powodować elektrownie wiatrowe dla fauny w ich pobliżu?

A. znaczne zmiany w mocy generowanej przez wiatrak
B. wysokość konstrukcji wiatraka
C. zakłócenia w przepływie wiatru w rejonie wiatraka
D. cienie aerodynamiczne dla pobliskich budynków
Zaburzenia przepływu wiatru na obszarze wokół wiatraka stanowią kluczowy czynnik wpływający na florę i faunę w pobliżu elektrowni wiatrowych. Zmiany w kierunku i prędkości wiatru mogą wpływać na lokalne warunki mikroklimatyczne, co z kolei utrudnia ptakom nawigację oraz ich zdolność do lotu. Ptaki, które są przyzwyczajone do określonych warunków powietrznych, mogą napotykać trudności w poruszaniu się w zmienionych warunkach, co zwiększa ryzyko kolizji z turbinami. Dodatkowo, zaburzenia przepływu wiatru mogą wpływać na rozmieszczenie roślinności, co może prowadzić do zmian w siedliskach zwierząt. Dobrą praktyką w projektowaniu farm wiatrowych jest przeprowadzanie szczegółowych badań wpływu na lokalne ekosystemy oraz stosowanie technologii, które minimalizują te zaburzenia. Przykładowo, stosowanie mniejszych turbin w obszarach o dużej bioróżnorodności może pomóc w ograniczeniu negatywnego wpływu na zwierzęta.

Pytanie 17

Jakie są jednostkowe koszty robocizny na 1 sztukę kolektora słonecznego, jeśli całkowity koszt robocizny za realizację 5 kolektorów wynosi 5 500,00 zł, a ustalona stawka za roboczogodzinę wynosi 11,00 zł?

A. 1 100 r-g/szt.
B. 100 r-g/szt.
C. 55 r-g/szt.
D. 500 r-g/szt.
Jednostkowe nakłady robocizny na 1 sztukę kolektora słonecznego można obliczyć, dzieląc całkowity koszt robocizny przez liczbę wykonanych kolektorów. W tym przypadku wartość kosztorysowa robocizny za wykonanie 5 kolektorów wynosi 5 500,00 zł. Dzieląc tę kwotę przez 5, otrzymujemy jednostkowy koszt robocizny równy 1 100,00 zł na jeden kolektor. Następnie, aby uzyskać jednostkowe nakłady robocizny w roboczogodzinach, musimy obliczyć, ile roboczogodzin stanowi ta kwota w odniesieniu do stawki za roboczogodzinę, która wynosi 11,00 zł. Dzieląc jednostkowy koszt robocizny (1 100,00 zł) przez stawkę za roboczogodzinę (11,00 zł), otrzymujemy 100 roboczogodzin na jeden kolektor. To pokazuje, jak ważne jest zrozumienie zasad wyceny robocizny oraz umiejętność zastosowania ich w praktyce. W branży budowlanej i instalacyjnej, precyzyjne obliczenia kosztów robocizny są kluczowe dla efektywnego zarządzania projektami oraz budżetami.

Pytanie 18

Po zakończeniu robót, które są zakrywane, przeprowadza się odbiór

A. końcowy
B. częściowy
C. wstępny
D. ostateczny
Odpowiedź 'częściowy' jest prawidłowa, ponieważ zgodnie z praktyką budowlaną, po zakończeniu robót ulegających zakryciu należy przeprowadzić odbiór częściowy. Działanie to ma na celu zapewnienie, że poszczególne etapy prac zostały wykonane zgodnie z projektem oraz obowiązującymi normami. Odbiór częściowy umożliwia identyfikację ewentualnych błędów przed zakryciem, co jest kluczowe dla dalszych etapów budowy. Na przykład, w przypadku instalacji elektrycznych, dokonanie odbioru częściowego przed zamknięciem ścian pozwala na sprawdzenie poprawności podłączeń oraz zgodności z normami PN-IEC, co może zapobiec poważnym problemom w przyszłości. Zgodnie z definicją zawartą w przepisach prawa budowlanego, odbiór częściowy potwierdza, że dane prace są zakończone, a ich jakość jest zgodna z wymaganiami, co ma kluczowe znaczenie dla bezpieczeństwa i trwałości całej inwestycji.

Pytanie 19

Klejenie stanowi kluczową metodę łączenia rur oraz kształtek

A. ze stali
B. z polichlorku winylu
C. z polipropylenu
D. z polietylenu
Klejenie rur z polietylenu, stali czy polipropylenu nie jest standardową metodą łączenia tych materiałów, co prowadzi do nieporozumień w zakresie technologii montażu. Polietylen, na przykład, wymaga zastosowania technologii zgrzewania, ponieważ kleje nie są w stanie zapewnić odpowiedniej wytrzymałości połączeń z tego tworzywa. Zgrzewanie polietylenu polega na podgrzewaniu krawędzi elementów i ich następnej fuzji, co tworzy mocne i trwałe połączenie, odporne na działanie substancji chemicznych i zmiany temperatury. W przypadku rur stalowych kluczowe jest, aby stosować technologie takie jak spawanie lub łączenie mechaniczne. Klejenie stali jest nieefektywne z uwagi na jej wysoką wytrzymałość i specyfikę materiału, dlatego zaleca się techniki, które zapewniają trwałość i bezpieczeństwo konstrukcji. Polipropylen, podobnie jak polietylen, nie jest kompatybilny z klejeniem, a jego łączenie powinno odbywać się poprzez zgrzewanie lub zastosowanie złączek mechanicznych. Takie błędne podejście do procesu łączenia materiałów może prowadzić do awarii instalacji, co z kolei może skutkować poważnymi konsekwencjami finansowymi i operacyjnymi. Kluczowe jest zrozumienie, że wybór metody łączenia powinien być dostosowany do specyfiki materiałów oraz wymagań danej aplikacji, aby zapewnić bezpieczeństwo i efektywność całego systemu. W przypadku jakichkolwiek wątpliwości warto sięgnąć po porady specjalistów lub dokumentację techniczną dostarczaną przez producentów.

Pytanie 20

Najkorzystniejszą strefą energetyczną pod względem wiatru jest województwo

A. pomorskie
B. małopolskie
C. lubelskie
D. dolnośląskie
Województwo pomorskie jest uznawane za najlepszą strefę energetyczną pod względem wiatru w Polsce z uwagi na korzystne warunki klimatyczne, które sprzyjają produkcji energii z wiatru. Region ten charakteryzuje się dużą średnią prędkością wiatru, co jest kluczowym czynnikiem dla efektywności farm wiatrowych. Zgodnie z normami branżowymi, instalacje wiatrowe powinny być lokowane w obszarach, gdzie średnie roczne prędkości wiatru wynoszą co najmniej 5 m/s, co w pomorskim jest często przekraczane. Przykłady udanych projektów wiatrowych w tym regionie, takie jak farmy wiatrowe na Bałtyku, potwierdzają opłacalność inwestycji w odnawialne źródła energii. Dobre praktyki w tym zakresie obejmują przeprowadzenie dokładnych badań wiatrowych oraz analizę wpływu na środowisko, co jest niezbędne do uzyskania pozwolenia na budowę. W rezultacie, pomorskie staje się liderem w produkcji energii wiatrowej, co przyczynia się do osiągania celów związanych z zrównoważonym rozwojem i redukcją emisji CO2.

Pytanie 21

Jak często należy przeprowadzać pomiar rezystancji poszczególnych ogniw w akumulatorach?

A. raz w miesiącu
B. co 6 miesięcy
C. raz w roku
D. codziennie
Pojęcie regularności w pomiarze rezystancji ogniw akumulatorowych jest kluczowe dla utrzymania ich w dobrym stanie. Często spotykane jest przekonanie, że pomiar należy przeprowadzać raz w miesiącu, jednak takie podejście jest niepraktyczne i nieefektywne. Częstsze pomiary mogą prowadzić do niepotrzebnego zużycia sprzętu pomiarowego oraz mogą wprowadzać w błąd z powodu naturalnych fluktuacji wynikających z warunków pracy akumulatorów. Z kolei pomiar raz w roku nie jest wystarczający, aby zauważyć ewentualne problemy z akumulatorami w odpowiednim czasie. W przypadku akumulatorów, które są użytkowane w intensywnych warunkach, takich jak systemy zasilania UPS, długie przerwy między pomiarami mogą prowadzić do poważnych usterek, które mogłyby być wykryte znacznie wcześniej. Odpowiedź sugerująca codzienne pomiary jest niepraktyczna i może prowadzić do nadmiernego obciążenia systemów monitorujących oraz błędów pomiarowych, przez co rezultaty mogą być mylące. Kluczowe jest znalezienie równowagi między częstotliwością pomiarów a ich rzeczywistą użytecznością, co w praktyce oznacza przyjęcie sześciomiesięcznego cyklu, który pozwala na dokładną ocenę stanu akumulatorów, minimalizując jednocześnie koszty i czas potrzebny na pomiary.

Pytanie 22

Gdzie należy zamontować zewnętrzną jednostkę powietrznej pompy ciepła?

A. w odległości co najmniej 0,5 m od zewnętrznej ściany z wyrzutnią powietrza skierowaną poza ścianę
B. bezpośrednio przy zewnętrznej ścianie budynku z wyrzutnią powietrza kierującą się w stronę ściany
C. w odległości co najmniej 0,5 m od zewnętrznej ściany z wyrzutnią powietrza skierowaną w stronę ściany
D. bezpośrednio przy zewnętrznej ścianie budynku z czerpnią powietrza zwróconą w stronę ściany
Zamontowanie pompy ciepła za blisko ściany, czyli mniej niż 0,5 m, to dość powszechny błąd, który może narobić sporo problemów. Kiedy powietrze wydobywa się z wyrzutni skierowanej do ściany, nie rozprasza się dobrze, przez co może wracać do wlotu. To zdecydowanie nie jest optymalne i może prowadzić do spadku wydajności, a co za tym idzie – większego zużycia energii. Często ludzie nie mają pełnej wiedzy o wymaganiach dotyczących lokalizacji urządzenia, co skutkuje niewłaściwymi decyzjami. Wiesz, są określone standardy budowlane i zalecenia producentów, które dokładnie opisują, jakie odległości powinny być zachowane, aby systemy klimatyzacyjne i grzewcze działały prawidłowo. Ignorowanie tych zasad, jak na przykład montaż czerpni powietrza skierowanej do ściany, może doprowadzić do różnych usterek czy większego hałasu, co w mieszkaniach nie jest zbyt komfortowe. Dlatego naprawdę warto zwracać uwagę na te wytyczne, żeby pompa działała jak należy.

Pytanie 23

Aby zabezpieczyć obieg grzewczy w sytuacji, gdy ciśnienie w instalacji solarnej zbyt mocno wzrasta, co powinno się zastosować?

A. grupę pompową
B. podgrzewacz wody
C. zawór bezpieczeństwa
D. regulator temperatury
Zawór bezpieczeństwa to mega ważny element, jeśli chodzi o ochronę instalacji solarnej przed zbyt wysokim ciśnieniem. Kiedy ciśnienie w układzie wzrasta ponad dopuszczalny poziom, zawór automatycznie się otwiera, wypuszczając nadmiar wody albo pary. W ten sposób zapobiega się wszelkim awariom, co jest kluczowe dla bezpieczeństwa. Normy branżowe, takie jak PN-EN 12828, jasno mówią, jak istotne jest to zabezpieczenie w systemach grzewczych. Na przykład, w instalacji solarnej w domu, zawór bezpieczeństwa działa jak tarcza chroniąca system i ludzi w środku przed nieprzyjemnościami. A tak swoją drogą, pamiętaj, żeby regularnie sprawdzać zawory bezpieczeństwa – to nie tylko kwestia przepisów, ale też bezpieczeństwa całej instalacji.

Pytanie 24

Z jakiego rodzaju materiału można zrealizować instalację łączącą kolektory słoneczne z zasobnikiem na ciepłą wodę użytkową?

A. Polipropylen.
B. Polietylen.
C. Poliamid.
D. Stal stopowa.
Stal stopowa jest materiałem o wyjątkowych właściwościach mechanicznych i chemicznych, co czyni ją idealnym wyborem do budowy instalacji łączącej kolektory słoneczne z zasobnikiem ciepłej wody użytkowej. Stal stopowa charakteryzuje się wysoką wytrzymałością na ciśnienie oraz korozję, co jest kluczowe w przypadku systemów, które muszą znosić zmienne warunki atmosferyczne oraz wysokie temperatury. Dodatkowo, stal stopowa ma dobrą przewodność cieplną, co wspomaga efektywność wymiany ciepła w instalacji. W praktyce, instalacje wykonane ze stali stopowej są często stosowane w dużych systemach solarnych, gdzie niezawodność i trwałość są kluczowe. Stal stopowa spełnia również wymagania norm takich jak EN 10088, co zapewnia jej wysoką jakość. Ponadto, zastosowanie stalowych rur w instalacjach solarnych jest zgodne z dobrymi praktykami inżynieryjnymi, które zalecają materiały o wysokiej odporności na deformacje i zmęczenie, co minimalizuje ryzyko awarii.

Pytanie 25

Do podłączenia paneli fotowoltaicznych o mocy 135 W do regulatora ładowania powinno się zastosować przewód elektryczny

A. YAKY 3x4 mm2
B. LgY 4 mm2
C. OMY 3x1,5 mm2
D. DYt 2x4 mm2
Wybór niewłaściwego przewodu do połączenia paneli fotowoltaicznych może prowadzić do wielu problemów zarówno z efektywnością, jak i bezpieczeństwem całego systemu. Przewody OMY 3x1,5 mm2 oraz YAKY 3x4 mm2 są niewłaściwe, ponieważ nie spełniają wymagań dotyczących odpowiedniego przekroju, co w konsekwencji może skutkować dużymi stratami energii. Przewód OMY 3x1,5 mm2, ze względu na niewystarczający przekrój, będzie zbyt wąski dla mocy paneli, co prowadzi do ich przegrzewania się, a nawet uszkodzenia. Z kolei YAKY 3x4 mm2, mimo że ma większy przekrój, nie jest przewodem odpowiednim do zastosowań w instalacjach fotowoltaicznych, ponieważ jest przeznaczony głównie do stosowania w budownictwie i nie zapewnia elastyczności oraz odporności na warunki atmosferyczne, które są kluczowe w instalacjach zewnętrznych. Przewód DYt 2x4 mm2 również nie jest optymalnym rozwiązaniem, gdyż jego konstrukcja nie jest dostosowana do specyficznych wymagań instalacji fotowoltaicznych. Stosowanie niewłaściwych przewodów jest typowym błędem, który może wynikać z braku zrozumienia potrzeb systemu oraz norm, takich jak PN-EN 60228, które sugerują odpowiednie parametry dla przewodów stosowanych w instalacjach elektrycznych. Właściwy dobór przewodów jest kluczowym elementem w zapewnieniu długotrwałego i bezpiecznego działania systemu fotowoltaicznego.

Pytanie 26

Aby transportować elementy siłowni wiatrowych w Polsce, konieczne jest uzyskanie zgody od GDDKiA. Jaki jest maksymalny dozwolony nacisk na jedną oś napędową pojazdu przewożącego ładunek?

A. 11,5 t
B. 10,5 t
C. 12,5 t
D. 9,5 t
Wybór odpowiedzi 12,5 t, 10,5 t, czy 9,5 t jest wynikiem nieporozumienia dotyczącego regulacji dotyczących transportu ładunków wielkogabarytowych w Polsce. Maksymalny dopuszczalny nacisk na jedną oś napędową pojazdu określony na 12,5 t jest stosunkowo rzadko spotykany i dotyczy standardowych pojazdów ciężarowych w ruchu drogowym. W kontekście transportu elementów siłowni wiatrowych, które mają większe wymiary i wagę, obowiązują specjalne przepisy. Wybór 10,5 t lub 9,5 t również nie uwzględnia aktualnych norm, które definiują maksymalne obciążenia osi w kontekście transportu nadgabarytowego. Typowe błędy myślowe obejmują mylenie standardowych nacisków osi dla pojazdów transportowych z obciążeniem specyficznym dla ładunków wielkogabarytowych. Alternatywne odpowiedzi mogą wynikać z mylnego założenia, że ogólne przepisy dotyczące transportu ciężarowego są wystarczające dla wszelkich form przewozu. W praktyce, przy planowaniu transportu komponentów siłowni wiatrowych, istotne jest konsultowanie się z odpowiednimi regulacjami prawnymi i normami, aby uniknąć problemów z przepisami oraz zapewnić bezpieczeństwo zarówno przewożonym ładunkom, jak i infrastrukturze drogowej.

Pytanie 27

Jaki maksymalny roczny poziom wydajności jednostkowej może uzyskać instalacja solarna z powierzchnią absorberów kolektorów słonecznych równą 15 m2, zaplanowana do podgrzewania wody użytkowej przy dobowym zapotrzebowaniu wynoszącym 500 dm3?

A. 400 ÷ 500 kWh/m2/rok
B. 700 ÷ 800 kWh/m2/rok
C. 1000 ÷ 1100 kWh/m2/rok
D. 100 ÷ 200 kWh/m2/rok
Wartości wydajności jednostkowej dla instalacji solarnej są kluczowe do zrozumienia jej efektywności energetycznej, a nieprawidłowe szacowanie tych wartości prowadzi do mylnych wniosków. Odpowiedzi wskazujące na zakres 100 ÷ 200 kWh/m²/rok oraz 1000 ÷ 1100 kWh/m²/rok nie uwzględniają typowych parametrów dla systemów solarnych, zwłaszcza w kontekście podgrzewania wody użytkowej. Wydajność w przedziale 100 ÷ 200 kWh/m²/rok jest zbyt niska w porównaniu do standardów branżowych, ponieważ nowoczesne kolektory słoneczne, w zależności od lokalnych warunków, powinny osiągać znacznie wyższe wyniki. Z drugiej strony, wysokie wartości w zakresie 1000 ÷ 1100 kWh/m²/rok są wysoce nierealistyczne i wykraczają poza typowe osiągi kolektorów słonecznych, które w rzeczywistości nie są w stanie przetworzyć tak dużej ilości energii w ciągu roku. Błędne podejścia do oceny wydajności mogą wynikać z ignorowania wpływu czynników środowiskowych, takich jak kąt nachylenia kolektorów, ich orientacja oraz lokalne warunki atmosferyczne, które są niezbędne do uzyskania dokładnych szacunków. Ponadto, brak uwzględnienia standardów branżowych, takich jak normy EN 12975, które regulują efektywność kolektorów słonecznych, prowadzi do błędnych ocen ich możliwości. Zrozumienie tych parametrów jest kluczowe dla skutecznego projektowania systemów solarnych, które spełniają wymagania użytkowników.

Pytanie 28

Kto nie należy do uczestników procesu budowlanego?

A. kominiarz
B. inwestor
C. kierownik budowy
D. projektant
Wybór kominiarza jako osoby, która nie uczestniczy w procesie budowlanym, jest jak najbardziej trafny. W procesie budowlanym uczestniczą kluczowe role takie jak inwestor, projektant i kierownik budowy, którzy są bezpośrednio zaangażowani w projektowanie, nadzór i realizację budowy. Inwestor odpowiada za finansowanie projektu oraz podejmowanie kluczowych decyzji. Projektant zajmuje się tworzeniem i opracowaniem projektu budowlanego, w tym jego zgodności z obowiązującymi normami i przepisami. Kierownik budowy jest odpowiedzialny za organizację i koordynację prac na placu budowy, zapewniając jednocześnie, że realizacja przebiega zgodnie z projektem oraz z wymaganiami prawa budowlanego. Kominiarz, choć odgrywa istotną rolę w zakresie bezpieczeństwa i użytkowania obiektów budowlanych, nie jest bezpośrednim uczestnikiem procesu budowlanego, co sprawia, że nie jest zaangażowany w jego kluczowe etapy. Wiedza na temat ról w procesie budowlanym jest niezbędna, aby skutecznie zarządzać projektami budowlanymi oraz zapewnić ich prawidłową realizację.

Pytanie 29

Zasobnik w kotle na biomasę ma pojemność 250 kg peletów. Kocioł uzupełniany jest co 3 dni. Jaki jest całkowity koszt paliwa zużywanego w ciągu 30 dni, jeśli cena 1 kg peletu wynosi 1,10 zł?

A. 825 zł
B. 2 750 zł
C. 275 zł
D. 8 250 zł
Aby obliczyć koszt paliwa zużywanego w ciągu 30 dni, należy najpierw określić, ile razy kocioł zostanie napełniony w tym czasie. Zasobnik kotła na biomasę ma pojemność 250 kg peletu, a kocioł napełniany jest co 3 dni. W ciągu 30 dni kocioł będzie napełniany 10 razy (30 dni / 3 dni = 10 napełnień). Ponieważ każde napełnienie wymaga 250 kg peletu, łączna ilość peletów zużytych w ciągu 30 dni wynosi 250 kg x 10 = 2500 kg. Koszt 1 kg peletu wynosi 1,10 zł, więc całkowity koszt paliwa wyniesie 2500 kg x 1,10 zł = 2750 zł. Takie obliczenia są standardem w zarządzaniu kosztami energii w systemach ogrzewania, szczególnie przy stosowaniu biomasy jako odnawialnego źródła energii. Zrozumienie tego procesu pozwala na efektywne planowanie wydatków oraz optymalizację zużycia paliwa w instalacjach grzewczych, co jest kluczowe dla zrównoważonego rozwoju i ograniczenia emisji CO2.

Pytanie 30

Którego elementu brakuje, aby zapobiec odwrotnemu przepływowi wody z podgrzanego zbiornika do kolektora w czasie nocy?

A. Pompy cyrkulacyjnej
B. Regulatora systemu
C. Zaworu bezpieczeństwa
D. Zaworu zwrotnego
Zawór zwrotny odgrywa kluczową rolę w systemach hydraulicznych, zapewniając jednostronny przepływ medium, co jest istotne w kontekście systemów ogrzewania solarnym. Jego brak w konfiguracji między nagrzanym zasobnikiem a kolektorem może prowadzić do niekontrolowanego odwrotnego przepływu wody, szczególnie w nocy, gdy temperatura wody w zasobniku jest wyższa niż w kolektorze. W takich sytuacjach woda może przemieszczać się z powrotem do kolektora, co nie tylko zaburza efektywność całego systemu, ale również może prowadzić do jego uszkodzenia. Zawory zwrotne są projektowane zgodnie z normami branżowymi, aby zapewnić niezawodność i długotrwałe działanie. W praktyce, ich zastosowanie w instalacjach solarnych jest niezbędne, aby zapobiec strat energetycznym i zachować stabilność systemu. Dlatego regularne kontrole stanu zaworów zwrotnych oraz ich wymiana zgodnie z zaleceniami producentów są ważnymi elementami utrzymania systemów grzewczych w dobrym stanie.

Pytanie 31

Zbudowanie fundamentów oraz wieży dla małej elektrowni wiatrowej o wysokości 10 metrów

A. może być realizowane po poinformowaniu sąsiadów
B. wymaga pozwolenia na budowę
C. może być realizowane bez uzgodnień
D. wymaga zgłoszenia budowlanego
Budowa fundamentu i wieży małej elektrowni wiatrowej o wysokości 10 metrów rzeczywiście wymaga pozwolenia na budowę. Zgodnie z polskim prawem budowlanym, każda inwestycja budowlana, która wpływa na środowisko zmieniając jego charakter, musi być odpowiednio zgłoszona i zatwierdzona. Elektrownie wiatrowe, choć niewielkie, są uznawane za obiekty mogące wpływać na otoczenie, a ich budowa wymaga wnikliwej analizy pod kątem wpływu na lokalne ekosystemy, krajobraz oraz sąsiedztwo. W praktyce, uzyskanie pozwolenia na budowę wiąże się z przygotowaniem odpowiedniej dokumentacji, która powinna zawierać projekt budowlany, analizy oddziaływania na środowisko oraz ewentualne konsultacje z sąsiadami. Dobre praktyki wskazują, że przed rozpoczęciem inwestycji warto przeprowadzić również konsultacje społeczne, aby uzyskać akceptację lokalnej społeczności. Zrozumienie wymogów prawnych jest kluczowe dla efektywnego zarządzania projektem budowlanym.

Pytanie 32

Pompa ciepła typu sprężarkowego określana jest jako rewersyjna, gdy jest zainstalowana w obiekcie

A. ma sprężarkę umieszczoną na zewnątrz budynku
B. ma 4 wymienniki ciepła
C. może zimą pełnić funkcje grzewcze, a latem chłodnicze
D. ma modulowaną moc grzewczą sprężarki
Sprężarkowa pompa ciepła nazywana jest rewersyjną, ponieważ może w zależności od potrzeb zmieniać kierunek przepływu czynnika chłodniczego, co pozwala jej pełnić różne funkcje: zimą jako urządzenie grzewcze, a latem jako system chłodzący. W praktyce oznacza to, że pompa ciepła może efektywnie wykorzystać energię z otoczenia do ogrzewania pomieszczeń, pobierając ciepło z powietrza, gruntu lub wody, a w okresie letnim może tę energię odprowadzać, schładzając budynek. Współczesne systemy oparte na tej technologii są zgodne z normami efektywności energetycznej, co czyni je ekologicznymi i ekonomicznymi rozwiązaniami. Przykładem zastosowania mogą być budynki mieszkalne, biura czy obiekty przemysłowe, które dzięki zastosowaniu rewersyjnych pomp ciepła mogą zredukować koszty eksploatacji oraz emisję dwutlenku węgla. Warto zauważyć, że rewersyjne pompy ciepła przyczyniają się do zrównoważonego rozwoju, co jest istotne w kontekście globalnych wyzwań związanych ze zmianami klimatycznymi.

Pytanie 33

Gdzie w systemie grzewczym z kotłem posiadającym automatyczny podajnik paliwa powinno się zainstalować zabezpieczenie przed zbyt niskim poziomem wody?

A. Na powrocie, 10 cm pod najwyższą częścią kotła
B. Na zasilaniu, 10 cm ponad najwyższą częścią kotła
C. Na powrocie, 10 cm ponad najwyższą częścią kotła
D. Na zasilaniu, 10 cm pod najwyższą częścią kotła
Wybór odpowiedzi na zasilaniu, 10 cm powyżej najwyższej części kotła, jest zgodny z zasadami bezpieczeństwa i praktykami w zakresie instalacji systemów grzewczych. Montując zabezpieczenie w tym miejscu, zapewniamy stały dostęp wody do kotła, co jest kluczowe dla jego prawidłowej pracy. W przypadku kotłów z automatycznym podajnikiem paliwa, bezpieczeństwo eksploatacji nabiera szczególnego znaczenia, ponieważ brak wody może prowadzić do uszkodzenia kotła, a nawet pożaru. Zgodnie z normami, taka lokalizacja zabezpieczenia umożliwia monitorowanie poziomu wody w systemie oraz minimalizuje ryzyko sytuacji awaryjnych. Przykładem zastosowania tej lokalizacji może być instalacja w budynku mieszkalnym, gdzie regularne kontrole poziomu wody gwarantują, że system grzewczy działa efektywnie, co przekłada się na komfort użytkowników. Dodatkowo, odpowiednia lokalizacja zabezpieczenia ułatwia także serwisowanie systemu, co jest istotne dla utrzymania jego sprawności.

Pytanie 34

Tworząc harmonogram prac związanych z montażem instalacji do usuwania pyłów z gazów spalinowych, wybrano cyklon, którego rolą jest zatrzymywanie zanieczyszczeń powietrza pod wpływem działania

A. grawitacji
B. pola elektromagnetycznego
C. filtracji
D. siły odśrodkowej
Siła odśrodkowa odgrywa kluczową rolę w działaniu cyklonów, które są powszechnie stosowane w instalacjach do usuwania pyłów ze strumienia spalin. Gdy gaz zanieczyszczony cząstkami stałymi wchodzi do cyklonu, jest zmuszany do krążenia w wirze, co generuje siłę odśrodkową. Ta siła powoduje, że cięższe cząstki zanieczyszczeń są wypychane na zewnątrz cyklonu, gdzie osiadają na ściankach. W ten sposób cząstki te są oddzielane od gazu, co znacząco poprawia jakość powietrza opuszczającego instalację. Przykładem zastosowania cyklonów jest przemysł energetyczny, gdzie wykorzystywane są do oczyszczania spalin powstających w procesie spalania węgla. Standardy takie jak ISO 14001 promują efektywność takich rozwiązań w kontekście ochrony środowiska, wskazując na ich znaczenie w redukcji emisji zanieczyszczeń. Użycie cyklonów jest zgodne z najlepszymi praktykami w branży, które zalecają wykorzystanie technologii redukujących emisję pyłów.

Pytanie 35

Minimalna przestrzeń między sąsiadującymi turbinami w elektrowniach wiatrowych, mierzona w średnicach wirnika turbiny, powinna wynosić przynajmniej

A. 5
B. 20
C. 15
D. 10
Wybór większych wartości minimalnej odległości między turbinami, takich jak 10, 15 czy 20 średnic wirnika, może wydawać się odpowiedni na pierwszy rzut oka, jednak w rzeczywistości prowadzi do wielu nieefektywności. Przede wszystkim, przy nadmiernym zwiększeniu odległości, zespół turbin traci na efektywności operacyjnej. Wiatr jest zasobem, który powinien być wykorzystywany w sposób maksymalny, a zbyt duże odległości między turbinami skutkują niepotrzebnym marnowaniem potencjału energetycznego obszaru. Dodatkowo, zbyt duża odległość zwiększa koszty instalacji i budowy farmy wiatrowej, co w dłuższej perspektywie wpływa na opłacalność inwestycji. Należy także zauważyć, że w praktyce wiele farm wiatrowych może wykazywać większą gęstość instalacji, a ich rozmieszczenie jest optymalizowane w oparciu o lokalne warunki wiatrowe. Typowym błędem myślowym jest założenie, że większa odległość automatycznie zapewni lepsze wyniki, co ignoruje fakt, że kluczowym czynnikiem jest efektywność energetyczna i odpowiednia interakcja między turbinami. Ostatecznie, zasady projektowania farm wiatrowych powinny być zgodne z aktualnymi normami branżowymi, które określają, że minimalna odległość wynosząca 5 średnic wirnika jest wystarczająca do zapewnienia zarówno optymalnej produkcji energii, jak i bezpieczeństwa operacyjnego.

Pytanie 36

Diody bypass w systemie fotowoltaicznym zazwyczaj są instalowane

A. na końcu rzędu paneli
B. w skrzynce przyłączeniowej panelu fotowoltaicznego
C. między łańcuchem paneli a akumulatorem
D. pomiędzy dwoma panelami w stringu
Diody bypass w instalacji fotowoltaicznej są kluczowymi elementami, które zapewniają optymalną wydajność paneli słonecznych. Montuje się je w puszce przyłączeniowej panelu fotowoltaicznego, co pozwala na ich skuteczne działanie w sytuacjach, gdy jeden z ogniw panelu ulegnie zaciemnieniu lub uszkodzeniu. Dzięki diodom bypass, prąd może płynąć z pominięciem niedziałającego ogniwa, co minimalizuje straty mocy i pozwala na dalsze generowanie energii przez pozostałe sprawne ogniwa. Zastosowanie tych diod zgodnie z normami branżowymi, takimi jak IEC 61215 dla paneli słonecznych, jest powszechną praktyką, która zapewnia długoterminową niezawodność instalacji. Przykładowo, w przypadku instalacji solarnych na dachach z drzewami w pobliżu, gdzie cień może padać na część paneli, diody bypass pomagają utrzymać wydajność systemu, co jest krytyczne dla jego zwrotu z inwestycji. Warto również zauważyć, że odpowiednie umiejscowienie tych diod może wpływać na gwarancję paneli, dlatego ich instalacja powinna być przeprowadzona zgodnie z zaleceniami producenta.

Pytanie 37

Aby zapewnić długotrwałe i bezpieczne używanie zasobnika c.w.u. z ceramiczną emalią, ważne jest regularne

A. wymiana grzałki elektrycznej
B. kontrola chlorowania wody użytkowej
C. konserwacja powłoki ceramicznej
D. wymiana anody magnezowej
Wymiana anody magnezowej jest kluczowym działaniem, które zapewnia długotrwałą ochronę zasobnika c.w.u. pokrytego emalią ceramiczną. Anoda magnezowa działa na zasadzie katodowej ochrony, co oznacza, że jest bardziej podatna na korozję niż metalowy materiał zasobnika. W wyniku tego procesu anoda, będąca mniej szlachetnym metalem, ulega stopniowemu zużyciu, chroniąc w ten sposób powłokę ceramiczną przed uszkodzeniami. Zgodnie z dobrą praktyką, zaleca się przeprowadzanie kontroli anody co 1-2 lata, a jej wymiana powinna nastąpić w momencie, gdy jest już znacznie zredukowana. Przykładem zastosowania tej praktyki może być użytkowanie zasobników w obszarach o wysokiej twardości wody, gdzie korozja jest bardziej intensywna. Przestrzeganie tego zalecenia pozwala znacznie wydłużyć żywotność urządzenia i zminimalizować ryzyko awarii, co jest zgodne z zaleceniami producentów oraz normami branżowymi.

Pytanie 38

Aby uniknąć wydostawania się wody z zasobnika podczas wymiany zużytej anody, która znajduje się w górnej części zasobnika, należy zakręcić zawór na

A. wlocie zasobnika i wypuścić około 4 l wody z zasobnika
B. wlocie oraz na wylocie zasobnika i opróżnić zasobnik
C. wylocie zasobnika i opróżnić zasobnik
D. wlocie oraz na wylocie zasobnika i wypuścić około 4 l wody z zasobnika
Zamknięcie zaworów na wlocie i wylocie zasobnika jest kluczowym krokiem w procesie wymiany anody, aby zapobiec wypływowi wody. Woda w zasobniku często znajduje się pod ciśnieniem, a otwarcie zasobnika po wymianie anody bez uprzedniego zamknięcia zaworów może prowadzić do niekontrolowanego wycieku. Wypuszczenie około 4 litrów wody z zasobnika przed rozpoczęciem wymiany anody jest również istotne, ponieważ zmniejsza ciśnienie wewnętrzne oraz poziom wody w zasobniku, co dodatkowo zabezpiecza przed przypadkowym zalaniem. Przykładowo, w instalacjach przemysłowych, przestrzeganie tej procedury stanowi standardową praktykę i jest zgodne z zasadami BHP, co minimalizuje ryzyko uszkodzeń oraz wypadków. Dodatkowo, regularne kontrole stanu anody i jej wymiana w odpowiednich odstępach czasowych, zgodnie z zaleceniami producenta, zapewniają dłuższą żywotność zasobnika oraz jego efektywność. Warto również pamiętać o odpowiednim uszczelnieniu nowej anody, aby uniknąć dalszych problemów z wyciekami w przyszłości.

Pytanie 39

Do kotła, który spala zrębki, jednorazowo można włożyć 0,5 m3 paliwa. W ciągu jednej doby kocioł powinien być załadowany 3 razy. Jaki będzie koszt paliwa na tydzień, jeśli średnia cena jednostkowa wynosi 50,00 zł za 1 m3?

A. 50,00 zł
B. 25,00 zł
C. 525,00 zł
D. 150,00 zł
Aby obliczyć tygodniowy koszt paliwa dla kotła spalającego zrębki, należy zrozumieć, jak oblicza się jego zużycie w dłuższym okresie. Kocioł, który można załadować 0,5 m³ paliwa i wymaga trzykrotnego załadunku dziennie, zużywa codziennie 1,5 m³. Przemnażając tę wartość przez liczbę dni w tygodniu, otrzymujemy tygodniowe zużycie wynoszące 10,5 m³. Znając cenę jednostkową paliwa, która wynosi 50,00 zł za 1 m³, możemy obliczyć całkowity koszt tygodniowy, mnożąc 10,5 m³ przez 50,00 zł. Całkowity koszt wynosi zatem 525,00 zł. Te obliczenia są istotne w praktyce, gdyż pozwalają na efektywne zarządzanie kosztami ogrzewania, a także umożliwiają planowanie budżetu na paliwo. Przykładowo, w przypadku zakupu paliwa na dłuższy okres, wiedza o jego kosztach pozwala na negocjowanie lepszych cen z dostawcami, co wpływa na efektywność ekonomiczną przedsiębiorstw. W kontekście norm i dobrych praktyk, takie obliczenia są kluczowe w przemyśle energetycznym i budowlanym, gdzie kontrola kosztów paliwa jest niezbędna do utrzymania płynności finansowej.

Pytanie 40

Jeśli prędkość wiatru zwiększyła się dwukrotnie, to turbina wiatrowa będzie mogła wygenerować

A. osiem razy więcej energii
B. szesnaście razy więcej energii
C. dwa razy więcej energii
D. cztery razy więcej energii
Wybór odpowiedzi, która sugeruje, że turbina wiatrowa wytworzy dwa, cztery lub szesnaście razy więcej energii w przypadku podwojenia prędkości wiatru, jest wynikiem nieporozumienia dotyczącego zasad fizyki związanych z generowaniem energii przez turbiny. Odpowiedzi te opierają się na błędnym założeniu, że moc jest liniowo związana z prędkością wiatru. Jednak rzeczywistość jest znacznie bardziej złożona; moc wytwarzana przez turbinę jest proporcjonalna do sześcianu prędkości, co oznacza, że przy każdej zmianie prędkości wiatru, moc zmienia się znacznie bardziej drastycznie. Na przykład, gdy prędkość wiatru wzrasta dwukrotnie, moc nie wzrasta dwukrotnie, lecz ośmiokrotnie, co można obliczyć jako 2^3 = 8. Błędne rozumienie tego zjawiska może prowadzić do nieefektywnego projektowania turbin oraz błędnych decyzji w zakresie inwestycji w technologie wiatrowe. Standardy branżowe, takie jak IEC 61400, określają metody testowania i oceny wydajności turbin wiatrowych, potwierdzając, że zrozumienie zależności między prędkością wiatru a mocą jest kluczowe dla właściwego oszacowania wydajności systemów energetycznych opartych na wietrze. Warto zwrócić uwagę na te zasady, aby uniknąć typowych błędów w projektowaniu i optymalizacji systemów wiatrowych.