Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 21 maja 2025 19:59
  • Data zakończenia: 21 maja 2025 20:11

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Początkowe znaki heksadecymalne adresu IPv6 przeznaczonego do link-local to

A. 2000
B. 3000
C. FF30
D. FE80
No to widzę, że wybór adresów FF30, 2000 i 3000 to chyba wynik jakiegoś nieporozumienia. FF30 to adres multicast, a nie link-local, więc tu już jest rozjazd. Adresy multicast są do dostarczania pakietów do grupy odbiorców. Z kolei 2000::/3 to globalne adresy unicast, używane do pakietów w Internecie, więc są routowalne. To zupełnie inna bajka niż link-local. A 3000 to też nie pasuje do standardów adresów IPv6. Takie pomyłki wynikają zwykle z braku wiedzy o strukturze adresacji IPv6 i tego, jak różne typy adresów działają w różnych sytuacjach. Dlatego dobrze by było, żebyś przyjrzał się klasyfikacjom adresów IPv6 i ich zastosowaniom.

Pytanie 2

Który standard złącza DVI pozwala na przesyłanie jedynie sygnału analogowego?

Ilustracja do pytania
A. B
B. C
C. A
D. D
Złącze DVI-A jest jedynym standardem DVI przeznaczonym wyłącznie do przesyłania sygnałów analogowych co czyni go unikalnym w tej kategorii. DVI-A jest stosowane w sytuacjach gdzie jest konieczne podłączenie urządzeń z analogowym sygnałem wideo na przykład do analogowych monitorów CRT. W przeciwieństwie do innych standardów DVI takich jak DVI-D i DVI-I które mogą przesyłać sygnały cyfrowe DVI-A jest zoptymalizowane do współpracy z sygnałami VGA co pozwala na łatwą konwersję i kompatybilność z analogowym sprzętem wideo. Praktyczne zastosowanie DVI-A obejmuje sytuacje w których nie ma potrzeby przesyłania sygnałów cyfrowych a jedynie analogowe co jest coraz rzadsze w dobie cyfrowych wyświetlaczy. Warto zrozumieć że choć DVI-A nie oferuje zalet sygnału cyfrowego jego prostota i specyfikacja pozwalają na utrzymanie jakości obrazu w środowiskach w których sprzęt cyfrowy nie jest dostępny. To podejście zgodne jest z dobrymi praktykami w branży gdzie wybór odpowiedniego standardu złącza opiera się na właściwej analizie wymagań sprzętowych i funkcjonalnych urządzenia.

Pytanie 3

Zaprezentowane właściwości karty sieciowej sugerują, że karta

Kod ProducentaWN-370USB
InterfejsUSB
Zgodność ze standardemIEEE 802.11 b/g/n
Ilość wyjść1 szt.
ZabezpieczeniaWEP 64/128, WPA, WPA2
Wymiary49(L) x 26(W) x 10(H) mm

A. nie oferuje szyfrowania danych
B. działa w sieciach przewodowych z wykorzystaniem gniazda USB
C. działa w sieciach bezprzewodowych
D. działa w standardzie c
Odpowiedź sugerująca że karta pracuje w standardzie c jest błędna ponieważ standard c nie istnieje w kontekście sieci Wi-Fi. Standardy sieci bezprzewodowych określone przez IEEE to między innymi 802.11a b g n ac ax i inne. Każdy z tych standardów różni się prędkością przepustowością i zakresem częstotliwości. Pojęcie braku szyfrowania danych również jest niepoprawne ponieważ karta sieciowa w pytaniu obsługuje zabezpieczenia takie jak WEP WPA i WPA2 co oznacza że zapewnia różne poziomy szyfrowania chroniąc dane przed nieautoryzowanym dostępem. WEP jest najstarszą i najsłabszą formą zabezpieczenia jednak WPA i WPA2 oferują znacznie wyższy poziom bezpieczeństwa szczególnie WPA2 które jest powszechnie stosowane w nowoczesnych sieciach Wi-Fi. Stwierdzenie że karta pracuje w oparciu o gniazdo USB ale w sieciach przewodowych jest nieprawidłowe ponieważ karta jest zgodna ze standardami IEEE 802.11 które są wykorzystywane wyłącznie w sieciach bezprzewodowych. Sieci przewodowe zazwyczaj korzystają z innych standardów takich jak Ethernet opartych na kablach RJ-45. Częstym błędem jest mylenie interfejsu fizycznego USB z typem sieci w której urządzenie działa. USB służy do połączenia karty z komputerem ale sama transmisja danych odbywa się bezprzewodowo w tym przypadku w standardach Wi-Fi.

Pytanie 4

Do pokazanej na ilustracji płyty głównej nie da się podłączyć urządzenia korzystającego z interfejsu

Ilustracja do pytania
A. PCI
B. SATA
C. AGP
D. IDE
IDE, czyli Integrated Drive Electronics, to standard złącza dla dysków twardych i napędów optycznych, który był szeroko stosowany w latach 80. i 90. Obecnie IDE zostało zastąpione przez SATA ze względu na wyższą prędkość transferu danych i lepszą elastyczność. Złącze PCI, czyli Peripheral Component Interconnect, było powszechnie używane do podłączania kart rozszerzeń, takich jak karty dźwiękowe, sieciowe czy kontrolery pamięci masowej. Pomimo że PCI zostało w dużej mierze zastąpione przez PCI Express, nadal można je znaleźć w niektórych starszych systemach. Z kolei SATA, czyli Serial ATA, jest współczesnym standardem interfejsu dla dysków twardych i SSD, oferującym większą przepustowość i efektywność energetyczną. Pytanie egzaminacyjne może wprowadzać w błąd, jeśli nie rozumie się różnic funkcjonalnych i historycznych między tymi standardami. Błąd często polega na zakładaniu, że starsze technologie są nadal używane na nowoczesnych płytach głównych. Jednak w praktyce rozwój technologii komputerowej zmierza ku coraz bardziej wydajnym i elastycznym rozwiązaniom, co oznacza zastępowanie starszych standardów nowymi. Dlatego zrozumienie ewolucji interfejsów i ich zastosowań jest kluczowe dla poprawnego odpowiadania na tego typu pytania.

Pytanie 5

Która licencja pozwala na darmowe korzystanie z programu, pod warunkiem, że użytkownik dba o środowisko naturalne?

A. Grenware
B. Adware
C. Donationware
D. OEM
Grenware to typ licencji, który pozwala na bezpłatne wykorzystywanie oprogramowania pod warunkiem, że użytkownik będzie dbał o środowisko naturalne. Koncepcja ta zakłada, że użytkownicy mogą korzystać z oprogramowania bez ponoszenia kosztów, jednak w zamian są zobowiązani do podejmowania działań na rzecz ochrony środowiska, takich jak recykling, oszczędzanie energii lub udział w projektach ekologicznych. Tego rodzaju licencje stają się coraz bardziej popularne w kontekście rosnącej świadomości ekologicznej społeczeństw. Przykłady zastosowania tej licencji można znaleźć w aplikacjach promujących zrównoważony rozwój, gdzie użytkownicy są motywowani do działania na rzecz planety poprzez korzystanie z innowacyjnych rozwiązań technologicznych. Grenware wyróżnia się na tle innych licencji, takich jak Donationware czy Adware, ponieważ wprowadza bezpośrednie powiązanie między korzystaniem z oprogramowania a ekologicznymi zachowaniami użytkowników. Daje to możliwość nie tylko uzyskania dostępu do wartościowych narzędzi, ale również aktywnego uczestnictwa w działaniach proekologicznych, co jest zgodne z aktualnymi trendami w branży IT i społeczeństwa.

Pytanie 6

Zbiór usług sieciowych dla systemów z rodziny Microsoft Windows jest reprezentowany przez skrót

A. IIS
B. HTTP
C. HTTPS
D. FTPS
IIS, czyli Internet Information Services, to serwer WWW stworzony przez Microsoft, który jest integralną częścią systemów operacyjnych rodziny Windows. Umożliwia hosting aplikacji internetowych oraz stron WWW, a także zarządzanie nimi poprzez intuicyjny interfejs graficzny. IIS obsługuje różne protokoły, takie jak HTTP, HTTPS, FTP, a także pozwala na korzystanie z ASP.NET, co czyni go potężnym narzędziem do tworzenia dynamicznych aplikacji webowych. Przykłady zastosowania IIS obejmują serwisowanie stron internetowych dla małych firm, jak i dużych korporacji, które wymagają stabilnych i skalowalnych rozwiązań. Zastosowanie IIS w praktyce obejmuje również konfigurację zabezpieczeń, monitorowanie wydajności oraz integrację z innymi technologiami Microsoft, co czyni go standardowym rozwiązaniem w środowisku Windows. Warto także zaznaczyć, że IIS wspiera standardy branżowe, takie jak HTTP/2, co zwiększa efektywność transferu danych. W kontekście dobrych praktyk, ważne jest regularne aktualizowanie serwera, aby zapewnić bezpieczeństwo oraz wsparcie dla najnowszych protokołów i technologii.

Pytanie 7

Symbol graficzny przedstawiony na rysunku wskazuje na opakowanie

Ilustracja do pytania
A. zgodne z normą TCO
B. odpowiednie do recyklingu
C. do ponownego użycia
D. wykonane z materiałów wtórnych
Błędne odpowiedzi wynikają z nieprawidłowej interpretacji symbolu który faktycznie oznacza możliwość recyklingu a nie inne właściwości opakowania Oznaczenie zgodnie z normą TCO zwykle odnosi się do standardów związanych z ergonomią oraz przyjaznością dla użytkownika w kontekście sprzętu elektronicznego a nie do opakowań Symbol mówiący o wielokrotnym użyciu różni się od symbolu recyklingu i ma formę trzech strzałek tworzących trójkąt co jasno informuje użytkownika o możliwości ponownego użycia danego opakowania lub produktu Wyprodukowanie z surowców wtórnych oznacza że materiał pochodzi z przetworzonego surowca co jest równie ważne w kontekście ochrony środowiska ale nie jest tym samym co recykling Recykling obejmuje proces przetwarzania zużytych materiałów na nowe produkty co różni się od samego wykorzystania surowców wtórnych Różnorodne symbole ekologiczne mają na celu edukację konsumentów i promowanie zrównoważonego rozwoju dlatego istotne jest aby prawidłowo je rozpoznawać i rozumieć ich znaczenie co pomaga w codziennym podejmowaniu bardziej świadomych i ekologicznych decyzji

Pytanie 8

Ile sieci obejmują komputery z adresami IP przedstawionymi w tabeli oraz standardową maską sieci?

Komputer 1172.16.15.5
Komputer 2172.18.15.6
Komputer 3172.18.16.7
Komputer 4172.20.16.8
Komputer 5172.20.16.9
Komputer 6172.21.15.10

A. Dwóch
B. Sześciu
C. Jednej
D. Czterech
Adresy IP należą do klasy B oznacza to że standardowa maska sieci to 255.255.0.0. W tej klasie dwie pierwsze części adresu określają sieć a dwie ostatnie hosta. Adresy które zaczynają się od 172.16 172.18 172.20 i 172.21 należą do różnych sieci. Dlatego też te sześć adresów reprezentuje cztery różne sieci. Przy przydzielaniu adresów IP ważne jest zrozumienie jak maska podsieci wpływa na klasyfikację sieci co jest kluczowe w projektowaniu skalowalnych i wydajnych sieci. W praktyce administracja sieci musi często implementować strategie takie jak VLSM (Variable Length Subnet Masking) aby zoptymalizować wykorzystanie adresów IP. Wiedza o podziałach na podsieci jest niezbędna do zarządzania dużymi sieciami z wieloma segmentami co pozwala na efektywne użycie przestrzeni adresowej oraz poprawę bezpieczeństwa i wydajności sieci. Zrozumienie tej koncepcji jest nieodzowne dla profesjonalistów zajmujących się projektowaniem i zarządzaniem sieciami komputerowymi.

Pytanie 9

Minimalna odległość toru nieekranowanego kabla sieciowego od instalacji elektrycznej oświetlenia powinna wynosić

A. 40 cm
B. 30 cm
C. 50 cm
D. 20 cm
Odpowiedź 30 cm jest poprawna, ponieważ zgodnie z obowiązującymi normami, takimi jak PN-EN 50174-2, minimalna odległość toru nieekranowanego kabla sieciowego od oświetleniowej instalacji elektrycznej powinna wynosić co najmniej 30 cm. Zachowanie tej odległości jest kluczowe dla minimalizacji zakłóceń elektromagnetycznych, które mogą wpływać na jakość sygnału przesyłanego przez kabel. Zakłócenia te mogą prowadzić do spadków wydajności sieci, a w skrajnych przypadkach do całkowitej utraty sygnału. Praktycznym przykładem jest instalacja w biurze, gdzie kable sieciowe są często prowadzone w pobliżu instalacji elektrycznych. Dobrze zaplanowane trasy kablowe, zgodne z wymaganiami odległości, zapewniają stabilność i niezawodność sieci. Warto także pamiętać, że mogą istnieć dodatkowe zalecenia dotyczące odległości w zależności od rodzaju stosowanych kabli, jak również od lokalnych przepisów budowlanych. Dlatego zawsze należy konsultować się z odpowiednimi normami oraz wytycznymi producentów kabli.

Pytanie 10

Która z licencji na oprogramowanie łączy je na stałe z nabytym komputerem i nie umożliwia transferu praw do korzystania z programu na inny komputer?

A. BOX
B. ADWARE
C. OEM
D. SINGLE
Licencja OEM (Original Equipment Manufacturer) jest rodzajem licencji, która jest powiązana z konkretnym komputerem. Oznacza to, że oprogramowanie zainstalowane na tym urządzeniu nie może być przenoszone na inny komputer zgodnie z warunkami licencji. Licencje OEM są często stosowane przez producentów komputerów, którzy preinstalowują oprogramowanie na sprzedawanych urządzeniach. Przykładem może być sytuacja, gdy kupujesz laptopa z systemem operacyjnym Windows, który ma licencję OEM. W takim przypadku system operacyjny jest przypisany do tego konkretnego laptopa i w razie potrzeby jego reinstalacji jedynie na tym samym urządzeniu możesz użyć klucza aktywacyjnego. Z perspektywy praktycznej, takie rozwiązanie jest korzystne z punktu widzenia kosztów, ponieważ licencje OEM są zazwyczaj tańsze niż pełne wersje licencji, co czyni je atrakcyjnymi dla klientów kupujących nowe urządzenia. Warto jednak pamiętać, że po zakupie komputera z licencją OEM nie masz możliwości jej przeniesienia, co ogranicza elastyczność użytkowania oprogramowania.

Pytanie 11

Błąd typu STOP w systemie Windows (Blue Screen), który występuje w momencie, gdy system odwołuje się do niepoprawnych danych w pamięci RAM, to

A. UNEXPECTED_KERNEL_MODE_TRAP
B. UNMONTABLE_BOOT_VOLUME
C. PAGE_FAULT_IN_NONPAGE_AREA
D. NTFS_FILE_SYSTEM
Odpowiedź 'PAGE_FAULT_IN_NONPAGE_AREA' jest poprawna, ponieważ odnosi się do sytuacji, w której system operacyjny Windows napotyka problem podczas próby odwołania się do danych, które powinny znajdować się w pamięci operacyjnej, ale ich tam nie ma. Błąd ten jest często spowodowany uszkodzeniem pamięci RAM lub problemami z systemem plików. Niekiedy może to być wynikiem wadliwych sterowników lub niekompatybilnych aplikacji. W praktyce, aby zdiagnozować tego typu problem, administratorzy systemów mogą używać narzędzi diagnostycznych, takich jak Windows Memory Diagnostic, aby sprawdzić pamięć RAM, oraz CHKDSK do analizy i naprawy problemów z systemem plików. Zarządzanie pamięcią i zapewnienie integralności danych w systemie operacyjnym są kluczowymi aspektami wydajności i stabilności systemu, co podkreśla znaczenie monitorowania i konserwacji sprzętu oraz oprogramowania. Dbanie o regularne aktualizacje sterowników i systemu operacyjnego zgodnie z najlepszymi praktykami branżowymi może znacząco zredukować występowanie takich błędów.

Pytanie 12

Ile sieci obejmują adresy IPv4 pokazane w tabeli?

Adres IPv4Maska sieci
10.10.10.10255.255.0.0
10.10.20.10255.255.0.0
10.10.20.20255.255.0.0
10.10.30.30255.255.0.0
10.20.10.10255.255.0.0
10.20.20.10255.255.0.0
10.20.20.30255.255.0.0

A. 3 sieci
B. 5 sieci
C. 4 sieci
D. 2 sieci
Niewłaściwe zrozumienie podziału adresów IP na sieci może prowadzić do błędnych wniosków. Maska sieciowa pełni kluczową rolę w określaniu które części adresu IP odpowiadają za identyfikację sieci a które za identyfikację hosta wewnątrz tej sieci. W masce 255.255.0.0 pierwszy i drugi oktet adresu określa sieć a reszta identyfikuje hosty. Mylenie tego prowadzi do błędów jak zakładanie że każdy unikalny adres to osobna sieć co nie jest prawdą. Przy masce 255.255.0.0 adresy takie jak 10.10.10.10 i 10.10.20.20 należą do jednej sieci 10.10.0.0 a 10.20.10.10 do sieci 10.20.0.0. Błędne rozumienie może wynikać z niewłaściwego założenia że zmiana w dowolnym oktecie adresu zawsze sygnalizuje inną sieć co jest nieprawidłowe w przypadku gdy maska sieciowa określa które oktety są odpowiedzialne za identyfikację sieciową. Takie nieporozumienia są często spotykane wśród początkujących administratorów sieci co pokazuje jak ważne jest zrozumienie roli maski sieciowej w projektowaniu i zarządzaniu sieciami IP. Dobre praktyki sugerują dokładne analizowanie struktury adresów IP i ich masek co jest podstawą efektywnego zarządzania zasobami sieciowymi i planowania infrastruktury sieciowej. Edukacja w tym zakresie pozwala na uniknięcie błędów konfiguracyjnych które mogą prowadzić do problemów z dostępnością i bezpieczeństwem sieci. Dlatego też znajomość zasad podziału adresów IP i ich praktyczne zastosowanie są kluczowe w pracy specjalisty sieciowego.

Pytanie 13

Oblicz całkowity koszt brutto usług świadczonych przez serwisanta, uwzględniając koszt dojazdu wynoszący 55,00 zł netto.

A. 160,00 zł
B. 215,00 zł
C. 264,45 zł
D. 196,80 zł
Obliczenia kosztów serwisowych mogą być naprawdę mylące, co pewnie już zauważyłeś. Koszty netto to te, które widzisz przed dodaniem VAT-u, a brutto to suma netto i VAT-a. Jak źle zrozumiesz te różnice, to możesz pomyśleć, że kwotę brutto po prostu dodajesz w głowie do kosztów netto, co nie jest prawdą. Przykład: jeśli pomyślisz, że koszt dojazdu nie jest objęty VAT-em, to wynik będzie zupełnie błędny. Nieprawidłowości mogą też wystąpić przy liczeniu stawki VAT, bo w Polsce jest 23%. Dlatego każde wyliczenie musi to uwzględniać. Pamiętaj, że usługi serwisowe mogą mieć różne stawki VAT, więc to też może być mylące. I nie zapominaj, że koszt dojazdu także podlega tym samym zasadom VAT jak reszta usług. To wszystko jest ważne, jeśli chcesz prowadzić działalność i nie mieć problemów z urzędami.

Pytanie 14

Użycie skrętki kategorii 6 (CAT 6) o długości 20 metrów w sieci LAN wskazuje na jej maksymalną przepustowość wynoszącą

A. 10 Gb/s
B. 100 Gb/s
C. 10 Mb/s
D. 100 Mb/s
Wybór niepoprawnych odpowiedzi jest często wynikiem nieporozumień dotyczących parametrów technicznych skrętek sieciowych. Odpowiedź wskazująca na przepustowość 10 Mb/s jest znacząco zaniżona i nie odpowiada rzeczywistym możliwościom skrętek kategorii 6, które w obecnej chwili są uznawane za standard w nowoczesnych instalacjach LAN. Skrętka CAT 6 jest przeznaczona do pracy w szybkościach znacznie wyższych, co czyni 10 Mb/s przestarzałym standardem, stosowanym głównie w bardzo starych infrastrukturach. Również wybór 100 Mb/s to zaledwie część możliwości CAT 6. Choć taka prędkość jest osiągalna, nie wykorzystuje ona potencjału, który oferuje ten typ kabla. Odpowiedzi wskazujące na 100 Gb/s odnoszą się do bardziej zaawansowanych kategorii kabli, takich jak CAT 6A czy CAT 7, które są przeznaczone do zastosowań w środowiskach wymagających ekstremalnych prędkości oraz większych dystansów. Warto zauważyć, że skrętki CAT 6, przy poprawnej instalacji i odpowiednich warunkach, mogą osiągnąć maksymalną prędkość 10 Gb/s, jednak do długości 55 metrów. Wiedza o specyfikacjach kabli i ich odpowiednim zastosowaniu jest kluczowa w kontekście planowania każdej nowoczesnej sieci, aby uniknąć takich nieporozumień, które mogą prowadzić do obniżenia wydajności systemu sieciowego.

Pytanie 15

Która z wymienionych czynności konserwacyjnych związana jest wyłącznie z drukarką laserową?

A. Usunięcie zabrudzeń z zespołu czyszczącego głowice
B. Czyszczenie luster i soczewek
C. Oczyszczenie traktora
D. Czyszczenie prowadnic karetki
Czyszczenie luster i soczewek to naprawdę ważna sprawa, jeśli chodzi o dbanie o drukarki laserowe. Te elementy są kluczowe, bo to one odpowiadają za kierowanie lasera, co wpływa na to, jak dobrze wydruk wygląda. Z czasem mogą się na nich gromadzić różne zanieczyszczenia, co może sprawić, że obraz będzie mniej wyraźny. Dlatego warto regularnie je czyścić, najlepiej stosując się do zaleceń producentów, jak na przykład ISO 9001. Używanie odpowiednich środków czyszczących i narzędzi jest istotne, bo chcemy uniknąć uszkodzenia tych delikatnych powierzchni. Ciekawe jest też to, że niektóre drukarki laserowe mają systemy, które monitorują stan optyki, co znacznie ułatwia dbanie o sprzęt.

Pytanie 16

Zrzut ekranu ilustruje aplikację

Ilustracja do pytania
A. typu recovery
B. typu firewall
C. antyspamowy
D. antywirusowy
Firewall to mega ważny element w zabezpieczeniach sieci komputerowych. Działa jak taka bariera pomiędzy naszą siecią a światem zewnętrznym. Jego głównym zadaniem jest monitorowanie i kontrolowanie ruchu w sieci, oczywiście na podstawie reguł, które wcześniej ustaliliśmy. Na zrzucie ekranu widać listę reguł przychodzących, co pokazuje, że mamy do czynienia z typowym firewall'em. Firewalle mogą być hardware'owe albo software'owe i często można je ustawiać w taki sposób, żeby filtrowały pakiety, zmieniały adresy sieciowe czy sprawdzały stan połączeń. Dobrze skonfigurowany firewall chroni przed nieautoryzowanym dostępem, zapobiega atakom DOS i kontroluje, kto ma dostęp do naszych zasobów. Korzysta się z nich w różnych miejscach, od domowych sieci po te wielkie korporacyjne. Dobrze jest regularnie aktualizować reguły firewalla, sprawdzać logi w poszukiwaniu dziwnych rzeczy i łączyć go z innymi narzędziami bezpieczeństwa, jak systemy wykrywania intruzów. Jak się to wszystko dobrze poustawia, można znacząco poprawić bezpieczeństwo i chronić nasze wrażliwe dane przed zagrożeniami w sieci.

Pytanie 17

Zastosowanie programu firewall ma na celu ochronę

A. sieci LAN oraz systemów przed atakami intruzów
B. dysku przed przepełnieniem
C. procesora przed przeciążeniem przez system
D. systemu przed szkodliwymi aplikacjami
Wybór odpowiedzi dotyczących zabezpieczenia dysku przed przepełnieniem, procesora przed przeciążeniem oraz systemu przed błędnymi programami wskazuje na nieporozumienie co do roli firewalla w architekturze zabezpieczeń. Ochrona dysku przed przepełnieniem jest związana z zarządzaniem przestrzenią dyskową i nie ma bezpośredniego związku z funkcjonalnością firewalla, który koncentruje się na kontroli ruchu sieciowego. Podobnie, zabezpieczenie procesora przed przeciążeniem dotyczy wydajności systemu względem obciążenia obliczeniowego, co nie jest obszarem działania firewalla. Przeciążenie procesora może wynikać z niewłaściwego zarządzania zasobami, a nie z nieodpowiednich połączeń sieciowych. Ponadto, ochrona systemu przed błędnymi programami jest bardziej związana z wykrywaniem i usuwaniem złośliwego oprogramowania oraz stosowaniem programów antywirusowych, natomiast firewall nie ma zdolności do analizy i oceny zachowań aplikacji na poziomie ich działania. Typowym błędem myślowym jest mylenie różnych warstw zabezpieczeń; firewall działa na poziomie sieci, podczas gdy inne zabezpieczenia koncentrują się na różnych aspektach ochrony, takich jak aplikacje czy system operacyjny. Właściwe zrozumienie tych różnic jest kluczowe dla efektywnej ochrony środowiska IT.

Pytanie 18

W wyniku wydania polecenia: net user w konsoli systemu Windows, pojawi się

A. dane na temat parametrów konta zalogowanego użytkownika
B. nazwa bieżącego użytkownika oraz jego hasło
C. informacja pomocnicza dotycząca polecenia net
D. spis kont użytkowników
Polecenie 'net user' w systemie Windows jest używane do zarządzania kontami użytkowników. Jego podstawową funkcją jest wyświetlenie listy wszystkich kont użytkowników zarejestrowanych w systemie. To narzędzie jest niezwykle przydatne dla administratorów systemów, którzy muszą monitorować i zarządzać dostępem do zasobów. Przykładowo, administrator może użyć tego polecenia, aby szybko sprawdzić, które konta są aktywne, a także aby zidentyfikować konta, które mogą nie być już potrzebne, co może pomóc w utrzymaniu bezpieczeństwa systemu. W praktyce, regularne sprawdzanie listy użytkowników może również ułatwić zarządzanie politykami bezpieczeństwa i zgodności z regulacjami, takimi jak RODO czy HIPAA, które wymagają odpowiedniego zarządzania danymi osobowymi. Dodatkowo, znajomość tego polecenia jest fundamentem w administracji systemami operacyjnymi Windows, co czyni je kluczowym dla każdego profesjonalisty IT.

Pytanie 19

W systemie Linux plik posiada uprawnienia ustawione na 541. Właściciel ma możliwość pliku

A. modyfikacji.
B. odczytu, zapisu oraz wykonania.
C. jedynie wykonania.
D. odczytu i wykonania.
Odpowiedź, że właściciel może odczytać i wykonać plik, jest właściwa. Uprawnienia pliku w systemie Linux są reprezentowane w postaci liczby trójcy, gdzie każda cyfra odpowiada uprawnieniom dla właściciela, grupy i innych użytkowników. W tym przypadku liczba 541 oznacza, że właściciel ma uprawnienia do odczytu (4) i wykonania (1), ale nie ma uprawnień do zapisu (0). Uprawnienia do odczytu umożliwiają właścicielowi przeglądanie zawartości pliku, a uprawnienia do wykonania pozwalają na uruchomienie pliku, jeśli jest to skrypt lub program. W praktyce, dostęp do plików wymaga zrozumienia, jakie operacje można na nich przeprowadzać: odczyt to kluczowy aspekt, gdyż wiele aplikacji wymaga dostępu do danych, a wykonanie jest istotne w kontekście skryptów automatyzacyjnych. Przykładowo, skrypt bash może być uruchamiany przez właściciela, ale nie będzie mógł go edytować, co jest zgodne z założeniami bezpieczeństwa systemów wieloużytkowych. Dobrą praktyką jest zawsze sprawdzenie uprawnień przed próbą dostępu do pliku, co można osiągnąć za pomocą polecenia 'ls -l'.

Pytanie 20

Aby zapewnić użytkownikom Active Directory możliwość logowania oraz dostęp do zasobów tej usługi w sytuacji awarii kontrolera domeny, co należy zrobić?

A. przenieść wszystkich użytkowników do grupy administratorzy
B. udostępnić wszystkim użytkownikom kontakt do Help Desk
C. skopiować wszystkie zasoby sieci na każdy komputer w domenie
D. zainstalować drugi kontroler domeny
W odpowiedziach, które nie prowadzą do zainstalowania drugiego kontrolera domeny, pojawiają się nieporozumienia dotyczące podstawowych zasad zarządzania infrastrukturą Active Directory. Dodawanie wszystkich użytkowników do grupy administratorzy jest skrajnym błędem, ponieważ narusza zasadę minimalnych uprawnień, co może prowadzić do poważnych luk w bezpieczeństwie. Użytkownicy, którzy otrzymują zbyt wysokie uprawnienia, mogą nieumyślnie lub celowo wprowadzać zmiany, które są niebezpieczne dla całej sieci. Udostępnienie numeru do Help Desk również nie rozwiązuje problemu z dostępnością usług. W przypadku awarii kontrolera domeny, użytkownicy nie będą w stanie zalogować się, a pomoc techniczna nie pomoże w przywróceniu dostępu. Kopiowanie zasobów sieci na każdy komputer w domenie jest niepraktyczne, kosztowne i prowadzi do rozproszenia danych, co utrudnia ich zarządzanie oraz synchronizację. Stosowanie tego rodzaju strategii zamiast zapewnienia redundantnej infrastruktury zwiększa ryzyko utraty danych oraz przestojów w pracy. Kluczowym wnioskiem jest to, że odpowiednia architektura systemu Active Directory z wieloma kontrolerami domeny jest podstawą skutecznego zarządzania infrastrukturą i zapewnienia jej bezpieczeństwa oraz ciągłości działania.

Pytanie 21

Który protokół jest odpowiedzialny za przekształcanie adresów IP na adresy MAC w kontroli dostępu do nośnika?

A. RARP
B. ARP
C. SNMP
D. SMTP
Wybór protokołu RARP (Reverse Address Resolution Protocol) jest błędny, ponieważ choć ten protokół działa na podobnej zasadzie co ARP, jego przeznaczenie jest zupełnie inne. RARP jest używany do przekształcania adresów MAC na adresy IP, co oznacza, że jego funkcjonalność jest odwrotna do ARP. RARP był stosowany głównie w sytuacjach, w których urządzenia nie miały stałych adresów IP i musiały je uzyskać na podstawie swojego adresu MAC. Jednak w praktyce został on w dużej mierze zastąpiony przez protokoły takie jak BOOTP i DHCP, które oferują bardziej zaawansowane funkcje przydzielania adresów IP, w tym możliwość dynamicznego zarządzania adresami w sieci. W kontekście SMTP (Simple Mail Transfer Protocol) oraz SNMP (Simple Network Management Protocol), oba te protokoły pełnią zupełnie inne role. SMTP jest protokołem przesyłania wiadomości e-mail, natomiast SNMP służy do monitorowania i zarządzania urządzeniami w sieci, takimi jak routery i przełączniki. Wybór tych protokołów jako odpowiedzi na pytanie o zmianę adresów IP na adresy MAC jest więc dowodem na nieporozumienie dotyczące podstawowych funkcji, jakie pełnią różne protokoły w architekturze sieciowej. Właściwe zrozumienie, jak działają te protokoły, jest kluczowe dla każdego, kto pragnie skutecznie zarządzać i diagnozować sieci komputerowe.

Pytanie 22

Jaki protokół stosują komputery, aby informować rutera o przynależności do konkretnej grupy multicastowej?

A. IGMP
B. UDP
C. RIP
D. OSPF
OSPF (Open Shortest Path First) to protokół routingu stosowany w sieciach IP, ale jego funkcjonalność jest zupełnie inna niż IGMP. OSPF służy do dynamicznego wykrywania i zarządzania trasami w sieci, a nie do zarządzania członkostwem w grupach multicastowych. Jego celem jest zapewnienie optymalnej ścieżki dla ruchu IP poprzez algorytmy takie jak Dijkstra, co ma kluczowe znaczenie w dużych, złożonych sieciach. UDP (User Datagram Protocol) to natomiast protokół transportowy, który umożliwia przesyłanie danych bez gwarancji dostarczenia, co czyni go nieodpowiednim do zarządzania członkostwem w grupach rozgłoszeniowych. W kontekście przesyłania multicastowego, UDP może być używany jako protokół transportowy dla strumieni danych, lecz nie zarządza on informacjami o tym, które urządzenia należą do danej grupy. RIP (Routing Information Protocol) to inny protokół routingu, który, podobnie jak OSPF, nie ma funkcji związanych z zarządzaniem grupami multicastowymi. W związku z tym, odpowiedzi związane z OSPF, UDP i RIP są nieprawidłowe, ponieważ nie odpowiadają na pytanie o sposób, w jaki komputery informują routery o członkostwie w grupach rozgłoszeniowych. Zrozumienie różnic między tymi protokołami a IGMP jest kluczowe dla prawidłowego projektowania i zarządzania sieciami, aby skutecznie wykorzystywać ich specyfikę w praktycznych zastosowaniach.

Pytanie 23

Podaj prefiks, który identyfikuje adresy globalne w protokole IPv6?

A. 200::/3
B. 2::/3
C. 2000::/3
D. 20::/3
Inne odpowiedzi, takie jak 2::/3, 200::/3 i 20::/3, są niepoprawne, ponieważ nie identyfikują adresów globalnych w protokole IPv6. Prefiks 2::/3 w rzeczywistości nie jest przydzielany do żadnej znanej klasy adresów, co czyni go nieprzydatnym w praktycznych zastosowaniach. Adres 200::/3 obejmuje tylko mały zakres adresów, a nie pełne spektrum potrzebne dla globalnej komunikacji; z kolei prefiks 20::/3 jest również zbyt wąski do efektywnego adresowania globalnego. Użytkownicy często mylą prefiksy z lokalnymi adresami prywatnymi, które są używane w zamkniętych sieciach i nie są routowalne w Internecie. To może prowadzić do nieporozumień przy projektowaniu architektury sieci. Kluczowe jest zrozumienie, że adresy globalne muszą być routowalne przez Internet, co oznacza, że muszą należeć do odpowiednich prefiksów zgodnych z przydziałami RIR. Zastosowanie niewłaściwych adresów może skutkować brakiem łączności z siecią, co w praktyce uniemożliwia komunikację z innymi urządzeniami w Internecie. Dlatego ważne jest, aby zrozumieć różnice pomiędzy tymi prefiksami oraz ich zastosowanie w praktyce, co również podkreśla znaczenie stosowania standardów i najlepszych praktyk w projektowaniu i wdrażaniu infrastruktury sieciowej.

Pytanie 24

Na dysku obok systemu Windows zainstalowano system Linux Ubuntu. W celu dostosowania kolejności uruchamiania systemów operacyjnych, należy zmienić zawartość

A. bcdedit
B. /etc/grub
C. /etc/inittab
D. boot.ini
W Ubuntu, jak chcesz ustawić, w jakiej kolejności uruchamiają się systemy operacyjne, musisz zajrzeć do pliku /etc/grub. GRUB, czyli taki bootloader, to standard w Linuxie, który pozwala Ci wybrać, jaki system chcesz włączyć przy starcie komputera. Konfiguracja w grub.cfg zawiera info o systemach, które masz na dysku i ich lokalizację. Jak coś zmienisz w tym pliku, to może się okazać, że inny system uruchomi się jako pierwszy. Na przykład, jak użyjesz komendy 'sudo update-grub', to GRUB zaktualizuje się automatycznie, żeby pokazać wszystkie dostępne systemy, w tym Windowsa i Linuxa. Fajnie jest sprawdzać i aktualizować GRUB-a po każdej instalacji lub aktualizacji systemu, żeby wszystko działało jak należy.

Pytanie 25

Jakie jest rozgłoszeniowe IP dla urządzenia o adresie 171.25.172.29 z maską 255.255.0.0?

A. 171.25.172.255
B. 171.25.255.0
C. 171.25.255.255
D. 172.25.0.0
Aby prawidłowo zrozumieć, dlaczego inne odpowiedzi są błędne, warto przyjrzeć się koncepcjom adresowania IP oraz zasadom działania masek sieciowych. Adres 172.25.0.0 to adres sieciowy, a nie rozgłoszeniowy. Adres ten odnosi się do innej podsieci, ponieważ maska 255.255.0.0 wskazuje, że pierwsze dwa oktety są przeznaczone dla identyfikacji sieci (171.25), co wyklucza adres 172.25.0.0 jako poprawny wynik. Adres 171.25.255.0 to również adres, który nie może być użyty jako adres rozgłoszeniowy w tej sieci. Jest to adres używany dla konkretnego segmentu w obrębie sieci, a nie dla wszystkich hostów. W kontekście podziału adresu IP, 171.25.172.255, choć wydaje się być bliski, nie jest również adresem rozgłoszeniowym, ponieważ oznacza to ograniczenie w obrębie podsegmentu 171.25.172.0/24. Takie podejście prowadzi do typowego błędu myślowego, gdzie użytkownicy mylą adresy rozgłoszeniowe z innymi adresami w tej samej sieci. Kluczowe jest zrozumienie, że adres rozgłoszeniowy zawsze kończy się na same jedynki w części hosta, co w tym przypadku daje 171.25.255.255. Odwołując się do dobrych praktyk, przy ustalaniu adresów rozgłoszeniowych ważne jest także posługiwanie się schematem CIDR oraz znajomością hierarchii adresacji IP, co zapobiega błędnym interpretacjom. Właściwe obliczanie adresów rozgłoszeniowych jest niezbędne w projektowaniu oraz zarządzaniu sieciami komputerowymi.

Pytanie 26

Która z podanych właściwości kabla koncentrycznego RG-58 sprawia, że obecnie nie jest on używany do tworzenia lokalnych sieci komputerowych?

A. Koszt narzędzi do instalacji i łączenia kabli
B. Maksymalna odległość między punktami wynosząca 185 m
C. Maksymalna prędkość przesyłania danych 10Mb/s
D. Brak opcji zakupu dodatkowych urządzeń sieciowych
Maksymalna odległość pomiędzy stacjami wynosząca 185 m nie jest kluczowym czynnikiem decydującym o ograniczeniach kabla RG-58 w kontekście lokalnych sieci komputerowych. Choć rzeczywiście ta odległość może stanowić wyzwanie dla niektórych zastosowań, wiele nowoczesnych technologii, takich jak Ethernet, pozwala na większe dystanse. Na przykład, standardy przewodowe, takie jak Cat6, mogą obsługiwać odległości do 100 m przy pełnej prędkości. W rzeczywistości, w przypadku zastosowań, które wymagają dużych odległości, technologia światłowodowa jest preferowana ze względu na jej zdolność do przesyłania sygnałów na znacznie większe odległości bez strat jakości. Podobnie, cena narzędzi do montażu i łączenia przewodów nie jest czynnikiem decydującym o wyborze technologii, ponieważ koszty instalacji mogą być porównywalne w różnych systemach, a kluczowe są parametry techniczne, takie jak prędkość i jakość transmisji. Brak możliwości zakupu dodatkowych urządzeń sieciowych również nie jest istotnym problemem, ponieważ RG-58 był szeroko stosowany w przeszłości i istniały systemy wsparcia. Wnioskując, istotnym powodem, dla którego RG-58 nie jest obecnie preferowany, jest niska maksymalna prędkość transmisji danych, która jest nieodpowiednia dla współczesnych wymagań sieciowych.

Pytanie 27

Jak wielu hostów można maksymalnie zaadresować w sieci lokalnej, mając do dyspozycji jeden blok adresów klasy C protokołu IPv4?

A. 510
B. 255
C. 512
D. 254
Odpowiedź 254 jest prawidłowa, ponieważ w klasie C adresów IPv4 mamy 256 możliwych adresów (od 0 do 255). Jednak dwa z tych adresów są zarezerwowane: jeden dla adresu sieci (adres, w którym wszystkie bity hosta są ustawione na 0) oraz jeden dla adresu rozgłoszeniowego (adres, w którym wszystkie bity hosta są ustawione na 1). Dlatego maksymalna liczba hostów, które można zaadresować w sieci lokalnej z wykorzystaniem tej klasy, wynosi 254. W praktyce oznacza to, że w typowej sieci lokalnej, takiej jak w biurze czy w domu, administratorzy mogą przydzielić adresy IP do 254 różnych urządzeń, takich jak komputery, drukarki, smartfony czy inne urządzenia IoT. Zgodnie z najlepszymi praktykami sieciowymi, zarządzanie adresacją IP w klasie C jest powszechnie stosowane w małych i średnich sieciach, co pozwala na efektywne wykorzystanie dostępnych zasobów adresowych. Dodatkowo, przy planowaniu sieci, warto uwzględnić rezerwacje adresów dla urządzeń serwisowych, co jeszcze bardziej podkreśla znaczenie dokładnego obliczania dostępnych adresów.

Pytanie 28

W systemie Linux narzędzie, które umożliwia śledzenie trasy pakietów od źródła do celu, pokazując procentowe straty oraz opóźnienia, to

A. ping
B. tracert
C. route
D. mtr
Narzędzie mtr (My Traceroute) jest zaawansowanym narzędziem do monitorowania tras pakietów w sieci, które łączy funkcje tradycyjnych poleceń traceroute i ping. Jego zastosowanie pozwala na zmierzenie nie tylko trasy, jaką pokonują pakiety od źródła do celu, ale również na analizę strat pakietów i opóźnień na każdym hopie. Mtr działa w czasie rzeczywistym, co oznacza, że może dostarczać bieżące informacje o stanie połączenia. Użytkownik może zaobserwować, jak zmieniają się opóźnienia i straty pakietów w czasie, co jest nieocenione w diagnostyce sieci. Dodatkowo, mtr umożliwia identyfikację problemów z łącznością, takich jak wąskie gardła w trasie, co jest kluczowe przy optymalizacji sieci. Dzięki swojej wszechstronności i możliwościom, mtr stał się standardowym narzędziem wśród administratorów sieci i inżynierów, co pozwala na efektywne zarządzanie i monitorowanie jakości usług sieciowych.

Pytanie 29

Transmisja danych typu półduplex to transmisja

A. jednokierunkowa z trybem bezpołączeniowym
B. dwukierunkowa równoczesna
C. dwukierunkowa naprzemienna
D. jednokierunkowa z kontrolą parzystości
Transmisja danych typu półduplex jest rzeczywiście transmisją dwukierunkową naprzemienną. Oznacza to, że urządzenia komunikujące się w trybie półduplex mogą wysyłać i odbierać dane, ale nie jednocześnie. Taki sposób transmisji jest często stosowany w aplikacjach, gdzie pełna dwukierunkowość w jednym czasie nie jest wymagana, co pozwala na efektywne wykorzystanie dostępnych zasobów. Przykładem zastosowania półduplexu są radiotelefony, gdzie jedna osoba mówi, a druga musi poczekać na zakończenie nadawania, by odpowiedzieć. W kontekście standardów telekomunikacyjnych, tryb półduplex jest praktyczny w sytuacjach, gdy koszt stworzenia pełnej komunikacji dwukierunkowej byłby zbyt wysoki, na przykład w systemach z ograniczoną przepustowością lub w sieciach bezprzewodowych. Dzięki tej metodzie można skutecznie zarządzać ruchem danych, co przyczynia się do optymalizacji komunikacji i obniżenia ryzyka kolizji pakietów. Półduplex znajduje również zastosowanie w technologii Ethernet, w której urządzenia mogą przesyłać dane w sposób naprzemienny, co zwiększa efektywność użycia medium transmisyjnego.

Pytanie 30

Podczas uruchamiania (krótko po zakończeniu testu POST) komputer się zawiesza. Jakie mogą być możliwe przyczyny tej awarii?

A. Brak podłączonej myszki komputerowej
B. Niepoprawnie skonfigurowana drukarka
C. Zbyt wiele ikon na pulpicie
D. Nieprawidłowe napięcie zasilania procesora
Zasilanie procesora to naprawdę ważna sprawa, bo złe napięcie może namieszać w działaniu komputera. Procesor to jeden z kluczowych elementów i jeśli napięcie jest zbyt niskie, to po prostu może się zawiesić. Z drugiej strony, jak napięcie jest za wysokie, to może się przegrzać i uszkodzić. Dlatego warto używać zasilaczy, które spełniają normy ATX i mają dobre certyfikaty, żeby mieć pewność, że wszystko działa tak jak powinno. Dobrze jest też monitorować, jak pracują nasze podzespoły - programy takie jak HWMonitor czy CPU-Z mogą być w tym bardzo pomocne. Troska o prawidłowe napięcie zasilania to klucz do sprawnego działania komputera, zarówno dla tych, co budują sprzęt, jak i dla tych, co zajmują się konserwacją.

Pytanie 31

Po wydaniu polecenia route skonfigurowano ```route add 192.168.35.0 MASK 255.255.255.0 192.168.0.2```

A. adres sieci docelowej to 192.168.35.0
B. 25-bitowa maska dla adresu sieci docelowej
C. maska 255.255.255.0 dla adresu IP bramy 192.168.0.2
D. koszt metryki równy 0 przeskoków
Analiza błędnych odpowiedzi pozwala zrozumieć, dlaczego niektóre z nich mogą wprowadzać w błąd. Koszt metryki na 0 przeskoków sugeruje, że mielibyśmy do czynienia z bezpośrednim połączeniem do sieci docelowej, co jest niezgodne z rzeczywistym stanem, ponieważ wprowadzenie trasy do tablicy routingu nie oznacza, że jest ona bezpośrednia. W przypadku, gdy trasa jest dodawana, musi być zdefiniowana metryka, a ta wartość bądź informacja jest kluczowa w kontekście wyboru najlepszej trasy przez router. Adres docelowy sieci to 192.168.35.0, co zostało poprawnie zidentyfikowane w odpowiedzi nr 2, jednak inne odpowiedzi sugerują, że mogą istnieć inne adresy lub maski, co wprowadza zamieszanie. 25-bitowa maska dla adresu docelowego jest niepoprawna, ponieważ maska 255.255.255.0 jest klasyczną maską klasy C, co odpowiada 24 bitom, a nie 25. Mylne jest także stwierdzenie, że maska 255.255.255.0 dotyczy adresu IP bramy, podczas gdy w rzeczywistości maska ta odnosi się do adresu sieciowego, a nie do bramy. To zrozumienie jest kluczowe w kontekście projektowania i wdrażania efektywnych sieci komputerowych. Dlatego podczas analizy tras routingu ważne jest, aby zwracać uwagę na odpowiednie przypisanie adresów oraz ich maski, co jest fundamentalne dla poprawnego działania całej infrastruktury sieciowej.

Pytanie 32

Serwer DNS pełni rolę

A. dynamicznego przydzielania adresów IP
B. zdalnego i szyfrowanego dostępu
C. który umożliwia przekształcenie nazw mnemonicznych (opisowych) na odpowiadające im adresy IP
D. usług terminalowych
Serwer DNS (Domain Name System) odgrywa kluczową rolę w internecie, umożliwiając konwersję nazw domenowych na odpowiadające im adresy IP, co jest niezbędne do komunikacji w sieci. Gdy użytkownik wpisuje adres strony internetowej w przeglądarkę, serwer DNS przetwarza tę nazwę na jej numeryczny odpowiednik, który jest zrozumiały dla maszyn. Przykładowo, podczas wpisywania www.example.com, serwer DNS przekształca tę nazwę na adres IP, np. 192.0.2.1, co pozwala na nawiązanie połączenia z odpowiednim serwerem. To przekształcenie jest realizowane poprzez hierarchiczny system serwerów DNS, które współpracują ze sobą, umożliwiając szybkie i efektywne odnajdywanie żądanych zasobów. Zgodnie z najlepszymi praktykami, konfiguracja serwera DNS powinna być przeprowadzana z uwzględnieniem bezpieczeństwa, aby zapobiegać atakom, takim jak spoofing DNS. W kontekście rozwoju technologicznym, znaczenie serwerów DNS rośnie, ponieważ coraz więcej usług internetowych opiera się na niezawodnym i szybkim dostępie do danych, co wymaga efektywnego zarządzania nazwami domenowymi i adresami IP.

Pytanie 33

Litera S w protokole FTPS oznacza zabezpieczenie danych podczas ich przesyłania poprzez

A. uwierzytelnianie
B. szyfrowanie
C. autoryzację
D. logowanie
Protokół FTPS (File Transfer Protocol Secure) to rozszerzenie standardowego protokołu FTP, które dodaje warstwę zabezpieczeń poprzez szyfrowanie przesyłanych danych. Litera 'S' oznacza, że wszystkie dane przesyłane pomiędzy klientem a serwerem są szyfrowane. Użycie szyfrowania chroni informacje przed nieautoryzowanym dostępem w trakcie transmisji, co jest kluczowe w kontekście bezpieczeństwa danych. W praktyce oznacza to, że nawet jeśli dane zostaną przechwycone przez złośliwego użytkownika, nie będą one czytelne bez odpowiedniego klucza szyfrującego. W branży IT stosuje się różne protokoły szyfrowania, takie jak SSL (Secure Sockets Layer) lub TLS (Transport Layer Security), które są powszechnie uznawane za standardy zabezpieczeń. Przy korzystaniu z FTPS, szczególnie w środowiskach, gdzie przesyłane są wrażliwe dane, jak dane osobowe czy informacje finansowe, szyfrowanie staje się niezbędnym elementem polityki bezpieczeństwa. Wdrożenie FTPS z odpowiednią konfiguracją szyfrowania jest zgodne z najlepszymi praktykami w zakresie ochrony danych, co czyni go godnym zaufania rozwiązaniem do bezpiecznej wymiany plików.

Pytanie 34

Jaką wartość dziesiętną ma liczba 11110101(U2)?

A. 11
B. -245
C. -11
D. 245
Odpowiedzi -245, 11 oraz 245 nie są poprawne ze względu na zrozumienie systemu reprezentacji liczb w kodzie Uzupełnień do 2. W przypadku odpowiedzi -245, błędne jest założenie, że liczba binarna 11110101 mogłaby odpowiadać tak dużej wartości ujemnej. Przesunięcie w dół wartości liczbowej w systemie binarnym, a tym bardziej przyjęcie znaczenia liczb, które nie odpowiadają faktycznemu przeliczeniu U2, prowadzi do znaczących nieporozumień. Z kolei odpowiedzi 11 oraz 245 ignorują kluczowy element dotyczący znaku liczby. W systemie U2, gdy najbardziej znaczący bit jest równy 1, liczba jest ujemna; więc interpretacja tej liczby jako dodatniej jest błędna. Niezrozumienie, jak funkcjonuje reprezentacja znaków w systemie binarnym, często prowadzi do mylnych wniosków, co jest typowym błędem wśród osób uczących się podstaw informatyki. Ważne jest, aby pamiętać, że reprezentacja U2 jest powszechnie stosowana w architekturze komputerów, co czyni znajomość jej zasad kluczowym elementem w programowaniu oraz w tworzeniu algorytmów. Aby poprawnie konwertować liczby, użytkownicy powinni być świadomi, jak odczytywać bity w kontekście ich pozycji oraz znaczenia, ponieważ każda pomyłka może prowadzić do poważnych błędów w obliczeniach.

Pytanie 35

Ustawienia przedstawione na diagramie dotyczą

Ilustracja do pytania
A. drukarki
B. karty sieciowej
C. skanera
D. modemu
Karty sieciowe, drukarki i skanery nie wykorzystują portów COM do komunikacji, co jest kluczowym elementem w rozpoznaniu poprawnej odpowiedzi dotyczącej modemów. Karty sieciowe operują zazwyczaj w warstwie sieciowej modelu OSI, korzystając z protokołów takich jak Ethernet, które nie wymagają portów szeregowych COM, lecz raczej interfejsów typu RJ-45 dla połączeń kablowych. Drukarki, szczególnie nowoczesne, łączą się głównie przez USB, Ethernet lub bezprzewodowo, a starsze modele mogą korzystać z portów równoległych, co różni się od portów szeregowych. Skanery także w większości przypadków używają interfejsów USB lub bezprzewodowych. Typowym błędem może być mylenie interfejsów komunikacyjnych, co prowadzi do błędnych wniosków o sposobie połączenia urządzenia. Porty COM są historycznie związane z starszymi technologiami komunikacji, takimi jak modemy, które wykorzystują transmisję szeregową zgodną z protokołami UART. Współczesne urządzenia peryferyjne zazwyczaj nie wymagają takich interfejsów, co czyni ich użycie w kontekście networkingu lub druku nieadekwatnym. Zrozumienie specyfiki każdego typu urządzenia i jego standardowych metod komunikacji jest kluczowe dla poprawnego rozpoznawania i konfiguracji sprzętu w środowiskach IT. Praktyczna wiedza na temat właściwego przypisywania urządzeń do odpowiednich portów i protokołów pozwala uniknąć podstawowych błędów konfiguracyjnych oraz zapewnia optymalną wydajność i zgodność systemów komunikacyjnych i peryferyjnych w sieciach komputerowych. Właściwa identyfikacja i konfiguracja takich ustawień jest istotna dla efektywnego zarządzania infrastrukturą IT, gdzie wiedza o zastosowaniach portów szeregowych jest nieocenionym narzędziem w arsenale specjalisty IT.

Pytanie 36

Jakie polecenie służy do przeprowadzania aktualizacji systemu operacyjnego Linux korzystającego z baz RPM?

A. rm
B. zypper
C. chmode
D. upgrade
Odpowiedzi 'upgrade', 'rm' oraz 'chmod' pokazują nieporozumienie co do funkcji i zastosowania poleceń w systemie Linux. Polecenie 'upgrade' nie jest standardowym narzędziem w systemach opartych na RPM; zamiast tego, użytkownicy zypper powinni używać polecenia 'zypper update' do aktualizacji pakietów. Kolejne polecenie, 'rm', jest wykorzystywane do usuwania plików i katalogów, co jest całkowicie przeciwne do zamiaru aktualizacji systemu. Użycie 'rm' do aktualizacji może prowadzić do katalizowania problemów z systemem i usunięcia istotnych plików. Z kolei 'chmod' służy do zmiany uprawnień plików, co również nie ma związku z aktualizacją systemu. Typowym błędem myślowym jest pomylenie różnych poleceń i ich funkcji w systemie. Użytkownicy muszą zrozumieć, że każde z tych poleceń ma określony kontekst i zastosowanie, niezwiązane z aktualizacją systemu operacyjnego. Niewłaściwe użycie takich poleceń może prowadzić do utraty danych lub destabilizacji całego systemu. Aby skutecznie zarządzać systemem operacyjnym, kluczowe jest zrozumienie, jaki cel służą poszczególne polecenia oraz jakie są dobre praktyki dotyczące ich używania.

Pytanie 37

Czytnik w napędzie optycznym, który jest zanieczyszczony, należy oczyścić

A. izopropanolem
B. spirytusem
C. benzyną ekstrakcyjną
D. rozpuszczalnikiem ftalowym
Izopropanol to naprawdę jeden z najlepszych wyborów do czyszczenia soczewek i różnych powierzchni optycznych. Jego działanie jest super efektywne, bo fajnie rozpuszcza brud, a przy tym nie szkodzi delikatnym elementom w sprzęcie. Co ważne, bardzo szybko paruje, więc po czyszczeniu nie ma problemu z zostawianiem jakichś śladów. W praktyce można używać wacików nasączonych izopropanolem, co sprawia, że łatwo dotrzeć do tych trudniej dostępnych miejsc. Zresztą, standardy takie jak ISO 9001 mówią, że izopropanol to dobry wybór do konserwacji elektronicznego sprzętu, więc warto się tego trzymać. Pamiętaj, żeby unikać silnych rozpuszczalników, bo mogą one nieźle namieszać i zniszczyć materiały, z jakich zbudowany jest sprzęt.

Pytanie 38

Sygnatura (ciąg bitów) 55AA (w systemie szesnastkowym) kończy tablicę partycji. Jaka jest odpowiadająca jej wartość w systemie binarnym?

A. 101010110101010
B. 101101001011010
C. 1,0100101101001E+015
D. 1,0101010010101E+015
Odpowiedź 101010110101010 jest jak najbardziej trafna, bo odpowiada szesnastkowej wartości 55AA w binarnym zapisie. Wiesz, każda cyfra szesnastkowa to cztery bity w systemie binarnym. Jak to przeliczyć? Po prostu zamieniamy każdą z cyfr szesnastkowych: 5 to w systemie binarnym 0101, a A, czyli 10, to 1010. Z tego wynika, że 55AA to 0101 0101 1010 1010, a po pozbyciu się tych początkowych zer zostaje 101010110101010. Wiedza o tym, jak działają te systemy, jest bardzo ważna w informatyce, szczególnie jak się zajmujesz programowaniem na niskim poziomie czy analizą systemów operacyjnych, gdzie często trzeba pracować z danymi w formacie szesnastkowym. Dobrze umieć te konwersje, bo naprawdę przyspiesza to analizę pamięci i struktur danych.

Pytanie 39

W ustawieniach karty graficznej w sekcji Zasoby znajduje się jeden z zakresów pamięci tej karty, który wynosi od A0000h do BFFFFh. Ta wartość odnosi się do obszaru pamięci wskazanego adresem fizycznym

A. 1001 1111 1111 1111 1111 – 1010 0000 0000 0000 0000
B. 1010 0000 0000 0000 0000 – 1011 1111 1111 1111 1111
C. 1100 1111 1111 1111 1111 – 1110 1111 1111 1111 1111
D. 1011 0000 0000 0000 0000 – 1100 1111 1111 1111 1111
Wszystkie niepoprawne odpowiedzi bazują na błędnych założeniach dotyczących zakresów adresów pamięci, co prowadzi do mylnych wniosków o lokalizacji pamięci dla kart graficznych. W przedstawionych odpowiedziach pojawiają się różne przedziały, które nie odpowiadają rzeczywistym adresom dla pamięci wideo. Kluczowym błędem jest nieuznanie, że zakres pamięci od A0000h do BFFFFh jest dedykowany dla kart graficznych, co wprowadza w błąd w kontekście obliczeń i programowania. Na przykład, zakresy takie jak 1000 0000 0000 0000 0000 do 1010 0000 0000 0000 0000 nie odpowiadają rzeczywistemu adresowi pamięci wideo, ponieważ są zbyt niskie w porównaniu do adresu A0000h. Ponadto, zakresy wykraczające poza A0000h i BFFFFh, takie jak 1100 1111 1111 1111 1111, również są niepoprawne, ponieważ przekraczają maksymalny adres dla tego obszaru. Pojmowanie architektury pamięci oraz poprawnych zakresów adresowania jest kluczowe w projektowaniu i programowaniu systemów komputerowych. W kontekście dobrych praktyk, istotne jest, aby programiści i inżynierowie znali standardy dotyczące adresowania pamięci, co zapobiega błędom w kodzie oraz zapewnia efektywność działania aplikacji wykorzystujących zasoby sprzętowe.

Pytanie 40

Jakie polecenie powinien wydać root w systemie Ubuntu Linux, aby przeprowadzić aktualizację wszystkich pakietów (całego systemu) do najnowszej wersji z zainstalowaniem nowego jądra?

A. apt-get dist-upgrade
B. apt-get update
C. apt-get install nazwa_pakietu
D. apt-get upgrade
Polecenie 'apt-get dist-upgrade' jest właściwe do aktualizacji wszystkich pakietów systemowych w Ubuntu Linux, w tym aktualizacji jądra. Różni się ono od 'apt-get upgrade', który aktualizuje jedynie zainstalowane pakiety do najnowszych wersji, ale nie zmienia ich zależności ani nie instaluje nowych pakietów, które mogą być wymagane przez zaktualizowane wersje. 'Dist-upgrade' z kolei uwzględnia zmiany w zależnościach pakietów, co pozwala na pełną aktualizację systemu, w tym instalację nowych wersji jądra, jeśli są dostępne. Przykładowo, po dodaniu nowego repozytorium oprogramowania lub przy wprowadzeniu istotnych aktualizacji, 'dist-upgrade' zapewnia, że wszystkie zmiany są poprawnie uwzględnione. W praktyce, aby zaktualizować system, często stosuje się sekwencję poleceń: 'apt-get update' w celu pobrania listy dostępnych pakietów, a następnie 'apt-get dist-upgrade' w celu przeprowadzenia aktualizacji. Takie podejście jest zgodne z dobrymi praktykami administracji systemami Linux.