Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 4 kwietnia 2025 10:19
  • Data zakończenia: 4 kwietnia 2025 10:48

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas pracy z elektryczną szlifierką ręczną konieczne jest noszenie

A. fartucha ochronnego
B. okularów ochronnych
C. rękawic ochronnych
D. obuwia roboczego
Użycie okularów ochronnych podczas pracy ze szlifierką ręczną z napędem elektrycznym jest kluczowe dla zapewnienia bezpieczeństwa oczu. Prace szlifierskie generują wiele niebezpiecznych odpadów, takich jak pył, iskry oraz drobne cząstki materiału, które mogą łatwo trafić do oczu pracownika. Okulary ochronne są zaprojektowane tak, aby skutecznie chronić przed tymi zagrożeniami. Przykłady zastosowania obejmują zarówno prace w przemyśle, jak i w warsztatach hobbystycznych, gdzie użytkownicy często nie zdają sobie sprawy z ryzyka spowodowanego niewłaściwym zabezpieczeniem oczu. Zgodnie z normą PN-EN 166:2002, która dotyczy środków ochrony indywidualnej oczu, okulary muszą być odpowiednio oznaczone i dopasowane do warunków pracy. Warto zwrócić uwagę na to, aby wybierać modele z odpowiednimi filtrami, które chronią przed promieniowaniem UV, gdyż długotrwałe narażenie na takie promieniowanie może prowadzić do poważnych uszkodzeń wzroku. Bezpieczeństwo powinno być zawsze priorytetem, dlatego noszenie okularów ochronnych jest nie tylko dobrym nawykiem, ale i obowiązkiem.

Pytanie 2

Jakie jest oznaczenie środka używanego do uzupełniania obiegu chłodzenia?

A. WD-40
B. GL-4
C. G12+
D. L-DAB
Płyn oznaczony jako G12+ jest jednym z wielu typów chłodnic, które są powszechnie stosowane w pojazdach, zwłaszcza tych produkowanych przez grupę Volkswagen. G12+ to płyn na bazie glikolu etylenowego, który zawiera dodatki zapobiegające korozji oraz osadzaniu się kamienia kotłowego. Jego właściwości termiczne sprawiają, że efektywnie odprowadza ciepło z silnika, a także chroni przed zamarzaniem w niskich temperaturach. Kluczową cechą G12+ jest to, że jest kompatybilny z innymi płynami chłodniczymi oznaczonymi jako G12, co ułatwia mieszanie i uzupełnianie płynów w układzie chłodzenia. W praktyce, użycie odpowiedniego płynu, takiego jak G12+, jest niezbędne dla zapewnienia długowieczności układu chłodzenia oraz optymalnej pracy silnika. W przypadku niewłaściwego płynu, użytkownik może doświadczyć korozji komponentów układu, co prowadzi do kosztownych napraw.

Pytanie 3

Aby zmierzyć średnice czopów wału korbowego, należy zastosować

A. mikrometr wewnętrzny
B. mikrometr zewnętrzny
C. głębokościomierz mikrometryczny
D. średnicówkę mikrometryczną
Użycie głębokościomierza mikrometrycznego do pomiarów średnic czopów wału korbowego jest nieodpowiednie, ponieważ narzędzie to zostało zaprojektowane do pomiaru głębokości otworów, rowków czy szczelin, a nie średnic zewnętrznych. Podobnie, mikrometr wewnętrzny jest narzędziem stosowanym do pomiarów średnic wewnętrznych, takich jak otwory, ale nie nadaje się do oceny średnic zewnętrznych czopów. Średnicówka mikrometryczna, choć z pozoru mogłaby wydawać się odpowiednia, służy głównie do pomiaru średnic części, które mają formę cylindryczną i są montowane w specjalnych uchwytach, a nie do pomiarów bezpośrednich na czopach wału. Stosowanie niewłaściwego narzędzia pomiarowego może prowadzić do błędnych wyników, co w przemyśle może skutkować nieprawidłowym montażem komponentów, a w konsekwencji awarią maszyn. W kontekście standardów i dobrych praktyk, kluczowe jest stosowanie odpowiednich narzędzi do konkretnych zastosowań, co podkreśla znaczenie precyzyjnych pomiarów w procesach produkcyjnych oraz diagnostycznych.

Pytanie 4

W przednim lewym kole auta zaobserwowano pęknięcie tarczy hamulcowej, a zmierzona grubość okładzin ciernych klocków hamulcowych wynosi 1,4 mm. W trakcie naprawy należy wymienić

A. jedynie tarczę hamulcową koła lewego przedniego
B. wyłącznie tarcze hamulcowe kół osi przedniej
C. tarcze i klocki hamulcowe wszystkich kół
D. tarcze oraz klocki hamulcowe osi przedniej
Odpowiedź, która wskazuje na konieczność wymiany zarówno tarcz, jak i klocków hamulcowych kół osi przedniej, jest prawidłowa z kilku powodów. Pęknięcie tarczy hamulcowej może prowadzić do nierównomiernego zużycia klocków hamulcowych oraz obniżenia skuteczności hamowania. Zgodnie z obowiązującymi standardami w branży motoryzacyjnej, podczas wymiany tarczy hamulcowej zawsze zaleca się wymianę klocków hamulcowych na tej samej osi, aby zapewnić równomierne działanie układu hamulcowego oraz uniknąć sytuacji, w której nowe komponenty będą pracować z zużytymi elementami. Przykładowo, jeśli nowe tarcze są połączone z klockami o niewłaściwej grubości, może to prowadzić do zwiększonego ryzyka przegrzewania się i szybszego zużycia nowych tarcz. W praktyce, wymiana tarcz i klocków hamulcowych na osi przedniej zapewnia lepsze bezpieczeństwo oraz komfort jazdy, a także wydłuża żywotność całego układu hamulcowego.

Pytanie 5

Na tarczy hamulcowej pojawiło się widoczne uszkodzenie. Jaką metodę naprawy wybierzesz?

A. Regeneracja poprzez napawanie
B. Regeneracja poprzez chromowanie
C. Wymiana dwóch tarcz na nowe
D. Szlifowanie na wymiar naprawczy
Wymiana dwóch tarcz hamulcowych na nowe jest najbardziej zalecaną praktyką w przypadku, gdy na tarczy powstało widoczne pęknięcie. Pęknięcia w tarczach hamulcowych mogą prowadzić do poważnych problemów z bezpieczeństwem, w tym do utraty efektywności hamowania oraz zwiększonego ryzyka awarii. Nowe tarcze zapewniają integralność materiału oraz optymalne parametry pracy, co przyczynia się do lepszego rozpraszania ciepła i minimalizacji odkształceń. Dodatkowo, wymiana tarcz zapewnia zgodność z normami i standardami branżowymi, takimi jak dyrektywy ECE R90, które wymagają, aby zamiennikiach części hamulcowych miały porównywalne parametry do oryginalnych części. Wymiana dwóch tarcz jednocześnie jest także zalecana, aby uniknąć nierównomiernego zużycia i potencjalnych problemów z stabilnością hamowania w przyszłości. W praktyce, jeśli jedna tarcza uległa uszkodzeniu, warto rozważyć wymianę obu, aby zapewnić jednorodność i pełną efektywność systemu hamulcowego.

Pytanie 6

W trakcie wypadku rolą napinacza pasa bezpieczeństwa jest

A. zmniejszenie nacisku pasa na ludzkie ciało, gdy jest on zbyt duży
B. zablokowanie zwijacza, co uniemożliwi rozwinięcie pasa
C. ułatwienie wypięcia pasa tuż po zamortyzowaniu uderzenia
D. jak najszybsze, mocne związanie ciała człowieka z konstrukcją pojazdu
Napinacz pasa bezpieczeństwa odgrywa kluczową rolę w systemie zabezpieczeń pojazdu. Jego głównym zadaniem jest jak najszybsze i ściśle związanie ciała pasażera z konstrukcją pojazdu w momencie zderzenia. Dzięki temu, podczas nagłego hamowania lub kolizji, napinacz minimalizuje ryzyko przesunięcia się ciała pasażera do przodu, co mogłoby prowadzić do poważnych obrażeń. Warto zauważyć, że napinacze działają na zasadzie mechanizmu automatyzacji, który w momencie detekcji wypadku błyskawicznie napina pas, co zostało zaprojektowane zgodnie z normami bezpieczeństwa, takimi jak ECE R16 w Europie. Przykładowo, w nowoczesnych pojazdach, systemy napinaczy współpracują z poduszkami powietrznymi, co jeszcze bardziej zwiększa poziom ochrony pasażerów. Prawidłowe działanie napinacza jest zatem kluczowe dla zapewnienia bezpieczeństwa podczas jazdy oraz w sytuacjach kryzysowych, co podkreśla jego znaczenie w inżynierii motoryzacyjnej.

Pytanie 7

Podczas analizy układu korbowo-tłokowego zauważono zarysowanie tłoka w rejonie pierścieni. Uszkodzony tłok powinien zostać

A. pozostawiony bez naprawy do dalszego użytkowania
B. zregenerowany metodą klejenia
C. wymieniony na nowy
D. naprawiony przez oszlifowanie uszkodzonego miejsca papierem ściernym
Wymiana uszkodzonego tłoka na nowy jest kluczowym elementem zapewnienia prawidłowego funkcjonowania silnika. Zarysowanie w części pierścieniowej tłoka może prowadzić do nieszczelności, co z kolei skutkuje utratą kompresji i obniżeniem efektywności pracy silnika. Praktyka wskazuje, że stosowanie uszkodzonych komponentów zamiast ich wymiany może prowadzić do poważniejszych awarii, w tym uszkodzenia cylindrów. Dobrym przykładem jest procedura przeglądów silników wysokoprężnych, gdzie zaleca się wymianę tłoków w przypadku stwierdzenia jakichkolwiek uszkodzeń. Przemysłowy standard jakości dla silników, zwany ISO 9001, promuje zasadę wymiany uszkodzonych części w celu zapewnienia długoterminowej efektywności i niezawodności. Wymiana tłoka na nowy, zgodnie z producentem, zapewnia optymalne dopasowanie oraz wydajność, co jest niezbędne w przypadku serwisowania i naprawy silników.

Pytanie 8

Ile wyniesie całkowity koszt brutto wymiany oleju silnikowego?

Lp.NazwaIlość jednostkaCena jednostkowa netto
1.Olej silnikowy1 l25,00 zł
2.Filtr oleju1 szt.39,00 zł
3.Podkładka po korek spustowy1 szt.3,00 zł
4.Czas pracy0,5 h
5.Roboczogodzina1 h80,00 zł
Uwaga: ilość wymienianego oleju silnikowego - 5,5 l
Podatek VAT - 23%

A. 180,81 zł
B. 219,50 zł
C. 269,99 zł
D. 147,00 zł
Poprawna odpowiedź to 269,99 zł, co wynika z prawidłowego obliczenia całkowitego kosztu brutto wymiany oleju silnikowego. Aby uzyskać tę kwotę, należy zsumować wszystkie koszty netto związane z usługą, w tym koszt oleju, który zależy od jego ilości, oraz dodatkowe składniki usługi, takie jak koszt robocizny czy ewentualnych materiałów eksploatacyjnych. Kluczowym elementem jest również doliczenie podatku VAT, który w Polsce wynosi 23%. Przykładowo, jeżeli koszt netto wymiany oleju wynosi 219,50 zł, to po dodaniu VAT (219,50 zł * 0,23 = 50,49 zł), całkowity koszt brutto wynosi 269,99 zł. Tego typu obliczenia są standardową praktyką w branży motoryzacyjnej, gdzie klarowne i przejrzyste przedstawienie kosztów jest niezbędne dla klientów, pozwalając im na lepsze zrozumienie wydatków związanych z usługami serwisowymi.

Pytanie 9

Czym jest honowanie?

A. metoda obróbki chemicznej
B. metoda obróbki cieplnej
C. metoda obróbki plastycznej
D. metoda obróbki wygładzającej
Honowanie to proces obróbczy, który ma na celu wygładzenie i poprawę jakości wykończenia powierzchni w otworach cylindrycznych, jak również w innych kształtach. Używa się go głównie do osiągania wysokiej precyzji wymiarowej i gładkości powierzchni, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak produkcja silników, skrzyń biegów, czy elementów hydraulicznych. Proces honowania polega na użyciu narzędzi skrawających, które wykonują ruch posuwisto-zwrotny, co pozwala na usunięcie mikrowad i nadmiaru materiału. Przykłady zastosowania honowania obejmują przygotowanie otworów cylindrycznych w silnikach spalinowych, gdzie wymagana jest duża dokładność, oraz w produkcji wałów korbowych. Zgodnie z dobrymi praktykami branżowymi, honowanie jest realizowane na maszynach honujących, które są zaprojektowane tak, aby zapewnić stałą kontrolę nad parametrami obróbczy, co przekłada się na powtarzalność i jakość wytwarzanych elementów. W standardach przemysłowych, takich jak ISO 9001, honowanie jest uznawane za kluczowy proces w utrzymaniu wysokiej jakości produkcji.

Pytanie 10

W systemie klimatyzacyjnym parownik umiejscowiony jest

A. za wentylatorem chłodnicy
B. obok sprężarki klimatyzacji
C. obok chłodnicy silnika
D. obok nagrzewnicy
Parownik w układzie klimatyzacji znajduje się blisko nagrzewnicy, co ma kluczowe znaczenie dla efektywnego działania systemu. Parownik jest elementem, w którym czynnik chłodniczy odparowuje, pochłaniając ciepło z wnętrza pojazdu. Dzięki temu obniża temperaturę powietrza, które następnie jest kierowane do kabiny. Umieszczenie parownika przy nagrzewnicy umożliwia wymianę ciepła, co jest niezbędne do uzyskania komfortowej temperatury w kabinie, zarówno latem, jak i zimą. W rzeczywistości, gdy klimatyzacja jest włączona, parownik efektywnie współpracuje z nagrzewnicą, aby zapewnić optymalne warunki termiczne. W praktyce, serwisowanie układu klimatyzacji powinno obejmować kontrolę stanu parownika, aby zapobiec zjawisku zamarzania, które może prowadzić do pogorszenia wydajności. Właściwe umiejscowienie i konserwacja parownika zgodnie z wytycznymi producenta oraz standardami branżowymi są kluczowe dla długotrwałej i niezawodnej pracy systemu klimatyzacyjnego.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jaką metodą należy przeprowadzić naprawę otworu, który w trakcie użytkowania stracił nominalne wymiary?

A. lutowania
B. nitowania
C. spawania
D. tulejowania
Metody nitowania, spawania i lutowania nie nadają się do naprawy otworów, które straciły swoje nominalne wymiary, i jest kilka powodów, dla których tak jest. Nitowanie to łączenie elementów z użyciem nitów, co działa super w przypadku złączy, ale nie rozwiązuje problemu otworów. Jak to mówią, może nawet pogorszyć sprawę, jeśli otwór źle pasuje do nitów, co prowadzi do luzów albo dalszych uszkodzeń. Spawanie to kolejna sprawa – wykorzystuje wysoką temperaturę do łączenia metali, ale może to wprowadzać deformacje w okolicy, co nie jest fajne, zwłaszcza w precyzyjnych częściach. I jeszcze zmienia właściwości materiałów, więc nie jest to dobre podejście do naprawy otworów. Lutowanie? Też raczej nie – to technika do łączenia małych elementów, jak w elektronice, a nie do radzenia sobie z wymiarami otworów. To może tylko osłabić całą strukturę. Jak spojrzeć na to z bliska, widać, że tulejowanie to jedyny sensowny sposób na przywrócenie otworów do ich nominalnych wymiarów.

Pytanie 13

Wstępna ocena organoleptyczna stanu technicznego amortyzatora, obejmuje

A. analizę stanu zużycia drążków kierowniczych
B. analizę wzrokową stopnia zużycia opon pojazdu
C. analizę stanu zużycia tulei wahaczy
D. analizę zużycia sprężyn zawieszenia
Wybór odpowiedzi dotyczących oceny zużycia drążków kierowniczych, tulei wahaczy oraz sprężyn zawieszenia może prowadzić do nieprawidłowych wyników oceny stanu technicznego pojazdu. Choć te elementy są istotne dla funkcjonowania układu zawieszenia, nie są bezpośrednio związane z wstępną, organoleptyczną oceną stanu amortyzatora. Drążki kierownicze są odpowiedzialne za kierowanie pojazdem, a ich zużycie może wpływać na precyzję prowadzenia, ale ich badanie nie jest pierwszym krokiem w ocenie stanu amortyzatorów. Tuleje wahaczy, które odpowiadają za stabilność zawieszenia, można ocenić jedynie w późniejszych etapach diagnostyki. Natomiast sprężyny zawieszenia, choć kluczowe dla amortyzacji, również wymagają bardziej szczegółowego badania, które nie jest częścią wstępnej, wizualnej oceny. Często błędne rozumienie struktury układu zawieszenia oraz jego poszczególnych komponentów prowadzi do zaniżania znaczenia oceny stanu opon. W praktyce nieprawidłowe oceny mogą skutkować niebezpiecznymi warunkami na drodze, co podkreśla znaczenie zrozumienia oraz przestrzegania właściwych procedur diagnostycznych.

Pytanie 14

Aby ocenić użyteczność eksploatacyjną płynu hamulcowego, konieczne jest zmierzenie jego temperatury

A. zamarzania
B. wrzenia
C. odparowywania
D. krzepnięcia
Pomiar temperatury wrzenia płynu hamulcowego jest kluczowym aspektem oceny jego przydatności eksploatacyjnej. Płyny hamulcowe, w szczególności te na bazie glikolu, charakteryzują się określoną temperaturą wrzenia, która wpływa na ich skuteczność i bezpieczeństwo. W momencie, gdy temperatura wrzenia płynu hamulcowego spada poniżej zalecanych wartości, może dojść do zjawiska wrzenia w układzie hamulcowym, co prowadzi do poważnych problemów z hamowaniem. W praktyce, zbyt wysoka temperatura pracy układu hamulcowego, na przykład podczas intensywnego użytkowania pojazdu, może powodować degradację płynu, co skutkuje obniżeniem jego temperatury wrzenia. Regularne pomiary tej temperatury, realizowane zgodnie z normami takimi jak DOT (Department of Transportation) czy SAE (Society of Automotive Engineers), pozwalają na wczesne wykrycie problemów i wymianę płynu hamulcowego, co jest kluczowe dla zapewnienia bezpieczeństwa na drodze. Przykładowo, w pojazdach sportowych, gdzie intensywne hamowanie jest na porządku dziennym, monitorowanie temperatury wrzenia płynu hamulcowego powinno być standardową praktyką serwisową.

Pytanie 15

Głównym celem smaru używanego w piastach kół tylnych jest przede wszystkim

A. utrzymanie w dobrym stanie elementów piasty
B. zmniejszenie współczynnika tarcia
C. odprowadzanie nadmiaru ciepła
D. uzupełnienie wolnych przestrzeni
Smar w piastach kół tylnych odgrywa kluczową rolę w zmniejszaniu współczynnika tarcia, co jest niezwykle istotne dla zapewnienia płynności ruchu oraz wydajności układu. Gdy elementy mechaniczne poruszają się względem siebie, generują tarcie, które może prowadzić do zużycia komponentów oraz obniżenia efektywności energetycznej. Zastosowanie odpowiedniego smaru, który ma niską lepkość, pozwala na zmniejszenie tego tarcia, co z kolei przekłada się na lepsze osiągi pojazdu. Przykładem może być zastosowanie smarów litowych w piastach, które nie tylko redukują tarcie, ale także chronią przed korozją oraz zanieczyszczeniami. W branży motoryzacyjnej stosuje się także smary zgodne z normami ASTM i ISO, co zapewnia ich wysoką jakość i efektywność. Oprócz zapewnienia efektywności mechanicznej, zmniejszenie tarcia wpływa także na oszczędność paliwa, co jest niezmiernie ważne w kontekście zrównoważonego rozwoju i ochrony środowiska. Dlatego właściwy dobór smaru oraz jego regularna wymiana są kluczowe dla długowieczności i bezawaryjności układów napędowych.

Pytanie 16

Jaką precyzję pomiarową uzyskuje mikrometr, w którym zastosowano bęben z 50 podziałkami, a skok współpracującej śruby mikrometrycznej wynosi 0,5 mm?

A. 0,05 mm
B. 0,1 mm
C. 0,5 mm
D. 0,01 mm
Mikrometr z bębnem pomiarowym wyposażonym w 50 nacięć oraz śrubą mikro metryczną o skoku 0,5 mm charakteryzuje się dokładnością pomiarową wynoszącą 0,01 mm. Oblicza się to, dzieląc skok śruby przez liczbę nacięć na bębnie pomiarowym. W tym przypadku: 0,5 mm / 50 = 0,01 mm. Tego rodzaju narzędzie pomiarowe jest powszechnie używane w precyzyjnych pomiarach, gdzie wymagana jest wysoka dokładność, na przykład w obróbce metali czy inżynierii mechanicznej. Mikrometry służą do pomiaru grubości, średnicy oraz wymiarów detali, co jest kluczowe dla zapewnienia zgodności z normami jakości. W praktyce, precyzyjny pomiar o takiej dokładności pozwala na wyeliminowanie błędów w procesach produkcyjnych, co przekłada się na lepszą jakość wyrobów i mniejsze straty materiałowe. Warto również wspomnieć, że mikrometry są często kalibrowane zgodnie z normami, aby zapewnić ich niezawodność i precyzję w długim okresie użytkowania.

Pytanie 17

Aby przeprowadzić regulację luzu zaworowego, potrzebne jest

A. mikrometr
B. szczelinomierz
C. passametr
D. głębokościomierz
Szczelinomierz jest narzędziem pomiarowym wykorzystywanym do precyzyjnego ustalania luzu zaworowego w silnikach spalinowych. Luz zaworowy jest kluczowym parametrem, który wpływa na prawidłową pracę silnika, jego osiągi oraz efektywność. Użycie szczelinomierza pozwala na dokładne zmierzenie odstępu między końcem zaworu a jego gniazdem, co jest niezbędne do optymalizacji pracy silnika. Przykładowo, w silnikach z mechanicznymi zaworami, zbyt mały luz może prowadzić do przegrzewania i uszkodzenia zaworów, natomiast zbyt duży luz może powodować hałas i obniżoną efektywność spalania. Zgodnie z dobrymi praktykami branżowymi, regulację luzu zaworowego należy przeprowadzać cyklicznie, zgodnie z harmonogramem serwisowym producenta, co zapewnia długotrwałą i bezawaryjną pracę silnika. Użycie szczelinomierza jest zatem kluczowe, aby zapewnić odpowiednią precyzję i jakość wykonania tej regulacji.

Pytanie 18

Reparacja zużytego wału korbowego polega na jego

A. polerowaniu
B. tulejowaniu
C. szlifowaniu
D. honowaniu
Szlifowanie wału korbowego jest kluczowym procesem w naprawie elementów silników spalinowych. Proces ten polega na usunięciu niewielkiej warstwy materiału z powierzchni wału, co pozwala na przywrócenie jego właściwych wymiarów oraz gładkości. W wyniku wysokiego zużycia wału, często pojawiają się nierówności i zarysowania, które mogą prowadzić do poważnych uszkodzeń silnika. Szlifowanie, przeprowadzane za pomocą specjalistycznych maszyn szlifierskich, umożliwia precyzyjne dopasowanie i poprawę stanu powierzchni. Ważne jest także, aby po szlifowaniu przeprowadzić pomiar średnicy, aby upewnić się, że wał spełnia wymagania techniczne i normy producenta. Przykładowo, jeżeli wał jest szlifowany do większej średnicy, konieczne może być zastosowanie odpowiednich tulejek łożyskowych, które będą miały dopasowane wymiary. W praktyce, szlifowanie wału korbowego to standardowa procedura, która pozwala na przedłużenie żywotności silnika oraz minimalizację kosztów naprawy poprzez uniknięcie wymiany całego elementu.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Podczas wymiany szyby w pojeździe należy użyć szyby

A. polecanej przez niezależny warsztat.
B. ze znakiem homologacji.
C. z logo producenta samochodu.
D. zalecanej przez autoryzowany serwis.
Wybór szyby z homologacją jest kluczowy dla zapewnienia bezpieczeństwa i prawidłowego działania pojazdu. Szyby samochodowe muszą spełniać określone normy i standardy jakości, które są regulowane przez europejskie prawo. Homologacja oznacza, że dana szyba została przetestowana i zatwierdzona zgodnie z wymaganiami technicznymi oraz standardami bezpieczeństwa. Użycie szyby z homologacją zapewnia, że materiał jest odpowiednio przystosowany do warunków zewnętrznych, takich jak zmiany temperatury, ciśnienie czy siła uderzenia. Na przykład, szyby o odpowiedniej homologacji są mniej podatne na pęknięcia w wyniku uderzeń, co jest szczególnie ważne w przypadku wypadków. Dodatkowo, szyby homologowane często zapewniają lepszą izolację akustyczną i termiczną, co zwiększa komfort podróżowania. Wybierając szybę z homologacją, inwestujesz w jakość i bezpieczeństwo, co jest kluczowe dla długotrwałego użytkowania pojazdu.

Pytanie 21

Jakie jest zadanie gaźnika w pojeździe?

A. pompowanie paliwa
B. podgrzewanie powietrza
C. regulowanie strumienia wtrysku
D. dozowanie paliwa i powietrza
Gaźnik odgrywa kluczową rolę w silniku spalinowym, odpowiadając za dozowanie paliwa i powietrza do mieszanki paliwowej, która jest następnie dostarczana do cylindrów silnika. Właściwe proporcje tego połączenia są istotne dla efektywności spalania, co ma bezpośredni wpływ na osiągi silnika oraz emisję spalin. W praktyce, gaźniki są projektowane w taki sposób, aby zapewnić optymalne mieszanie paliwa i powietrza w różnych warunkach pracy silnika, takich jak różne prędkości obrotowe czy obciążenia. Przykładem zastosowania dobrych praktyk w konstrukcji gaźników jest zastosowanie dławików, które regulują przepływ powietrza, co pozwala na precyzyjne dostosowanie mieszanki do aktualnych potrzeb silnika. Wiedza na temat działania gaźnika ma kluczowe znaczenie dla mechaników i inżynierów zajmujących się diagnostyką i naprawą układów zasilania w silnikach spalinowych.

Pytanie 22

Oznaczenie symbolem dla systemu monitorowania ciśnienia w oponach pojazdu jest

A. TPMS
B. BAS
C. ACC
D. SOHC
System TPMS (Tire Pressure Monitoring System) to nowoczesne rozwiązanie stosowane w pojazdach, które ma na celu monitorowanie ciśnienia w oponach w czasie rzeczywistym. Prawidłowe ciśnienie w oponach jest kluczowe dla bezpieczeństwa, wydajności paliwowej oraz komfortu jazdy. TPMS informuje kierowcę o niskim ciśnieniu w oponach, co pozwala na szybką reakcję i uniknięcie potencjalnych awarii, takich jak uszkodzenie opony czy zwiększone zużycie paliwa. W praktyce, TPMS może być podzielony na dwa główne typy: systemy bezpośrednie, które wykorzystują czujniki ciśnienia zamontowane w oponach, oraz systemy pośrednie, które monitorują prędkość obrotową kół, aby ocenić różnice ciśnienia. Obecnie w wielu krajach stosowanie TPMS jest obowiązkowe w nowych pojazdach, co podkreśla znaczenie tego systemu w poprawie bezpieczeństwa na drogach. W związku z tym kierowcy powinni regularnie sprawdzać działanie systemu TPMS oraz dbać o prawidłowe ciśnienie w oponach, co jest zgodne z zaleceniami producentów pojazdów oraz standardami bezpieczeństwa.

Pytanie 23

Nieprawidłowe rozpylenie paliwa wtryskiwanego, przejawiające się zwiększoną ilością sadzy w spalinach ponad dopuszczalne wartości, nie może być spowodowane

A. nieszczelnością rozpylacza.
B. zużyciem otworów wylotowych rozpylacza.
C. zbyt niskim ciśnieniem wtrysku.
D. nieszczelnością głowicy.
Nieszczelność w rozpylaczu, zużyte otwory wylotowe i niskie ciśnienie wtrysku to rzeczy, które mogą mocno wpłynąć na to, jak dobrze paliwo się rozpyla. Jak rozpylacz jest nieszczelny, to paliwo wtryskuje się źle i silnik działa nieregularnie. Kiedy paliwo jest źle rozprowadzone, mogą się pojawić duże krople, które nie spalają się tak, jak powinny, a to zwiększa emisję cząstek stałych, w tym sadzy. Zużyte otwory w rozpylaczu zaburzają strumień paliwa, co znowu ma wpływ na to, jak dobrze zachodzi spalanie. A niskie ciśnienie wtrysku to kolejny problem, bo przez to atomizacja paliwa nie zachodzi prawidłowo, co znów zwiększa ryzyko powstawania sadzy. Myślenie, że nieszczelności głowicy mogą być za to odpowiedzialne, to spory błąd, bo głowica nie wpływa na wtrysk. Więc żeby zmniejszyć emisję sadzy, ważne jest, żeby na bieżąco serwisować układy wtryskowe, sprawdzając stan rozpylaczy i ciśnienie, jak radzą producenci.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Podczas przyjmowania pojazdu do naprawy mechanik zauważył uszkodzenie układu wydechowego. W protokole zdawczo-odbiorczym powinien również zanotować informację uzyskaną od właściciela pojazdu na temat

A. zakresu prac do wykonania w trakcie naprawy pojazdu
B. numeru kontaktowego do przedstawiciela ubezpieczalni pojazdu
C. innych uszkodzeń wykrytych w pojeździe
D. najdłuższego czasu realizacji naprawy
Właściwa odpowiedź dotyczy odnotowania innych uszkodzeń stwierdzonych w pojeździe, co jest kluczowe w procesie naprawy. Mechanik, przyjmując pojazd do naprawy, powinien uwzględnić wszystkie istotne informacje, które mogą wpłynąć na zakres i koszt naprawy. Odnotowanie dodatkowych uszkodzeń w protokole zdawczo-odbiorczym jest zgodne z najlepszymi praktykami w branży motoryzacyjnej oraz standardami jakości usług. Przykładowo, jeżeli w czasie przeglądu wykryte zostanie uszkodzenie zawieszenia obok uszkodzenia układu wydechowego, ważne jest, aby klient był świadomy pełnego zakresu potrzebnych napraw. Dzięki temu unika się nieporozumień dotyczących kosztów oraz czasu naprawy. Takie podejście nie tylko zwiększa zaufanie klienta, ale również pozwala warsztatom na efektywne planowanie prac oraz zarządzanie czasem.

Pytanie 26

Woda używana do mycia aut w myjni musi być odprowadzana

A. bezpośrednio do systemu kanalizacji komunalnej
B. bezpośrednio do kanalizacji deszczowej
C. do separatorów ściekowych
D. do wykopu w ziemi na zewnątrz myjni
Odpowiedzi sugerujące odprowadzanie wody do kanalizacji ścieków komunalnych, wykopu w ziemi czy kanalizacji burzowej są niepoprawne z kilku kluczowych powodów. Odprowadzanie wody z myjni samochodowej bezpośrednio do kanalizacji ścieków komunalnych jest niewłaściwe, ponieważ woda ta zawiera substancje chemiczne, które mogą negatywnie wpływać na system oczyszczania ścieków oraz jakość wody w odbiornikach. Zanieczyszczenia mogą przekraczać dopuszczalne normy, co stawia pod znakiem zapytania zgodność z regulacjami ochrony środowiska. Przeniesienie odpowiedzialności za oczyszczanie zanieczyszczonej wody na system komunalny jest nieetyczne i może skutkować wysokimi karami finansowymi. Odprowadzanie wody do wykopu w ziemi poza pomieszczeniem myjni również budzi poważne wątpliwości, ponieważ może prowadzić do bezpośredniego zanieczyszczenia gleb i wód gruntowych, co jest zabronione przepisami ochrony środowiska. Natomiast kierowanie ścieków do kanalizacji burzowej jest kolejnym błędem, gdyż nie jest ona przystosowana do odbioru zanieczyszczonych wód, co może prowadzić do ich wypływu do rzek czy jezior, zagrażając lokalnym ekosystemom. Kluczowe jest, aby myjnie samochodowe stosowały odpowiednie technologie, takie jak separatorów ściekowych, które zgodnie z normami środowiskowymi, skutecznie usuwały zanieczyszczenia przed ich odprowadzeniem.

Pytanie 27

Kiedy należy zrealizować wymianę filtra oleju silnikowego?

A. za każdym razem przy wymianie oleju silnikowego
B. wyłącznie po przejechaniu 10 tys. km
C. tylko po przejechaniu 20 tys. km
D. przy każdej drugiej wymianie oleju silnikowego
Filtr oleju silnikowego odgrywa kluczową rolę w zapewnieniu prawidłowego funkcjonowania silnika. Jego głównym zadaniem jest zatrzymywanie zanieczyszczeń oraz cząstek stałych, które mogą powstawać podczas pracy silnika. Wymiana filtra oleju powinna następować przy każdej wymianie oleju, ponieważ stary filtr może być już zanieczyszczony i nieefektywny, co prowadzi do zanieczyszczenia nowego oleju. Przy regularnej wymianie filtra, silnik jest chroniony przed uszkodzeniami, a jego żywotność jest znacznie wydłużona. Dobry praktyką jest stosowanie filtrów oleju od renomowanych producentów, które zapewniają wysoką efektywność filtracji. Dodatkowo, zgodnie z zaleceniami wielu producentów samochodów, nieprzestrzeganie wymiany filtra przy każdej wymianie oleju może skutkować utratą gwarancji. Warto również pamiętać, że w przypadku intensywnego użytkowania pojazdu, jak jazda w trudnych warunkach, częstotliwość wymiany filtra powinna być zwiększona.

Pytanie 28

Jaką konfigurację silnika oznacza skrót DOHC?

A. górnozaworowy z pojedynczym wałkiem rozrządu w kadłubie
B. górnozaworowy z dwoma wałkami rozrządu w głowicy
C. górnozaworowy z jednym wałkiem rozrządu w głowicy
D. dolnozaworowy z pojedynczym wałkiem rozrządu w kadłubie
Nieprawidłowe odpowiedzi odnoszą się do różnych typów układów rozrządu, które są niezgodne z definicją DOHC. Układ dolnozaworowy z jednym wałkiem rozrządu w kadłubie to klasyczna konstrukcja, znana jako OHV (Overhead Valve), która ma swoje zastosowanie w starszych silnikach, ale nie oferuje takiej samej efektywności jak DOHC. Tego rodzaju silniki mają ograniczoną wydajność przy wysokich obrotach, co może prowadzić do mniejszej mocy i gorszej dynamiki. Odpowiedzi dotyczące górnozaworowego układu z jednym wałkiem rozrządu w kadłubie oraz z dwoma wałkami rozrządu w głowicy również nie oddają pełni możliwości konstrukcji DOHC. W przypadku jednego wałka w kadłubie, wirujący komponent ma ograniczone możliwości dostrojenia pracy zaworów. Z kolei konstrukcja z dwoma wałkami w głowicy, ale nie w pełni eksploatująca ich potencjał, z reguły nie oferuje korzyści związanych z niezależnym sterowaniem zaworami. Brak synchronizacji i zmienności w otwieraniu i zamykaniu zaworów skutkuje mniejszym efektem w zakresie spalania i osiągów, co jest kluczowe w nowoczesnych silnikach. Rozumienie tych różnic jest istotne dla inżynierów oraz entuzjastów motoryzacji, aby zrozumieć, jak konstrukcja silnika wpływa na jego ogólne parametry i efektywność pracy.

Pytanie 29

Akumulator, którego gęstość elektrolitu wynosi 1,11 g/cm3 oraz napięcie na zaciskach 7,6 V, powinien

A. być naładowany.
B. być uzdatniony poprzez dodanie wody destylowanej.
C. zostać wymieniony na nowy.
D. pozostać bez zmian w stanie naładowanym.
Poprawna odpowiedź to wymiana akumulatora na nowy. Gęstość elektrolitu wynosząca 1,11 g/cm³ sugeruje, że akumulator może być rozładowany, gdyż wartość ta jest niższa od standardowej gęstości elektrolitu w pełni naładowanego akumulatora, wynoszącej około 1,27 g/cm³. Napięcie 7,6 V na zaciskach również wskazuje na stan rozładowania, ponieważ standardowe napięcie akumulatora 12 V w pełni naładowanego powinno wynosić od 12,6 V do 12,8 V. Należy pamiętać, że akumulatory kwasowo-ołowiowe mają określoną żywotność, która wynosi zazwyczaj od 3 do 5 lat w zależności od warunków eksploatacji. Po przekroczeniu tej granicy, ich wydajność znacznie się obniża, co prowadzi do problemów z rozruchem pojazdu oraz dostarczeniem mocy. Dlatego, gdy akumulator wykazuje takie oznaki, najlepszym rozwiązaniem jest jego wymiana na nowy, aby zapewnić niezawodne działanie systemów elektrycznych. W takim przypadku warto również zwrócić uwagę na odpowiedni dobór akumulatora, który spełnia wymagania producenta oraz standardy jakości, takie jak norma ISO 9001, co zapewnia optymalną wydajność i bezpieczeństwo użytkowania.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Masa własna pojazdu obejmuje

A. masę pojazdu oraz standardowego wyposażenia z płynami eksploatacyjnymi, lecz bez kierowcy
B. masę standardowego wyposażenia pojazdu, jednak bez kierowcy
C. masę pojazdu oraz normalnego wyposażenia, a także kierowcy i pasażera
D. masę pojazdu oraz wyposażenia, bez płynów eksploatacyjnych i bez kierowcy
Masa własna pojazdu odnosi się do całkowitej masy pojazdu, która obejmuje masę samego pojazdu, jego standardowego wyposażenia oraz wszelkich płynów eksploatacyjnych, takich jak olej silnikowy, płyn chłodzący czy paliwo. Kluczowym aspektem jest to, że masa własna nie uwzględnia kierowcy ani pasażerów. W praktyce, znajomość masy własnej pojazdu jest istotna dla określenia jego osiągów, takich jak przyspieszenie, zużycie paliwa oraz bezpieczeństwo. Normy branżowe, takie jak ISO 612, definiują metody pomiaru masy pojazdów, co pozwala na porównywanie różnych modeli pod kątem ich masy oraz efektywności. Ponadto, producenci pojazdów często podają masę własną w dokumentacji technicznej, co jest istotne dla użytkowników planujących przewóz towarów czy osób, a także dla osób zajmujących się tuningiem pojazdów. Ich świadomość odnośnie do masy własnej jest kluczowa dla zapewnienia bezpieczeństwa i legalności eksploatacji pojazdów na drogach publicznych.

Pytanie 32

Złączenie elementów składowych podłogi w samochodzie osobowym zazwyczaj realizuje się poprzez

A. zgrzewanie
B. lutowanie
C. kręcenie
D. klejenie
Wydaje się, że wybór innych metod łączenia elementów podłogi w samochodach może być łatwy, ale każda z nich ma swoje ograniczenia. Na przykład, skręcanie wykorzystuje mechaniczne połączenia, które mogą osłabić strukturę, szczególnie gdy elementy są narażone na wibracje i różne obciążenia. Jeśli używamy śrub czy nakrętek, to czasem może to prowadzić do luzów, a w ekstremalnych warunkach użytkowania, jak w samochodach, mogą wystąpić poważne awarie. A lutowanie, mimo że jest popularne w elektronice, nie nadaje się raczej do materiałów konstrukcyjnych podłogi - potrzebuje szczególnych stopów, które mogą nie wytrzymać obciążeń w pojazdach. I jeszcze do tego, lutowanie nie tworzy jednolitej struktury, co może być kluczowe dla wytrzymałości. Choć klejenie czasami działa, w motoryzacji często nie radzi sobie z warunkami atmosferycznymi i zmianami temperatury. To wszystko sprawia, że zgrzewanie wydaje się najlepszym wyborem, bo łączy w sobie wytrzymałość, niską wagę oraz koszty produkcji, co pokazuje, jak ważne jest dobrze dobierać metody łączenia w inżynierii motoryzacyjnej.

Pytanie 33

Aby odczytać kod błędu pojazdu z systemem OBDII / EOBD, konieczne jest użycie

A. diagnoskopu
B. woltomierza
C. spektrofotometru
D. oscyloskopu
Stosowanie oscyloskopu, woltomierza czy spektrofotometru do odczytu kodu błędu w układzie OBDII/EOBD jest niewłaściwe, ponieważ każde z tych urządzeń ma inne zastosowanie, które nie koresponduje z funkcjami diagnostycznymi wymaganymi do skutecznej analizy błędów w pojazdach. Oscyloskop jest używany do analizy sygnałów elektrycznych i ich przebiegów, co może być przydatne w bardziej zaawansowanej diagnostyce, ale nie służy do odczytu kodów błędów. Woltomierz z kolei pozwala na pomiar napięcia elektrycznego, co może być pomocne w sprawdzaniu zasilania komponentów, ale nie jest odpowiedni do interpretacji komunikacji między komputerem a systemem diagnostycznym. Spektrofotometr jest narzędziem stosowanym głównie w analizie chemicznej i nie ma zastosowania w diagnostyce samochodowej. Użytkownicy często mylą te narzędzia z diagnoskopem, przez co mogą zakładać, że każde urządzenie do pomiaru parametrów elektrycznych lub chemicznych jest wystarczające do odczytu kodu błędu. Takie podejście prowadzi do nieefektywnego rozwiązywania problemów, ponieważ nie wszyscy mechanicy są świadomi specyficznych funkcji, jakie pełni diagnoskop w kontekście OBDII/EOBD. Aby skutecznie diagnozować problemy w pojazdach, konieczne jest posługiwanie się odpowiednimi narzędziami dostosowanymi do konkretnego celu, co jest kluczowe w pracy każdego profesjonalnego mechanika.

Pytanie 34

Hałas, który występuje wyłącznie podczas zmiany biegów w skrzyni biegów manualnej, jest wynikiem uszkodzenia

A. przegubów
B. łożysk kół jezdnych
C. synchronizatorów
D. satelitów
Synchronizatory w manualnych skrzyniach biegów są mega ważne, bo pomagają w płynnej zmianie biegów. Dzięki nim prędkość obrotowa wałka napędowego dostosowuje się do prędkości trybu, na który chcemy przełączyć. Jak synchronizatory są uszkodzone, to może być głośno podczas zmiany biegów, bo zęby biegów nie zazębiają się tak jak trzeba. Na przykład, może być tak, że próbujesz wrzucić drugi bieg, a tu nagle słyszysz hałas - to może być znak, że synchronizator ma problem. Dlatego warto regularnie sprawdzać stan tych elementów, bo to dobra praktyka w utrzymaniu skrzyni biegów. Dbanie o nie nie tylko zmniejsza ryzyko uszkodzeń, ale też sprawia, że jazda jest przyjemniejsza i układ napędowy dłużej posłuży. Z mojego doświadczenia, synchronizatory mogą się zużyć, szczególnie gdy auto jest intensywnie użytkowane albo biegami zmienia się w niewłaściwy sposób.

Pytanie 35

Aby dokonać weryfikacji i pomiarów wału korbowego, na początku należy

A. rozebrać tłoki
B. usunąć zanieczyszczenia z wału
C. zdjąć pokrywy czopów i wyjąć wał korbowy z silnika
D. rozmontować korbowody
Aby przeprowadzić weryfikację i pomiary wału korbowego, kluczowym krokiem jest zdemontowanie pokrywy czopów i wymontowanie wału korbowego z silnika. Tylko w ten sposób można uzyskać dostęp do elementów, które wymagają dokładnych pomiarów, takich jak średnice czopów wału oraz luz między wałem a łożyskami. Właściwe pomiary są niezbędne do oceny stanu technicznego wału korbowego, co ma bezpośredni wpływ na prawidłowe funkcjonowanie silnika. W praktyce, przed rozpoczęciem demontażu, należy zwrócić uwagę na odpowiednie zabezpieczenie i oznaczenie elementów, aby uniknąć pomyłek podczas ponownego montażu. Standardy branżowe, takie jak zalecenia producentów, często wskazują na istotność stosowania właściwych narzędzi i technik demontażu, aby nie uszkodzić delikatnych komponentów silnika. Na przykład, korzystanie z odpowiednich kluczy dynamometrycznych podczas montażu pokryw czopów jest kluczowe dla zachowania właściwego momentu dokręcania, co wpływa na długowieczność wału korbowego.

Pytanie 36

Cechą charakterystyczną bezstopniowej mechanicznej skrzyni biegów CVT jest

A. element synchronizujący
B. pas napędowy
C. satelita
D. wałek napędowy
Zdecydowanie nie powinniśmy wybierać innych części, jak wałek atakujący czy synchronizator, bo to nie ma sensu w kontekście skrzyni CVT. Wałek atakujący jest ważny w tradycyjnych skrzyniach biegów, gdzie przenosi moc z silnika do mechanizmu różnicowego. W CVT tę rolę spełnia pas napędowy, więc to jakby nie ten temat. Synchronizatory też są stosowane do synchronizacji obrotów w tradycyjnych skrzyniach podczas zmiany biegów, a w CVT nie ma biegów do zmieniania, tylko płynnie wszystko działa. Satelity z kolei są w automatycznych skrzyniach, a w CVT to się nie odnosi. Jeśli mylimy te elementy, to możemy nie zrozumieć, jak działa nowoczesna motoryzacja i jak różne są te systemy przeniesienia napędu.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Częścią systemu chłodzenia nie jest

A. termostat
B. przekładnia ślimakowa
C. czujnik temperatury
D. pompa wody
Przekładnia ślimakowa nie jest elementem układu chłodzenia silnika, ponieważ pełni zupełnie inną funkcję, związana głównie z przenoszeniem napędu i momentu obrotowego w mechanizmach. Układ chłodzenia silnika składa się z takich elementów jak pompa wody, czujnik temperatury oraz termostat, które współpracują w celu utrzymania optymalnej temperatury pracy silnika. Pompa wody jest odpowiedzialna za cyrkulację płynu chłodzącego w obiegu, co jest kluczowe dla efektywnego odprowadzania ciepła. Czujnik temperatury monitoruje temperaturę płynu chłodzącego, co pozwala na bieżąco kontrolować działanie układu. Termostat natomiast reguluje przepływ płynu chłodzącego, otwierając lub zamykając obieg, co zapobiega przegrzaniu silnika. W związku z tym, zrozumienie roli każdego z tych elementów oraz ich współpracy jest kluczowe dla prawidłowego funkcjonowania silnika i jego układu chłodzenia.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.