Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 15 maja 2025 20:07
  • Data zakończenia: 15 maja 2025 20:54

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W trakcie działania słonecznej instalacji grzewczej zauważono wyciek czynnika z zaworu bezpieczeństwa. Jakie mogą być przyczyny tego zjawiska?

A. niskie natężenie przepływu płynu solarnego
B. niedostateczna pojemność naczynia przeponowego
C. nadmierne natężenie przepływu płynu solarnego
D. niewystarczająca temperatura czynnika roboczego
Zawór bezpieczeństwa w instalacji grzewczej jest kluczowym elementem, który zapewnia ochronę układu przed nadmiernym ciśnieniem. W przypadku, gdy pojemność naczynia przeponowego jest niewystarczająca, może dojść do nadmiernego wzrostu ciśnienia w układzie, co skutkuje wypływem czynnika grzewczego z zaworu bezpieczeństwa. Naczynie przeponowe ma za zadanie kompensować zmiany objętości płynów w systemie w wyniku podgrzewania, a zbyt mała jego pojemność nie jest w stanie skutecznie zniwelować tych zmian, co prowadzi do niebezpiecznych sytuacji. Na przykład, w systemach słonecznych, gdzie ciepło generowane jest intensywnie, odpowiednia pojemność naczynia przeponowego jest niezbędna, aby zapobiec nadmiernemu wzrostowi ciśnienia. Standardy branżowe, takie jak normy PN EN 12828, podkreślają znaczenie prawidłowego wymiarowania naczynia przeponowego. Dlatego warto regularnie kontrolować pojemność naczynia oraz jego stan techniczny, aby zapewnić bezpieczeństwo i efektywność całego systemu grzewczego.

Pytanie 2

Najwcześniej po jakim czasie od napełnienia instalacji grzewczej wodą można rozpocząć próbę szczelności?

A. 60 minutach
B. 24 godzinach
C. 30 minutach
D. 72 godzinach
Odpowiedź 24 godzinach jest zgodna z obowiązującymi normami w branży HVAC, które zalecają wykonanie próby szczelności instalacji grzewczych po upływie tego czasu. Jest to istotne, ponieważ podczas napełniania systemu wodą może wystąpić początkowe ciśnienie, które z czasem się stabilizuje. Czekając 24 godziny, dajemy czas na wyrównanie się ciśnienia w całej instalacji, co pozwala na wykrycie ewentualnych nieszczelności. Przykładem zastosowania tej zasady może być instalacja nowego kotła, gdzie kluczowe jest, aby upewnić się, że wszystkie połączenia są szczelne przed uruchomieniem systemu. W praktyce, zbyt krótki czas na stabilizację mógłby prowadzić do fałszywych wyników testów szczelności, co w dłuższej perspektywie może skutkować kosztownymi naprawami i przestojami. Dlatego, stosując się do tej zasady, zwiększamy bezpieczeństwo i efektywność całej instalacji grzewczej.

Pytanie 3

Jak należy podłączyć instalację solarną do wymiennika ciepła?

A. do górnej wężownicy wymiennika
B. do dolnej wężownicy wymiennika
C. równolegle do górnej i dolnej wężownicy wymiennika
D. szeregowo do górnej i dolnej wężownicy wymiennika
Podłączenie instalacji solarnej do górnej wężownicy wymiennika ciepła to zły pomysł, bo może prowadzić do wielu problemów z efektywnością systemu. Górna wężownica zazwyczaj odbiera już podgrzaną wodę z dolnej części, więc woda w górnej ma wyższą temperaturę, co sprawia, że ciepła woda z kolektorów może mieć trudności z jej dogrzaniem. Jeśli jeszcze równolegle podłączysz dwa węże, to może być bałagan z rozdzielaniem strumienia ciepła. Poza tym, taka konfiguracja może powodować stagnację ciepłej wody w górnej części wymiennika. Z mojego doświadczenia wynika, że niechciane straty energii to coś, czego można uniknąć, dlatego warto wiedzieć, jak prawidłowo podłączyć te wężownice, aby móc maksymalnie wykorzystać energię słoneczną.

Pytanie 4

Jakie elementy należy wykorzystać do montażu panelu fotowoltaicznego na płaskim dachu?

A. stelaż z ram trójkątnych
B. profil wielorowkowy i kołki rozporowe
C. śruby rzymskie
D. profil wielorowkowy oraz kotwy krokwiowe
Montaż paneli fotowoltaicznych na dachu płaskim wymaga odpowiednich rozwiązań technicznych, które zapewnią zarówno bezpieczeństwo, jak i efektywność energetyczną. Użycie profilu wielorowkowego i kotw krokwiowych może wydawać się na pierwszy rzut oka odpowiednie, jednak te elementy są przeznaczone głównie do dachów skośnych, gdzie ich zastosowanie jest zgodne z architekturą dachu i jego obciążeniem. W kontekście dachów płaskich, kotwy krokwiowe nie zapewniają odpowiedniej stabilności, co może prowadzić do niebezpiecznych sytuacji, zwłaszcza w warunkach wietrznych. Śruby rzymskie, które również byłyby użyte w tych niepoprawnych opcjach, nie są przeznaczone do montażu paneli słonecznych i nie spełniają wymogów wytrzymałościowych dla tego typu instalacji. Użycie kołków rozporowych w systemach montażowych może prowadzić do niewłaściwego osadzenia paneli, co wpływa na ich trwałość oraz efektywność. Typowym błędem jest mylenie zastosowania tych elementów, które w rzeczywistości nie dostarczają wymaganego wsparcia ani stabilności, co w rezultacie może prowadzić do uszkodzenia systemu fotowoltaicznego oraz obniżenia jego wydajności. Z tego względu kluczowe jest stosowanie sprawdzonych technologii, takich jak stelaż z ram trójkątnych, które są zgodne z najlepszymi praktykami w branży i gwarantują wysoką jakość wykonania oraz długotrwałą efektywność energetyczną instalacji.

Pytanie 5

Jakich informacji nie jest konieczne zawarcie w "Księdze obmiaru" przy instalacji ogniwa fotowoltaicznego?

A. Jednostki pomiarowej
B. Kubatury pomieszczenia
C. Liczby zainstalowanych urządzeń
D. Typu urządzeń
Wybór informacji, które powinny znaleźć się w Książce obmiaru, powinien być oparty na funkcjonalności i specyfice instalacji fotowoltaicznej. W kontekście montażu ogniw fotowoltaicznych, ilość zamontowanych urządzeń, rodzaj tych urządzeń oraz jednostki miary mają zasadnicze znaczenie dla prawidłowego funkcjonowania systemu oraz jego przyszłych audytów. Ilość zamontowanych paneli fotowoltaicznych bezpośrednio wpływa na ogólną moc systemu oraz jego efektywność energetyczną. Rodzaj urządzeń również jest kluczowy, gdyż różne typy paneli mają różne parametry wydajnościowe i zastosowanie. Ponadto, jednostki miary, takie jak kilowaty (kW) lub metry kwadratowe (m²), są niezbędne do określenia wydajności i powierzchni zajmowanej przez panele. W kontekście błędnego wyboru kubatury pomieszczenia, warto zauważyć, że ta informacja nie ma istotnego wpływu na działanie systemu fotowoltaicznego. Często zdarza się, że przy konstruowaniu systemów, użytkownicy skupiają się na aspektach, które nie mają praktycznego zastosowania w kontekście wydajności. Należy także pamiętać, że Książka obmiaru ma na celu umożliwienie audytów oraz inspekcji, zatem kluczowe jest, aby zawierała tylko te informacje, które są istotne dla działania i konserwacji systemu. Ignorowanie tej zasady może prowadzić do niepełnych lub nieprecyzyjnych dokumentacji, co w przyszłości może skutkować problemami w utrzymaniu lub modernizacji systemu.

Pytanie 6

Klejenie stanowi kluczową metodę łączenia rur oraz kształtek

A. z polietylenu
B. z polipropylenu
C. ze stali
D. z polichlorku winylu
Klejenie elementów z polichlorku winylu (PVC) jest powszechnie stosowaną technologią łączenia rur i kształtek w branży budowlanej i sanitarno-kanalizacyjnej. Klej PVC, będący specjalnie opracowaną substancją chemiczną, skutecznie łączy powierzchnie rur, tworząc trwałe i szczelne połączenie, które jest odporne na działanie wody oraz substancji chemicznych. W praktyce, klejenie z PVC znajduje zastosowanie w instalacjach wodociągowych, kanalizacyjnych oraz w systemach odprowadzania wód deszczowych. Zgodnie z normami branżowymi, przed przystąpieniem do klejenia, należy odpowiednio przygotować powierzchnie - oczyszczenie z kurzu, tłuszczu oraz zmatowienie ich, co zwiększa przyczepność kleju. Ponadto, stosowanie klejów zatwierdzonych przez odpowiednie organy regulacyjne, takich jak American National Standards Institute (ANSI) czy International Organization for Standardization (ISO), zapewnia wysoką jakość i bezpieczeństwo instalacji. Warto również zauważyć, że rynek oferuje różnorodne rodzaje klejów, dostosowanych do specyficznych zastosowań, co pozwala na optymalne dobieranie materiałów w zależności od warunków eksploatacyjnych.

Pytanie 7

Podczas serwisowania sprężarki w pompie ciepła potwierdzono jej prawidłowe funkcjonowanie. Może to mieć miejsce jedynie, gdy czynnik chłodniczy w niej występuje w formie

A. wyłącznie stałej
B. wyłącznie gazowej
C. 50% ciekłej, 50% gazowej
D. wyłącznie ciekłej
Wybór odpowiedzi wskazującej na stan ciekły czynnika chłodniczego jest błędny, ponieważ sprężarki są zaprojektowane do pracy z gazem, a nie z cieczą. Czynnik chłodniczy w stanie ciekłym nie może być efektywnie sprężany, co prowadzi do zjawiska znanego jako hydrauliczne zjawisko uderzenia, które może spowodować poważne uszkodzenia sprężarki. Ponadto, sprężarka nie jest w stanie rozpoznać i oddzielić stanu skupienia czynnika, co czyni ją nieefektywną, jeśli do jej wnętrza dostaje się ciecz. W kontekście odpowiedzi, która wskazuje na 50% stanu ciekłego i 50% gazowego, należy zauważyć, że sprężarki wymagają jedynie gazu, aby mogły funkcjonować. Wprowadzenie cieczy do sprężarki nie tylko obniża wydajność, ale również prowadzi do potencjalnych usterek. W branży stosuje się różne procedury, takie jak testy ciśnieniowe i kontrola stanu czynnika przed jego wprowadzeniem do sprężarki, aby uniknąć tego typu problemów. W przypadku stałego stanu skupienia, sprężarka nie jest przystosowana do pracy z ciałami stałymi, co prowadzi do nieodwracalnych uszkodzeń mechanicznych. Kluczowe jest zrozumienie, że sprężarki w pompie ciepła nie są jedynie elementami systemu, ale jego sercem, a ich prawidłowe funkcjonowanie opiera się na zastosowaniu czynnika chłodniczego w odpowiednim stanie skupienia.

Pytanie 8

W rozwinięciu systemu grzewczego na energię słoneczną w skali 1:50, długość odcinka pionowego z miedzi wynosi 100 mm. Jaką długość przewodu miedzianego trzeba nabyć do zainstalowania tego pionu?

A. 50,0 m
B. 500,0 m
C. 5,0 m
D. 0,5 m
Wybór błędnej odpowiedzi na to pytanie może wynikać z kilku powszechnych nieporozumień związanych z interpretacją skali i jednostek miary. Odpowiedzi sugerujące długości takie jak 0,5 m, 50,0 m czy 500,0 m pokazują, że osoby udzielające tych odpowiedzi mogły nie wziąć pod uwagę faktu, że długości przedstawione w skali muszą być przeliczone w odpowiedni sposób. Na przykład, wybór 0,5 m może sugerować, że użytkownik sądził, że łatwo jest pomnożyć długość na planie bez uwzględnienia skali. Z kolei odpowiedź 50,0 m odzwierciedla błędne założenie, że długość na planie odpowiada rzeczywistej długości bez mnożenia przez skale, co prowadzi do znacznego przeszacowania rzeczywistych potrzeb materiałowych. W przypadku odpowiedzi 500,0 m, możliwe, że wynikło to z nieprawidłowego przeliczenia jednostek, gdzie użytkownik mógł błędnie zrozumieć, że 100 mm na planie powinno być traktowane jako 500 mm w rzeczywistości bez uwzględnienia proporcji wynikającej ze skali. Te błędy myślowe mogą prowadzić do poważnych konsekwencji w praktyce inżynieryjnej, takich jak nadmierne zamówienia materiałów, które nie tylko zwiększają koszty projektu, ale także mogą prowadzić do marnotrawstwa zasobów. Kluczowe jest zatem zrozumienie zasadności przeliczania długości w kontekście projektowania oraz umiejętność oceny wymagań materiałowych na podstawie odpowiednich standardów inżynieryjnych.

Pytanie 9

Na aksonometrycznym widoku instalacji ogrzewczej w skali 1:100 miedziany pion ma długość 20 cm. Jaką ilość przewodów miedzianych trzeba nabyć do montażu tego pionu?

A. 2 m
B. 200 m
C. 0,2 m
D. 20 m
Wiele osób może pomylić długość przewodów z długością na rzucie aksonometrycznym, co prowadzi do niepoprawnych obliczeń. Odpowiedzi takie jak 200 m, 2 m czy 0,2 m bazują na błędnych założeniach dotyczących przeliczeń skali. Odpowiedź 200 m sugeruje, że uczestnik testu nie uwzględnił przelicznika skali, błędnie myśląc, że 20 cm na rysunku odpowiada 20 m w rzeczywistości. Taki błąd może wynikać z nieuwagi lub nieznajomości procedur. Odpowiedź 2 m może pochodzić z błędnego przeliczenia skali, na przykład z pomylenia wartości 20 cm z 2 m, co pokazuje typowy błąd w komunikacji między jednostkami miary. Z kolei odpowiedź 0,2 m przejawia skrajne niedoszacowanie długości, co może świadczyć o pomieszczeniu długości przewodu do długości przedstawionej w rysunku, pomijając ważny kontekst skali. Fundamentalną zasadą w projektowaniu instalacji grzewczych, a także w innych dziedzinach inżynieryjnych, jest precyzyjne przeliczanie wymiarów między różnymi formatami, co jest niezbędne do zapewnienia prawidłowości wykonania projektu oraz bezpieczeństwa użytkowania. Właściwe zrozumienie tych koncepcji jest kluczowe, aby uniknąć kosztownych błędów w przyszłej eksploatacji systemu.

Pytanie 10

Aby zabezpieczyć obieg grzewczy w sytuacji, gdy ciśnienie w instalacji solarnej zbyt mocno wzrasta, co powinno się zastosować?

A. zawór bezpieczeństwa
B. regulator temperatury
C. grupę pompową
D. podgrzewacz wody
Zawór bezpieczeństwa to mega ważny element, jeśli chodzi o ochronę instalacji solarnej przed zbyt wysokim ciśnieniem. Kiedy ciśnienie w układzie wzrasta ponad dopuszczalny poziom, zawór automatycznie się otwiera, wypuszczając nadmiar wody albo pary. W ten sposób zapobiega się wszelkim awariom, co jest kluczowe dla bezpieczeństwa. Normy branżowe, takie jak PN-EN 12828, jasno mówią, jak istotne jest to zabezpieczenie w systemach grzewczych. Na przykład, w instalacji solarnej w domu, zawór bezpieczeństwa działa jak tarcza chroniąca system i ludzi w środku przed nieprzyjemnościami. A tak swoją drogą, pamiętaj, żeby regularnie sprawdzać zawory bezpieczeństwa – to nie tylko kwestia przepisów, ale też bezpieczeństwa całej instalacji.

Pytanie 11

W przypadku tworzenia kosztorysu ofertowego nie uwzględnia się

A. ceny jednostkowe oraz narzuty dotyczące kosztów pośrednich i zysku
B. zapisy z książki obmiarów zatwierdzone przez inspektora nadzoru
C. koszty rzeczowe robocizny, materiałów oraz pracy sprzętu
D. dokumentację projektową oraz dane wyjściowe do projektowania
Odpowiedź dotycząca zapisów z książki obmiarów zatwierdzonych przez inspektora nadzoru jest prawidłowa, ponieważ te zapisy są specyficzne dla realizacji danego projektu i nie są stosowane w kontekście sporządzania kosztorysu ofertowego. Kosztorys ofertowy w praktyce budowlanej opiera się na kosztach rynkowych, które obejmują ceny jednostkowe robocizny, materiałów oraz pracy sprzętu, a także narzuty dotyczące kosztów pośrednich i zysku. Kluczowym elementem jest dokumentacja projektowa, która dostarcza niezbędnych danych do oszacowania kosztów inwestycji. Warto również zaznaczyć, że w procesie ofertowania należy brać pod uwagę aktualne wartości rynkowe komponentów budowlanych, co jest zgodne z zasadami rynkowymi oraz standardami kosztorysowania. Dobrą praktyką w kosztorysowaniu jest regularne aktualizowanie baz danych o ceny, co pozwala na precyzyjne odzwierciedlenie rzeczywistych kosztów w ofertach. Używając takich danych, firmy budowlane mogą skuteczniej konkurować na rynku oraz unikać błędów w ocenie kosztów realizacji projektów.

Pytanie 12

W jakiej temperaturze, zgodnie z normami STC, dokonuje się oceny parametrów paneli fotowoltaicznych?

A. 15°C
B. 30°C
C. 25°C
D. 20°C
Temperatura 20°C, wskazana w jednej z odpowiedzi, jest często mylona z warunkami STC, ale w rzeczywistości nie jest to poprawna wartość do oceny wydajności paneli fotowoltaicznych. Podobnie, zarówno 30°C, jak i 15°C nie są standardowymi temperaturami dla testów. Użytkownicy mogą nie zdawać sobie sprawy, że standardowe testy dla paneli PV są zawsze przeprowadzane w 25°C, co stanowi punkt odniesienia dla efektywności. W praktyce, różnice w temperaturze mogą wprowadzać znaczne odchylenia w wynikach i porównaniach. Wysoka temperatura, jak 30°C, może prowadzić do obniżenia wydajności ogniw, podczas gdy temperatura 15°C może sprawić, że panele będą działały bardziej efektywnie, ale nie oddaje to rzeczywistych warunków pracy w terenie. Często błędem myślowym jest zakładanie, że jakiekolwiek różnice w temperaturze nie mają znaczenia. Dlatego kluczowe jest, aby dobrze zrozumieć standardy i ich wpływ na ocenę paneli PV, co z kolei pozwala na lepsze prognozowanie efektywności instalacji w różnych warunkach atmosferycznych.

Pytanie 13

Część, której nie ma w elektrowni wiatrowej, to

A. prostownik
B. zawór bezpieczeństwa
C. generator
D. turbina
Zawór bezpieczeństwa nie jest elementem charakterystycznym dla elektrowni wiatrowej. W elektrowni tej kluczowymi komponentami są turbina wiatrowa, która przekształca energię kinetyczną wiatru na energię mechaniczną, oraz generator, który zamienia tę energię mechaniczną na energię elektryczną. Prostownik, z kolei, jest niezbędny do przekształcania prądu przemiennego wytwarzanego przez generator na prąd stały, co jest istotne dla integracji z systemami zasilania. Zawory bezpieczeństwa są typowo stosowane w systemach hydraulicznych i pneumatycznych, a ich główną funkcją jest ochrona przed nadmiernym ciśnieniem. W kontekście elektrowni wiatrowej, elementy te nie mają zastosowania, ponieważ instalacje te operują na zasadzie transformacji energii mechanicznej na elektryczną bez potrzeby zarządzania ciśnieniem w cieczy lub gazie. Dlatego odpowiedź 'zawór bezpieczeństwa' jest prawidłowa.

Pytanie 14

Czujnik termostatyczny systemu "strażak" używany do ochrony kotłów na biomasę powinien być zamontowany

A. w czopuchu kotła
B. na obudowie podajnika
C. w podajniku ślimakowym
D. w komorze paleniskowej
Montaż czujnika termostatycznego w podajniku ślimakowym może wydawać się sensownym rozwiązaniem, jednak wiąże się z kilkoma istotnymi zagrożeniami. Przede wszystkim, podajnik może być miejscem o zmiennym cieple, gdzie temperatura materiału opałowego nie jest jednolita. W praktyce, czujnik umieszczony w takim miejscu może nie dostarczać precyzyjnych danych o temperaturze, co w efekcie prowadzi do niewłaściwego działania systemu zabezpieczeń. Ponadto, umiejscowienie czujnika w czopuchu kotła, gdzie odpływają gazy spalinowe, jest błędne, ponieważ temperatury w tym obszarze mogą być znacznie wyższe, co może prowadzić do fałszywych alarmów lub uszkodzenia czujnika. Montaż czujnika w komorze paleniskowej również jest nieodpowiedni, ponieważ ekstremalne warunki panujące w tym miejscu mogą zdemolować czujnik, co z kolei grozi poważnymi skutkami dla bezpieczeństwa systemu. Typowym błędem w myśleniu jest założenie, że czujnik termostatyczny można umieścić w dowolnym miejscu, byle tylko był blisko źródła ciepła. Tego typu podejście ignoruje zasady działania i odpowiednie normy, które jasno wskazują, że lokalizacja czujnika powinna sprzyjać stabilności i dokładności pomiarów, co jest kluczowe dla efektywnego i bezpiecznego działania systemów grzewczych.

Pytanie 15

Zgodnie z danymi zawartymi w przedstawionej w tabeli suma długości 2 obiegów w instalacji z pompą ciepła DHP-C wielkości 8 nie może przekraczać

Maksymalne długości obiegu
DHP-H,
DHP-C,
DHP-L
Obliczona, maksymalna długość obiegów w m
Wielkość1 obieg2 obiegi3 obiegi4 obiegi
6< 390< 2 x 425
8< 300< 2 x 325
10< 270< 2 x 395
12< 190< 2 x 350
16< 70< 2 x 175< 3 x 1834 x 197

A. 690 m
B. 650 m
C. 630 m
D. 700 m
Wybór odpowiedzi 650 m jako maksymalnej długości dwóch obiegów dla pompy ciepła DHP-C o wielkości 8 jest poprawny. Dane w tabeli jasno określają, iż dla tej konkretnej wielkości pompy, długość obiegów nie powinna przekraczać 650 metrów, aby zapewnić efektywność i prawidłowe działanie systemu grzewczego. Przekroczenie tej długości może prowadzić do spadku efektywności energetycznej oraz zwiększenia zużycia energii, co jest niekorzystne zarówno z ekonomicznego, jak i ekologicznego punktu widzenia. W praktyce, odpowiednia długość obiegów ma kluczowe znaczenie dla optymalizacji pracy pompy ciepła, co potwierdzają normy oraz zalecenia branżowe, takie jak te zawarte w dokumentacji producentów i standardach instalacyjnych. Na przykład, zbyt długie obiegi mogą skutkować większym oporem hydraulicznych, co wpływa na obniżenie wydajności systemu i może prowadzić do jego uszkodzenia. Utrzymanie odpowiedniej długości obiegów jest zatem kluczowe dla długotrwałego działania instalacji grzewczej.

Pytanie 16

Jaka jest najbardziej korzystna wartość współczynnika efektywności pompy ciepła COP?

A. 4,35
B. 0,35
C. 3,50
D. 0,25
Wartość współczynnika efektywności pompy ciepła (COP) na poziomie 4,35 oznacza, że na każdą jednostkę energii elektrycznej zużytej przez pompę, uzyskuje się 4,35 jednostek energii cieplnej. Tak wysoki wskaźnik COP jest charakterystyczny dla nowoczesnych systemów grzewczych, które są projektowane z myślą o maksymalnej efektywności energetycznej. Przykładem mogą być pompy ciepła typu powietrze-woda lub grunt-woda, które przy odpowiednich warunkach zewnętrznych osiągają bardzo korzystne wartości COP. W kontekście standardów branżowych, warto zauważyć, że pompy ciepła powinny być zgodne z normą EN 14511, która określa metody badań i klasyfikacji tych urządzeń. Dzięki stosowaniu pomp ciepła o wysokim COP można znacząco obniżyć koszty ogrzewania, jednocześnie przyczyniając się do zmniejszenia emisji CO2, co jest zgodne z duchem zrównoważonego rozwoju i polityki ekologicznej wielu krajów.

Pytanie 17

Na podstawie fragmentu katalogu producenta regulatora ładowania dobierz zabezpieczenie do regulatora Solarix PRS 2020.

Regulator ładowania STECA Solarix PRSPRS 1010PRS 1515PRS 2020PRS 3030
Parametry operacyjne
Napięcie systemu12V (24V)
Zużycie własne< 4 mA
Strona wejściowa DC
Maksymalne napięcie obwodu otwartego Uoc paneli< 47 V
Maksymalny prąd wejściowy (Imax)10 A15 A20 A30 A
Strona wyjściowa DC
Napięcie akumulatorów9V ... 17 V (17,1 V ... 34 V)
Maksymalny prąd obciążenia10 A15 A20 A30 A
Zakończenie ładowania13,9 V (27,8 V)
Ładowanie boost14,4 V (28,8 V)
Ładowanie wyrównawcze14,7 V (29,4 V)
Załączenie po rozłączeniu (LVR)12,4 V ... 12,7 V (24,8 V ... 25,4 V)
Rozłączenie akumulatora (LVD)11,2 V ... 11,6 V (22,4 V ... 23,2 V))
Warunki pracy
Temperatura otoczenia-25°C ÷ +50°C
Montaż i podłączenie
Terminal16 mm2 / 25 mm2 - AWG 6 / 4
OchronaIP 32
Wymiary (D x W x G)187 x 96 x 45 mm
Masa345 g

A. 15 A
B. 30 A
C. 10 A
D. 20 A
Wybranie zabezpieczenia o wartości 20 A dla regulatora ładowania Solarix PRS 2020 jest prawidłowe, ponieważ maksymalny prąd wejściowy (I_max) zgodnie z informacjami zawartymi w katalogu producenta wynosi właśnie 20 A. Dobrze dobrane zabezpieczenie jest kluczowe dla efektywnej pracy systemu fotowoltaicznego, ponieważ chroni zarówno regulator, jak i akumulatory przed nadmiernym prądem, który mógłby prowadzić do ich uszkodzenia lub skrócenia żywotności. W praktyce, zabezpieczenie powinno być dostosowane do maksymalnych parametrów urządzenia, aby zapewnić optymalne działanie. W branży fotowoltaicznej zaleca się stosowanie zabezpieczeń o wartości nieprzekraczającej maksymalnego prądu wejściowego, co zmniejsza ryzyko przeciążenia. Przy doborze zabezpieczeń niezbędne jest również uwzględnienie warunków pracy oraz specyfiki instalacji, co jest istotnym elementem w zgodności z normami bezpieczeństwa. Warto także pamiętać, że właściwe zabezpieczenie wpływa na stabilność oraz wydajność całego systemu, co jest kluczowe dla inwestycji w odnawialne źródła energii.

Pytanie 18

Na podstawie danych producenta rur ogrzewania podłogowego zawartych w tabeli określ maksymalne ciśnienie robocze.

MaterialPE-RT/EVOH/PE-RT, PE-RT/AL/PE-RT
ŚredniceDN/OD 16, 18 mm
Ciśnienie nominalnePN 6 (bar) klasa 4, 20-60 °C
Długości handloweZwoje 200, 400 m

A. 18 barów.
B. 16 barów.
C. 6 barów.
D. 4 bary.
Odpowiedź 6 barów jest poprawna, ponieważ zgodnie z danymi producenta rur ogrzewania podłogowego, maksymalne ciśnienie robocze dla rur wykonanych z materiałów PE-RT/EVOH/PE-RT i PE-RT/AL/PE-RT wynosi PN 6, co odpowiada 6 barom. Tabela producenta wskazuje, że ciśnienie to dotyczy rur o średnicach DN/OD 16 oraz 18 mm, które mogą pracować w temperaturach od 20 do 60°C. W praktyce, przy doborze rur do systemu ogrzewania podłogowego, ważne jest, aby nie przekraczać wskazanych wartości ciśnienia roboczego, ponieważ może to prowadzić do uszkodzenia instalacji, a także obniżenia jej efektywności. Dobór odpowiedniego ciśnienia jest istotny nie tylko dla bezpieczeństwa, ale również dla zapewnienia efektywności energetycznej systemu grzewczego. W branży stosuje się różne normy, takie jak PN-EN 1264, które regulują wymagania dotyczące systemów ogrzewania podłogowego, w tym maksymalne ciśnienia robocze.

Pytanie 19

Oznaczenie PE-HD na rurze w systemie instalacyjnym wskazuje, że rurę wyprodukowano z

A. polietylenu o wysokiej gęstości
B. polietylenu o średniej gęstości
C. homopolimeru polietylenu
D. polietylenu o niskiej gęstości
Oznaczenie PE-HD odnosi się do polietylenu wysokiej gęstości, materiału powszechnie stosowanego w różnych dziedzinach przemysłu, w tym w budownictwie i infrastrukturze. Polietylen wysokiej gęstości charakteryzuje się dużą wytrzymałością, odpornością na działanie chemikaliów oraz niską absorpcją wody, co czyni go idealnym materiałem do produkcji rur do transportu wody, gazu oraz w instalacjach kanalizacyjnych. Dodatkowo, PE-HD jest materiałem ekologicznym, ponieważ można go poddawać recyklingowi, co jest zgodne z globalnymi trendami w kierunku zrównoważonego rozwoju. Rury wykonane z polietylenu wysokiej gęstości są często stosowane w systemach nawadniania, wodociągach oraz w systemach odprowadzania ścieków. Zgodnie z normami, takimi jak PN-EN 12201, rury PE-HD muszą spełniać określone wymagania dotyczące jakości, co zapewnia ich trwałość i niezawodność w użytkowaniu.

Pytanie 20

Jakie ogniwo fotowoltaiczne wykazuje najwyższą efektywność?

A. Amorficzne
B. Hybrydowe
C. Polikrystaliczne
D. Monokrystaliczne
Monokrystaliczne ogniwa fotowoltaiczne, chociaż charakteryzują się wysoką efektywnością, nie osiągają najwyższych sprawności w porównaniu do hybrydowych odpowiedników. Ich budowa polega na wykorzystaniu jednego kryształu krzemu, co ogranicza ich zdolność do absorpcji światła w niekorzystnych warunkach, takich jak chmury czy cień. Z drugiej strony, ogniwa amorficzne zdobijają uznanie za swoją elastyczność i możliwość wielowarstwowych zastosowań, ale ich sprawność w konwersji energii jest znacznie niższa, nie przekraczająca zazwyczaj 10-12%. Polikrystaliczne ogniwa, mimo że są tańsze w produkcji, także nie dorównują sprawnością ogniw hybrydowych. Wiele osób błędnie myśli, że wybór ogniw monokrystalicznych lub polikrystalicznych jest najlepszym rozwiązaniem ze względu na ich popularność, jednakże nie uwzględniają przy tym postępu technologicznego oraz badań nad ogniwami hybrydowymi. W rzeczywistości, wybór odpowiedniego typu ogniwa powinien opierać się na specyficznych potrzebach projektu oraz na warunkach, w jakich będą one używane. Ważne jest, aby przy podejmowaniu decyzji o wyborze technologii fotowoltaicznej, konsultować się z ekspertami oraz kierować się obowiązującymi standardami branżowymi, takimi jak IEC 61730, które opisują wymagania dotyczące bezpieczeństwa i wydajności modułów fotowoltaicznych.

Pytanie 21

W elektrowni wodnej zainstalowany jest generator o mocy P=100 kW. Jaką częstotliwość powinno mieć napięcie, aby mogła ona współdziałać z Polskim Systemem Energetycznym?

A. 80 Hz
B. 70 Hz
C. 50 Hz
D. 20 Hz
Odpowiedź 50 Hz jest prawidłowa, ponieważ w Polsce, jak i w większości krajów europejskich, standardowa częstotliwość napięcia w sieci elektroenergetycznej wynosi właśnie 50 Hz. Taka częstotliwość została przyjęta jako norma w celu zapewnienia stabilności i kompatybilności systemów energetycznych. Współpraca generatorów prądu z systemem energetycznym opiera się na synchronizacji ich częstotliwości z siecią. Przykładowo, elektrownie wodne, które korzystają z turbin wodnych, muszą dostarczać energię o odpowiedniej częstotliwości, aby mogły zostać włączone do krajowej sieci. Zastosowanie generatorów o mocy 100 kW w Polsce, które muszą pracować w harmonii z innymi źródłami energii, jak elektrownie wiatrowe czy słoneczne, również potwierdza konieczność utrzymania tej standardowej częstotliwości. Takie podejście zwiększa efektywność całego systemu elektroenergetycznego oraz minimalizuje ryzyko awarii związanych z zaburzeniem synchronizacji.

Pytanie 22

Gdzie w instalacji solarnej umieszcza się mieszacz wody użytkowej?

A. pomiędzy wodą zimną a obiegiem wody ciepłej
B. pomiędzy obiegiem solarnym a obiegiem wody ciepłej
C. pomiędzy centralnym ogrzewaniem a obiegiem wody zimnej
D. pomiędzy obiegiem solarnym a obiegiem wody zimnej
Pojęcie umiejscowienia mieszacza wody użytkowej w instalacji solarnej związane jest z kilkoma kluczowymi aspektami, które mogą zostać błędnie zrozumiane, prowadząc do niepoprawnych odpowiedzi. Przykładowo, umieszczenie mieszacza między obiegiem solarnym a obiegiem wody zimnej nie ma sensu, ponieważ woda zimna nie wymaga regulacji temperatury, a jej mieszanie z wodą solarną prowadziłoby do strat ciepła. Alternatywne opcje, jak mieszanie wody ciepłej z zimną lub umiejscowienie mieszacza w obszarze centralnego ogrzewania, mogą wydawać się logiczne, jednak w rzeczywistości mogą wprowadzać błędy w zarządzaniu temperaturą i ciśnieniem. Centralne ogrzewanie funkcjonuje na zasadzie obiegu ciepłej wody, a mieszacz powinien znajdować się w strefie, gdzie woda użytkowa zmienia swoje właściwości termiczne. W praktyce, niewłaściwe umiejscowienie mieszacza może skutkować nieefektywnym działaniem całego systemu, co prowadzi do zwiększonego zużycia energii i potencjalnych uszkodzeń instalacji. Ważne jest zatem, aby zrozumieć, że mieszacz pełni rolę regulatora, który powinien być umieszczony w odpowiedniej lokalizacji dla osiągnięcia optymalnej wydajności i efektywności energetycznej.

Pytanie 23

Wskaźnik efektywności energetycznej pompy ciepła COP wynoszący 4 wskazuje, że dostarczając

A. 1 kWh energii cieplnej do pracy pompy ciepła można uzyskać 4 kWh energii elektrycznej
B. 1 kWh energii elektrycznej do pracy pompy ciepła można uzyskać 4 kWh energii cieplnej
C. 4 kWh energii elektrycznej do pracy pompy ciepła można uzyskać 1 kWh ciepła
D. 4 kWh energii cieplnej do pracy pompy ciepła można uzyskać 1 kWh energii elektrycznej
Nieprawidłowe odpowiedzi na pytanie dotyczące wskaźnika COP pompy ciepła opierają się na błędnym rozumieniu działania tych urządzeń. Wysoka wartość COP, jak w przypadku równania 4, oznacza efektywność przekładającą się na ilość ciepła uzyskanego w stosunku do ilości zużytej energii elektrycznej. Zrozumienie tego wskaźnika jest kluczowe dla oceny wydajności systemów grzewczych. Odpowiedzi sugerujące, że 1 kWh energii cieplnej można uzyskać poprzez zużycie 4 kWh energii elektrycznej są niepoprawne, ponieważ de facto wskazują na odwrotną sytuację, co prowadzi do znaczącego zafałszowania analizy efektywności energetycznej. Typowym błędem myślowym jest mylenie energii cieplnej z energią elektryczną oraz niedostateczne zrozumienie zasady działania pomp ciepła jako urządzeń przekształcających energię. Pompy ciepła działają na zasadzie przemiany energii z jednego źródła do innego, co sprawia, że ich efektywność można ocenić przez wskaźnik COP. Odpowiedzi, które twierdzą, że większa ilość energii elektrycznej jest potrzebna do uzyskania mniejszej ilości energii cieplnej, są sprzeczne z zasadami termodynamiki oraz podstawowym celem pomp ciepła, którym jest maksymalizacja efektywności energetycznej. Aby uniknąć takich nieporozumień, ważne jest, aby zrozumieć, jak działają te systemy oraz jakie standardy i normy, takie jak EN 14511, regulują ich wydajność i sposób pomiaru. W edukacji na temat energii odnawialnej i efektywności energetycznej należy kłaść duży nacisk na poprawne interpretowanie wskaźników efektywności, aby odpowiednio ocenić i zastosować pompy ciepła w praktyce.

Pytanie 24

Klient, który pragnie jednocześnie uzyskiwać energię elektryczną oraz ciepło z odnawialnych źródeł, powinien rozważyć użycie

A. kolektora rurowego próżniowego
B. kotła dwufunkcyjnego
C. kolektora słonecznego hybrydowego
D. pompy ciepła multi-split
Kolektor słoneczny hybrydowy to urządzenie, które łączy funkcje produkcji energii elektrycznej oraz ciepła w jeden system. Dzięki zastosowaniu nowoczesnych technologii, takich jak ogniwa fotowoltaiczne i kolektory cieplne, możliwe jest jednoczesne pozyskiwanie obu form energii z promieniowania słonecznego. W praktyce oznacza to, że użytkownik może zaspokoić zarówno potrzeby grzewcze, jak i elektryczne budynku, co przekłada się na zwiększenie efektywności energetycznej. Przykładem zastosowania mogą być domy jednorodzinne, które chcą być mniej zależne od tradycyjnych źródeł energii oraz obniżyć koszty eksploatacji. Dodatkowo, integracja systemu hybrydowego z istniejącymi instalacjami OZE, jak pompy ciepła czy systemy zarządzania energią, pozwala na jeszcze lepszą optymalizację zużycia energii. Zgodnie z aktualnymi standardami budownictwa energooszczędnego, takie rozwiązania są rekomendowane jako część strategii zrównoważonego rozwoju i dążenia do neutralności węglowej.

Pytanie 25

Kotły biomasowe o mocy większej niż 2 MW powinny być montowane w obiekcie

A. mieszkalnym, w pomieszczeniach, które nie są przeznaczone na cele mieszkalne
B. mieszkalnym, w wydzielonych pomieszczeniach technicznych na poziomie podziemnym
C. mieszkalnym, w wydzielonych pomieszczeniach technicznych na parterze
D. wolnostojącym, które jest przeznaczone wyłącznie na kotłownię
Instalacja kotłów na biopaliwo w budynkach mieszkalnych, nawet w wydzielonych pomieszczeniach technicznych, nie jest zalecana ze względów bezpieczeństwa i normatywnych. Przykłady odpowiedzi, które sugerują lokalizację kotłów w pomieszczeniach mieszkalnych, wskazują na niepełne zrozumienie przepisów dotyczących ochrony przeciwpożarowej oraz wentylacji. W przypadku dużych kotłów, takich jak te o mocy powyżej 2 MW, wymagania dotyczące wentylacji i odprowadzania spalin są znacznie wyższe niż dla tradycyjnych kotłów. Niewłaściwe ulokowanie takiego urządzenia w pomieszczeniach mieszkalnych może prowadzić do zagrożeń zdrowotnych, takich jak emisja szkodliwych substancji do powietrza. Ponadto, w kontekście przepisów budowlanych, takie urządzenia powinny być umieszczane w lokalizacjach, które minimalizują ryzyko wystąpienia awarii. Wydzielone pomieszczenia techniczne w kondygnacji podziemnej również mogą nie spełniać wymogów wentylacyjnych i dostępu dla służb serwisowych. Ostatecznie, nieodpowiednia lokalizacja może prowadzić do naruszeń prawa budowlanego i standardów bezpieczeństwa, co w konsekwencji może skutkować poważnymi konsekwencjami prawnymi oraz finansowymi.

Pytanie 26

Aby ochronić kocioł na biomasę przed niską temperaturą czynnika powracającego z systemu c.o., należy zainstalować zawór

A. mieszający na zasilaniu systemu.
B. termostatyczny przed grzejnikami c.o.
C. mieszający na powrocie z systemu.
D. termostatyczny na powrocie z systemu c.o.
Wybór zaworu termostatycznego na powrocie z instalacji c.o. jest nieodpowiedni, ponieważ jego głównym zadaniem jest regulacja temperatury wody w systemie, a nie mieszanie jej z innymi strumieniami. Choć zawory termostatyczne kontrolują przepływ na podstawie temperatury, nie są wystarczające do ochrony kotła na biomasę przed niską temperaturą. Zawory mieszające, w przeciwieństwie do termostatycznych, mają na celu aktywne mieszanie wody o różnych temperaturach, co jest kluczowe w kontekście utrzymania stabilnej i odpowiedniej temperatury roboczej kotła. Podobnie, zastosowanie zaworu mieszającego na zasilaniu instalacji również nie rozwiązuje problemu, ponieważ ciepła woda z kotła powinna być odpowiednio schładzana, aby uniknąć przegrzania układu. Zawory termostatyczne przed grzejnikami c.o. również nie są odpowiednim rozwiązaniem, ponieważ działają na zasadzie regulacji lokalnych temperatur, a nie globalnej ochrony kotła. Zrozumienie funkcji różnych typów zaworów w kontekście instalacji grzewczych jest kluczowe dla efektywności systemu. Wybór niewłaściwego elementu może prowadzić do problemów z komfortem cieplnym i wydajnością energetyczną, co jest niezgodne z najlepszymi praktykami w branży grzewczej. Dlatego kluczowe jest, aby przed podjęciem decyzji o zastosowaniu konkretnego rozwiązania, dokładnie przeanalizować jego funkcjonalności i zastosowanie w kontekście całego systemu grzewczego.

Pytanie 27

Najwyższą efektywność energetyczną uzyskują panele fotowoltaiczne

A. polikrystaliczne
B. organiczne
C. monokrystaliczne
D. amorficzne
Monokrystaliczne fotoogniwa to naprawdę świetna opcja, mają najwyższą sprawność energetyczną. Dzieje się tak głównie przez ich strukturę i materiały, jakie wykorzystuje się do ich produkcji. W zasadzie są robione z pojedynczych kryształów krzemu, przez co lepiej zamieniają energię słoneczną na elektryczną. Ich sprawność często przekracza 22%, co sprawia, że są idealne w miejscach, gdzie trzeba maksymalnie wykorzystać dostępne miejsce, jak dachy domów czy farmy słoneczne. W branży często wybiera się monokrystaliczne ogniwa tam, gdzie miejsca jest mało, a ich dłuższy czas życia oraz mniejsze straty energii w wysokich temperaturach sprawiają, że długoterminowo są opłacalne. Co więcej, monokrystaliczne ogniwa są bardziej odporne na degradację, co zwiększa ich niezawodność i wydajność w długim okresie. Widać to szczególnie w nowoczesnej architekturze, gdzie stosuje się zintegrowane systemy fotowoltaiczne.

Pytanie 28

Aby uzyskać optymalną wydajność instalacji słonecznej do podgrzewania wody w basenie w trakcie lata, kolektory powinny być ustawione pod kątem względem poziomu

A. 60o
B. 45o
C. 90o
D. 30o
Ustawienie kolektorów słonecznych pod kątem 30 stopni jest optymalne do maksymalizacji efektywności w sezonie letnim, zwłaszcza w krajach o umiarkowanym klimacie. Kąt ten zapewnia, że kolektory są skierowane bardziej bezpośrednio w stronę słońca, co zwiększa ich zdolność do absorbowania promieniowania słonecznego. Pod kątem 30 stopni kolektory są w stanie osiągnąć wyższą wydajność, zwłaszcza gdy słońce jest wysoko na niebie w letnich miesiącach. Praktyczne zastosowanie tego kąta można zobaczyć w wielu nowoczesnych instalacjach, które stosują go jako standard, co potwierdzają badania dotyczące wydajności energetycznej. Warto również zauważyć, że dostosowanie kąta do lokalnych warunków geograficznych oraz pory roku jest kluczowe dla uzyskania maksymalnych korzyści. Zgodnie z normami branżowymi, dobrze zainstalowane systemy solarne powinny być projektowane z myślą o optymalizacji kąta nachylenia, co w efekcie prowadzi do zwiększenia oszczędności energii i redukcji kosztów eksploatacyjnych.

Pytanie 29

W przypadku, gdy źródłem ciepła są wody gruntowe lub powierzchniowe, a temperatura może być niższa od zera, którą z pomp ciepła należy zastosować?

A. powietrze - woda
B. woda - woda
C. grunt - woda
D. solanka - woda
Pompa ciepła typu solanka - woda jest odpowiednia, gdy źródłem ciepła są wody gruntowe lub powierzchniowe, szczególnie w obszarach, gdzie temperatura może spadać poniżej zera. W tym systemie ciepło jest pobierane z gruntu za pomocą obiegu solanki, która krąży w układzie zamkniętym. Zastosowanie solanki jako medium antyzamarzającego pozwala na efektywne wykorzystanie energii geotermalnej, nawet przy niskich temperaturach. Często stosuje się takie rozwiązania w budynkach jednorodzinnych, gdzie instalacja gruntowych wymienników ciepła jest w stanie zapewnić odpowiednią efektywność grzewczą. Dzięki swojej wydajności i możliwości pracy w trudnych warunkach, pompy te są zgodne z normami ECODESIGN, a ich zastosowanie pozytywnie wpływa na redukcję emisji CO2. Ponadto, wykorzystując grunt jako źródło energii, można uzyskać stabilne i przewidywalne źródło ciepła przez cały rok, co jest niezmiernie ważne w kontekście zrównoważonego rozwoju oraz oszczędności energii.

Pytanie 30

Aby chronić instalację centralnego ogrzewania przed nadmiernym wzrostem ciśnienia czynnika grzewczego spowodowanym temperaturą i związanym ze wzrostem objętości, należy zastosować

A. grupę pompową
B. naczynie wzbiorcze
C. zawór zwrotny
D. zawór bezpieczeństwa
Zawór zwrotny to już zupełnie inna bajka w systemach grzewczych. Jego rola to zapobieganie cofaniu się czynnika grzewczego, czyli tak naprawdę dba o to, by płynął w jednym kierunku. To ważne dla działania pomp, bo jak nie, to mogą się pojawić różne nieprzyjemne zjawiska, takie jak problemy hydrauliczne, które mogą prowadzić do uszkodzeń. Tylko, że zawór zwrotny nie ma wpływu na kontrolę ciśnienia instalacji, co w kontekście wzrostu objętości wody przy podwyższonej temperaturze jest kluczowe. Grupa pompową z kolei odpowiada za to, żeby zapewnić odpowiedni przepływ czynnika grzewczego, i może coś tam regulować ciśnienie, ale sama w sobie nie zapobiegnie jego wzrostowi w sytuacjach awaryjnych. Zawór bezpieczeństwa to już inna sprawa – on działa, żeby chronić instalację przed zbyt dużym ciśnieniem, ale jego rola to spuszczenie nadmiaru, a nie kontrolowanie tego ciśnienia. Dlatego ważne jest, żeby zrozumieć, że te różne elementy mają swoje unikalne funkcje, ale żadne z nich nie zastąpi kluczowej roli naczynia wzbiorczego w zabezpieczaniu instalacji przed skutkami termicznej ekspansji czynnika grzewczego. Po prostu, żeby mieć pewność, że wszystko działa bezpiecznie i efektywnie, trzeba stosować naczynie wzbiorcze zgodnie z aktualnymi standardami i dobrymi praktykami w branży.

Pytanie 31

Jakie metody powinny być użyte do łączenia rur PEX w instalacji basenowej z wymiennikiem ciepła?

A. zaciskanie
B. zgrzewanie
C. lutowanie
D. klejenie
Zaciskanie rur PEX to naprawdę najlepszy sposób, żeby je ze sobą łączyć. Jest to proste i skuteczne. W tej metodzie używa się specjalnych zacisków, które zakłada się na końce rur, a później się je zaciska narzędziem. Dzięki temu, połączenie jest solidne i wytrzymuje wysokie temperatury oraz ciśnienia, co jest mega ważne, zwłaszcza w instalacjach basenowych, gdzie niezawodność to klucz. Co ważne, nie potrzeba żadnych dodatkowych materiałów, jak kleje czy coś w tym stylu, więc ryzyko błędów podczas montażu jest mniejsze. W praktyce, takie zaciskane połączenia PEX są powszechnie używane w systemach ogrzewania podłogowego oraz instalacjach wodociągowych, co pokazuje, że są naprawdę uniwersalne i zgodne z normami, takimi jak PN-EN 12201. Ogólnie rzecz biorąc, ta technika jest zgodna z zasadami dobrego wykonania instalacji, co pozwala na długotrwałe użytkowanie bez konieczności serwisowania.

Pytanie 32

Z informacji zawartych w dokumentacji wynika, że roczne wydatki na energię elektryczną w obiekcie użyteczności publicznej wynoszą 6000 zł. Inwestor postanowił zamontować na dachu budynku system paneli fotowoltaicznych, aby obniżyć te wydatki. Dzięki temu koszty zużycia energii elektrycznej będą niższe o 75%. Jaką kwotę będzie płacił za energię elektryczną po przeprowadzeniu tej inwestycji?

A. 5925 zł
B. 4500 zł
C. 1500 zł
D. 5975 zł
Poprawna odpowiedź to 1500 zł, ponieważ inwestor decydując się na montaż paneli fotowoltaicznych, zmniejsza swoje roczne koszty energii elektrycznej o 75%. To oznacza, że po wdrożeniu systemu będzie płacił jedynie 25% pierwotnej kwoty rachunków. Wyliczenie jest proste: 25% z 6000 zł to 1500 zł (6000 zł x 0,25 = 1500 zł). Instalacja paneli fotowoltaicznych to nie tylko sposób na redukcję kosztów, ale również na zredukowanie śladu węglowego budynku, co jest zgodne z trendami zrównoważonego rozwoju i efektywności energetycznej. Panele fotowoltaiczne przekształcają energię słoneczną w energię elektryczną, co może znacząco obniżyć zależność od zewnętrznych dostawców energii. Przed podjęciem decyzji o inwestycji warto przeprowadzić analizę techniczną i ekonomiczną, aby oszacować potencjalne oszczędności oraz czas zwrotu z inwestycji, co jest kluczowe w kontekście długoterminowego planowania finansowego budynków użyteczności publicznej.

Pytanie 33

Jak często należy przeprowadzać kontrolę stanu technicznego instalacji elektrycznych w zakresie rezystancji izolacji?

A. co 7 lat
B. co 5 lat
C. co 3 lata
D. co 2 lata
Kontrola stanu technicznego instalacji elektrycznych w zakresie rezystancji izolacji jest kluczowym elementem zapewnienia bezpieczeństwa oraz niezawodności systemów elektroenergetycznych. Zgodnie z obowiązującymi normami, takimi jak PN-IEC 60364 oraz wytycznymi z zakresu utrzymania urządzeń elektrycznych, przegląd tej rezystancji powinien być przeprowadzany co najmniej co 5 lat. Taki okres umożliwia wczesne wykrywanie potencjalnych uszkodzeń izolacji, które mogą prowadzić do poważnych awarii, pożarów czy porażenia prądem. Przykładem zastosowania tej wiedzy jest regularne przeprowadzanie testów rezystancji izolacji w obiektach przemysłowych, gdzie instalacje elektryczne są szczególnie narażone na działanie czynników zewnętrznych, takich jak wilgoć czy substancje chemiczne, które mogą wpływać na degradację materiałów. Systematyczne wykonywanie tego rodzaju kontroli wspiera utrzymanie wysokich standardów bezpieczeństwa oraz zgodności z przepisami prawa.

Pytanie 34

W kontekście instalacji pompy ciepła, wskaźnik SPF wskazuje na współczynnik efektywności funkcjonowania

A. miesięcznej
B. dziennej
C. rocznej
D. godzinowej
Wybierając odpowiedzi dotyczące współczynnika SPF, można błędnie zinterpretować, że odnosi się on do krótszych okresów czasowych, takich jak miesiąc, godzina czy dzień. W rzeczywistości, te jednostki miary nie oddają pełnego obrazu efektywności pompy ciepła w kontekście sezonowym, co jest kluczowe dla prawidłowego zrozumienia działania tego typu urządzeń. Miesięczne, godzinowe i dzienne wskaźniki mogą być przydatne do analizy krótkoterminowych wydajności, jednak nie są wystarczające do oceny długoterminowych korzyści związanych z użytkowaniem pompy ciepła. SPF, obliczany na podstawie danych rocznych, pozwala na uwzględnienie zmienności warunków atmosferycznych oraz różnorodności zapotrzebowania na energię cieplną w ciągu roku. Użytkownicy często mylą te różne miary, co prowadzi do niewłaściwych wniosków dotyczących efektywności energetycznej systemów grzewczych. Zrozumienie, że SPF jest miarą roczną, a nie krótkoterminową, jest kluczowe dla właściwego zaprojektowania i eksploatacji układów ciepłowniczych, co przyczynia się do zwiększenia ich efektywności oraz zadowolenia użytkowników. Dobrze zaprojektowany system grzewczy, oparty na pełnym zrozumieniu wartości SPF, zapewnia stabilność kosztów eksploatacyjnych oraz wpływa pozytywnie na środowisko.

Pytanie 35

Powstawanie zapowietrzenia w instalacji solarnej może być wynikiem

A. nieprawidłowym ciśnieniem wstępnym w zbiorniku przeponowym
B. niewłaściwie wolnym wypełnianiem systemu
C. użycia pompy obiegowej o niedostosowanej mocy
D. wykorzystania zbyt dużych średnic rur w instalacji
Niewłaściwe ciśnienie wstępne w naczyniu wzbiorczym jest kluczowym czynnikiem wpływającym na prawidłowe funkcjonowanie instalacji solarnej. Naczynie wzbiorcze, które pełni rolę bufora, powinno być odpowiednio dobrane do systemu. Jeśli ciśnienie wstępne jest zbyt niskie, może to prowadzić do powstawania pęcherzyków powietrza w instalacji, co z kolei skutkuje obniżeniem efektywności systemu i możliwości jego pracy. Przykładowo, w systemach solarnych często rekomenduje się ciśnienie wstępne w zakresie 1-2 bar, co zapewnia odpowiednie warunki do obiegu cieczy. W praktyce, regularne kontrole ciśnienia oraz jego kalibracja w oparciu o specyfikacje producenta naczynia wzbiorczego są kluczowe dla utrzymania efektywności instalacji. Ponadto, zgodnie z normami branżowymi, takich jak PN-EN 12976, odpowiednie ciśnienie wstępne przyczynia się do stabilności całego systemu, eliminując ryzyko awarii związanych z zapowietrzeniem.

Pytanie 36

Jakie jest optymalne nachylenie kolektora słonecznego zamontowanego na fasadzie budynku na konsoli ściennej?

A. 30°
B. 70°
C. 65°
D. 45°
Kąt nachylenia kolektora słonecznego ma kluczowe znaczenie dla efektywności jego działania. W przypadku montażu na fasadzie budynku, zalecany kąt wynoszący 45° sprzyja optymalnemu wykorzystaniu promieniowania słonecznego przez większość roku. Taki kąt pozwala na maksymalne naświetlenie kolektora zarówno w okresie letnim, kiedy słońce jest wysoko na niebie, jak i w zimie, gdy jego kąt padania jest niższy. Dodatkowo, kąt 45° ułatwia również odprowadzanie śniegu i wody deszczowej, co zmniejsza ryzyko uszkodzeń systemu. Dobrą praktyką jest także uwzględnienie lokalnych warunków klimatycznych oraz orientacji budynku, co może wpłynąć na ostateczny wybór kąta nachylenia. W kontekście standardów, zaleca się konsultację z fachowcami, którzy mogą przeprowadzić symulacje lub analizy, aby dostosować kąt do specyficznych warunków konkretnego miejsca. Wiedza ta jest niezbędna dla osób zajmujących się projektowaniem i instalacją systemów fotowoltaicznych oraz solarnych.

Pytanie 37

Przed zainstalowaniem systemu solarnego dokonano pomiarów wewnątrz obiektu. Instalacji solarnych nie można realizować w technologii PEX/Al/PEX, ponieważ

A. brak jest odpowiednich złączek do połączenia z kolektorem
B. warstwy polietylenowe mają słabe właściwości przewodzenia ciepła
C. nie są odporne na wysokie temperatury
D. obecne w nich aluminium prowadzi do degradacji glikolu
Rury PEX/Al/PEX, składające się z warstw polietylenu i aluminium, nie są odpowiednie do zastosowań w systemach solarnych ze względu na ich niską odporność na wysokie temperatury. W instalacjach solarnych, zwłaszcza w kolektorach, mogą występować temperatury znacznie przekraczające 100°C, co prowadzi do degradacji materiałów takich jak polietylen. Wysoka temperatura może powodować osłabienie struktury rury, co skutkuje ryzykiem wycieków i awarii całego systemu. Przykładem alternatywnych materiałów, które są bardziej odpowiednie do takich instalacji, są rury miedziane lub stalowe, które charakteryzują się wysoką odpornością na temperaturę i ciśnienie. Wybór właściwych materiałów jest kluczowy dla zapewnienia efektywności energetycznej i trwałości systemu solarnego, co jest zgodne z najlepszymi praktykami w branży instalacji OZE. Warto pamiętać, że zgodność z normami PN-EN 12976 dotyczącymi systemów solarnych może pomóc w uniknięciu problemów związanych z niewłaściwym doborem materiałów.

Pytanie 38

Który element chroni zamknięty obieg hydrauliczny paneli słonecznych w przypadku zbyt wysokiego ciśnienia cieczy solarnej?

A. Automatyczny odpowietrznik
B. Regulator temperatury
C. Pompa obiegowa
D. Zawór bezpieczeństwa
Zawór bezpieczeństwa jest kluczowym elementem ochronnym w zamkniętym obiegu hydraulicznym kolektorów słonecznych, który zapobiega nadmiernemu wzrostowi ciśnienia płynu solarnego. Jego podstawowym zadaniem jest automatyczne otwieranie się w przypadku, gdy ciśnienie w systemie przekroczy ustaloną wartość graniczną. Dzięki temu zapobiega się uszkodzeniom instalacji oraz wyciekom płynu solarnego, co mogłoby prowadzić do poważnych awarii. W praktyce, zawory bezpieczeństwa są projektowane zgodnie z normami, które określają ich wydajność i niezawodność. Na przykład, w wielu systemach słonecznych stosuje się zawory bezpieczeństwa z certyfikatami, które potwierdzają ich zgodność z europejskimi normami EN 12828 oraz EN 13445, co zapewnia ich wysoką jakość i bezpieczeństwo użytkowania. Dodatkowo, regularna konserwacja i kontrola funkcjonowania zaworów bezpieczeństwa są niezbędne, aby zapewnić sprawne działanie całego systemu, co jest zgodne z najlepszymi praktykami w branży energetycznej.

Pytanie 39

Jaką minimalną powierzchnię działki należy posiadać do zainstalowania poziomego wymiennika gruntowego w glebie gliniastej, który będzie źródłem energii niskotemperaturowej dla pompy ciepła o mocy grzewczej wynoszącej 10 kW?

A. od 10 m2 do 20 m2
B. od 60 m2 do 100 m2
C. od 400 m2 do 600 m2
D. od 2000 m2 do 3000 m2
Odpowiedzi sugerujące mniejsze powierzchnie, takie jak od 60 m2 do 100 m2, od 10 m2 do 20 m2 czy od 2000 m2 do 3000 m2, nie biorą pod uwagę istotnych czynników wpływających na efektywność wymiennika gruntowego. Odpowiedzi te mogą wynikać z błędnego założenia, że mniejsza powierzchnia może wystarczyć do uzyskania pożądanej mocy grzewczej. W przypadku gruntów gliniastych, ich niska przewodność cieplna oznacza, że wymiennik musi mieć znaczną powierzchnię, aby skutecznie przekazywać ciepło. Odpowiedź zakładająca powierzenie tylko 10 m2 do 20 m2 jest zupełnie nieadekwatna, gdyż taka powierzchnia nie jest w stanie dostarczyć wystarczającej ilości energii cieplnej dla pompy ciepła o mocy 10 kW. Ponadto, odpowiedzi sugerujące dużą powierzchnię od 2000 m2 do 3000 m2 mogą prowadzić do niepotrzebnych wydatków i nieefektywności w projektowaniu systemów, gdyż nie ma uzasadnienia technicznego dla tak dużej powierzchni w kontekście podanych wymagań. Właściwe zaprojektowanie wymiennika gruntowego powinno opierać się na analizie lokalnych warunków gruntowych, przewidywanej mocy grzewczej oraz zaleceniach technicznych, co pozwoli na optymalizację kosztów oraz efektywności energetycznej systemu. Dlatego kluczowe jest, aby przed przystąpieniem do budowy wymiennika gruntowego zasięgnąć porady specjalisty i przeprowadzić szczegółowe badania gruntu.

Pytanie 40

Jakie mogą być powody wystąpienia na falowniku kodu błędu wskazującego na zwarcie doziemne podczas uruchamiania systemu fotowoltaicznego?

A. Całkowite wyczerpanie akumulatora
B. Uszkodzenie izolacji kabla w obwodzie AC
C. Uszkodzenie izolacji kabla w obwodzie DC
D. Niedostosowanie prądowe modułów
Uszkodzenie izolacji przewodu w obwodzie DC to naprawdę istotny problem, gdy chodzi o instalacje fotowoltaiczne. Ten obwód łączy panele z falownikiem, więc jakiekolwiek uszkodzenia mogą być groźne. Przewody muszą być solidnie zabezpieczone przed mechanicznymi uszkodzeniami oraz wpływem pogody. W przeciwnym razie może dojść do zwarcia doziemnego, co nie jest dobrym scenariuszem. Jak izolacja jest uszkodzona, prąd może przepływać do ziemi i to prowadzi do błędów na falowniku. Dlatego regularne przeglądy wizualne tych przewodów to co najmniej podstawowe, a używanie materiałów odpornych na warunki atmosferyczne i zgodnych z normami, na przykład IEC 61215, jest super ważne. W praktyce lepiej korzystać z przewodów, które spełniają normy, jak H1Z2Z2-K, bo to znacznie zmniejsza ryzyko różnych problemów.