Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 4 czerwca 2025 06:20
  • Data zakończenia: 4 czerwca 2025 06:24

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Próbka, którą analizujemy, to bardzo rozcieńczony wodny roztwór soli nieorganicznych, który ma być poddany analizie. Proces, który można zastosować do zagęszczenia tego roztworu, to

A. sublimacji
B. ekstrakcji
C. destylacji
D. krystalizacji
Ekstrakcja to technika, która polega na wydobywaniu substancji z jednego medium do innego, zwykle wykorzystując różnice w rozpuszczalności. Choć jest to proces użyteczny w analizie chemicznej, nie jest on skuteczny dla zatężania roztworów soli. Nie pomaga on w uzyskaniu większego stężenia roztworu, co jest kluczowe w tym kontekście. Sublimacja to proces, w którym substancja przechodzi ze stanu stałego bezpośrednio w gazowy. Ta metoda jest stosowana do oddzielania substancji, które łatwo sublimują, ale nie ma zastosowania w zatężaniu roztworów wodnych. Krystalizacja polega na wytrącaniu substancji w postaci kryształów, co może prowadzić do uzyskania czystszych substancji, jednak nie jest to proces, który efektywnie redukuje objętość roztworu. Typowym błędem myślowym przy wyborze tych metod jest mylenie procesu separacji z procesem zatężania. Należy pamiętać, że skuteczne zatężanie wymaga zastosowania metod, które pozwalają na usunięcie rozpuszczalnika, co jest charakterystyczne dla destylacji. W związku z tym, odpowiednie zrozumienie i zastosowanie metod separacji lub zatężania jest kluczowe w pracy laboratoryjnej.

Pytanie 2

Z uwagi na higroskopijne właściwości tlenku fosforu(V) powinien on być przechowywany w warunkach bez dostępu

A. powietrza
B. tlenu
C. ciepła
D. światła
Tlenek fosforu(V), czyli P2O5, ma naprawdę mocne właściwości higroskopijne, więc potrafi wciągać wilgoć z otoczenia. Dlatego najlepiej trzymać go w suchym miejscu, z dala od powietrza – to ważne, żeby nie doszło do reakcji z wodą, bo wtedy może stracić swoje właściwości. Jak jest za wilgotno, P2O5 może zacząć tworzyć kwas fosforowy, a to zmienia jego charakterystykę i może być problem, gdy chcesz go używać. Ten związek jest często stosowany w produkcji nawozów fosforowych oraz w chemii organicznej, a także w procesach suszenia. Dlatego w chemii ważne są dobre praktyki przechowywania takich substancji, czyli hermetyczne pakowanie i osuszacze. Wiedza o tym, jak prawidłowo składować tlenek fosforu(V), jest kluczowa, żeby zachować jego jakość i skuteczność w różnych zastosowaniach, zarówno przemysłowych, jak i laboratoryjnych.

Pytanie 3

Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO₃
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1-2 z użyciem H₂SO₄
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO₃
ŻelazopH 1-2 z użyciem HNO₃
UtlenialnośćpH1-2 z użyciem H₂SO₄. Przechowywać w ciemności

A. kwasu azotowego(V).
B. kwasu solnego.
C. kwasu fosforowego(V).
D. kwasu siarkowego(VI).
Wybór kwasu siarkowego(VI) do utrwalania próbek wody do oznaczania metali jest niewłaściwy. Choć kwas siarkowy jest silnym kwasem i może być używany w niektórych procesach analitycznych, jego działanie w kontekście utrwalania próbek wody nie jest odpowiednie. Kwas siarkowy ma tendencję do tworzenia siarczanów, co może prowadzić do niepożądanych reakcji chemicznych oraz fałszowania wyników analizy. Z kolei kwas solny, mimo że jest szeroko stosowany w chemii, nie jest zalecany do tego celu, gdyż może powodować wydzielanie gazów, które mogą wpływać na stabilność metali w próbce. Kwas fosforowy(V) również nie znajduje zastosowania w utrwalaniu próbek wody do oznaczania metali. W rzeczywistości wszystkie te kwasy, poza kwasem azotowym, mogą wprowadzać zanieczyszczenia lub prowadzić do reakcji, które zmieniają właściwości chemiczne metali. Wybór odpowiedniego kwasu jest kluczowy dla zachowania integralności analizy. Często praktycznym błędem jest nieuznawanie znaczenia wyboru odpowiednich substancji chemicznych do utrwalania, co może wpływać na ostateczne wyniki analityczne. Właściwe zrozumienie tego aspektu jest kluczowe dla każdego laboratorium zajmującego się analizą chemiczną, aby uniknąć błędów interpretacyjnych oraz zapewnić wysoką jakość danych analitycznych.

Pytanie 4

Podczas rozkładu chloranu(V) potasu powstają chlorek potasu oraz tlen. Ile gramów tlenu zostanie wydzielonych w trakcie rozkładu 24,5 g chloranu(V) potasu, jeśli jednocześnie uzyskano 14,9 g chlorku potasu? Masy molowe pierwiastków: K = 39 g/mol, Cl = 35,5 g/mol, O=16 g/mol?

A. 14,5 g
B. 39,4 g
C. 24,5 g
D. 9,6 g
Jak chcesz obliczyć masę tlenu, który się wydziela podczas rozkładu chloranu(V) potasu, to najpierw musisz spisać równanie reakcji. Wytwarza się 2 KClO3, a potem 2 KCl i 3 O2. To z tego równania widać, że z dwóch moli chloranu dostajemy dwa mole chlorku potasu i trzy mole tlenu. Jeśli chodzi o masy molowe, to mamy KClO3 - 122,5 g/mol, KCl - 74,5 g/mol i O2 - 32 g/mol. Jeśli weźmiemy 24,5 g KClO3, to obliczamy, że mamy około 0,2 mola. Z równania wychodzi, że z 0,2 mola KClO3 dostaniemy 0,3 mola O2, więc po policzeniu masy tlenu wyjdzie nam 9,6 g. Fajnie jest wiedzieć, jak ważne są te obliczenia, szczególnie w laboratoriach, gdzie precyzja ma znaczenie.

Pytanie 5

Naczynia miarowe, skalibrowane "na wlew" (IN) to:

A. kolby miarowe
B. biurety
C. pipety jednomiarowe o obj. 25 cm3
D. kolby destylacyjne
Wykorzystanie innych naczyń miarowych, takich jak kolby destylacyjne, pipety jednomiarowe czy biurety, do pomiarów objętości w kontekście kalibracji na wlew, może prowadzić do nieporozumień. Kolby destylacyjne są projektowane głównie do procesów destylacji, gdzie istotne jest oddzielanie substancji na podstawie różnicy w temperaturach wrzenia, a nie do precyzyjnego pomiaru objętości. Pipety jednomiarowe, z kolei, mają precyzyjnie określoną objętość, ale są kalibrowane na wypływ, co oznacza, że ich objętość jest mierzona, gdy ciecz jest wydobywana, co nie jest zgodne z kalibracją 'na wlew'. Biurety są natomiast używane do titracji, gdzie ważne jest stopniowe dodawanie reagentu, ale również nie są kalibrowane na wlew. Te naczynia mają swoje specyficzne zastosowania i nie powinny być mylone z kolbami miarowymi, które są dedykowane do precyzyjnego pomiaru objętości cieczy. Niezrozumienie tych różnic może prowadzić do błędnych wyników w eksperymentach oraz w trudności z osiągnięciem pożądanej dokładności w badaniach chemicznych.

Pytanie 6

Na podstawie danych zawartych w tabeli określ, do oznaczania którego parametru próbka musi być utrwalona w niskim pH.

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h

A. Barwy.
B. Azotu azotanowego(V).
C. BZT.
D. Fosforanów ogólnych.
Analizując niepoprawne odpowiedzi, należy wskazać, że barwy, BZT oraz azot azotanowy(V) nie wymagają zakwaszenia próbki do analizy, co jest kluczowe dla zrozumienia procesu ich oznaczania. Barwy w wodzie są zazwyczaj mierzone za pomocą spektrofotometrii, a więc są one niezależne od pH próbki. W przypadku Biologicznego Zapotrzebowania Tlenu (BZT), próbki są zwykle inkubowane w neutralnym pH, aby zapewnić odpowiednie warunki do rozwoju mikroorganizmów, co jest istotne dla wiarygodności wyników. Azot azotanowy(V), na ogół oznaczany metodami kolorimetrycznymi lub spektroskopowymi, również nie wymaga zakwaszenia; wręcz przeciwnie - zbyt niskie pH może prowadzić do jego konwersji do formy, która nie będzie odpowiednia do analizy. Typowy błąd myślowy związany z tymi odpowiedziami może wynikać z braku zrozumienia specyfiki analizy chemicznych parametrów wody. Każdy z tych parametrów wymaga odmiennych warunków próbki, co jest kluczowe w procesach analitycznych. Niezrozumienie roli pH w analizach chemicznych może prowadzić do niewłaściwych praktyk laboratoryjnych i błędnych wyników, a w konsekwencji do fałszywych wniosków o stanie jakości wód. Dlatego ważne jest, aby zrozumieć, że kontrola pH jest istotna tylko w przypadku niektórych analiz, jak w przypadku fosforanów ogólnych, a nie w kontekście pozostałych parametrów.

Pytanie 7

Roztwór o dokładnej masie z odważki analitycznej powinien być sporządzony

A. w kolbie miarowej
B. w zlewce
C. w cylindrze miarowym
D. w kolbie stożkowej
Przygotowywanie roztworu mianowanego w nieodpowiednich naczyniach, takich jak kolby stożkowe, zlewki czy cylindry miarowe, może prowadzić do wielu niepoprawności w analizach chemicznych. Kolba stożkowa, mimo że jest często używana do mieszania i prowadzenia reakcji, nie jest idealna do precyzyjnego odmierzenia określonej objętości cieczy, co jest kluczowe przy przygotowywaniu roztworów o dokładnych stężeniach. Zlewki, podobnie jak kolby stożkowe, mają ograniczoną precyzję, co sprawia, że są bardziej odpowiednie do ogólnych operacji laboratoryjnych niż do przygotowania roztworów mianowanych. Ich pełna objętość nie jest wyraźnie oznaczona, co utrudnia dokładne odmierzenie wymaganej ilości rozpuszczalnika. Cylindry miarowe, chociaż lepsze niż zlewki, również nie dorównują kolbom miarowym pod względem precyzyjnego pomiaru i dostosowania objętości. Powszechnym błędem jest zatem sądzenie, że jakiekolwiek naczynie może być użyte do przygotowania roztworu mianowanego. Precyzyjne przygotowanie roztworu jest kluczowe w chemii analitycznej, gdzie każdy błąd w stężeniu może prowadzić do nieprawidłowych wyników analizy. Właściwe stosowanie kolb miarowych pozwala na spełnienie wysokich standardów jakości, które są niezbędne w laboratoriach chemicznych, takich jak standardy GLP (Good Laboratory Practice).

Pytanie 8

W trakcie pobierania próbek wody, które mają być analizowane pod kątem składników podatnych na rozkład fotochemiczny, należy

A. stosować opakowania nieprzezroczyste
B. wykorzystywać pojemniki z jasnego szkła z dokładnie dopasowanym korkiem
C. obniżyć temperaturę próbek do 10oC
D. dodać do próbek roztwór H3PO4 w celu zakwaszenia
Chociaż schłodzenie próbek do temperatury 10oC, zakwaszenie ich roztworem H3PO4 oraz stosowanie opakowań z jasnego szkła mogą wydawać się sensownymi metodami, nie są one skuteczne w kontekście analizy składników podatnych na rozkład fotochemiczny. Schłodzenie próbek jest korzystne dla spowolnienia procesów biologicznych i chemicznych, ale nie eliminuje problemu związanego z fotodegradacją, ponieważ światło wciąż może przenikać przez opakowanie. Z kolei zakwaszenie próbek może prowadzić do niepożądanych reakcji chemicznych, które mogą zmieniać skład próbki. Użycie jasnego szkła natomiast nie zapewnia ochrony przed światłem, co jest kluczowe, gdyż może spowodować degradację substancji fotochemicznych. Typowym błędem myślowym jest przekonanie, że jedynie temperatura lub pH próbki mają kluczowe znaczenie, podczas gdy ważnym aspektem jest także ochrona przed światłem. W praktyce, niewłaściwe podejście do pobierania i przechowywania próbek może prowadzić do zafałszowania wyników analitycznych i tym samym do błędnych wniosków w badaniach środowiskowych. Dlatego kluczowe jest przestrzeganie ustalonych standardów i dobrych praktyk, które wskazują na użycie odpowiednich materiałów. Zrozumienie tych zasad ma fundamentalne znaczenie dla zapewnienia wiarygodności wyników badań.

Pytanie 9

Woda, która została poddana dwukrotnej destylacji, to woda

A. ultra czysta
B. odmineralizowana
C. redestylowana
D. odejonizowana
Woda dwukrotnie destylowana to woda, która została poddana procesowi destylacji dwa razy, co pozwala na usunięcie znacznej większości zanieczyszczeń i rozpuszczonych substancji chemicznych. Dzięki temu uzyskuje się wodę o wysokiej czystości, często określaną mianem wody redestylowanej. Woda redestylowana jest szczególnie cenna w zastosowaniach laboratoryjnych i przemysłowych, gdzie wymagana jest wysoka jakość wody, np. w analizach chemicznych, w produkcji farmaceutyków, czy w zastosowaniach technologicznych, takich jak chłodzenie urządzeń. W kontekście standardów, woda redestylowana spełnia wymagania norm dotyczących czystości wody, takich jak te ustalone przez Farmakopeę. Przykładem jej zastosowania może być przygotowanie roztworów do badań, gdzie obecność nawet minimalnych zanieczyszczeń może wpłynąć na wyniki. Dlatego jej produkcja i wykorzystanie powinny odbywać się zgodnie z najlepszymi praktykami, aby zapewnić najwyższą jakość.

Pytanie 10

Przedstawiony schemat ideowy ilustruje proces syntezy z propanu C3H8 → C3H7Cl → C3H6 → C3H6(OH)2 → C3H5(OH)2Cl → C3H5(OH)3

A. glikolu propylowego
B. glikolu etylowego
C. glicerolu
D. glicyny
Wybór glicyny, glikolu propylowego lub glikolu etylowego wskazuje na pewne nieporozumienia w zakresie chemii organicznej oraz procesów syntezy chemicznej. Glicyna jest aminokwasem, a nie alkoholem, co oznacza, że jej struktura chemiczna i właściwości nie są zgodne z wymaganiami procesu syntezy glicerolu. Glicyna jest podstawowym składnikiem białek oraz pełni rolę w metabolizmie jako prekursor wielu ważnych związków, jednak nie bierze udziału w opisanym procesie chemicznym, który dotyczy syntezy alkoholu trójwodorotlenowego. Glikol propylowy i glikol etylowy są związkami chemicznymi, które również nie odpowiadają strukturze glicerolu. Mimo że są to alkohole, ich powiązania z procesem syntezy glicerolu są znikome, a ich zastosowania są różne – glikol propylowy jest powszechnie stosowany jako rozpuszczalnik oraz substancja nawilżająca, a glikol etylowy głównie w chłodnictwie i jako składnik płynów hamulcowych. Zrozumienie różnic pomiędzy tymi substancjami oraz ich właściwościami chemicznymi jest niezwykle istotne dla skutecznego podejścia do syntez chemicznych. Zastosowanie właściwych terminów i zrozumienie ich funkcji w procesie produkcji substancji chemicznych jest kluczowe w pracy chemika i inżyniera chemicznego.

Pytanie 11

Odlanie cieczy z nad osadu to

A. filtracja
B. dekantacja
C. destylacja
D. sedymentacja
Dekantacja to proces polegający na oddzieleniu cieczy od osadu poprzez jej zlanie. Jest to technika powszechnie stosowana w laboratoriach chemicznych oraz w przemyśle, szczególnie w produkcji napojów, takich jak wino czy piwo. W praktyce dekantacja umożliwia uzyskanie klarownej cieczy, eliminując niepożądane cząstki stałe. W przypadku win, na przykład, dekantacja jest kluczowym etapem, który pozwala na usunięcie osadu powstałego podczas fermentacji, co poprawia jakość i smak trunku. Proces ten jest zgodny z zasadami dobrych praktyk laboracyjnych, które zalecają stosowanie efektywnych metod separacji, minimalizujących ryzyko kontaminacji. Ważnym aspektem dekantacji jest także precyzja, z jaką należy przeprowadzić ten proces, aby uniknąć zmieszania cieczy z osadem. W kontekście analizy jakości cieczy, dekantacja może być również używana w analizie chemicznej do przygotowania próbek do dalszych badań, co podkreśla jej znaczenie w szerokim zakresie zastosowań.

Pytanie 12

Na skutek krystalizacji 18 g kwasu benzoesowego uzyskano 8 g czystego produktu. Jaką wydajność miała ta krystalizacja?

A. 2,25 g
B. 2,25%
C. 44,44%
D. 44,44 g
Wydajność procesu krystalizacji oblicza się jako stosunek masy uzyskanego produktu do masy surowca, wyrażony w procentach. W tym przypadku, otrzymując 8 g czystego kwasu benzoesowego z 18 g użytego surowca, wydajność wynosi: (8 g / 18 g) * 100% = 44,44%. Taka wydajność jest ważna w kontekście procesów technologicznych, ponieważ pozwala ocenić, jak efektywnie surowce zostały wykorzystane. W praktyce, wysoka wydajność jest pożądana, ponieważ obniża koszty materiałowe i zwiększa rentowność produkcji. W kontekście przemysłu farmaceutycznego lub chemicznego, osiągnięcie wysokiej wydajności krystalizacji jest kluczowe dla zapewnienia czystości i jakości produktów końcowych, co odpowiada standardom takim jak GMP (Good Manufacturing Practices). Dodatkowo, analiza wydajności może pomóc w identyfikacji potencjalnych problemów w procesie produkcyjnym i dostosowywaniu parametrów, aby zoptymalizować proces.

Pytanie 13

W laboratoriach roztwór potasu dichromianu(VI) w stężonym kwasie siarkowym(VI) wykorzystuje się do

A. wytrącania trudno rozpuszczalnych soli w wodzie
B. czyszczenia szkła laboratoryjnego
C. roztwarzania różnych stopów
D. odkamieniania urządzeń wodnych
Roztwór dichromianu(VI) potasu w stężonym kwasie siarkowym(VI) jest powszechnie stosowany w laboratoriach do mycia szkła laboratoryjnego, ponieważ jego właściwości chemiczne umożliwiają skuteczne usuwanie zanieczyszczeń organicznych oraz pozostałości po reakcjach chemicznych. Dichromian(VI) potasu działa jako silny utleniacz, co sprawia, że jest efektywny w eliminowaniu resztek organicznych, które mogą pozostać na powierzchni szkła. Praktyczne zastosowanie tego roztworu obejmuje czyszczenie probówek, kolb, oraz innych naczyń używanych w chemii analitycznej i syntetycznej. Ze względu na jego wysoką skuteczność, często jest stosowany przed przeprowadzaniem eksperymentów, aby zapewnić, że nie ma kontaminacji, która mogłaby wpłynąć na wyniki. W branży laboratoryjnej przestrzeganie standardów czystości i użycie odpowiednich reagentów jest kluczowe dla uzyskania wiarygodnych wyników, a roztwór dichromianu(VI) potasu w tym kontekście odgrywa istotną rolę. Ponadto, należy pamiętać o bezpieczeństwie pracy z tymi substancjami, ponieważ są one toksyczne i wymagają odpowiednich środków ochrony osobistej.

Pytanie 14

Na podstawie informacji zawartej na pipecie, została ona skalibrowana na

A. gorąco.
B. wlew.
C. wylew.
D. zimno.
Wybór odpowiedzi 'wlew' jest błędny, ponieważ w kontekście kalibracji pipet nie odnosi się do żadnej standardowej praktyki. Termin 'wlew' sugeruje czynność, a nie precyzyjną miarę objętości, co prowadzi do mylnego wniosku. Podobnie, odpowiedzi 'zimno' i 'gorąco' są również niepoprawne, gdyż odnoszą się do temperatur, które nie mają związku z kalibracją pipet. Kalibracja dotyczy objętości, a nie temperatury cieczy dozowanej przez pipecie. Błąd w myśleniu polega na tym, że użytkownicy mogą nie zrozumieć podstawowych koncepcji związanych z pomiarem i dozowaniem cieczy. W rzeczywistości, pipety są kalibrowane w oparciu o specyfikacje dotyczące objętości, co jest kluczowe dla zapewnienia dokładności i precyzji w pomiarach laboratoryjnych. Nieprawidłowe interpretacje takich terminów mogą prowadzić do poważnych błędów w badaniach, co wpływa na wiarygodność wyników. Dlatego istotne jest, aby pracownicy laboratoriów dobrze rozumieli zasady kalibracji i jej wpływ na jakość rezultatu, a także stosowali się do wytycznych podanych w normach branżowych.

Pytanie 15

Maksymalna średnica ziaren w partii substancji stałej wynosi 0,5 cm. Zgodnie z danymi zawartymi w tabeli próbka pierwotna tej substancji powinna mieć masę minimum

Tabela. Masa próbki pierwotnej w zależności od wielkości ziaren lub kawałków
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 100 g
B. 200 g
C. 1000 g
D. 2500 g
Odpowiedź 200 g jest poprawna, ponieważ zgodnie z danymi zawartymi w tabeli, średnica ziaren wynosząca 0,5 cm (5 mm) mieści się w przedziale od 1 do 10 mm. Dla takiej średnicy, minimalna masa próbki pierwotnej powinna wynosić 200 g. W kontekście badań materiałowych, odpowiednia masa próbki jest kluczowa, aby uzyskać reprezentatywne wyniki analiz. Przykładem zastosowania tej wiedzy może być przemysł farmaceutyczny, gdzie precyzyjne określenie masy substancji czynnej ma fundamentalne znaczenie dla skuteczności leku. Przemysł ten opiera się na standardach takich jak ISO 17025, które wymagają stosowania odpowiednich procedur i metodologii w celu zapewnienia wiarygodności wyników. W praktyce, zrozumienie, jak masa próbki wpływa na jej dalsze właściwości fizykochemiczne, jest niezbędne dla uzyskania dokładnych wyników badawczych.

Pytanie 16

Jakie jest stężenie procentowe roztworu HCl (M=36,46 g/mol) o gęstości 1,19 g/cm3 oraz stężeniu molowym 12 mol/dm3?

A. 19,6%
B. 39,2%
C. 78,3%
D. 36,8%
Obliczenie stężenia procentowego roztworu HCl zaczynamy od określenia masy substancji rozpuszczonej w danym objętości roztworu. Mając stężenie molowe wynoszące 12 mol/dm³, możemy obliczyć masę HCl w 1 dm³ roztworu, korzystając z masy molowej HCl (36,46 g/mol). Zatem masa HCl w 1 dm³ wynosi: 12 mol/dm³ * 36,46 g/mol = 437,52 g. Gęstość roztworu wynosi 1,19 g/cm³, co oznacza, że masa 1 dm³ roztworu wynosi 1190 g. Stężenie procentowe obliczamy według wzoru: (masa substancji rozpuszczonej / masa roztworu) * 100%. Podstawiając wartości: (437,52 g / 1190 g) * 100% = 36,77%, co zaokrąglamy do 36,8%. Takie obliczenia są istotne w praktyce chemicznej, na przykład w laboratoriach, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania wiarygodnych wyników doświadczeń. Zrozumienie stężenia procentowego i jego zastosowania jest istotne w kontekście przemysłu chemicznego oraz analizy jakościowej i ilościowej substancji chemicznych.

Pytanie 17

W wyniku analizy sitowej próbki stałej otrzymano frakcję o średnicy ziaren 12 – 30 mm. Jaką masę powinna mieć prawidłowo pobrana próbka pierwotna?

Tabela. Wielkość próbki pierwotnej w zależności od wielkości ziarna
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 100 g
B. 200 g
C. 2500 g
D. 1000 g
Wybór masy próbki innej niż 1000 g może prowadzić do znacznych błędów w analizie sitowej. Odpowiedzi takie jak 2500 g, 200 g czy 100 g są nietrafione, a ich wybór może wynikać z kilku powszechnych nieporozumień dotyczących tego, jak przeprowadza się analizy prób. W przypadku 2500 g, chociaż jest to masa większa niż wymagana, może prowadzić do nieefektywności w badaniach, a także do niezgodności z wymaganiami dotyczącymi minimalnych i maksymalnych mas próbki. Odpowiedź 200 g i 100 g są zdecydowanie zbyt małe, co skutkuje tym, że próbka nie oddaje rzeczywistego obrazu badanej frakcji. Zbyt mała próbka nie jest w stanie uchwycić wszystkich właściwości materiału, co prowadzi do niewłaściwych wniosków o jego charakterystyce, takich jak zróżnicowanie wielkości ziaren czy ich rozkład. W konsekwencji, to może negatywnie wpłynąć na decyzje związane z wykorzystaniem danego materiału, na przykład w budownictwie czy przemyśle, gdzie właściwości fizyczne i mechaniczne surowców mają kluczowe znaczenie. Analiza sitowa wymaga ścisłego przestrzegania norm oraz dobrych praktyk, które obejmują odpowiednie ustalenie masy próbki, co jest kluczowe dla uzyskania wiarygodnych i powtarzalnych wyników.

Pytanie 18

Aby uniknąć trwałego połączenia szlifowanych części sprzętu laboratoryjnego, co należy zrobić?

A. dokładnie oczyścić i osuszyć sprzęt
B. przed połączeniem wypłukać szlify acetonem
C. przed połączeniem nałożyć na szlify wazelinę
D. przed połączeniem nałożyć na szlify glicerynę
Stosowanie gliceryny do smarowania szlifów przed ich połączeniem może prowadzić do niepożądanych skutków. Gliceryna, będąca substancją higroskopijną, może powodować, że na połączeniach gromadzi się wilgoć, co prowadzi do korozji i zniszczenia materiałów, z których wykonana jest aparatura. Przepłukiwanie szlifów acetonem przed ich połączeniem również nie jest zalecane, ponieważ aceton jest substancją, która może rozpuszczać niektóre materiały i uszkadzać powierzchnię szlifów. Choć czyszczenie elementów aparatury jest dobrą praktyką, sama czynność umycia i wysuszenia nie eliminuje ryzyka trwałego połączenia, które może wystąpić z powodu braku odpowiedniego smaru. W rezultacie, mylenie tych procedur z właściwym stosowaniem wazeliny jako smaru prowadzi do błędnych wniosków i potencjalnych problemów z integracją aparatury. W laboratoriach, gdzie precyzja jest kluczowa, ważne jest, aby stosować sprawdzone metody, które zapobiegają uszkodzeniom i zapewniają długotrwałe, bezpieczne połączenia.

Pytanie 19

Na ilustracji zobrazowano urządzenie do

A. sublimacji
B. rektyfikacji
C. destylacji przy obniżonym ciśnieniu
D. destylacji pod ciśnieniem atmosferycznym
Destylacja pod zmniejszonym ciśnieniem jest techniką, która służy do separacji składników przy niższych temperaturach, co jest korzystne dla substancji wrażliwych na wysokie temperatury, ale nie jest odpowiednia w kontekście zastanawiania się nad destylacją w warunkach atmosferycznych. Takie podejście może prowadzić do mylnych wniosków, zwłaszcza gdy mówimy o substancjach, które nie powinny być poddawane wysokim temperaturze ze względu na ryzyko rozkładu. Rektyfikacja, z drugiej strony, to proces bardziej skomplikowany, który wymaga stosowania kolumny rektyfikacyjnej i jest używany do uzyskiwania bardzo czystych frakcji ze złożonych mieszanin, co znacznie różni się od prostszej destylacji. Z kolei sublimacja, czyli przejście substancji ze stanu stałego w gazowy bez przechodzenia przez stan ciekły, jest zupełnie odmiennym procesem, stosowanym głównie w przypadku substancji takich jak jod czy nafta. Typowym błędem jest mylenie tych procesów, ponieważ każdy z nich ma swoje specyficzne zastosowania, warunki i cele. Zrozumienie różnic między tymi technikami jest kluczowe dla efektywnego planowania eksperymentów i procesów przemysłowych, a także dla bezpieczeństwa w laboratoriach chemicznych.

Pytanie 20

Aby przygotować zestaw do filtracji, należy zebrać

A. biuretę, statyw metalowy, zlewkę
B. lejek szklany, statyw metalowy, kółko metalowe, zlewkę
C. szkiełko zegarkowe, tryskawkę, kolbę stożkową
D. bagietkę, zlewkę, łapę metalową, statyw metalowy
Aby przygotować zestaw do sączenia, niezbędne jest skompletowanie odpowiednich narzędzi laboratoryjnych, które umożliwią przeprowadzenie tego procesu w sposób efektywny i bezpieczny. Lejek szklany jest kluczowym elementem, ponieważ jego zadaniem jest kierowanie cieczy do zlewki, co minimalizuje ryzyko rozlania oraz zapewnia precyzyjne dozowanie. Statyw metalowy jest istotny, ponieważ stabilizuje lejek, co jest niezbędne do uzyskania prawidłowego kąta nachylenia, zapewniając tym samym efektywność procesu sączenia. Kółko metalowe, często używane jako podstawa dla lejka, zwiększa stabilność całej konstrukcji, zmniejszając ryzyko przypadkowego przewrócenia się. Zlewka, jako naczynie odbierające substancję, jest niezbędna do zbierania przefiltrowanego płynu. Wszystkie te elementy współpracują, tworząc funkcjonalny zestaw, który spełnia standardy bezpieczeństwa i efektywności w pracach laboratoryjnych.

Pytanie 21

Co oznacza skrót AKT?

A. titranta automatyczną kontrolę
B. kontrolno-techniczną analizę
C. amid kwasu tiooctowego
D. krzywą titracyjną analityczną
Analiza podanych odpowiedzi ujawnia kilka powszechnych nieporozumień dotyczących skrótu AKT. Wybór analitycznej krzywej titracyjną, choć ma swoje miejsce w chemii analitycznej, nie jest związany z akronimem AKT. Analityczne krzywe titracyjne używane są do określania stężenia substancji w roztworach, jednak są to techniki pomiarowe, a nie same związki chemiczne. W kontekście analizy kontrolno-techniczną również występuje błąd, ponieważ nie jest to termin bezpośrednio związany z jakimkolwiek konkretnym związkiem chemicznym. Kontrola techniczna dotyczy bardziej procedur jakości i standardów w laboratoriach, niż specyficznych substancji. Podobnie, automatyczna kontrola titranta odnosi się do technik automatyzacji w procesach chemicznych, które choć są istotne, to nie mają bezpośredniego związku z akronimem AKT. Typowym błędem w rozważaniach na temat skrótu AKT jest łączenie terminów technicznych z ich ogólnym zastosowaniem, co prowadzi do nieporozumień. Istotne jest, aby podczas analizy skrótów i terminologii chemicznej rozumieć kontekst, w jakim są używane, ponieważ wiele z nich ma kilka znaczeń lub odniesień w różnych dziedzinach chemii.

Pytanie 22

Czułość bezwzględna wagi definiuje się jako

A. największe dozwolone obciążenie wagi
B. najmniejszą masę, która powoduje wyraźne wychylenie wskazówki
C. największą masę, która powoduje wyraźne wychylenie wskazówki
D. najmniejsze dozwolone obciążenie wagi
Czułość bezwzględna wagi odnosi się do minimalnej masy, która jest w stanie wywołać zauważalne wychylenie wskazówki wagi. Oznacza to, że czułość wagi określa jej zdolność do wykrywania małych zmian w masie, co jest kluczowe w wielu zastosowaniach przemysłowych i laboratoryjnych. Przykładowo, w laboratoriach chemicznych, gdzie dokładność pomiarów jest kluczowa, wagi analityczne mają bardzo wysoką czułość. Dzięki temu można precyzyjnie odmierzać małe ilości substancji. Czułość bezwzględna jest również istotna w kontekście kalibracji wag, co jest regulowane przez normy ISO i metodykę pomiarową, aby zapewnić, że wagi są zgodne z określonymi standardami jakości. W praktyce, zrozumienie czułości bezwzględnej pozwala na lepsze dobieranie wag do potrzeb danego pomiaru, co ma bezpośredni wpływ na jakość wyników eksperymentalnych oraz procesów produkcyjnych.

Pytanie 23

Podstawowa substancja w analizie miareczkowej charakteryzuje się następującymi właściwościami:

A. czysta, higroskopijna, przebieg reakcji ściśle zgodny ze stechiometrią
B. ciekła, czysta, niehigroskopijna
C. stała, czysta, której przebieg reakcji niekoniecznie musi być ściśle stechiometryczny
D. czysta, niehigroskopijna, ściśle odpowiadająca swojemu wzorowi
Wiele z niepoprawnych odpowiedzi bazuje na niepełnym zrozumieniu istoty substancji podstawowych w analizie miareczkowej. Odpowiedzi wskazujące na substancje higroskopijne wskazują na fundamentalny błąd w rozumieniu, ponieważ substancje te mogą absorbować wilgoć z otoczenia, co prowadzi do zmiany ich masy oraz stężenia. Taka zmiana wpływa na rezultaty miareczkowania, wprowadzając niepewność i potencjalne błędy pomiarowe. Dlatego w praktyce laboratoryjnej stosuje się substancje, które są niehigroskopijne, aby uniknąć tych problemów. Dodatkowo, stwierdzenie, że przebieg reakcji nie musi być ściśle stechiometryczny, jest mylące i niepoprawne. Dokładna znajomość stechiometrii reakcji chemicznych jest kluczowa dla uzyskania rzetelnych wyników. W miareczkowaniu każdy mol reagentu reaguje ze ściśle określoną ilością drugiego reagenta, co jest podstawą obliczeń miareczkowych. Stąd, stwierdzenie, że reakcje mogą nie przebiegać w sposób stechiometryczny, jest fałszywe i może prowadzić do nieprawidłowych wniosków. W każdej analizie chemicznej kluczowe znaczenie ma zapewnienie precyzyjności i powtarzalności, co wyklucza użycie substancji, które nie spełniają rygorystycznych norm czystości oraz stabilności.

Pytanie 24

Działanie podejmowane po pobraniu próbki wody, mające na celu zachowanie jej składu chemicznego podczas transportu, określa się mianem

A. rozcieńczania
B. utrwalania
C. oczyszczania
D. mianowania
Utrwalanie próbki wody po jej pobraniu jest kluczowym etapem, który ma na celu zachowanie jej oryginalnego składu chemicznego w trakcie transportu i analizy. Proces ten polega na dodaniu odpowiednich substancji chemicznych lub zastosowaniu metod fizycznych, które zapobiegają zmianom w składzie wody, takim jak rozkład mikroorganizmów czy reakcje chemiczne, które mogą zachodzić w czasie transportu. Przykładem może być dodanie kwasu solnego do próbek wody morskiej w celu zatrzymania wzrostu bakterii. W kontekście standardów, wiele organizacji, w tym EPA i ISO, podkreśla znaczenie tego etapu w procedurach pobierania i analizy próbek wody. Utrwalanie jest istotne nie tylko dla uzyskania dokładnych wyników analitycznych, ale również dla zapewnienia bezpieczeństwa zdrowotnego, ponieważ niektóre zanieczyszczenia mogą mieć poważne konsekwencje dla zdrowia publicznego. Zrozumienie tego procesu pozwala na lepsze planowanie badań i optymalizację metod analitycznych, co jest niezbędne w pracy laboratoriach środowiskowych.

Pytanie 25

Aby przygotować roztwór wzorcowy potrzebny do oznaczania miana, konieczne jest użycie odczynnika chemicznego o czystości przynajmniej

A. czystości chemicznej
B. czystości drugorzędnej analitycznej
C. spektralnej czystości
D. czystości
Odpowiedź 'cz.d.a.' oznacza 'czystość do analizy', co jest kluczowe w kontekście przygotowania roztworu wzorcowego. Użycie odczynnika chemicznego o czystości co najmniej cz.d.a. zapewnia, że jego skład chemiczny jest znany i dobrze określony, co jest fundamentalne dla uzyskania wiarygodnych wyników analiz chemicznych. W praktyce, zastosowanie reagentów o tej czystości jest powszechnie wymagane w laboratoriach analitycznych, ponieważ wszelkie zanieczyszczenia mogą prowadzić do błędnych wyników pomiarów. Na przykład w titracji, gdzie miano substancji analitycznej jest określane na podstawie reakcji z roztworem wzorcowym, jakiekolwiek zanieczyszczenie może wpływać na ilość środka titrującego potrzebnego do reakcji. Dodatkowo, standardy takie jak ISO czy ASTM podkreślają znaczenie użycia reagentów wysokiej czystości dla zapewnienia powtarzalności i dokładności analiz, co jest niezbędne w badaniach jakościowych i ilościowych. Dlatego stosowanie reagentów o czystości cz.d.a. jest nie tylko praktyką laboratoryjną, ale również wymogiem zgodności z międzynarodowymi standardami jakości.

Pytanie 26

Proces usuwania substancji z cieczy lub wydobywania składnika z mieszanin cieczy, oparty na równowadze fazowej ciecz-gaz, nazywa się

A. krystalizacja
B. filtracja
C. dekantacja
D. destylacja
Filtracja, krystalizacja oraz dekantacja to metody separacji różnych faz w mieszaninach, jednak żadna z nich nie wykorzystuje równowagi fazowej ciecz-gaz. Filtracja polega na przeprowadzaniu cieczy przez medium filtracyjne, które zatrzymuje cząstki stałe, ale nie rozdziela składników mieszanin cieczy na podstawie różnic w ich temperaturach wrzenia. W kontekście przemysłowym, filtracja jest powszechnie stosowana do oczyszczania cieczy, na przykład w oczyszczalniach ścieków, gdzie istotne jest usunięcie zanieczyszczeń stałych. Krystalizacja z kolei opiera się na procesie formowania kryształów z roztworu, co również nie jest związane z równowagą fazową ciecz-gaz, a raczej z przejściem ze stanu ciekłego do stałego. Przykłady to produkcja soli czy cukru. Dekantacja natomiast to proces oddzielania cieczy od osadu, który osadził się na dnie naczynia, i jest skuteczna jedynie w przypadku mieszanin, gdzie różnice gęstości są znaczne. Te metody, mimo że są użyteczne w różnych kontekstach, nie są odpowiednie do separacji składników cieczy w oparciu o różnice w temperaturach wrzenia, jakie zachodzą w procesie destylacji. Uznawanie ich za alternatywy dla destylacji prowadzi do nieporozumień w zastosowaniach technologicznych oraz w przemyśle chemicznym, gdzie właściwy dobór metody separacji jest kluczowy dla efektywności i jakości procesów produkcyjnych.

Pytanie 27

Do narzędzi pomiarowych zalicza się

A. naczynko wagowe
B. kolbę stożkową
C. cylinder
D. zlewkę
Cylinder miarowy to naprawdę fajne narzędzie, które znajdziesz w każdym laboratorium. Używa się go do dokładnego mierzenia objętości cieczy, co jest mega ważne podczas różnych eksperymentów chemicznych czy fizycznych. W przeciwieństwie do zlewki, cylinder ma wyraźne podziałki i prostokątną formę, co naprawdę ułatwia odczytywanie wartości. Dzięki temu błąd pomiarowy jest znacznie mniejszy. Osobiście uważam, że korzystanie z cylindra to podstawa, gdy przychodzi do przygotowywania roztworów, gdzie musisz mieć pewność, że wszystko jest dokładnie odmierzone. Oczywiście, pamiętaj, żeby cylinder był odpowiednio skalibrowany, bo to pozwala na powtarzalność wyników, a to chyba każdy chce mieć w swoich eksperymentach.

Pytanie 28

Preparaty zawierające KOH (tzw. żrący potaż), oznaczone są symbolem S 1/2. Na podstawie informacji zawartych w tabeli, określ zasady przechowywania tych preparatów.

Numer zwrotu SWarunki bezpiecznego stosowaniaNumer zwrotu SWarunki bezpiecznego stosowania
S1Przechowywać pod zamknięciemS12Nie przechowywać pojemnika szczelnie zamkniętego
S2Chronić przed dziećmiS13Nie przechowywać razem z żywnością, napojami i karmą dla zwierząt
S3Przechowywać w chłodnym miejscuS15Przechowywać z dala od źródeł ciepła
S4Nie przechowywać w pomieszczeniach mieszkalnychS16Nie przechowywać w pobliżu źródeł zapłonu – nie palić tytoniu

A. Przechowywać z dala od źródeł ciepła i ognia.
B. Nie przechowywać w szczelnie zamkniętym pojemniku.
C. Przechowywać w zamknięciu, z daleka od dzieci.
D. Przechowywać w zamkniętym, chłodnym miejscu.
Odpowiedź 'Przechowywać w zamknięciu, z daleka od dzieci.' jest zgodna z obowiązującymi normami bezpieczeństwa oraz zasadami przechowywania substancji chemicznych. Preparaty zawierające KOH, klasyfikowane jako substancje niebezpieczne, wymagają szczególnych środków ostrożności. Symbol S1 wskazuje, że powinny być one przechowywane w zamknięciu, co ma na celu minimalizację ryzyka przypadkowego dostępu do nich. Z kolei symbol S2 podkreśla konieczność ochrony przed dziećmi, co jest kluczowe, aby zapobiec nieszczęśliwym wypadkom. W praktyce oznacza to, że substancje te powinny być składowane w miejscach niedostępnych dla osób postronnych, zwłaszcza dzieci, oraz w odpowiednich pojemnikach, które zapobiegają ich przypadkowemu otwarciu. Dobre praktyki w laboratoriach i gospodarstwach domowych sugerują, aby takie preparaty były trzymane w zamkniętych szafkach z dodatkowymi zabezpieczeniami, co dodatkowo zwiększa bezpieczeństwo. Właściwe przechowywanie nie tylko chroni zdrowie, ale również minimalizuje ryzyko zanieczyszczenia środowiska.

Pytanie 29

Zgodnie z danymi zawartymi w tabeli wskaźników roztwór obojętny będzie miał barwę

WskaźnikZakres zmiany barwy
(w jednostkach pH)
Barwa w środowisku
kwaśnymzasadowym
błękit tymolowy1,2 – 2,8czerwonażółta
oranż metylowy3,1 – 4,4czerwonażółta
czerwień metylowa4,8 – 6,0czerwonażółta
czerwień chlorofenolowa5,2 – 6,8żółtaczerwona
błękit bromotymolowy6,0 – 7,6żółtaniebieska
czerwień fenolowa6,6 – 8,0żółtaczerwona
błękit tymolowy8,0 – 9,6żółtaniebieska
fenoloftaleina8,2 – 10,0bezbarwnaczerwona
żółcień alizarynowa10,1 – 12,0żółtazielona

A. żółtą wobec oranżu metylowego i czerwieni chlorofenolowej.
B. niebieską wobec błękitu bromotymolowego i błękitu tymolowego.
C. żółtą wobec błękitu tymolowego i żółcieni alizarynowej.
D. czerwoną wobec czerwieni metylowej i czerwieni chlorofenolowej.
Roztwór obojętny, mający pH około 7, charakteryzuje się specyficznymi reakcjami wskaźników pH, co jest kluczowe w wielu zastosowaniach chemicznych i laboratoryjnych. W przypadku błękitu tymolowego i żółcieni alizarynowej, ich zmiany barwy w zależności od pH są dobrze udokumentowane. Błękit tymolowy przy pH 7 będzie miał barwę żółtą, co jest zgodne z wynikami uzyskanymi w badaniach laboratoryjnych, zgodnie z tabelą wskaźników. Żółcień alizarynowa również w neutralnym pH przyjmuje barwę żółtą. Rozumienie, jak wskaźniki reagują w różnych warunkach pH, jest niezbędne w wielu dziedzinach, takich jak chemia analityczna, biochemia, a także w praktycznych zastosowaniach, takich jak monitorowanie jakości wody, gdzie pH ma kluczowe znaczenie dla zdrowia wodnych ekosystemów. Warto zaznaczyć, że utrzymanie neutralnego pH jest istotne w wielu procesach biologicznych i chemicznych, co potwierdzają standardy laboratoryjne, takie jak ISO 17025.

Pytanie 30

Poniżej jest równanie reakcji prażenia węglanu wapnia. 200 g węglanu wapnia zawierającego 10% zanieczyszczeń poddano prażeniu. Masa otrzymanego tlenku wapnia wyniosła

CaCO3 → CaO + CO2
(MCaCO3 = 100 g/mol, MCaO = 56 g/mol, MCO2 = 44 g/mol)

A. 112,0 g
B. 100,8 g
C. 31,1 g
D. 28,0 g
Poprawna odpowiedź wynosząca 100,8 g wynika z precyzyjnego obliczenia masy czystego węglanu wapnia, jakie uzyskaliśmy po uwzględnieniu zanieczyszczeń. Zaczynamy od 200 g węglanu wapnia, z czego 10% to zanieczyszczenia. Oznacza to, że czysty węglan wapnia stanowi 90% tej masy, co daje nam 180 g (200 g - 20 g). Następnie, podczas prażenia węglanu wapnia, zachodzi reakcja termiczna, w wyniku której wytwarzany jest tlenek wapnia (CaO). W reakcji tej wydziela się dwutlenek węgla (CO₂). Wzór reakcji to: CaCO₃ (s) → CaO (s) + CO₂ (g). Korzystając ze stosunku mas molowych, który wynosi około 1:0,56 dla CaCO₃ do CaO, obliczamy masę tlenku wapnia, co prowadzi nas do wyniku 100,8 g. Zrozumienie takich procesów jest kluczowe w chemii analitycznej i przemysłowej, gdzie dokładność odgrywa fundamentalną rolę, na przykład w produkcji materiałów budowlanych.

Pytanie 31

Która część małej partii materiału jest najczęściej pobierana w celu przygotowania próbki ogólnej?

A. 1%
B. 0,1%
C. 0,001%
D. 0,01%
Wybór wartości 1% jako wielkości próby może wydawać się na pierwszy rzut oka rozsądny, jednak przekracza powszechnie akceptowane standardy w zakresie pobierania próbek. W praktyce, pobieranie próbki w takiej ilości może prowadzić do nieproporcjonalnych strat materiałowych oraz do potencjalnego wprowadzenia błędu systematycznego w analizach. W przypadku materiałów o dużej zmienności, pobranie 1% może skutkować nieodpowiednią reprezentatywnością próbki, co z kolei prowadzi do błędnych wniosków na temat jakości całej partii. Podobnie, wartości takie jak 0,001% i 0,01% są zbyt małe, aby zapewnić odpowiedni poziom dokładności i reprezentatywności próbki. Przykładowo, gdy próbka jest zbyt mała, istnieje ryzyko, że nie odda ona właściwości fizykochemicznych całego materiału, co jest niezgodne z zasadami statystyki prób. Warto zwrócić uwagę, że procesy pobierania próbek powinny być zgodne z wytycznymi norm ISO 2859-1, które sugerują, że optymalna wielkość próbki powinna być określona na podstawie wielkości całej partii oraz jej jednorodności. Stąd, dobór 0,1% jako wartości standardowej w wielu branżach, zwłaszcza tam, gdzie jakość i bezpieczeństwo są kluczowe, jest rozsądnym podejściem, które minimalizuje ryzyko błędów związanych z nieodpowiednią próbą.

Pytanie 32

W jakim stosunku objętościowym należy połączyć roztwór o stężeniu 5 mol/dm3 z wodą destylowaną, aby uzyskać roztwór o stężeniu 3 mol/dm3?

A. 2:3
B. 3:2
C. 3:5
D. 5:3
Aby obliczyć stosunek objętościowy roztworu o stężeniu 5 mol/dm³ do wody destylowanej, który pozwoli uzyskać roztwór o stężeniu 3 mol/dm³, możemy zastosować zasadę rozcieńczania. Z definicji stężenia molowego wynika, że ilość moli substancji rozpuszczonej w danej objętości roztworu jest kluczowa. Z równania: C1V1 = C2V2, gdzie C1 to stężenie początkowe (5 mol/dm³), C2 to stężenie końcowe (3 mol/dm³), a V1 i V2 to odpowiednie objętości roztworów, możemy przekształcić wzór, aby znaleźć stosunek objętości V1 (roztwór 5 mol/dm³) do V2 (woda destylowana). Przekształcając wzory, otrzymujemy stosunek V1:V2 równy 3:2. Taki sposób przygotowania roztworu jest standardowo stosowany w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne stężenia roztworów mają kluczowe znaczenie w procesach chemicznych i biologicznych. Przykładem może być przygotowanie buforów czy roztworów do analiz spektroskopowych.

Pytanie 33

Niemetal o kolorze fioletowoczarnym, który łatwo przechodzi w stan gazowy, to

A. brom
B. fosfor
C. chlor
D. jod
Jod, jako niemetal o barwie fioletowoczarnej, jest substancją, która łatwo ulega sublimacji, co oznacza, że w warunkach standardowych (temperatura i ciśnienie) przechodzi bezpośrednio z fazy stałej w fazę gazową. Jod jest szeroko stosowany w medycynie, szczególnie jako środek dezynfekujący oraz w diagnostyce obrazowej, gdzie wykorzystuje się jego izotopy do radioizotopowej diagnostyki tarczycy. W laboratoriach chemicznych jod jest często używany w reakcjach redoks oraz jako katalizator w różnorodnych syntezach organicznych. Przykładem zastosowania jodu w przemyśle jest produkcja barwników i środków ochrony roślin. Ponadto, jod jest kluczowym składnikiem w diecie ludzkiej, niezbędnym dla prawidłowego funkcjonowania tarczycy. Stosowanie jodu w odpowiednich ilościach jest zgodne z wytycznymi Światowej Organizacji Zdrowia, która podkreśla znaczenie jego roli w zapobieganiu niedoborom, które mogą prowadzić do chorób takich jak wole lub niedoczynność tarczycy.

Pytanie 34

Które z wymienionych reakcji chemicznych stanowi reakcję redoks?

A. CaCO3 → CaO + CO2
B. 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O
C. 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4
D. 2 KMnO4 → K2MnO4 + MnO2 + O2
Reakcja 2 KMnO4 → K2MnO4 + MnO2 + O2 jest reakcją redox, ponieważ zachodzi w niej zarówno utlenianie, jak i redukcja. W tej reakcji mangan w najniższym stopniu utlenienia (+7) w KMnO4 ulega redukcji do MnO2, gdzie jego stopień utlenienia wynosi +4. Jednocześnie tlen w cząsteczce KMnO4 jest utleniany do O2, co świadczy o zachodzącym procesie utlenienia. Reakcje redox są kluczowe w chemii, ponieważ dotyczą transferu elektronów między reagentami, co jest fundamentalne dla wielu procesów, takich jak spalanie, korozja, czy nawet procesy biologiczne, jak oddychanie komórkowe. Dobrą praktyką w laboratoriach chemicznych jest korzystanie z reakcji redox w syntezach chemicznych, oczyszczaniu substancji oraz w analizie chemicznej, co podkreśla ich znaczenie w przemyśle chemicznym oraz w nauce.

Pytanie 35

Materiały wykorzystywane w laboratoriach, mogące prowadzić do powstawania mieszanin wybuchowych, powinny być przechowywane

A. w specjalnie wydzielonych piwnicach murowanych
B. w izolowanych pomieszczeniach magazynów ogólnych
C. na otwartym powietrzu pod dachem
D. w różnych punktach laboratorium
Materiały stosowane w laboratoriach, które mogą tworzyć mieszaniny wybuchowe, należy przechowywać w izolowanych pomieszczeniach magazynów ogólnych ze względu na ryzyko ich niekontrolowanej reakcji, co może prowadzić do poważnych zagrożeń dla zdrowia i bezpieczeństwa. Izolacja pomieszczeń magazynowych pozwala na ograniczenie rozprzestrzeniania się ewentualnych wybuchów oraz na skuteczne zarządzanie wentylacją i monitoringiem. Przykładem mogą być laboratoria chemiczne, gdzie substancje takie jak rozpuszczalniki organiczne, materiały łatwopalne czy reagenty chemiczne muszą być przechowywane w wyspecjalizowanych pomieszczeniach, które są zgodne z przepisami BHP oraz normami takimi jak NFPA (National Fire Protection Association) czy OSHA (Occupational Safety and Health Administration). Dobre praktyki obejmują również regularne kontrole i audyty stanu magazynów, co pozwala na wczesne wykrywanie potencjalnych zagrożeń oraz zapewnienie odpowiednich środków ochrony, takich jak gaśnice i systemy alarmowe.

Pytanie 36

250 cm3 roztworu kwasu octowego o stężeniu 10% objętościowych zostało rozcieńczone pięciokrotnie. Jakie jest stężenie otrzymanego roztworu?

A. 5%
B. 2%
C. 2,5%
D. 1,25%
Stężenie roztworu jest kluczowym elementem w chemii analitycznej i przemysłowej. Nieprawidłowe podejście do obliczeń dotyczących stężenia po rozcieńczeniu może prowadzić do istotnych błędów w wynikach. Na przykład, wybierając 5% jako odpowiedź, można pomyśleć, że stężenie roztworu zmniejsza się o 5% przy każdym rozcieńczeniu, co jest błędne. Rozcieńczenie nie działa w ten sposób; zamiast tego, każdorazowo obliczamy nowe stężenie, dzieląc ilość substancji przez nową całkowitą objętość. Podobnie, wybór stężenia 1,25% może wynikać z przekonania, że rozcieńczenie pięciokrotne obniża stężenie do jednej piątej, co nie uwzględnia konieczności obliczeń masowych. Niepoprawne zrozumienie koncepcji stężenia i jego obliczeń jest powszechnym błędem wśród studentów i praktyków. Zrozumienie, że stężenie wyrażone w procentach odnosi się do masy substancji w określonej objętości roztworu, jest kluczowe. W kontekście praktycznym, umiejętność precyzyjnego obliczenia stężenia roztworu ma ogromne znaczenie, zwłaszcza w laboratoriach, gdzie błędy mogą prowadzić do niewłaściwych wniosków eksperymentalnych, a nawet zagrożeń dla zdrowia. Dobrze jest pamiętać o metodach analizy i praktycznych zastosowaniach, aby uniknąć tego typu błędów w przyszłości.

Pytanie 37

Aby zebrać próbki gazów, wykorzystuje się

A. aspiratory
B. detektory gazów
C. miarki cylindryczne
D. butelki z plastikowym wieczkiem
Aspiratory są urządzeniami zaprojektowanymi specjalnie do pobierania próbek gazowych w kontrolowanych warunkach. Ich działanie polega na wykorzystaniu podciśnienia do zasysania gazów z określonego otoczenia, co pozwala na zbieranie reprezentatywnych prób do dalszej analizy. W laboratoriach chemicznych oraz w przemyśle petrochemicznym aspiratory są niezbędne do monitorowania jakości powietrza, a także do wykrywania zanieczyszczeń gazowych. Przykładem zastosowania aspiratorów jest ich użycie w badaniach środowiskowych, gdzie ocenia się stężenie szkodliwych substancji w atmosferze. Standardy, takie jak ISO 16000, określają metody pobierania próbek gazowych, a stosowanie aspiratorów jest zgodne z najlepszymi praktykami w tej dziedzinie, zapewniając dokładność i wiarygodność wyników analitycznych. Ponadto, aspiratory mogą być używane do analizy gazów wydechowych w przemyśle motoryzacyjnym, co jest kluczowe dla oceny emisji i przestrzegania norm ekologicznych.

Pytanie 38

Symbol "In" znajduje się na

A. pipetach i oznacza sprzęt kalibrowany "na wylew"
B. biuretach i oznacza sprzęt kalibrowany "na wlew"
C. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wlew"
D. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wylew"
Zauważyłem, że wybrałeś odpowiedź, która nie do końca jest poprawna. Wydaje mi się, że mogłeś się pomylić w kwestii kalibracji sprzętu. Pipety są używane do precyzyjnego przenoszenia cieczy, ale to kolby miarowe mają symbol 'In' i są kalibrowane 'na wlew'. Mylisz je z pipetami, co może wprowadzać w błąd. Kolby miarowe nie są kalibrowane 'na wylew', bo to nie ich przeznaczenie. Dobrze jest zrozumieć, jak różne sprzęty działają, bo to wpływa na wyniki. Prawidłowe stosowanie narzędzi w laboratorium jest kluczowe. Jak się nie zrozumie tych szczegółów, można sobie narobić kłopotów w eksperymentach.

Pytanie 39

Jakie urządzenie służy do pomiaru temperatury topnienia substancji chemicznych?

A. Kipp.
B. Engler.
C. Thiel.
D. Soxleth.
Zrozumienie, jak działają różne aparaty laboratoryjne, jest kluczowe w kontekście chemii analitycznej. Odpowiedzi takie jak Soxletha, Englera czy Kipp są często mylone z aparatem Thielego, co prowadzi do nieporozumień. Soxleth jest używany do ekstrakcji substancji rozpuszczalnych w cieczy, co jest zupełnie inną funkcją niż pomiar temperatury topnienia. Engler to aparat służący do oznaczania temperatury wrzenia cieczy, co również nie ma związku z topnieniem. Z kolei aparat Kippa jest stosowany do wytwarzania gazów w reakcjach chemicznych, co zupełnie nie odnosi się do określania temperatury topnienia. Problemy te wynikają z mylnej koncepcji, że wszystkie aparaty mają podobne zastosowania. Kluczowe jest zrozumienie, że każdy z tych aparatów ma swoją specyfikę i przeznaczenie. Właściwe przypisanie urządzenia do zadania jest istotne dla uzyskania prawidłowych wyników i unikania błędów w analizach chemicznych. Niezrozumienie tych różnic może prowadzić do niskiej jakości wyników oraz niepoprawnych wniosków dotyczących badanych substancji. Dlatego ważne jest, aby podczas nauki chemii zwracać uwagę na funkcje poszczególnych urządzeń i ich zastosowanie w praktyce laboratoryjnej.

Pytanie 40

Proces oddzielania mieszaniny niejednorodnej, który zachodzi w wyniku opadania cząstek pod działaniem grawitacji, nazywamy

A. hydratacja
B. sedymentacja
C. absorpcja
D. dekantacja
Hydratacja, absorpcja i dekantacja to procesy, które różnią się zasadniczo od sedymentacji, co może prowadzić do nieporozumień. Hydratacja odnosi się do procesu, w którym cząsteczki wody wchodzą w interakcje z innymi substancjami, często prowadząc do ich rozpuszczenia lub zmiany stanu skupienia. Nie jest to więc proces związany z opadaniem cząstek ani ich separacją przez grawitację. Absorpcja z kolei dotyczy wchłaniania substancji przez inne materiały, co również nie ma związku z grawitacyjnym oddzielaniem cząstek. W kontekście chemii i technologii materiałowej absorpcja ma zastosowanie w procesach takich jak filtracja, gdzie substancje są wchłaniane przez porowate materiały, ale nie jest to tożsame z sedymentacją. Dekantacja to metoda polegająca na oddzielaniu cieczy od osadu, jednak wymaga wcześniejszej sedymentacji, aby cząstki mogły opaść na dno. Dekantacja jest bardziej zaawansowanym procesem, który nie odbywa się wyłącznie pod wpływem siły grawitacji, lecz również zakłada manualne lub mechaniczne oddzielenie faz. Dlatego zrozumienie różnic między tymi procesami jest kluczowe w naukach przyrodniczych i inżynieryjnych, a niepoprawne przypisanie cech jednego procesu do drugiego może prowadzić do błędnych wniosków oraz nieefektywności w praktycznych zastosowaniach.