Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 8 czerwca 2025 20:26
  • Data zakończenia: 8 czerwca 2025 20:37

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie są powody wyświetlania na ekranie komputera informacji, że system wykrył konflikt adresów IP?

A. Adres IP urządzenia jest poza zakresem lokalnych adresów sieciowych
B. Usługa DHCP nie działa w sieci lokalnej
C. Inne urządzenie w sieci posiada ten sam adres IP co komputer
D. W konfiguracji protokołu TCP/IP jest nieprawidłowy adres bramy domyślnej
Musisz wiedzieć, że komunikat o konflikcie adresów IP nie wynika z tego, że adres IP komputera jest spoza zakresu sieci. Gdy tak jest, zazwyczaj po prostu nie masz dostępu do sieci, a nie występuje konflikt. Uważam, że w sieci lokalnej wszystkie urządzenia powinny mieć adresy z jednego zakresu, bo inaczej urządzenie z niewłaściwym adresem nie będzie mogło się skomunikować. Z drugiej strony, brak działającego DHCP nie prowadzi do konfliktów, a raczej zmusza do ręcznej konfiguracji. Jeśli DHCP nie działa, to każde urządzenie powinno mieć swój unikalny adres IP, żeby uniknąć kłopotów. A ustawienie złej bramy domyślnej to też nie to samo co konflikt adresów; to raczej problemy z routingiem i dostępem do innych sieci, często mylone z problemami IP. Zrozumienie, jak przypisywane są adresy IP, jest kluczowe dla zarządzania sieciami.

Pytanie 2

Jaką rolę odgrywa ISA Server w systemie operacyjnym Windows?

A. Służy do rozwiązywania nazw domenowych
B. Pełni funkcję firewalla
C. Stanowi system wymiany plików
D. Działa jako serwer stron internetowych
ISA Server, czyli Internet Security and Acceleration Server, pełni kluczową rolę jako firewall w systemach operacyjnych Windows, zapewniając zaawansowaną ochronę sieci oraz kontrolę dostępu do zasobów. Jako firewall, ISA Server nie tylko blokuje nieautoryzowany ruch sieciowy, ale także monitoruje i filtruje dane, które przepływają między różnymi segmentami sieci. Dzięki funkcjom takim jak NAT (Network Address Translation), ISA Server ukrywa wewnętrzne adresy IP przed zewnętrznymi użytkownikami, co zwiększa bezpieczeństwo. W praktyce, administratorzy mogą definiować zasady dostępu, co pozwala na precyzyjne kontrolowanie, które aplikacje i usługi mogą komunikować się z siecią zewnętrzną. Przykładem zastosowania ISA Server może być organizacja, która chce ograniczyć dostęp do określonych stron internetowych, pozwalając jednocześnie na korzystanie z zasobów intranetowych. ISA Server oferuje również zaawansowane funkcje, takie jak monitoring ruchu oraz raportowanie, co umożliwia administratorom śledzenie potencjalnych zagrożeń oraz analizowanie wzorców użytkowania sieci. Te praktyki są zgodne z najlepszymi standardami bezpieczeństwa w branży IT, w tym z metodologią zarządzania ryzykiem według ISO/IEC 27001.

Pytanie 3

Które z zestawień: urządzenie – realizowana funkcja jest niepoprawne?

A. Access Point – bezprzewodowe łączenie komputerów z siecią lokalną
B. Ruter – łączenie komputerów w tej samej sieci
C. Przełącznik – segmentacja sieci na VLAN-y
D. Modem – łączenie sieci lokalnej z Internetem
Odpowiedź 'Ruter – połączenie komputerów w tej samej sieci' jest błędna, ponieważ ruter nie służy do bezpośredniego łączenia komputerów w tej samej sieci lokalnej, lecz do kierowania ruchem pomiędzy różnymi sieciami. Ruter działa na warstwie trzeciej modelu OSI (warstwa sieci), a jego główną funkcją jest przekazywanie pakietów danych pomiędzy sieciami, np. z lokalnej sieci komputerowej do Internetu. Przykładowo, w typowej sieci domowej ruter łączy urządzenia lokalne (jak komputery, smartfony) z dostawcą usług internetowych (ISP). Działanie rutera można zobrazować na przykładzie, kiedy użytkownik chce przeglądać strony internetowe – ruter przekazuje żądania z lokalnej sieci do Internetu i odwrotnie, zarządzając jednocześnie trasami danych, co zapewnia optymalizację ich przepływu. Dobrą praktyką jest również skonfigurowanie rutera w taki sposób, aby zapewniał on odpowiednie zabezpieczenia, takie jak zapora ogniowa (firewall) czy system detekcji intruzów (IDS).

Pytanie 4

Który z poniższych adresów IPv4 jest adresem bezklasowym?

A. 162.16.0.1/16
B. 192.168.0.1/24
C. 11.0.0.1/8
D. 202.168.0.1/25
Adres IPv4 202.168.0.1/25 jest przykładem adresu bezklasowego (CIDR - Classless Inter-Domain Routing), co oznacza, że nie jest on przypisany do konkretnej klasy adresowej, jak A, B czy C. Dzięki zastosowaniu notacji CIDR, możliwe jest elastyczne przydzielanie adresów IP, co pozwala na bardziej efektywne wykorzystanie dostępnej przestrzeni adresowej. W tym przypadku, maska /25 oznacza, że 25 bitów jest używanych do identyfikacji sieci, co pozostawia 7 bitów dla identyfikacji hostów. Dzięki temu w sieci można zaadresować do 128 urządzeń, co jest korzystne w średnich organizacjach. Użycie adresów bezklasowych jest zgodne z nowoczesnymi standardami sieciowymi i pozwala na lepsze zarządzanie adresacją oraz optymalizację routingu. Ponadto, stosowanie CIDR z ograniczeniem do specyficznych prefiksów umożliwia bardziej wyrafinowane zarządzanie ruchem w Internecie, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 5

Od momentu wprowadzenia Windows Server 2008, zakupując konkretną edycję systemu operacyjnego, nabywca otrzymuje prawo do zainstalowania określonej liczby kopii w środowisku fizycznym oraz wirtualnym. Która wersja tego systemu umożliwia nieograniczone instalacje wirtualne serwera?

A. Windows Server Foundation
B. Windows Server Essential
C. Windows Server Standard
D. Windows Server Datacenter
Analizując dostępne edycje systemu Windows Server, można zauważyć, że każda z nich oferuje różne możliwości w zakresie licencjonowania i zarządzania instalacjami wirtualnymi. Windows Server Foundation, przeznaczony głównie dla małych firm, obsługuje jedynie podstawowe potrzeby i nie jest przystosowany do rozbudowanej wirtualizacji. Oferuje ograniczone funkcje, co sprawia, że nie jest odpowiedni do bardziej zaawansowanych środowisk. Windows Server Essential, z kolei, również jest skierowany do małych i średnich przedsiębiorstw, oferując funkcjonalności, które są zbyt ograniczone w kontekście wirtualizacji. Jego licencjonowanie jest oparte na liczbie użytkowników oraz urządzeń, co nie sprzyja elastyczności w wdrażaniu rozwiązań wirtualnych. Windows Server Standard oferuje pewne możliwości wirtualizacji, ale ogranicza je do dwóch instalacji wirtualnych na licencję. To stanowi znaczną barierę dla organizacji, które planują rozwijać swoje środowiska wirtualne, dlatego nie jest to optymalne rozwiązanie dla firm potrzebujących licznych instancji serwerów wirtualnych. W praktyce, wybór niewłaściwej edycji systemu może prowadzić do problemów z zarządzaniem zasobami, zwiększając koszty oraz ograniczając możliwości wzrostu i rozwoju infrastruktury IT. Dlatego kluczowe jest zrozumienie różnic między edycjami oraz ich dostosowanie do specyficznych potrzeb i wymagań organizacji.

Pytanie 6

Jaką funkcję pełni protokół ARP (Address Resolution Protocol)?

A. Zarządza grupami multicastowymi w sieciach działających na protokole IP
B. Określa adres MAC na podstawie adresu IP
C. Wysyła informacje zwrotne dotyczące problemów w sieci
D. Nadzoruje przepływ pakietów w obrębie systemów autonomicznych
Protokół ARP (Address Resolution Protocol) jest kluczowym elementem komunikacji w sieciach komputerowych, odpowiedzialnym za ustalanie adresów MAC (Media Access Control) na podstawie adresów IP (Internet Protocol). Działa on na poziomie drugiego poziomu modelu OSI (warstwa łącza danych), umożliwiając urządzeniom w sieci lokalnej zamianę logicznych adresów IP na adresy fizyczne, co jest niezbędne do skutecznej wymiany danych między urządzeniami. Przykładowo, gdy komputer chce wysłać dane do innego urządzenia w sieci, najpierw potrzebuje znaleźć jego adres MAC. W tym celu wysyła zapytanie ARP do sieci, a odpowiedź zwrotna zawiera poszukiwany adres MAC. Dzięki temu procesowi, komunikacja w ramach lokalnych sieci Ethernet staje się możliwa. Standard ARP jest opisany w RFC 826 i stanowi podstawę dla wielu protokołów komunikacyjnych. Umożliwienie tej zamiany adresów jest kluczowe dla funkcjonowania protokołów wyższych warstw, takich jak TCP/IP, co jest podstawą działania Internetu.

Pytanie 7

W biurze należy zamontować 5 podwójnych gniazd abonenckich. Średnia odległość od gniazda abonenckiego do lokalnego punktu dystrybucyjnego wynosi 10 m. Jaki będzie szacunkowy koszt nabycia kabla UTP kategorii 5e, przeznaczonego do budowy sieci lokalnej, jeśli cena brutto 1 m kabla UTP kategorii 5e to 1,60 zł?

A. 80,00 zł
B. 160,00 zł
C. 800,00 zł
D. 320,00 zł
Obliczenia dotyczące kosztów zakupu kabla UTP kategorii 5e dla 5 podwójnych gniazd abonenckich mogą być mylące, gdyż wiele osób błędnie interpretuje dane liczbowe. Przykładowo, bywa, że przyjmuje się zbyt niską lub zbyt wysoką długość kabla, co prowadzi do niewłaściwego określenia całkowitych kosztów. Osoby często mylą ogół długości potrzebnego kabla, co skutkuje rachunkami, które nie odzwierciedlają rzeczywistych kosztów. Niektórzy mogą pomyśleć, że wystarczy pomnożyć liczbę gniazd przez cenę metra kabla bez uwzględnienia konieczności połączenia kabli z urządzeniem końcowym oraz dodatkowymi elementami instalacyjnymi. Innym typowym błędem jest nieprzemyślane oszacowanie długości kabli, które powinny uwzględniać ewentualne zakręty, przejścia przez ściany lub inne przeszkody, co również wpływa na ostateczną długość kabli. Należy także pamiętać o standardach instalacji, które zalecają dodanie zapasu na ewentualne błędy podczas montażu. W wyniku tych nieporozumień, niepoprawne odpowiedzi takie jak 80,00 zł, 320,00 zł czy 800,00 zł nie tylko wskazują na błędne obliczenia, ale również na zagadnienia związane z organizacją i planowaniem instalacji sieci, co jest kluczowe dla funkcjonowania każdej organizacji.

Pytanie 8

Jakie dane należy wpisać w adresie przeglądarki internetowej, aby uzyskać dostęp do zawartości witryny ftp o nazwie domenowej ftp.biuro.com?

A. http://ftp.biuro.com
B. ftp://ftp.biuro.com
C. http.ftp.biuro.com
D. ftp.ftp.biuro.com
Odpowiedź 'ftp://ftp.biuro.com' jest całkiem na miejscu. To dobry sposób, żeby połączyć się z serwerem FTP, bo właśnie do tego ten protokół służy - do przesyłania plików w sieci. Jak przeglądarka widzi ten prefiks 'ftp://', to od razu wie, że chodzi o serwer FTP, a nie o coś innego. W praktyce wiele osób pewnie korzysta z programów typu FileZilla, bo są wygodne do zarządzania plikami, ale przeglądarki też dają radę. Warto jednak pamiętać, że lepiej używać bezpieczniejszego SFTP, bo to daje więcej ochrony dla danych. FTP może być super przy wysyłaniu dużych plików czy tworzeniu kopii zapasowych. Zrozumienie różnic między protokołami jest kluczowe, żeby dobrze ogarniać sprawy związane z danymi w sieci.

Pytanie 9

Wskaż protokół, którego wiadomości są używane przez polecenie ping?

A. DNS
B. ICMP
C. ARP
D. TCP
Protokół ICMP (Internet Control Message Protocol) jest kluczowym elementem w komunikacji sieciowej, wykorzystywanym do przesyłania komunikatów kontrolnych oraz diagnostycznych. Komenda ping opiera się właśnie na ICMP, wysyłając pakiety Echo Request i oczekując na odpowiedzi w postaci pakietów Echo Reply. Dzięki temu, użytkownicy i administratorzy mogą diagnozować dostępność urządzeń w sieci oraz mierzyć czas potrzebny na przesył danych. ICMP jest integralną częścią protokołu IP, co sprawia, że jego użycie jest zgodne z międzynarodowymi standardami, takimi jak RFC 792. W praktyce, polecenie ping pozwala na identyfikację problemów z łącznością, monitorowanie stanu sieci oraz umożliwia przeprowadzanie testów wydajności. Na przykład, w przypadku awarii serwera, administratorzy mogą użyć polecenia ping, aby sprawdzić, czy serwer jest osiągalny, co jest pierwszym krokiem w diagnostyce problemów sieciowych. Dobrą praktyką jest regularne używanie narzędzi diagnostycznych opartych na ICMP w celu utrzymania zdrowia sieci.

Pytanie 10

W wyniku wykonania przedstawionych poleceń systemu Linux interfejs sieciowy eth0 otrzyma

ifconfig eth0 10.0.0.100 netmask 255.255.255.0 broadcast 10.0.0.255 up
route add default gw 10.0.0.10

A. adres IP 10.0.0.10, maskę /24, bramę 10.0.0.255
B. adres IP 10.0.0.100, maskę /22, bramę 10.0.0.10
C. adres IP 10.0.0.10, maskę /16, bramę 10.0.0.100
D. adres IP 10.0.0.100, maskę /24, bramę 10.0.0.10
Poprawna odpowiedź dotyczy konfiguracji interfejsu sieciowego w systemie Linux, gdzie użyto polecenia ifconfig do przypisania adresu IP, maski podsieci oraz adresu broadcast. W tym przypadku interfejs eth0 otrzymuje adres IP 10.0.0.100 oraz maskę /24, co odpowiada masce 255.255.255.0. Maska ta oznacza, że pierwsze 24 bity adresu IP są używane do identyfikacji sieci, co pozwala na 256 adresów w danej podsieci. Ponadto, dodanie domyślnej bramy poprzez polecenie route add default gw 10.0.0.10 umożliwia komunikację z innymi sieciami oraz dostęp do Internetu. W praktyce, prawidłowa konfiguracja interfejsu sieciowego jest kluczowa dla funkcjonowania aplikacji sieciowych, a także dla bezpieczeństwa, gdyż nieprawidłowe ustawienia mogą prowadzić do problemów z dostępem czy ataków. Warto również zwrócić uwagę na dokumentację techniczną, która wskazuje na najlepsze praktyki w zakresie zarządzania interfejsami sieciowymi i ich konfiguracji.

Pytanie 11

Firma Dyn, której serwery DNS zostały poddane atakowi, potwierdziła, że część incydentu …. miała miejsce z wykorzystaniem różnych urządzeń podłączonych do sieci. Ekosystem kamer, czujników oraz kontrolerów, nazywany ogólnie „Internetem rzeczy”, został wykorzystany przez przestępców jako botnet – sieć maszyn-zombie. Dotychczas rolę tę w większości pełniły głównie komputery. Cytat ten opisuje atak typu

A. flooding
B. DOS
C. mail bombing
D. DDOS
Odpowiedź DDOS (Distributed Denial of Service) jest prawidłowa, ponieważ opisany atak polegał na wykorzystaniu rozproszonych urządzeń do przeprowadzania ataku na serwery DNS firmy Dyn. W ataku DDOS, sprawcy używają wielu zainfekowanych urządzeń, tworząc botnet, który jest w stanie generować ogromne ilości fałszywego ruchu. W tym przypadku, Internet rzeczy (IoT) odegrał kluczową rolę, ponieważ przestępcy użyli kamer, czujników i innych podłączonych urządzeń jako maszyny-zombie. Standardy bezpieczeństwa, takie jak NIST SP 800-61, zalecają monitorowanie i zabezpieczanie urządzeń IoT, aby zapobiegać ich wykorzystaniu w atakach DDOS. Przykładami ataków DDOS mogą być sytuacje, w których witryny internetowe przestają działać lub są znacznie spowolnione w wyniku nadmiernego obciążenia. Praktyki zarządzania incydentami bezpieczeństwa, jak współpraca z dostawcami usług internetowych oraz implementacja rozwiązań filtrujących ruch, są kluczowe w przeciwdziałaniu takim atakom.

Pytanie 12

AES (ang. Advanced Encryption Standard) to co?

A. wykorzystuje algorytm szyfrujący symetryczny
B. nie może być użyty do szyfrowania dokumentów
C. jest wcześniejszą wersją DES (ang. Data Encryption Standard)
D. nie może być zrealizowany w formie sprzętowej
AES (Advanced Encryption Standard) to standard szyfrowania, który wykorzystuje symetryczny algorytm szyfrujący. Oznacza to, że ten sam klucz jest używany zarówno do szyfrowania, jak i deszyfrowania danych. AES jest powszechnie stosowany w różnych aplikacjach, takich jak zabezpieczenie danych w chmurze, transmisje internetowe, szyfrowanie plików oraz w protokołach takich jak SSL/TLS. Wybór AES jako standardu szyfrowania przez National Institute of Standards and Technology (NIST) w 2001 roku wynikał z jego wysokiego poziomu bezpieczeństwa oraz wydajności. AES obsługuje różne długości kluczy (128, 192 i 256 bitów), co pozwala na dostosowanie poziomu zabezpieczeń do konkretnych potrzeb. W praktyce, stosując AES, można zapewnić bezpieczeństwo danych osobowych, transakcji finansowych oraz komunikacji, co czyni go fundamentem nowoczesnych systemów kryptograficznych.

Pytanie 13

Interfejs graficzny Menedżera usług IIS (Internet Information Services) w systemie Windows służy do ustawiania konfiguracji serwera

A. terminali
B. WWW
C. DNS
D. wydruku
Menedżer usług IIS (Internet Information Services) to kluczowe narzędzie do zarządzania serwerami WWW w systemie Windows. Umożliwia nie tylko konfigurację, ale także monitorowanie i optymalizację wydajności aplikacji webowych. Dzięki interfejsowi graficznemu, użytkownicy mogą łatwo tworzyć i zarządzać witrynami internetowymi, a także ustawiać różne protokoły, takie jak HTTP czy HTTPS. IIS wspiera wiele technologii, w tym ASP.NET, co pozwala na rozwijanie dynamicznych aplikacji internetowych. Przykładem praktycznego zastosowania IIS jest uruchamianie serwisów e-commerce, które wymagają stabilnego i bezpiecznego serwera do obsługi transakcji online. Dobrze skonfigurowany IIS według najlepszych praktyk zapewnia szybkie ładowanie stron, co jest niezbędne w kontekście SEO oraz doświadczenia użytkowników. Umożliwia także zarządzanie certyfikatami SSL, co jest kluczowe dla zabezpieczenia danych przesyłanych przez użytkowników.

Pytanie 14

Jaki prefiks jest używany w adresie autokonfiguracji IPv6 w sieci LAN?

A. 128
B. 64
C. 24
D. 32
Prefiks o długości 64 bitów w adresie autokonfiguracji IPv6 w sieci LAN jest standardem określonym w protokole IPv6. Długość ta jest zgodna z zaleceniami organizacji IETF, które wskazują, że dla efektywnej autokonfiguracji interfejsów w sieci lokalnej, należy stosować prefiks /64. Taki prefiks zapewnia odpowiednią ilość adresów IPv6, co jest kluczowe w kontekście dużej liczby urządzeń podłączonych do sieci. Dzięki zastosowaniu prefiksu 64, sieci lokalne mogą łatwo i automatycznie konfigurować swoje adresy IP, co jest szczególnie istotne w przypadku dynamicznych środowisk, takich jak sieci domowe lub biurowe. Praktyczne zastosowanie tej koncepcji przejawia się w automatycznej konfiguracji adresów przez protokół SLAAC (Stateless Address Autoconfiguration), który umożliwia urządzeniom generowanie unikalnych adresów na podstawie prefiksu i ich identyfikatorów MAC. Takie rozwiązanie znacząco upraszcza zarządzanie adresami IP w sieciach IPv6.

Pytanie 15

Planowanie wykorzystania przestrzeni dyskowej komputera do przechowywania i udostępniania informacji, takich jak pliki i aplikacje dostępne w sieci oraz ich zarządzanie, wymaga skonfigurowania komputera jako

A. serwer terminali
B. serwer aplikacji
C. serwer plików
D. serwer DHCP
Serwer plików jest dedykowanym systemem, którego główną rolą jest przechowywanie, udostępnianie oraz zarządzanie plikami w sieci. Umożliwia on użytkownikom dostęp do plików z różnych lokalizacji, co jest istotne w środowiskach biurowych oraz edukacyjnych, gdzie wiele osób współdzieli dokumenty i zasoby. Przykłady zastosowania serwera plików obejmują firmy, które chcą centralizować swoje zasoby, umożliwiając pracownikom łatwy dostęp do dokumentów oraz aplikacji. Serwery plików mogą być konfigurowane z wykorzystaniem różnych protokołów, takich jak SMB (Server Message Block) dla systemów Windows czy NFS (Network File System) dla systemów Unix/Linux, co pozwala na interoperacyjność w zróżnicowanych środowiskach operacyjnych. Warto także wspomnieć o znaczeniu bezpieczeństwa i praw dostępu, co jest kluczowe w zarządzaniu danymi, aby zapewnić, że tylko uprawnione osoby mają dostęp do wrażliwych informacji. Dobrą praktyką jest również regularne wykonywanie kopii zapasowych danych znajdujących się na serwerze plików, co chroni przed ich utratą.

Pytanie 16

Jakie jest odpowiednik maski 255.255.252.0 w postaci prefiksu?

A. /25
B. 122
C. /23
D. /24
Maska podsieci 255.255.252.0 to nic innego jak prefiks /22. To znaczy, że 22 bity używamy do określenia identyfikatora podsieci w adresie IPv4. Mówiąc prosto, te dwa ostatnie bity dają nam możliwość utworzenia 4 podsieci i 1022 hostów w każdej (liczy się 2^10 - 2, bo trzeba odjąć adres sieci i rozgłoszeniowy). Ta maska jest całkiem przydatna w większych sieciach, gdzie chcemy dobrze zarządzać adresami IP. Na przykład w firmach można ją zastosować do podziału dużych zakresów adresów na mniejsze, lepiej zorganizowane podsieci, co potem pomaga w zarządzaniu ruchem i bezpieczeństwem. Używanie odpowiednich masek podsieci to ważny aspekt w projektowaniu sieci, bo to jedna z tych najlepszych praktyk w branży. A jeśli chodzi o IPv6, to już nie jest tak krytyczne, ale wciąż dobrze wiedzieć, jak to wszystko działa w kontekście routingu i adresowania.

Pytanie 17

Zgodnie z normą EN-50173, klasa D skrętki komputerowej obejmuje zastosowania wykorzystujące zakres częstotliwości

A. do 16 MHz
B. do 100 MHZ
C. do 100 kHz
D. do 1 MHz
Klasa D skrętki komputerowej, zgodnie z normą EN-50173, obejmuje aplikacje korzystające z pasma częstotliwości do 100 MHz. Oznacza to, że kabel kategorii 5e i wyższe, takie jak kategoria 6 i 6A, są zaprojektowane, aby wspierać transmisję danych w sieciach Ethernet o dużej przepustowości, w tym Gigabit Ethernet oraz 10 Gigabit Ethernet na krótkich dystansach. Standardy te uwzględniają poprawne ekranowanie i konstrukcję przewodów, co minimalizuje zakłócenia elektromagnetyczne oraz zapewnia odpowiednią jakość sygnału. Przykładowo, w biurach oraz centrach danych często wykorzystuje się skrętki kategorii 6, które obsługują aplikacje wymagające wysokiej wydajności, takie jak przesyłanie multimediów, wideokonferencje czy intensywne transfery danych. Wiedza na temat klas kabli i odpowiadających im pasm częstotliwości jest kluczowa dla inżynierów i techników zajmujących się projektowaniem oraz wdrażaniem nowoczesnych sieci komputerowych, co wpływa na efektywność komunikacji i wydajność całych systemów sieciowych.

Pytanie 18

Jakim skrótem nazywana jest sieć, która korzystając z technologii warstwy 1 i 2 modelu OSI, łączy urządzenia rozmieszczone na dużych terenach geograficznych?

A. WAN
B. VLAN
C. LAN
D. VPN
WAN, czyli Wide Area Network, odnosi się do sieci, która łączy urządzenia rozmieszczone na dużych obszarach geograficznych, wykorzystując technologie warstwy 1 i 2 modelu OSI. W przeciwieństwie do LAN (Local Area Network), która obejmuje mniejsze obszary, takie jak biura czy budynki, WAN może rozciągać się na całe miasta, kraje a nawet kontynenty. Przykładami zastosowania WAN są sieci rozległe wykorzystywane przez przedsiębiorstwa do łączenia oddziałów w różnych lokalizacjach, a także infrastruktura internetowa, która łączy miliony użytkowników na całym świecie. Standardy takie jak MPLS (Multiprotocol Label Switching) czy frame relay są często wykorzystywane w sieciach WAN, co pozwala na efektywne zarządzanie ruchem danych oraz zapewnia odpowiednią jakość usług. Znajomość technologii WAN jest kluczowa dla specjalistów IT, szczególnie w kontekście projektowania i zarządzania infrastrukturą sieciową w dużych organizacjach.

Pytanie 19

Mechanizm ograniczeń na dysku, który umożliwia kontrolowanie wykorzystania zasobów dyskowych przez użytkowników, nazywany jest

A. ąuota
B. management
C. spool
D. release
Odpowiedzi 'release', 'spool' oraz 'management' nie odnoszą się bezpośrednio do mechanizmu limitów dyskowych, co może prowadzić do mylnych przekonań o ich funkcji. Odpowiedź 'release' odnosi się do procesu zwalniania zasobów, co nie ma związku z przydzielaniem i zarządzaniem przestrzenią dyskową. Często myląc te pojęcia, można sądzić, że zwolnienie zasobów oznacza ich ograniczenie, co jest błędne. Z kolei odpowiedź 'spool' dotyczy zarządzania danymi w kolejkach wydruku lub buforach, co znowu nie jest związane z kontrolowaniem przestrzeni dyskowej, a bardziej z tymczasowym przechowywaniem danych. Natomiast 'management' jest terminem ogólnym, który odnosi się do zarządzania zasobami w szerszym kontekście, ale nie wskazuje na konkretne mechanizmy ograniczające dostęp do przestrzeni dyskowej. Prawidłowe zrozumienie tych terminów jest kluczowe dla efektywnego zarządzania systemami komputerowymi oraz zasobami w sieciach, a pomylenie ich z mechanizmami cząty może prowadzić do nieefektywnego gospodarowania przestrzenią dyskową.

Pytanie 20

Ustanawianie zaszyfrowanych połączeń pomiędzy hostami w publicznej sieci Internet, wykorzystywane w sieciach VPN (Virtual Private Network), to

A. mostkowanie
B. tunelowanie
C. mapowanie
D. trasowanie
Trasowanie odnosi się do procesu określania optymalnej trasy dla danych przesyłanych przez sieć, jednak nie ma związku z tworzeniem zaszyfrowanych połączeń. Trasowanie koncentruje się na kierowaniu pakietów danych do ich docelowych lokalizacji, co nie zapewnia bezpieczeństwa przesyłanych informacji. Mapowanie, z drugiej strony, polega na przypisywaniu zasobów w systemach komputerowych lub sieciach, co również nie ma wpływu na zabezpieczenie komunikacji. Mostkowanie natomiast łączy różne segmenty sieci lokalnej, ale nie szyfruje danych, co nie spełnia wymogów związanych z bezpieczeństwem w publicznych sieciach. Typowym błędem myślowym w tym kontekście jest mylenie terminów związanych z funkcjonalnością sieci, co może prowadzić do fałszywego przekonania, że metody te oferują podobne korzyści w zakresie ochrony danych. Kluczowe w rozwiązaniach zabezpieczających, takich jak VPN, jest zrozumienie, że tunelowanie bezpośrednio odpowiada za zapewnienie bezpiecznego, szyfrowanego połączenia, co jest podstawą dla bezpieczeństwa w sieciach publicznych.

Pytanie 21

Jaką rolę pełni serwer Windows Server, która pozwala na centralne zarządzanie i ustawianie tymczasowych adresów IP oraz związanych z nimi danych dla komputerów klienckich?

A. Serwer DHCP
B. Serwer telnet
C. Usługi udostępniania plików
D. Usługi pulpitu zdalnego
Serwer DHCP (Dynamic Host Configuration Protocol) jest kluczowym elementem infrastruktury sieciowej, który odpowiada za automatyczne przydzielanie adresów IP komputerom klienckim w sieci. Ta rola serwera umożliwia centralizację zarządzania adresami IP, co przekłada się na uproszczenie konfiguracji i administracji sieci. Przykładowo, w dużych organizacjach, gdzie liczba urządzeń oraz użytkowników jest znaczna, ręczne przypisywanie adresów IP byłoby niepraktyczne i podatne na błędy. Dzięki serwerowi DHCP, adresy IP są przydzielane dynamicznie, co oznacza, że urządzenia mogą uzyskiwać nowe adresy przy każdym ponownym uruchomieniu, co znacznie ułatwia zarządzanie zasobami sieciowymi. Dodatkowo, serwer DHCP może również dostarczać inne istotne informacje konfiguracyjne, takie jak maska podsieci, brama domyślna czy serwery DNS, co jest zgodne z najlepszymi praktykami w zakresie zarządzania sieciami. W kontekście wdrożeń opartych na standardach branżowych, takich jak ITIL, wykorzystanie serwera DHCP przyczynia się do poprawy efektywności operacyjnej oraz zwiększenia bezpieczeństwa poprzez ograniczenie ryzyka konfliktów adresów IP.

Pytanie 22

Jaką wiadomość przesyła klient DHCP w celu przedłużenia dzierżawy?

A. DHCPREQUEST
B. DHCPACK
C. DHCPDISCOVER
D. DHCPNACK
Odpowiedź DHCPREQUEST jest poprawna, ponieważ jest to komunikat wysyłany przez klienta DHCP w celu odnowy dzierżawy. Proces odnowy dzierżawy IP odbywa się, gdy klient zbliża się do końca czasu przydzielonej mu dzierżawy (Lease Time). W momencie, gdy klient chce przedłużyć dzierżawę, wysyła komunikat DHCPREQUEST do serwera DHCP, informując go o chęci kontynuacji korzystania z aktualnie przypisanego adresu IP. W praktyce ten mechanizm jest kluczowy dla utrzymania ciągłości połączenia sieciowego, szczególnie w dynamicznych środowiskach, takich jak sieci Wi-Fi, gdzie urządzenia mogą często łączyć się i rozłączać. Dobrą praktyką jest monitorowanie przydzielonych adresów IP oraz czasu ich dzierżawy, aby uniknąć problemów z dostępnością adresów w sieci. Zgodnie z protokołem RFC 2131, komunikat DHCPREQUEST może również być używany w innych kontekstach, na przykład podczas początkowej konfiguracji IP, co czyni go wszechstronnym narzędziem w zarządzaniu adresami IP.

Pytanie 23

Aby użytkownicy sieci lokalnej mogli przeglądać strony WWW przez protokoły HTTP i HTTPS, zapora sieciowa powinna pozwalać na ruch na portach

A. 90 i 443
B. 80 i 434
C. 80 i 443
D. 90 i 434
Odpowiedź 80 i 443 jest prawidłowa, ponieważ port 80 jest standardowym portem używanym do komunikacji w protokole HTTP, natomiast port 443 jest przeznaczony dla protokołu HTTPS, który zapewnia szyfrowanie danych przesyłanych w sieci. Umożliwiając przepuszczanie ruchu na tych portach, zapora sieciowa pozwala użytkownikom sieci lokalnej na bezpieczne przeglądanie stron internetowych. Przykładem może być środowisko biurowe, w którym pracownicy korzystają z przeglądarek internetowych do dostępu do zasobów online, takich jak platformy chmurowe czy portale informacyjne. W kontekście najlepszych praktyk, wiele organizacji stosuje zasady bezpieczeństwa, które obejmują zezwolenie na ruch tylko na tych portach, aby zminimalizować ryzyko ataków oraz nieautoryzowanego dostępu do sieci. Dodatkowo, stosowanie HTTPS na portach 443 jest zalecane przez organizacje takie jak Internet Engineering Task Force (IETF), co przyczynia się do lepszego zabezpieczenia danych użytkowników.

Pytanie 24

Adres IP serwera, na którym jest zainstalowana domena http://www.wp.pl to 212.77.98.9. Co jest przyczyną sytuacji przedstawionej na zrzucie ekranowym?

C:\>ping 212.77.98.9

Pinging 212.77.98.9 with 32 bytes of data:
Reply from 212.77.98.9: bytes=32 time=29ms TTL=60
Reply from 212.77.98.9: bytes=32 time=29ms TTL=60
Reply from 212.77.98.9: bytes=32 time=30ms TTL=60
Reply from 212.77.98.9: bytes=32 time=29ms TTL=60

Ping statistics for 212.77.98.9:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 29ms, Maximum = 30ms, Average = 29ms

C:\>ping www.wp.pl
Ping request could not find host www.wp.pl. Please check the name and try again.

A. Błędny adres serwera DNS lub brak połączenia z serwerem DNS.
B. Domena o nazwie www.wp.pl jest niedostępna w sieci.
C. Stacja robocza i domena www.wp.pl nie pracują w tej samej sieci.
D. Nie ma w sieci serwera o adresie IP 212.77.98.9.
Poprawna odpowiedź wskazuje, że problem z dostępem do domeny www.wp.pl może być spowodowany błędnym adresem serwera DNS lub brakiem połączenia z tym serwerem. Zrzut ekranowy pokazuje, że ping do adresu IP 212.77.98.9 zakończył się sukcesem, co oznacza, że serwer odpowiada na zapytania. Jednakże, gdy próbujemy pingować nazwę domeny www.wp.pl, otrzymujemy komunikat o błędzie. To sugeruje, że system nie może przetłumaczyć nazwy domeny na odpowiedni adres IP. W praktyce, taka sytuacja może wystąpić, gdy konfiguracja serwera DNS jest błędna lub gdy urządzenie nie ma dostępu do serwera DNS. W organizacjach wdraża się monitorowanie i diagnostykę DNS jako standardową praktykę, aby szybko identyfikować i rozwiązywać tego typu problemy. Użytkownicy powinni także być świadomi, że poprawne ustawienia DNS są kluczowe dla funkcjonowania wszelkich usług internetowych, w tym e-maila oraz stron www.

Pytanie 25

Dwie stacje robocze w tej samej sieci nie mogą się nawzajem komunikować. Która z poniższych okoliczności może być prawdopodobną przyczyną tego problemu?

A. Różne bramy domyślne stacji roboczych
B. Identyczne adresy IP stacji roboczych
C. Inne systemy operacyjne stacji roboczych
D. Tożsame nazwy użytkowników
Sytuacje, w których dwa urządzenia nie mogą się komunikować, mogą być mylnie interpretowane, jeśli analiza opiera się na nieprawidłowych założeniach. Posiadanie tych samych nazw użytkowników nie jest przyczyną problemów z komunikacją w sieci komputerowej. Nazwy użytkowników są z reguły używane w kontekście systemów operacyjnych i aplikacji, a nie w odniesieniu do komunikacji sieciowej. Różne systemy operacyjne również nie są przeszkodą w komunikacji, gdyż wiele protokołów komunikacyjnych, takich jak TCP/IP, są standardami branżowymi, które umożliwiają wymianę danych pomiędzy różnymi systemami operacyjnymi. Różnice w systemach operacyjnych mogą czasami wpływać na zgodność aplikacji, ale nie są przyczyną problemów z komunikacją w sieci lokalnej. Kolejnym błędnym założeniem jest stwierdzenie, że różne bramy domyślne mogą powodować problemy z komunikacją. Choć różne bramy domyślne mogą prowadzić do problemów z dostępem do zewnętrznych zasobów, to w ramach samej sieci lokalnej mogą one funkcjonować poprawnie, o ile urządzenia są poprawnie skonfigurowane. Ważne jest zrozumienie, że do lokalnej komunikacji w sieci wystarczy, aby urządzenia miały poprawnie skonfigurowane adresy IP oraz maski podsieci. Dlatego kluczowe jest unikanie upraszczania problemów sieciowych na podstawie powierzchownych obserwacji, co może prowadzić do błędnych wniosków.

Pytanie 26

Którego z poniższych zadań nie wykonują serwery plików?

A. Odczyt i zapis danych na dyskach twardych
B. Udostępnianie plików w Internecie
C. Wymiana danych między użytkownikami sieci
D. Zarządzanie bazami danych
Odpowiedzi, które sugerują, że serwery plików realizują zarządzanie bazami danych, wymianę danych pomiędzy użytkownikami sieci, czy odczyt i zapis danych na dyskach twardych, wynikają z niepełnego zrozumienia roli i funkcji serwerów plików. Serwery plików mają na celu przede wszystkim udostępnianie plików, co oznacza, że ich kluczowe funkcje koncentrują się na przechowywaniu danych oraz ich udostępnianiu w sieci. Jednakże, w kontekście zarządzania bazami danych, serwery plików po prostu nie oferują wymaganego poziomu funkcjonalności, jakiego potrzebują aplikacje korzystające z danych. Bazy danych wymagają skomplikowanych operacji, takich jak transakcje, wsparcie dla języka zapytań SQL oraz mechanizmy zapewniające integralność danych, co jest poza zakresem możliwości serwerów plików. Koncepcje dotyczące wymiany danych pomiędzy użytkownikami sieci oraz odczytu i zapisu na dyskach twardych również mogą być mylące. Serwery plików mogą rzeczywiście wspierać wymianę danych poprzez udostępnianie plików, ale nie są one odpowiedzialne za transakcje ani skomplikowane operacje, które zachodzą w bazach danych. Dobrze jest zrozumieć, że każda technologia ma swoje zastosowanie i ograniczenia, a odpowiednie podejście do wyboru technologii jest kluczowe dla efektywnego zarządzania danymi w organizacji.

Pytanie 27

Jakie protokoły sieciowe są typowe dla warstwy internetowej w modelu TCP/IP?

A. DHCP, DNS
B. TCP, UDP
C. HTTP, FTP
D. IP, ICMP
Wybór protokołów DHCP, DNS, TCP, UDP oraz HTTP, FTP jako odpowiedzi na pytanie o zestaw protokołów charakterystycznych dla warstwy internetowej modelu TCP/IP pokazuje pewne nieporozumienia dotyczące struktury modelu TCP/IP i funkcji poszczególnych protokołów. DHCP (Dynamic Host Configuration Protocol) i DNS (Domain Name System) operują na wyższych warstwach modelu, odpowiednio w warstwie aplikacji oraz warstwie transportowej. DHCP służy do dynamicznego przydzielania adresów IP w sieci, natomiast DNS odpowiada za tłumaczenie nazw domen na adresy IP. Z kolei TCP (Transmission Control Protocol) i UDP (User Datagram Protocol) to protokoły warstwy transportowej, które są odpowiedzialne za przesyłanie danych między aplikacjami, a nie za ich adresowanie i routowanie. TCP zapewnia niezawodne, połączeniowe przesyłanie danych, podczas gdy UDP oferuje szybszą, ale mniej niezawodną transmisję bez nawiązywania połączenia. HTTP (Hypertext Transfer Protocol) i FTP (File Transfer Protocol) są przykładami protokołów aplikacyjnych, używanych do przesyłania dokumentów i plików w sieci. Każdy z wymienionych protokołów ma swoją specyfikę i zastosowanie, ale nie pełnią one funkcji charakterystycznych dla warstwy internetowej, co może prowadzić do zamieszania w zakresie architektury sieci. Kluczowym błędem w rozumieniu pytania jest mylenie warstw modelu TCP/IP oraz nieprecyzyjne rozróżnienie funkcji protokołów w tych warstwach.

Pytanie 28

Który ze wskaźników okablowania strukturalnego definiuje stosunek mocy testowego sygnału w jednej parze do mocy sygnału wyindukowanego w sąsiedniej parze na tym samym końcu przewodu?

A. Przenik zdalny
B. Przenik zbliżny
C. Suma przeników zbliżnych i zdalnych
D. Suma przeników zdalnych
Przenik zbliżny to parametr okablowania strukturalnego, który odnosi się do stosunku mocy sygnału testowego w jednej parze przewodów do mocy sygnału wyindukowanego w sąsiedniej parze na tym samym końcu kabla. W praktyce oznacza to, że przenik zbliżny jest miarą wpływu sygnałów z jednej pary na sygnały w innej parze, co jest szczególnie istotne w systemach telekomunikacyjnych i sieciach komputerowych. Zrozumienie tego parametru jest kluczowe dla zapewnienia wysokiej jakości sygnału oraz minimalizacji zakłóceń między parami przewodów. Przykładowo, w instalacjach Ethernet o wysokiej prędkości, niski przenik zbliżny jest niezbędny do zapewnienia integralności danych, co jest zgodne z normami TIA/EIA-568 oraz ISO/IEC 11801. W celu minimalizacji przeniku zbliżnego stosuje się odpowiednie techniki ekranowania oraz skręcania par, co w praktyce pozwala na uzyskanie lepszej wydajności i niezawodności w komunikacji.

Pytanie 29

Administrator zauważa, że jeden z komputerów w sieci LAN nie może uzyskać dostępu do Internetu, mimo poprawnie skonfigurowanego adresu IP. Który parametr konfiguracji sieciowej powinien sprawdzić w pierwszej kolejności?

A. Adres serwera DNS
B. Adres MAC karty sieciowej
C. Maskę podsieci
D. Adres bramy domyślnej
W przypadku problemów z dostępem do Internetu, gdy adres IP jest poprawny, często pojawia się pokusa, by od razu sprawdzać inne parametry, takie jak adres serwera DNS czy maskę podsieci. Jednak to nie są pierwsze elementy, które należy weryfikować w tej konkretnej sytuacji. Adres serwera DNS odpowiada wyłącznie za tłumaczenie nazw domenowych na adresy IP – jeśli byłby niepoprawny, użytkownik nie mógłby pingować serwisów po nazwie (np. google.pl), ale po adresie IP Internet powinien działać. W praktyce oznacza to, że błąd DNS nie blokuje całkowicie dostępu do Internetu, tylko utrudnia korzystanie z nazw domenowych. Maska podsieci natomiast definiuje granice sieci lokalnej – jeśli byłaby błędna, mogłyby wystąpić trudności z komunikacją nawet w obrębie LAN, a nie tylko z Internetem. Jednak w pytaniu jest mowa o poprawnym adresie IP, co sugeruje, że maska już została skonfigurowana prawidłowo, bo w innym przypadku komputer często nie miałby nawet adresu IP z właściwego zakresu. Adres MAC karty sieciowej praktycznie nie ma wpływu na dostęp do Internetu, jeśli nie ma na routerze filtrów MAC lub innych zabezpieczeń warstwy łącza danych. To bardziej unikalny identyfikator sprzętowy, którego zmiana lub błąd w większości typowych sieci LAN nie powoduje braku Internetu. W praktyce administratorzy skupiają się na adresie bramy domyślnej, ponieważ to ona decyduje o możliwości przesyłania ruchu poza lokalną sieć. Z mojego doświadczenia wynika, że błędy w pozostałych parametrach prowadzą do innych, specyficznych problemów sieciowych, ale nie są podstawową przyczyną braku dostępu do Internetu przy poprawnym adresie IP.

Pytanie 30

ARP (Adress Resolution Protocol) to protokół, którego zadaniem jest przekształcenie adresu IP na

A. adres poczty elektronicznej
B. nazwę urządzenia
C. nazwę domenową
D. adres sprzętowy
ARP (Address Resolution Protocol) jest kluczowym protokołem w komunikacji sieciowej, który umożliwia odwzorowanie adresu IP na adres sprzętowy (MAC). Gdy komputer chce wysłać dane do innego urządzenia w sieci lokalnej, musi znać jego adres MAC. Protokół ARP działa na poziomie warstwy 2 modeli OSI, co oznacza, że jest odpowiedzialny za komunikację w obrębie lokalnych sieci Ethernet. Proces rozpoczyna się od wysłania przez komputer zapytania ARP w formie broadcastu, aby dowiedzieć się, kto posiada dany adres IP. Odpowiedź na to zapytanie zawiera adres MAC docelowego urządzenia. Dzięki ARP, protokół IP może skutecznie współdziałać z warstwą sprzętową, co jest niezbędne dla prawidłowego funkcjonowania sieci TCP/IP. Przykładem zastosowania ARP jest sytuacja, gdy użytkownik przegląda zasoby w sieci, a jego komputer musi wysłać pakiet do serwera, którego adres IP został wcześniej ustalony, ale adres MAC jest mu nieznany. Poprawne działanie ARP zapewnia, że dane dotrą do właściwego odbiorcy.

Pytanie 31

Zestaw zasad do filtrowania ruchu w routerach to

A. NNTP (Network News Transfer Protocol)
B. MMC (Microsoft Management Console)
C. ACPI (Advanced Configuration and Power Interface)
D. ACL (Access Control List)
Dobra robota z odpowiedzią na ACL! To jest naprawdę trafne, bo ACL, czyli Access Control List, to zbiór reguł, które naprawdę mają duże znaczenie w sieciach. Dzięki nim można decydować, co można przesyłać do i z urządzeń, takich jak ruter. To działa na poziomie pakietów, co daje adminom możliwość kontrolowania ruchu sieciowego za pomocą adresów IP, protokołów i portów. Fajnym przykładem, jak można to wykorzystać, jest ograniczenie dostępu do niektórych zasobów czy też zezwolenie tylko zaufanym adresom IP. To naprawdę pomaga w zwiększeniu bezpieczeństwa sieci. W branży często mówi się o tym, żeby stosować ACL jako część większej strategii bezpieczeństwa, obok takich rzeczy jak firewalle czy systemy wykrywania włamań. Nie zapomnij też, że warto regularnie przeglądać i aktualizować te reguły, bo środowisko sieciowe ciągle się zmienia, a dostęp do ważnych zasobów trzeba minimalizować tylko do tych, którzy naprawdę go potrzebują.

Pytanie 32

Do jakiej sieci jest przypisany host o adresie 172.16.10.10/22?

A. 172.16.8.0
B. 172.16.4.0
C. 172.16.12.0
D. 172.16.16.0
Gdy mówimy o hoście z adresem 172.16.10.10 i maską /22, to musimy zrozumieć, jak to wszystko działa. Maska /22 mówi nam, że pierwsze 22 bity są przeznaczone na identyfikację sieci, a reszta na hosty. W tej konkretnej masce mamy 2 bity dla hostów, więc możemy stworzyć 4 podsieci i w każdej z nich zmieści się maksymalnie 1022 urządzenia (to dzięki wzorowi 2^10 - 2, bo dwa adresy są zajęte na adres sieci i adres rozgłoszeniowy). Adresy dla podsieci w tej masce to 172.16.8.0, 172.16.12.0, 172.16.16.0 i 172.16.20.0. Host 172.16.10.10 mieści się pomiędzy 172.16.8.0 a 172.16.12.0, co oznacza, że należy do podsieci 172.16.8.0. Zrozumienie tych zasad jest naprawdę ważne w IT – dobrze przypisane adresy IP i umiejętność podziału sieci wpływają na wydajność i bezpieczeństwo całego systemu.

Pytanie 33

W wtyczce 8P8C, zgodnie z normą TIA/EIA-568-A, w sekwencji T568A, para przewodów biało-pomarańczowy/pomarańczowy jest przypisana do styków

A. 4 i 6
B. 1 i 2
C. 3 i 6
D. 3 i 5
Odpowiedź wskazująca na styki 3 i 6 dla pary przewodów biało-pomarańczowy i pomarańczowy jest poprawna, ponieważ zgodnie z normą TIA/EIA-568-A, w standardzie T568A to właśnie te styki są przypisane do tej pary. W standardzie T568A, para biało-pomarańczowy/pomarańczowy zajmuje miejsca odpowiednio na stykach 3 i 6, co jest kluczowe dla prawidłowego przesyłania danych w sieciach Ethernet. W praktycznych zastosowaniach, poprawne podłączenie jest niezbędne dla zachowania pełnej funkcjonalności sieci, a także dla minimalizacji zakłóceń. Stosowanie właściwych standardów przy instalacji okablowania strukturalnego nie tylko zwiększa efektywność transmisji, ale także ułatwia diagnostykę ewentualnych problemów w przyszłości. Prawidłowe wykonanie połączeń zgodnych z T568A jest istotne dla zapewnienia stabilności i jakości przesyłanej sygnały.

Pytanie 34

Jakie medium transmisyjne powinno się zastosować do połączenia urządzeń sieciowych oddalonych o 110 m w pomieszczeniach, gdzie występują zakłócenia EMI?

A. Fal radiowych
B. Skrętki ekranowanej STP
C. Światłowodu jednodomowego
D. Kabla współosiowego
Światłowód jednodomowy to świetny wybór, jeśli chodzi o podłączanie różnych urządzeń w sieci, zwłaszcza na dystansie do 110 m. Ma tę przewagę, że radzi sobie w trudnych warunkach, gdzie jest dużo zakłóceń elektromagnetycznych. To naprawdę pomaga, bo światłowody są znacznie mniej wrażliwe na te zakłócenia w porównaniu do tradycyjnych kabli. Poza tym, oferują mega dużą przepustowość – da się przesyłać dane z prędkościami sięgającymi gigabitów na sekundę, co jest kluczowe dla aplikacji, które potrzebują dużo mocy obliczeniowej. Używa się ich w różnych branżach, takich jak telekomunikacja czy infrastruktura IT, gdzie ważne jest, żeby sygnał był mocny i stabilny. Warto też dodać, że światłowody są zgodne z międzynarodowymi standardami, co czyni je uniwersalnymi i trwałymi. Oczywiście, instalacja wymaga odpowiednich technik i narzędzi, co może być droższe na starcie, ale w dłuższej perspektywie na pewno się opłaca ze względu na ich efektywność i pewność działania.

Pytanie 35

Podczas analizy ruchu sieciowego z użyciem sniffera zaobserwowano, że urządzenia komunikują się za pośrednictwem portów
20 oraz 21. Można stwierdzić, przy założeniu standardowej konfiguracji, że monitorowanym protokołem jest protokół

A. DHCP
B. SMTP
C. SSH
D. FTP
Odpowiedź FTP (File Transfer Protocol) jest prawidłowa, ponieważ porty 20 i 21 są standardowo przypisane do tego protokołu. Port 21 jest używany do inicjowania połączeń, podczas gdy port 20 jest wykorzystywany do przesyłania danych w trybie aktywnym. FTP jest szeroko stosowany do transferu plików między komputerami w sieci, co czyni go kluczowym narzędziem w administracji systemami oraz na serwerach. Z perspektywy praktycznej, FTP znajduje zastosowanie w zarządzaniu plikami na serwerach, takich jak przesyłanie aktualizacji stron internetowych, pobieranie plików z serwerów FTP oraz synchronizacja plików między różnymi urządzeniami. Warto również zwrócić uwagę, że istnieją różne warianty FTP, takie jak FTPS (FTP Secure) oraz SFTP (SSH File Transfer Protocol), które oferują dodatkowe funkcje zabezpieczeń, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa informacji.

Pytanie 36

W jakiej usłudze serwera możliwe jest ustawienie parametru TTL?

A. FTP
B. HTTP
C. DHCP
D. DNS
TTL, czyli Time To Live, to parametr stosowany w systemach DNS (Domain Name System), który określa czas, przez jaki dane rekordy DNS mogą być przechowywane w pamięci podręcznej przez resolvera lub serwer DNS. Ustawienie odpowiedniego TTL jest kluczowe dla efektywności zarządzania ruchem sieciowym oraz aktualizacją rekordów. Na przykład, jeśli TTL jest ustawiony na 3600 sekund (czyli 1 godzinę), to po upływie tego czasu resolver będzie musiał ponownie zapytać o rekord DNS, co zapewnia, że zmiany wprowadzone na serwerze DNS będą propagowane w odpowiednim czasie. W praktyce, krótszy czas TTL może być użyteczny w sytuacjach, gdy często zmieniają się adresy IP lub konfiguracje serwera, natomiast dłuższy TTL może zmniejszyć obciążenie serwera i przyspieszyć odpowiedzi dla użytkowników. Dobrą praktyką jest dostosowywanie wartości TTL w zależności od specyfiki danego zastosowania oraz dynamiki zmian konfiguracji sieciowej. Znalezienie odpowiedniego kompromisu pomiędzy szybkością aktualizacji a wydajnością jest kluczowe w administracji sieciami. Dlatego TTL jest niezwykle istotnym parametrem w kontekście zarządzania DNS.

Pytanie 37

Podłączając wszystkie elementy sieciowe do switcha, wykorzystuje się topologię fizyczną

A. gwiazdy
B. pierścienia
C. siatki
D. magistrali
Topologia gwiazdy to jedna z najczęściej stosowanych architektur sieciowych, w której wszystkie urządzenia są podłączone do centralnego przełącznika. Taki układ umożliwia łatwe zarządzanie siecią, ponieważ awaria jednego z urządzeń nie wpływa na funkcjonowanie pozostałych. W praktyce, ta topologia jest wykorzystywana w biurach, szkołach oraz innych instytucjach, gdzie wydajność i łatwość konfiguracji są kluczowe. Dzięki zastosowaniu przełączników, możliwe jest również zwiększenie przepustowości sieci oraz lepsze zarządzanie ruchem danych. W kontekście standardów branżowych, topologia gwiazdy jest zgodna z normami takich jak IEEE 802.3, które definiują zasady komunikacji w sieciach Ethernet. Właściwe wdrożenie tej topologii pozwala na elastyczne rozbudowywanie sieci, co jest istotne w szybko zmieniającym się środowisku technologicznym.

Pytanie 38

Jakie urządzenie pozwala na stworzenie grupy komputerów, które są do niego podłączone i operują w sieci z identycznym adresem IPv4, w taki sposób, aby komunikacja między komputerami miała miejsce jedynie w obrębie tej grupy?

A. Ruter z WiFi
B. Przełącznik zarządzalny
C. Punkt dostępu
D. Konwerter mediów
Przełącznik zarządzalny (ang. managed switch) to urządzenie, które umożliwia tworzenie segmentów sieciowych, co pozwala na wydzielenie grup komputerów pracujących w tej samej sieci lokalnej (LAN), które mogą komunikować się ze sobą bezpośrednio. W przeciwieństwie do przełączników niezarządzalnych, przełączniki zarządzalne oferują szereg zaawansowanych funkcji, takich jak VLAN (Virtual Local Area Network), które umożliwiają izolację grupy w obrębie tej samej fizycznej infrastruktury. Dzięki tym funkcjom, administratorzy sieci mogą zarządzać ruchem danych oraz zwiększyć bezpieczeństwo poprzez ograniczenie komunikacji do wybranych urządzeń. Przykładem zastosowania może być środowisko biurowe, gdzie różne departamenty są odseparowane w swoich VLAN-ach, co zmniejsza ryzyko nieautoryzowanego dostępu do danych. Standardami, które często są stosowane w kontekście przełączników zarządzalnych, są IEEE 802.1Q dla VLAN oraz SNMP (Simple Network Management Protocol) do zarządzania siecią. Te praktyki są kluczowe w nowoczesnych infrastrukturach IT, gdzie zarządzanie ruchem i bezpieczeństwo danych są priorytetami.

Pytanie 39

Protokół SNMP (Simple Network Management Protocol) służy do

A. odbierania wiadomości e-mail
B. szyfrowania połączeń terminalowych z zdalnymi komputerami
C. konfiguracji urządzeń sieciowych oraz zbierania danych na ich temat
D. przydzielania adresów IP oraz adresu bramy i serwera DNS
Wypowiedzi sugerujące użycie szyfrowania przy połączeniach z komputerami zdalnymi, czy przydzielanie adresów IP to tak naprawdę tematy związane z innymi protokołami i technologiami, które mają zupełnie różne funkcje. Szyfrowanie połączeń zdalnych zazwyczaj robi się przez protokoły jak SSH (Secure Shell) lub TLS (Transport Layer Security), które zapewniają bezpieczeństwo, ale to nie jest zarządzanie siecią. Jeśli chodzi o IP, to przypisuje je protokół DHCP (Dynamic Host Configuration Protocol), więc SNMP tym się nie zajmuje. Podobnie, odbiór maili to zadanie dla protokołów takich jak POP3 (Post Office Protocol) czy IMAP (Internet Message Access Protocol). Typowym błędem w takich odpowiedziach jest właśnie mylenie funkcji różnych protokołów i nie rozumienie ich ról w zarządzaniu siecią. Aby dobrze zarządzać sieciami, trzeba naprawdę ogarnąć, jakie narzędzia są potrzebne i jak je wykorzystać w praktyce, co może ułatwić rozwiązywanie problemów w IT.

Pytanie 40

Przekazywanie tokena (ang. token) ma miejsce w sieci o topologii fizycznej

A. siatki
B. magistrali
C. pierścienia
D. gwiazdy
Przekazywanie żetonu w sieci typu pierścieniowego to naprawdę ciekawy proces. W praktyce oznacza to, że dane krążą wokół zamkniętej pętli, co ułatwia dostęp do informacji dla każdego węzła. Każdy węzeł łączy się z dwoma innymi, tworząc coś w rodzaju zamkniętej sieci. Kiedy jeden węzeł chce przesłać dane, po prostu umieszcza je w żetonie, który następnie krąży, aż dotrze do celu. To rozwiązanie zmniejsza ryzyko kolizji, bo tylko jeden żeton jest aktywny w danym momencie, co poprawia wydajność. Ciekawe jest, że tego typu sieci często znajdziemy w lokalnych sieciach komputerowych, gdzie stała wymiana danych jest bardzo ważna. Dobrym przykładem jest technologia Token Ring, która była popularna w latach 80. i 90. XX wieku. Standardy IEEE 802.5 dokładnie opisują, jak te sieci powinny działać, co pozwala różnym urządzeniom na współpracę. W skrócie, zarządzanie przekazywaniem żetonu w sieci pierścieniowej sprawia, że jest to naprawdę funkcjonalne rozwiązanie w wielu zastosowaniach.