Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 30 maja 2025 17:03
  • Data zakończenia: 30 maja 2025 17:32

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na podstawie receptury roboczej oblicz, ile żwiru potrzeba do sporządzenia mieszanki betonowej C12/15, jeżeli pojemność robocza betoniarki wynosi 200 litrów.

Receptura robocza
Składniki na 1 m3 mieszanki betonowej
Beton C12/15
cement:275 kg
piasek:590 kg
żwir:1375 kg
woda:165 l

A. 55 kg
B. 275 kg
C. 33 kg
D. 118 kg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 275 kg, co wynika z obliczeń opartych na recepturze roboczej dla mieszanki betonowej C12/15. W przypadku betoniarki o pojemności 200 litrów, musimy przeliczyć ilość żwiru z przelicznika 1 m³ mieszanki betonowej. Według standardów, ilość żwiru w mieszance C12/15 wynosi 1375 kg na 1 m³. Przeskalowując to do pojemności betoniarki, stosujemy proporcję objętości: 0,2 m³ (200 litrów) razy 1375 kg, co daje 275 kg. Takie obliczenia są istotne w praktyce budowlanej, aby zapewnić właściwe proporcje składników, co wpływa na jakość i trwałość betonu. Zrozumienie receptur betonowych oraz umiejętność przeliczania ich na mniejsze objętości jest kluczowa dla każdego inżyniera budowlanego czy wykonawcy, co pozwala na efektywne i oszczędne gospodarowanie materiałami.

Pytanie 2

Strzępia zazębione tworzy się, pozostawiając w każdej drugiej warstwie muru puste miejsce o głębokości

A. 1/2 cegły
B. 1 cegła
C. 2 cegły
D. 1/4 cegły
Wybór nieprawidłowej odpowiedzi, jak na przykład 1 cegły, 1/2 cegły czy 2 cegieł, wynika z nieporozumienia dotyczącego zasadności głębokości pustek w strzępiach zazębionych. W przypadku głębokości 1 cegły, mur staje się zbyt słaby, ponieważ zbyt duże szczeliny mogą prowadzić do problemów z integralnością strukturalną. Z kolei 1/2 cegły również jest zbyt dużą głębokością, co może powodować, że mur będzie podatny na deformacje, a tym samym na uszkodzenia pod wpływem obciążeń. Zastosowanie większych pustek prowadzi do niekorzystnych warunków izolacyjnych, co może wpływać na wilgotność i trwałość materiałów budowlanych. Odpowiednia głębokość pustek jest kluczowym czynnikiem projektowym, a wszelkie odstępstwa od norm mogą skutkować poważnymi problemami strukturalnymi. W praktyce, ważne jest, aby murarz był świadomy tego, jak różne głębokości pustek wpływają na całość konstrukcji oraz jakie są zalecenia w dokumentach normatywnych i branżowych. Zrozumienie tych zależności pozwala na lepsze planowanie i realizację projektów, co jest kluczowe w budownictwie. Dlatego też, pozostawienie pustek o głębokości 1/4 cegły jest najlepszą praktyką, która gwarantuje zarówno wytrzymałość, jak i estetykę wykonanej pracy.

Pytanie 3

Która z poniższych cech jest typowa dla nowo przygotowanej zaprawy?

A. Wytrzymałość na ściskanie
B. Podatność na ścieranie
C. Mrozoodporność
D. Urabialność
Urabialność świeżo zarobionej zaprawy jest kluczowym parametrem, który determinuje jej łatwość w obróbce i formowaniu. Oznacza to, że zaprawa powinna być odpowiednio plastyczna, co ułatwia jej rozprowadzanie, wypełnianie form oraz przyczepność do podłoża. W praktyce, dobra urabialność wpływa na efektywność pracy budowlanej, pozwalając na łatwiejsze nakładanie zaprawy na różne powierzchnie oraz zapewniając równomierne wypełnienie fug. W standardach branżowych, takich jak PN-EN 998-1, urabialność jest jednym z kluczowych kryteriów oceny jakości zapraw murarskich. Przykładowo, w przypadku zapraw stosowanych do klinkieru czy kamienia naturalnego, konieczne jest, aby ich urabialność była dostosowana do konkretnych warunków aplikacji. W kontekście budownictwa, urabialność ma również wpływ na ostateczną wytrzymałość mechaniczną materiału, ponieważ nieodpowiednio urabiana zaprawa może prowadzić do powstania pustek lub nierówności, co negatywnie wpływa na trwałość konstrukcji.

Pytanie 4

Jakie materiały wykorzystuje się do łączenia warstw papy asfaltowej stosowanych jako izolacja ław fundamentowych?

A. lepikiem asfaltowym
B. emulsją asfaltową
C. kitem asfaltowym
D. roztworem asfaltowym
Lepik asfaltowy jest najczęściej stosowanym materiałem do łączenia warstw papy asfaltowej, ponieważ zapewnia doskonałą przyczepność i szczelność. Jego właściwości hydroizolacyjne są kluczowe przy izolacji ław fundamentowych, ponieważ zapobiegają przenikaniu wody do konstrukcji. Lepik asfaltowy, będący płynnym materiałem, pod wpływem ciepła staje się lepki, co umożliwia łatwe łączenie poszczególnych warstw papy. W praktyce, stosując lepik, można uzyskać ciągłość izolacji, co jest istotne dla długotrwałej ochrony fundamentów. Dobrą praktyką jest również przestrzeganie norm budowlanych, takich jak PN-EN 13707, które definiują wymagania dla materiałów hydroizolacyjnych. Dzięki zastosowaniu lepika asfaltowego na ławach fundamentowych, inwestorzy mogą mieć pewność, że ich struktury są odpowiednio zabezpieczone przed negatywnym działaniem wody i wilgoci, co w dłuższej perspektywie przekłada się na trwałość budowli.

Pytanie 5

Na podstawie informacji podanych w instrukcji producenta oblicz, ile 25 kilogramowych worków zaprawy murarskiej należy przygotować do wymurowania 40 m2 ściany o grubości 25 cm.

Instrukcja producenta
Grubość ściany
(z cegły pełnej)
Zużycie zaprawy
przy grubości spoiny ok. 1 cm
1/2 c40 kg/m2
1 c100 kg/m2

A. 160 worków.
B. 40 worków.
C. 64 worki.
D. 128 worków.
Odpowiedź jest prawidłowa, ponieważ prawidłowo oblicza ilość zaprawy murarskiej potrzebnej do wymurowania ściany o powierzchni 40 m² i grubości 25 cm. Zgodnie z instrukcją producenta, zużycie zaprawy dla ściany o takiej grubości wynosi 100 kg/m². Wykonując obliczenia, mnożymy powierzchnię ściany przez zużycie zaprawy: 40 m² * 100 kg/m² = 4000 kg. Następnie dzielimy całkowitą masę zaprawy przez wagę jednego worka, co daje 4000 kg / 25 kg/worek = 160 worków. W praktyce, dokładne obliczenia ilości materiałów budowlanych są kluczowe dla uniknięcia niedoborów i opóźnień w projektach budowlanych. W branży budowlanej stosuje się standardy, które uwzględniają różne czynniki, takie jak rodzaj materiałów, grubość ścian i warunki klimatyczne, co sprawia, że precyzyjne obliczenia są niezbędne dla efektywności i bezpieczeństwa konstrukcji. Dobrą praktyką jest również uwzględnienie pewnego marginesu na straty materiałowe oraz ewentualne poprawki podczas pracy.

Pytanie 6

Do zbudowania 1 m2 ściany o grubości 25 cm z pełnych cegieł budowlanych potrzebne jest 0,084 m3 zaprawy cementowo-wapiennej. Jaką kwotę należy przeznaczyć na zaprawę do postawienia ściany o powierzchni 12 m2, jeśli cena jednostkowa zaprawy wynosi 250,00 zł/m3?

A. 252,00 zł
B. 2 520,00 zł
C. 2 420,00 zł
D. 242,00 zł
Aby obliczyć koszt zaprawy cementowo-wapiennej potrzebnej do wymurowania ściany o powierzchni 12 m2, należy najpierw ustalić, ile zaprawy potrzebujemy na tę powierzchnię. Z danych wynika, że do wymurowania 1 m2 ściany potrzeba 0,084 m3 zaprawy. Dlatego na 12 m2 ściany potrzebne będzie: 12 m2 * 0,084 m3/m2 = 1,008 m3 zaprawy. Następnie, mnożąc objętość zaprawy przez cenę jednostkową, otrzymujemy całkowity koszt: 1,008 m3 * 250,00 zł/m3 = 252,00 zł. Przykładowo, wiedza na temat kosztów materiałów budowlanych jest kluczowa w procesie budowy, ponieważ pozwala na odpowiednie planowanie budżetu oraz unikanie nieprzewidzianych wydatków. Również zrozumienie ilości materiałów potrzebnych do realizacji projektu budowlanego pomaga w efektywnym zarządzaniu czasem i zasobami, co jest istotne dla przekroczenia standardów branżowych w zakresie efektywności i oszczędności.

Pytanie 7

Na podstawie przedstawionej receptury roboczej oblicz ilość piasku potrzebną do wykonania 1,5 mieszanki betonowej.

Receptura robocza wykonania 1 m3 mieszanki betonowej
cement 42,5430 kg
piasek320 kg
żwir578 kg
woda267 l

A. 480 kg
B. 867 kg
C. 645 kg
D. 320 kg
Twoja odpowiedź jest poprawna! Ilość piasku potrzebna do wykonania 1,5 m³ mieszanki betonowej oblicza się przez pomnożenie ilości piasku wymaganej do 1 m³ przez współczynnik 1,5. Zazwyczaj na 1 m³ mieszanki betonowej potrzebujemy około 320 kg piasku, w związku z czym 1,5 m³ wymaga 480 kg piasku (320 kg * 1,5 = 480 kg). W praktyce stosowanie odpowiednich proporcji składników jest kluczowe dla uzyskania pożądanych właściwości betonu, takich jak wytrzymałość i trwałość. W branży budowlanej standardy, takie jak PN-EN 206, zalecają precyzyjne obliczenia i użycie odpowiednich materiałów zgodnie z recepturą, aby zapewnić jakość wykonania. Zrozumienie, jak obliczać proporcje składników, jest niezbędne dla każdego inżyniera budownictwa oraz technika, co przekłada się na efektywność pracy oraz bezpieczeństwo konstrukcji.

Pytanie 8

Aby przygotować zaprawę cementowo-wapienną, użyto 50 kg wapna. Jaką ilość cementu trzeba zastosować do tej zaprawy, jeśli proporcja objętościowa składników wynosi 1:2:4?

A. 150 kg
B. 100 kg
C. 50 kg
D. 25 kg
Aby obliczyć ilość cementu potrzebną do wykonania zaprawy cementowo-wapiennej, należy najpierw zrozumieć stosunek objętościowy składników, który wynosi 1:2:4. Oznacza to, że na każdą część cementu przypadają dwie części wapna i cztery części piasku. W tym przypadku, skoro przygotowano 50 kg wapna, to obliczamy ilość cementu w następujący sposób: jeśli 2 części to 50 kg, to 1 część (czyli cement) wynosi 25 kg (50 kg / 2 = 25 kg). Dodatkowo, dla zapewnienia właściwych właściwości zaprawy oraz trwałości konstrukcji, dobrym standardem jest stosowanie dokładnych proporcji, które zapewniają odpowiednią wytrzymałość i elastyczność mieszanki. Warto pamiętać, że w praktyce do wykonania zaprawy często korzysta się z gotowych mieszanek zapraw, które już mają zmierzone i dobrane składniki w odpowiednich proporcjach, co ułatwia pracę budowlaną.

Pytanie 9

Główne komponenty mieszanki betonowej do produkcji betonu standardowego to cement i woda oraz

A. piasek i żwir
B. popiół i wapno
C. piasek i wapno
D. popiół i keramzyt
Beton zwykły powstaje z kilku kluczowych składników: cementu, wody, piasku i żwiru. Te elementy razem tworzą mieszankę, która ma odpowiednie właściwości mechaniczne. Cement działa jak spoiwo, a woda wprowadza reakcję hydratacji. Piasek i żwir są ważne, bo nadają betonu odpowiednią strukturę oraz wytrzymałość. W praktyce, dobór tych składników w odpowiednich proporcjach jest mega ważny, żeby beton miał dobre parametry, takie jak odporność na ściskanie czy warunki atmosferyczne. W budowlance mamy normy, jak PN-EN 206, które mówią, jak powinny wyglądać składniki mieszanki, żeby wszystko było wysokiej jakości i bezpieczne.

Pytanie 10

Aby wykonać tynk ciągniony, należy zastosować

A. paki oraz profilowane kielnie
B. pneumatyczne urządzenia natryskowe
C. stalowe listewki kierunkowe
D. profile przesuwane po prowadnicach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Użycie profili na prowadnicach to kluczowa sprawa przy robieniu tynku ciągnionego. W tej metodzie chodzi o nałożenie zaprawy tynkarskiej na ścianę za pomocą tych profili, co pozwala równomiernie rozprowadzić materiał. Dzięki profilowanym prowadnicom łatwiej kontrolować grubość tynku i uzyskać gładką powierzchnię. W praktyce najpierw montuje się te profile na ścianie, a potem nakłada się zaprawę i wygładza narzędziami tynkarskimi. Ta technika jest zgodna z normami budowlanymi, które mówią, że tynki muszą być robione w sposób zapewniający trwałość i odpowiednie parametry. No i tynk ciągniony jest często stosowany w budynkach, gdzie estetyka jest bardzo ważna, jak w obiektach publicznych czy domach jednorodzinnych - tam gładkie ściany są pożądane przez inwestorów.

Pytanie 11

W którym rodzaju stropu gęstożebrowego można znaleźć prefabrykowane belki żelbetowe?

A. Fert
B. Akermana
C. DZ-3
D. Teriva
Strop gęstożebrowy Fert nie jest odpowiedzią, ponieważ jest to system, który wykorzystuje płyty ceramiczne i żelbetowe, ale nie obejmuje prefabrykowanych belek żelbetowych. W praktyce jest on stosowany w budownictwie jednorodzinnym oraz w obiektach o małej rozpiętości, co ogranicza jego zastosowanie w większych projektach. Użycie belek żelbetowych w tym systemie jest rzadkie i nieoptymalne ze względu na ich masywność, co prowadzi do większych nakładów materiałowych i czasowych. Ponadto, strop Akermana, także niewłaściwy w tym kontekście, charakteryzuje się zupełnie inną konstrukcją, opartą na arkuszach żelbetowych, które również nie są prefabrykowane w klasycznym rozumieniu. W przypadku systemu Teriva, stosowane są płyty betonowe na żelbetowych belkach nośnych, co również nie pasuje do opisanego pytania. Te różnice mogą prowadzić do błędnych wniosków przy wyborze odpowiedniego systemu stropowego. Warto pamiętać, że wybór stropu powinien być zawsze uzależniony od specyfiki projektu, wymagań nośnych oraz lokalnych norm budowlanych, aby zapewnić bezpieczeństwo i funkcjonalność konstrukcji.

Pytanie 12

Koszt robocizny związany z wykonaniem 1 m2 tynku mozaikowego wynosi 20,00 zł. Oblicz całkowity wydatek na wykonanie (materiał i robocizna) tego tynku na ścianach o powierzchni 200 m2, jeżeli opakowanie (25 kg) tynku drobnoziarnistego kosztuje 150,00 zł, a jego zużycie to 3 kg/m2.

A. 3 600,00 zł
B. 3 800,00 zł
C. 7 600,00 zł
D. 4 000,00 zł
Aby obliczyć całkowity koszt wykonania tynku mozaikowego na ścianach o powierzchni 200 m², należy wziąć pod uwagę zarówno koszty materiałów, jak i robocizny. Koszt robocizny wynosi 20,00 zł za 1 m², co przy 200 m² daje łącznie 4 000,00 zł. Ponadto, do wykonania tynku potrzeba 3 kg tynku na 1 m², co oznacza, że na 200 m² zużyjemy 600 kg tynku. Ponieważ opakowanie tynku ma masę 25 kg, potrzebujemy 24 opakowań (600 kg / 25 kg). Koszt jednego opakowania to 150,00 zł, więc całkowity koszt materiału wynosi 3 600,00 zł (24 opakowania x 150,00 zł). Suma kosztów robocizny i materiałów wynosi 7 600,00 zł (4 000,00 zł + 3 600,00 zł). Takie obliczenia są zgodne z praktykami branżowymi, gdzie precyzyjne oszacowanie kosztów jest kluczowe dla budżetowania projektów budowlanych.

Pytanie 13

Aby naprawić uszkodzony narożnik muru, w którym konieczna jest wymiana cegieł, zbudowanego z cegły ceramicznej pełnej klasy 15 na zaprawie cementowo-wapiennej M15, należy użyć cegieł

A. ceramiczne pełne klasy 15
B. kratówki klasy 15
C. klinkierowe klasy 20
D. ceramiczne pełne klasy 20
Odpowiedź "ceramiczne pełne klasy 15" jest poprawna, ponieważ zachowuje spójność z materiałem, z którego został wykonany oryginalny mur. Cegły ceramiczne pełne klasy 15 charakteryzują się odpowiednimi właściwościami mechanicznymi i trwałością, co zapewnia ich kompatybilność z zaprawą cementowo-wapienną M15 używaną do budowy muru. Zastosowanie identycznego materiału jest kluczowe dla utrzymania jednorodności i stabilności strukturalnej. W praktyce, przy wymianie cegieł, szczególnie w narożnikach, kluczowe jest, aby nowo zastosowane cegły miały podobne właściwości, aby unikać problemów związanych z różnicami w rozszerzalności cieplnej czy absorpcji wilgoci. Ponadto, zachowanie klasy 15 w cegłach zapewnia odpowiednią nośność i odporność na czynniki zewnętrzne, co jest zgodne z normami budowlanymi. Warto pamiętać, że użycie cegieł o wyższej klasie, takich jak klasy 20, mogłoby wprowadzić niepożądane napięcia w strukturze muru, co w dłuższej perspektywie mogłoby prowadzić do uszkodzeń murów.

Pytanie 14

Zgodnie z zaleceniami producenta, z 25 kg zaprawy można uzyskać 1,4 m2 tynku o grubości 10 mm. Jaką ilość zaprawy należy przygotować do otynkowania ścian pomieszczenia o powierzchni 56,7 m2, aby osiągnąć tynk o tej samej grubości?

A. 101,25 kg
B. 10,125 kg
C. 1 012,5 kg
D. 10 125 kg
Właściwe obliczenie ilości zaprawy wymaga uwzględnienia zarówno powierzchni tynkowanej jak i wydajności zaprawy. Z instrukcji producenta wiemy, że 25 kg zaprawy pokrywa 1,4 m² tynku o grubości 10 mm. Aby obliczyć ilość zaprawy potrzebnej do pokrycia 56,7 m², najpierw obliczamy, ile m² można pokryć 1 kg zaprawy, co wynosi 1,4 m²/25 kg = 0,056 m²/kg. Następnie mnożymy tę wartość przez 56,7 m², co daje 1 012,5 kg zaprawy. Użycie dokładnych obliczeń jest istotne w praktyce budowlanej, aby uniknąć niedoborów lub nadmiaru materiału, co może wpływać na koszty i terminy realizacji. W branży budowlanej zaleca się również uwzględnianie niewielkiego zapasu materiału, aby pokryć ewentualne straty czy błędy przy aplikacji, co jest zgodne z najlepszymi praktykami w zarządzaniu projektami budowlanymi.

Pytanie 15

Jakiego rodzaju spoiwa używa się do produkcji betonów zwykłych?

A. Akrylowy.
B. Gipsowy.
C. Wapienny.
D. Cementowy.
Gips, akryl i wapno nie są odpowiednimi spoiwami do produkcji betonów zwykłych, a ich zastosowanie w kontekście budownictwa wymaga dokładniejszego wyjaśnienia. Gips jest materiałem stosowanym głównie do prac wykończeniowych i w suchych zabudowach, często jako składnik tynków czy gipsowych płyt, ale nie posiada właściwości wiążących wystarczających do produkcji betonu, który wymaga długotrwałej wytrzymałości. Akryl, z kolei, jest materiałem syntetycznym, który stosuje się głównie w farbach, uszczelnieniach i powłokach, ale nie jest spoiwem, a jego właściwości nie pozwalają na tworzenie trwałych struktur betonowych. Wapno, choć historycznie używane jako spoiwo w budownictwie, obecnie zastąpione zostało przez cement w produkcji betonu. Wapno ma ograniczoną wytrzymałość i długi czas wiązania, co czyni je mniej efektywnym w standardowych zastosowaniach budowlanych. Typowe błędy myślowe, które mogą prowadzić do wyboru tych materiałów jako spoiw do betonu, często wynikają z nieprecyzyjnego rozumienia ich właściwości i zastosowań w budownictwie. Dlatego kluczowe jest, aby wszyscy zaangażowani w proces budowlany posiadali solidną wiedzę na temat odpowiednich materiałów budowlanych oraz ich specyfikacji, co przyczynia się do zwiększenia jakości i bezpieczeństwa konstrukcji.

Pytanie 16

Która z podanych zapraw cechuje się najlepszymi właściwościami plastycznymi?

A. Cementowo-gliniana
B. Gipsowa
C. Wapienna
D. Cementowo-wapienna
Wybór innych zapraw, takich jak cementowo-wapienna, gipsowa czy cementowo-gliniana, prowadzi do kilku istotnych nieporozumień dotyczących ich właściwości plastycznych. Zaprawa cementowo-wapienna, mimo że łączy w sobie zalety obu materiałów, w praktyce charakteryzuje się mniejszą plastycznością w porównaniu do czystej zaprawy wapiennej. Cement, jako składnik, wprowadza twardość, co ogranicza elastyczność zaprawy, co jest niekorzystne w kontekście aplikacji wymagających łatwego formowania i deformations. Gipsowa zaprawa, choć posiada dobre właściwości plastyczne, ma ograniczone zastosowanie w wilgotnych warunkach, co czyni ją mniej uniwersalną. Ponadto, jej zdolność do twardnienia jest znacznie szybsza, co może prowadzić do problemów z równomiernym rozprowadzeniem i aplikacją. Cementowo-gliniana zaprawa z kolei, mimo że oferuje pewne właściwości plastyczne, nie osiąga poziomu elastyczności, jaki zapewnia wapno. W ogólnym ujęciu, powszechnym błędem jest zatem mylenie twardości z plastycznością, co prowadzi do niewłaściwych wyborów materiałowych w budownictwie. Dobór odpowiedniej zaprawy powinien być uzależniony od specyfiki projektu oraz warunków, w jakich ma być stosowana, a zaprawy oparte na wapnie są najbardziej odpowiednie do zastosowań wymagających wysokiej plastyczności i paroprzepuszczalności.

Pytanie 17

Powierzchnia gipsowa, która ma być poddana tynkowaniu, musi być

A. porysowana i sucha
B. gładka i nawilżona
C. porysowana i nawilżona
D. gładka i sucha
Prawidłowe przygotowanie podłoża gipsowego do tynkowania jest kluczowym aspektem, który może zostać zignorowany przy błędnej interpretacji wymagań. Odpowiedzi, które sugerują gładkie i suche podłoże, opierają się na mylnym założeniu, że idealnie gładka powierzchnia zapewnia najlepszą adhezję. W rzeczywistości, brak jakiejkolwiek faktury na podłożu gipsowym skutkuje mniejszą powierzchnią styku, co może prowadzić do łatwego odrywania się tynku. Gdy podłoże jest suche, tynk może wchłonąć wilgoć z gipsu zbyt szybko, co może prowadzić do pęknięć i niestabilności. Porysowanie powierzchni gipsowej jest zatem fundamentalne, ponieważ zwiększa ona powierzchnię styku i poprawia właściwości klejące. Z kolei odpowiedzi sugerujące, że podłoże powinno być porysowane i zwilżone, lecz przy jednoczesnym wskazaniu na jego porysowanie bez nawilżenia, również są błędne. Wysoka wilgotność jest kluczowa w procesie wiązania tynku. Zbyt duże wysuszenie podłoża przez porysowanie bez odpowiedniego nawilżenia może prowadzić do nieodwracalnych uszkodzeń tynku. Dlatego, aby zapewnić estetyczne i trwałe wykończenie, należy przestrzegać standardów budowlanych dotyczących przygotowania podłoża, które zalecają stosowanie nawilżania przed aplikacją tynku, co jest praktyką zgodną z normami branżowymi.

Pytanie 18

Aby przygotować 1 worek (25 kg) zaprawy tynkarskiej, trzeba zastosować

A. betoniarkę przeciwbieżną
B. wiertarkę z mieszadłem
C. betoniarkę wolnospadową
D. agregat tynkarski
Betoniarka przeciwbieżna do mieszania zaprawy tynkarskiej to nie najlepszy wybór. Ta maszyna jest raczej przystosowana do dużych ilości betonu, a nie do tynków. Betoniarka działa na zasadzie przeciwstawnych ruchów bębna i jest ok, ale jej jakość mieszanki tynkarskiej może być kiepska. Przy zaprawach ważne jest, żeby uzyskać jednorodną konsystencję, a z betoniarką czasem mogą być z tym problemy. Agregaty tynkarskie, mimo że są do aplikacji tynków, nie służą do początkowego mieszania. W sumie używa się ich do transportu gotowej zaprawy, a nie do jej przygotowania. Betoniarki wolnospadowe też najlepiej nie używać do takich cienkich materiałów, jak tynki, bo są raczej zbudowane do betonu. To typowy błąd, że myślisz, że każde urządzenie do mieszania można stosować zamiennie, a tak nie jest. Nieodpowiednie narzędzie do rozrabiania zaprawy może spowodować różne problemy, jak trudności w aplikacji, brzydki wygląd tynku, a nawet obniżoną trwałość. Lepiej postawić na to, co jest przeznaczone do tynków!

Pytanie 19

Jeżeli w trakcie remontu czas pracy na wykonanie 100 m2 tynku wynosi 35 r-g, to ile czasu będzie potrzebne na otynkowanie ścian pomieszczenia o wymiarach 5×6 m i wysokości 3 m?

A. 35,0 r-g
B. 23,1 r-g
C. 10,5 r-g
D. 31,5 r-g
Odpowiedź 23,1 r-g jest poprawna, ponieważ aby obliczyć czas potrzebny na otynkowanie ścian pokoju, należy najpierw określić powierzchnię tynku, którą trzeba pokryć. Pokój o wymiarach 5 m na 6 m i wysokości 3 m ma powierzchnię ścian równą: 2 * (5 m + 6 m) * 3 m = 66 m2. Następnie, mając informację, że nakład robocizny na 100 m2 tynku wynosi 35 r-g, możemy obliczyć czas potrzebny na pokrycie 66 m2 tynku. Proporcjonalnie, czas na 1 m2 wynosi 35 r-g / 100 m2 = 0,35 r-g. Dlatego czas na 66 m2 tynku to: 66 m2 * 0,35 r-g/m2 = 23,1 r-g. Tego typu obliczenia są kluczowe w praktyce budowlanej, ponieważ pozwalają na precyzyjne planowanie kosztów i czasu pracy, co jest zgodne z najlepszymi praktykami w branży budowlanej.

Pytanie 20

Analizę odchylenia tynku oraz jego brzegów od poziomu i pionu wykonuje się w tynkach klasy

A. I
B. II
C. 0
D. Ia
Wybór innych kategorii tynków w kontekście badania odchylenia powierzchni i krawędzi od kierunku poziomego i pionowego może prowadzić do istotnych nieporozumień. Tynki kategorii I oraz 0 mają luźniejsze normy dotyczące tolerancji, co oznacza, że mogą nie spełniać wymagań rynkowych dla bardziej wymagających projektów. Kategoria I, na przykład, jest często stosowana w miejscach, gdzie estetyka nie jest głównym kryterium, takich jak pomieszczenia techniczne czy piwnice. Z kolei tynki kategorii 0 mogą być stosowane w przypadkach tymczasowych lub w budynkach o niskich wymaganiach jakościowych. Wybór tynków Ia zazwyczaj odnosi się do wykończeń, które nie wymagają szczególnej precyzji, co może skutkować nieodpowiednim wykonaniem w kontekście estetyki. Błąd polega na niezrozumieniu, że dla wysokiej klasy wykończeń, takich jak w biurach czy mieszkaniach, istotne jest stosowanie tynków kategorii II, które zapewniają nie tylko funkcjonalność, ale także estetykę. W praktyce często zdarzają się sytuacje, w których ekipy budowlane, nie znając szczegółowych wymagań, stosują niewłaściwe materiały, co prowadzi do kosztownych poprawek oraz niezadowolenia klientów. Zastosowanie odpowiednich kategorii tynków w zależności od specyfiki projektu jest kluczowe dla zachowania jakości i estetyki wykończeń budowlanych.

Pytanie 21

Który z rodzajów tynków jest stosowany do finalizacji powierzchni elewacji podczas ocieplania budynku płytami styropianowymi w systemie BSO (Bezspoinowym Systemie Ocieplania)?

A. Akrylowy
B. Cementowy
C. Cementowo-wapienny
D. Gipsowo-wapienny
Odpowiedź akrylowy jest prawidłowa, ponieważ tynki akrylowe są najczęściej stosowane w systemach ocieplania budynków płytami styropianowymi metodą BSO (Bezspoinowego Systemu Ocieplania). Ich główną zaletą jest doskonała elastyczność oraz odporność na czynniki atmosferyczne, co jest kluczowe w przypadku elewacji. Tynki akrylowe charakteryzują się również wysoką przyczepnością do podłoża oraz łatwością w aplikacji, co sprawia, że są bardzo popularnym wyborem w budownictwie. Stosowanie tynków akrylowych pozwala na uzyskanie estetycznego wykończenia, dostępnego w szerokiej gamie kolorystycznej. Zgodnie z normami budowlanymi, tynki te powinny być aplikowane zgodnie z zasadami producenta, co zapewnia ich długotrwałość oraz trwałość estetyczną. W praktyce, tynki akrylowe są szczególnie polecane w przypadku budynków narażonych na intensywne warunki atmosferyczne, ponieważ dobrze znoszą zmiany temperatury i wilgotności, co jest istotne dla zachowania izolacyjności termicznej budynku.

Pytanie 22

Aby ustalić powierzchnię tynków klasy IV na ścianie, jakie elementy należy zastosować?

A. listwy aluminiowe
B. kątowniki aluminiowe
C. siatkę z tworzywa sztucznego
D. wkładki dystansowe
Wybór wkładek dystansowych, kątowników aluminiowych czy siatki z tworzywa sztucznego w kontekście wyznaczania lica tynków kategorii IV może prowadzić do wielu nieporozumień oraz problemów praktycznych. Wkładki dystansowe, choć mogą być użyteczne w niektórych zastosowaniach, nie zapewniają odpowiedniej sztywności i stabilności, które są kluczowe dla uzyskania równych linii tynku. Niewłaściwe ich zastosowanie może prowadzić do deformacji tynku oraz utraty estetyki. Kątowniki aluminiowe, mimo że są użyteczne w kontekście zabezpieczania krawędzi, nie spełniają roli wsparcia w procesie tynkowania. Ich główną funkcją jest ochrona narożników, a nie precyzyjne wyznaczanie lica, co czyni je niewłaściwym wyborem w tej sytuacji. Siatka z tworzywa sztucznego, z kolei, ma zastosowanie w systemach ociepleń oraz wzmocnienia, ale nie jest przeznaczona do wyznaczania lica tynków. Zastosowanie tego elementu może prowadzić do błędów w aplikacji tynku, gdyż nie zapewnia ona sztywności wymaganej do stworzenia równych i stabilnych powierzchni. Typowe błędy myślowe w tym przypadku obejmują mylenie funkcji poszczególnych materiałów oraz niewłaściwą interpretację ich zastosowania, co może znacząco wpłynąć na jakość wykończenia oraz trwałość systemu tynkarskiego.

Pytanie 23

Jakie konstrukcje uznawane są za obiekty inżynieryjne?

A. Obiekty przemysłowe
B. Budowle z konstrukcją szkieletową
C. Konstrukcje mostowe
D. Świątynie
Mosty to takie specjalne budowle, które zostały zaprojektowane po to, żebyśmy mogli przejeżdżać nad różnymi przeszkodami, jak rzeki czy doliny. W budowie mostów wykorzystuje się różne materiały, takie jak stal czy beton, bo muszą być mocne i trwałe. W inżynierii transportowej mosty są bardzo ważne, bo ułatwiają nam przemieszczanie się. Weźmy na przykład Most Golden Gate w San Francisco czy Most Millau we Francji - oba są nie tylko funkcjonalne, ale też piękne pod względem architektury. Kiedy projektuje się mosty, to trzeba wziąć pod uwagę różne normy i standardy, na przykład Eurokod, które mówią, jak powinny być bezpieczne i solidne. Budowa mostów to niełatwa sprawa, bo trzeba analizować różne czynniki, takie jak obciążenia, warunki gruntowe czy wpływ środowiska. Dlatego mosty są dość skomplikowanymi konstrukcjami, które wymagają wiedzy z różnych dziedzin.

Pytanie 24

Jaką ilość zaprawy należy przygotować do otynkowania sufitu o wymiarach 4,0 m x 5,0 m, jeśli zapotrzebowanie na zaprawę tynkarską wynosi 4,5 kg na 1 m2?

A. 94,5 kg
B. 22,5 kg
C. 18,0 kg
D. 90,0 kg
Aby obliczyć ilość zaprawy potrzebnej do otynkowania sufitu, najpierw musimy obliczyć jego powierzchnię. Sufit o wymiarach 4,0 m x 5,0 m ma powierzchnię równą 20 m². Następnie, wiedząc, że zużycie zaprawy tynkarskiej wynosi 4,5 kg na 1 m², możemy pomnożyć tę wartość przez powierzchnię sufitu. Wzór na obliczenie zaprawy to: 20 m² x 4,5 kg/m² = 90 kg. Takie obliczenia są kluczowe w pracy budowlanej, ponieważ pozwalają na precyzyjne planowanie materiałów, co z kolei wpływa na efektywność i oszczędności w projekcie. W praktyce, znajomość kosztów materiałów i ich ilości pozwala na lepsze zarządzanie budżetem oraz uniknięcie nadmiarowych wydatków na niepotrzebne zakupy. Ważne jest także, aby przy planowaniu zaprawy tynkarskiej uwzględnić dodatkowe czynniki, takie jak rodzaj podłoża czy technika tynkowania, które mogą wpływać na rzeczywiste zużycie zaprawy. W związku z tym, zawsze warto konsultować się z fachowcami w tej dziedzinie oraz korzystać z wytycznych producentów materiałów budowlanych.

Pytanie 25

Na podstawie danych zawartych w przedstawionej tabeli wskaż, ile piasku należy użyć do przygotowania 1 m3 zaprawy wapiennej o proporcji objętościowej składników 1:3 z użyciem ciasta wapiennego.

Proporcje i ilość składników na 1 m³ zaprawy wapiennej
Stosunek objętościowy wapna do piaskuMarka zaprawy [MPa]Ciasto wapienne [m³]Piasek [m³]Woda [dm³]
1 : 1,50,40,5100,76537
1 : 20,40,4300,86050
1 : 30,20,3200,960100
1 : 3,50,20,2800,980130
1 : 4,50,20,2241,010166

A. 1,080 m3
B. 0,320 m3
C. 0,980 m3
D. 0,960 m3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0,960 m3 jest prawidłowa, ponieważ zgodnie z danymi zawartymi w tabeli, dla zaprawy wapiennej o proporcji 1:3, ilość piasku potrzebna do przygotowania 1 m3 zaprawy wynosi dokładnie 0,960 m3. W kontekście przygotowania zaprawy, proporcje składników są kluczowe, ponieważ wpływają na właściwości mechaniczne i trwałość gotowego produktu. Stosowanie właściwych proporcji, jak w tym przypadku, ma na celu osiągnięcie optimlanej konsystencji oraz wytrzymałości zaprawy, co jest zgodne z normami budowlanymi. Dodatkowo, znajomość takich proporcji jest niezbędna w praktyce budowlanej, aby zapewnić odpowiednią jakość materiałów używanych w konstrukcji. Warto również zwrócić uwagę, że dla tej proporcji zaprawy, ilość ciasta wapiennego wynosi 0,320 m3, co również potwierdza prawidłowość wyliczeń. Takie umiejętności są kluczowe dla inżynierów budowlanych oraz techników, którzy muszą podejmować decyzje oparte na danych technicznych i standardach branżowych.

Pytanie 26

Jak powinno się przygotować podłoże z cegły rozbiórkowej do tynkowania, jeżeli jest zabrudzone sadzą i tłuszczem?

A. Umyć wodą z detergentem
B. Zeszkrobać papierem ściernym
C. Wyczyścić szczotką, a następnie spłukać wodą
D. Nałożyć warstwę folii w płynie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Zmyć wodą z detergentem' jest prawidłowa, ponieważ skutecznie usuwa zanieczyszczenia, takie jak sadza i tłuszcz, które mogą negatywnie wpływać na przyczepność tynku do podłoża. W procesie przygotowania podłoża z cegły rozbiórkowej, należy zwrócić szczególną uwagę na jego czystość, ponieważ wszelkie zanieczyszczenia mogą prowadzić do odspajania się tynku w przyszłości. Użycie detergentów jest powszechną praktyką, ponieważ ich właściwości emulgujące pomagają w rozkładzie tłuszczu, co ułatwia usunięcie zabrudzeń. Po umyciu powierzchni za pomocą wody z detergentem, zaleca się spłukanie jej czystą wodą, aby usunąć wszelkie resztki chemikaliów. Warto również pamiętać, że niektóre standardy budowlane zalecają wykonanie testu przyczepności tynku na małym fragmencie podłoża po jego przygotowaniu. Takie podejście pomoże upewnić się, że powierzchnia jest odpowiednio przygotowana, co zapewni długotrwałość i estetykę wykonanego tynku.

Pytanie 27

Jakie narzędzia są niezbędne do wykonania tynku wypalanego?

A. Kielnia tynkarska, łata murarska, młotek murarski
B. Paca stalowa, kielnia tynkarska, łata murarska
C. Kielnia tynkarska, packa obłożona filcem, poziomnica
D. Paca stalowa, kielnia tynkarska, młotek gumowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowy zestaw narzędzi do wykonania tynku wypalanego to paca stalowa, kielnia tynkarska oraz łata murarska. Paca stalowa jest kluczowym narzędziem do wygładzania i formowania powierzchni tynkarskiej, co pozwala osiągnąć odpowiednią gładkość i estetykę. Kielnia tynkarska służy do nakładania tynku na powierzchnię, a także do precyzyjnego formowania krawędzi i dotykowych detali. Łata murarska, z kolei, umożliwia wyrównanie tynku na dużych powierzchniach, co jest niezbędne dla uzyskania jednolitej grubości i gładkości. Przy stosowaniu tynku wypalanego, ważne jest, aby narzędzia były wykonane z materiałów odpornych na wysoką temperaturę oraz chemikalia, co gwarantuje długotrwałość i skuteczność podczas pracy. W praktyce, dobór tych narzędzi zgodnie z branżowymi standardami jest kluczowy dla uzyskania trwałego i estetycznego wykończenia, spełniającego normy budowlane.

Pytanie 28

Tynk III kategorii powszechny to

A. tynk trójwarstwowy zatarty packą na gładko
B. narzut o jednej warstwie, wyrównany kielnią
C. tynk trójwarstwowy wygładzony pacą pokrytą filcem
D. narzut jedno- lub dwu-warstwowy wygładzany pacą

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tynk pospolity III kategorii, jako tynk trójwarstwowy zatarty packą na gładko, jest odpowiednim rozwiązaniem w przypadku, gdy zależy nam na uzyskaniu estetycznej, gładkiej powierzchni. Tego rodzaju tynk składa się z trzech warstw: warstwy podkładowej, warstwy zasadniczej oraz warstwy wykończeniowej, co pozwala na uzyskanie odpowiedniej wytrzymałości oraz trwałości. Takie podejście jest zgodne z normami budowlanymi, które zalecają stosowanie trzech warstw w celu osiągnięcia najlepszych właściwości termoizolacyjnych oraz akustycznych. Przykładem zastosowania tynku pospolitego III kategorii mogą być wnętrza budynków mieszkalnych, gdzie gładka powierzchnia ścian jest zarówno estetyczna, jak i funkcjonalna. Dobra praktyka polega na prawidłowym wykonaniu każdej z warstw, co wpływa na końcowy efekt estetyczny oraz trwałość tynku, a także na jego odporność na uszkodzenia mechaniczne czy wilgoć. Dodatkowo, tynk taki może być malowany, co otwiera dodatkowe możliwości aranżacyjne w przestrzeni. Zastosowanie tynku trójwarstwowego zwiększa też wartość estetyczną obiektów budowlanych.

Pytanie 29

Na podstawie zapotrzebowania do budowy ścian obiektu potrzeba 500 sztuk bloczków gazobetonowych. Cena jednej palety tych bloczków wynosi 1200,00 zł. Jakie będą całkowite koszty zakupu, jeśli w każdej palecie jest 24 bloczki, a sprzedaż odbywa się tylko w pełnych paletach?

A. 25 000,00 zł
B. 24 200,00 zł
C. 24 000,00 zł
D. 25 200,00 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć całkowite koszty zakupu bloczków gazobetonowych, należy najpierw ustalić, ile palet będzie potrzebnych, a następnie pomnożyć liczbę palet przez koszt jednej palety. W przedstawionym przypadku, mamy 500 bloczków i każdy paleta zawiera 24 bloczki. Dlatego liczba potrzebnych palet wynosi 500 / 24 = 20,83, co oznacza, że musimy zakupić 21 pełnych palet, ponieważ sprzedaż odbywa się wyłącznie w kompletnych paletach. Koszt jednej palety wynosi 1200,00 zł, więc całkowity koszt zakupu wynosi 21 * 1200,00 zł = 25 200,00 zł. Ustalając zapotrzebowanie materiałowe w budownictwie, ważne jest uwzględnienie takich parametrów jak pojemność transportowa materiałów oraz zasady zakupu hurtowego, co pozwala na optymalizację kosztów i efektywność logistyczną. W praktyce, wiele przedsiębiorstw budowlanych korzysta z tego typu kalkulacji, aby precyzyjnie planować budżet oraz harmonogram dostaw, co jest zgodne z dobrymi praktykami zarządzania projektem budowlanym.

Pytanie 30

Na podstawie danych z KNR oblicz, ile pustaków ceramicznych Max220 potrzeba do wymurowania ścian o grubości 19 cm i powierzchni 35 m2.

Nakłady na 1 m² ścian wykonanych
z pustaków ceramicznych Max220
(wyciąg z KNR)
Grubość ścianLiczba pustaków
19 cm14,90 sztuk
39 cm22,40 sztuk

A. 665 szt.
B. 784 szt.
C. 426 szt.
D. 522 szt.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 522 szt. jest prawidłowa, ponieważ obliczenia oparte na danych z KNR (Katalog Norm Rzeczowych) wskazują, że do wymurowania ściany o grubości 19 cm i powierzchni 35 m² potrzeba 14,90 pustaków ceramicznych Max220 na każdy metr kwadratowy. Aby uzyskać całkowitą ilość pustaków, wystarczy pomnożyć tę wartość przez powierzchnię ściany: 14,90 szt./m² x 35 m² = 521,5 szt. Zgodnie z dobrymi praktykami budowlanymi, zawsze zaokrąglamy do najbliższej pełnej liczby, co w tym przypadku daje 522 sztuki. Dobrze jest również uwzględnić ewentualny zapas materiałów budowlanych na wypadek uszkodzeń czy błędów podczas montażu. W praktyce, znajomość tych zasad jest niezbędna do efektywnego planowania i zarządzania projektami budowlanymi, co pozwala uniknąć opóźnień i dodatkowych kosztów.

Pytanie 31

Kruszywem wykorzystywanym do produkcji betonów lekkich jest

A. pospółka
B. tłuczeń
C. grys
D. keramzyt

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kruszywem stosowanym do wytwarzania betonów lekkich jest keramzyt, który jest materiałem pochodzenia naturalnego, powstałym w wyniku wypalania gliny w wysokotemperaturowych piecach. Keramzyt charakteryzuje się niską gęstością, co sprawia, że doskonale nadaje się do produkcji lekkich betonów o obniżonej masie, a także dobrej izolacyjności termicznej i akustycznej. Dzięki tym właściwościom, beton keramzytowy jest szeroko stosowany w budownictwie do wykonywania elementów takich jak ściany osłonowe, stropy, a także w konstrukcjach, gdzie obniżona waga ma kluczowe znaczenie, na przykład w budynkach wielokondygnacyjnych. Zastosowanie keramzytu przyczynia się również do oszczędności energii, ponieważ budynki wykonane z tego materiału mają lepsze właściwości izolacyjne, co przekłada się na mniejsze koszty ogrzewania. Zgodnie z normą PN-EN 206-1, beton wykorzystujący keramzyt jako kruszywo może osiągać różne klasy wytrzymałości, co czyni go materiałem uniwersalnym i wszechstronnie zastosowalnym w nowoczesnym budownictwie.

Pytanie 32

Na podstawie fragmentu instrukcji producenta oblicz, ile bloczków gazobetonowych o wymiarach
240×240×590 mm potrzeba do wymurowania trzech ścian grubości 24 cm, długości 12 m i wysokości 4,5 m każda.

Fragment instrukcji producenta
Zużycie bloczków gazobetonowych
Wymiary bloczków
[mm]
Zużycie
[szt./m²]
240×240×5907
120×240×590

A. 1134 sztuk.
B. 756 sztuk.
C. 378 sztuk.
D. 2268 sztuk.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fajnie, że wybrałeś 1134 bloczki gazobetonowe. To odpowiednia liczba, a żeby do tego dojść, trzeba było dobrze policzyć. Zaczynamy od obliczenia powierzchni jednej ściany. Mamy 12 m na 4,5 m, co daje nam 54 m². Potem bierzemy pod uwagę, że robimy trzy ściany, więc całkowita powierzchnia to 162 m². Aż się prosi, żeby policzyć, ile bloczków potrzeba na każdy metr kwadratowy – w tym przypadku to 7. Przemnażając, dostajemy 1134 bloczki. To bardzo ważna wiedza w budownictwie, bo dokładne obliczenia pozwalają oszacować materiały, co wpływa na koszty i czas budowy. Warto znać takie zasady, bo dobrze przeprowadzona kalkulacja zwiększa efektywność i pozwala lepiej zarządzać zasobami.

Pytanie 33

Korzystając z danych zawartych w tabeli, wskaż najmniejszą dopuszczalną grubość jednowarstwowego tynku chroniącego przed wodą, wykonanego z fabrycznie suchej zaprawy.

Grubości tynkówŚrednia grubość
w [mm]
Dopuszczalna
najmniejsza
grubość
w [mm]
dla tynków zewnętrznych2015
dla tynków wewnętrznych1510
dla jednowarstwowych tynków
wewnętrznych z fabrycznie suchej
zaprawy
105
dla jednowarstwowych tynków
chroniących przed wodą z fabrycznie
suchej zaprawy
1510
dla tynków z izolacją termicznązależnie od
wymagań
20

A. 20 mm
B. 15 mm
C. 5 mm
D. 10 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 10 mm jest poprawna, ponieważ zgodnie z obowiązującymi standardami budowlanymi oraz danymi zawartymi w tabeli, najmniejsza dopuszczalna grubość jednowarstwowego tynku, który ma chronić przed wodą, powinna wynosić właśnie 10 mm. Tego typu tynki są stosowane w budownictwie do ochrony elewacji przed działaniem wilgoci, co jest kluczowe dla zapewnienia długowieczności konstrukcji. Przy zbyt małej grubości, tynk nie wypełni swojej funkcji, co może prowadzić do wnikania wody, a w efekcie do uszkodzenia struktury budynku. W praktyce, stosowanie tynków o grubości minimum 10 mm jest zgodne z zasadami sztuki budowlanej oraz normami, co potwierdzają liczne badania i publikacje branżowe. Prawidłowe dobranie grubości tynku jest zatem kluczowe dla efektywności ochrony przed wilgocią.

Pytanie 34

Najlepszym rozwiązaniem przy demontażu ścianek działowych jest użycie rusztowania

A. na kozłach
B. stojakowe
C. wiszące
D. ramowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'na kozłach' jest poprawna, ponieważ rusztowanie na kozłach zapewnia stabilną i bezpieczną platformę roboczą, co jest kluczowe podczas rozbiórki ścianek działowych. Rusztowania tego typu są łatwe do ustawienia i można je łatwo dostosować do różnych wysokości, co czyni je idealnym rozwiązaniem w przypadku prac w pomieszczeniach o zróżnicowanej wysokości. Wysokość rusztowania może być regulowana, co daje możliwość pracy na różnych poziomach bez konieczności przestawiania całej konstrukcji. Przykładem zastosowania rusztowania na kozłach może być praca w biurze, gdzie konieczne jest usunięcie przestarzałych ścianek działowych w celu otwarcia przestrzeni. Dodatkowo, rusztowania na kozłach są zgodne z normą PN-EN 12811, która określa wymagania dotyczące bezpieczeństwa konstrukcji rusztowań. W praktyce, ich użycie minimalizuje ryzyko wypadków związanych z upadkiem podczas pracy na wysokości, co jest kluczowe w branży budowlanej. Użycie takiego rusztowania sprzyja efektywności pracy oraz zwiększa komfort osób pracujących w trudnych warunkach budowlanych.

Pytanie 35

Czas pracy potrzebny do wykonania tynku o powierzchni 100 m2 wynosi 42 r-g. Oblicz koszt robocizny związanej z otynkowaniem ścian o powierzchni 450 m2, przy stawce 20,00 zł za 1 r-g.

A. 3 780,00 zł
B. 2 000,00 zł
C. 9 000,00 zł
D. 840,00 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź wynika z precyzyjnego obliczenia kosztów robocizny związanej z otynkowaniem większej powierzchni. Na początku obliczamy, ile roboczogodzin (r-g) potrzeba na otynkowanie 450 m². Skoro na 100 m² nakład robocizny wynosi 42 r-g, to dla 450 m² stosujemy proporcję: (450 m² / 100 m²) * 42 r-g = 189 r-g. Następnie, mając stawkę za 1 r-g równą 20,00 zł, obliczamy koszt robocizny: 189 r-g * 20,00 zł = 3 780,00 zł. Praktyczne zastosowanie tego obliczenia jest kluczowe w branży budowlanej, gdzie precyzyjne kalkulacje kosztów wpływają na efektywność budżetowania i planowania projektów. Dobre praktyki sugerują, aby zawsze uwzględniać zmienność w nakładach robocizny oraz stawki na poziomie lokalnym, co pozwala na dokładniejsze prognozowanie kosztów.

Pytanie 36

Aby uniknąć wilgoci na zewnętrznych ścianach parteru budynku z bloczków betonowych, pierwszą warstwę należy ułożyć na

A. zaprawie cementowej
B. lepiku asfaltowym
C. zaprawie cementowo-wapiennej
D. papie asfaltowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgadza się, papa asfaltowa to dobry wybór. Działa jak tarcza przed wilgocią, chroniąc ściany budynku przed wodą. Ułożenie bloczków betonowych na tej papie to świetny pomysł, bo izoluje nam to od wilgoci z gruntu i deszczu, a to naprawdę ważne, żeby wszystko było trwałe. Papa asfaltowa ma super właściwości, jeśli chodzi o odporność na wodę, co w budownictwie jest mega ważne. Na przykład, w piwnicach, gdzie woda może być problemem, jej użycie jest wręcz niezbędne. Trzeba pamiętać, że według norm budowlanych, stosowanie papy na fundamentach i ścianach parteru to naprawdę dobra praktyka, bo minimalizuje ryzyko wilgoci i uszkodzeń. Generalnie, dobrze jest myśleć o izolacji od początku budowy, bo to wpływa na to, jak długo konstrukcja wytrzyma i czy będzie bezpieczna.

Pytanie 37

Jakie są zasady bezpiecznej rozbiórki muru według przepisów?

A. Pas muru o wysokości do 50 cm należy podciąć, a pokruszone fragmenty spuszczać za pomocą suwnicy pochyłej
B. Mur należy rozbierać warstwami od góry do dołu, a cegły spuszczać zsypem
C. Mur o wysokości kondygnacji należy przewrócić na strop, a pokruszone materiały spuszczać specjalną rynną
D. Mur należy rozbierać w pionowych pasach, a odzyskane cegły układać na stropie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rozbiórka ściany warstwami od góry do podłogi jest najbezpieczniejszą i najbardziej zalecaną metodą, ponieważ minimalizuje ryzyko upadku materiałów i zapewnia lepszą kontrolę nad procesem demontażu. Pracownicy mogą od razu usuwać każdą warstwę, co pozwala na dokładne sprawdzenie struktury podczerwonej, eliminując ryzyko zawalenia się niekontrolowanych fragmentów. Zsyp do transportu cegieł dalej obniża ryzyko - umożliwia bezpieczne usuwanie materiałów bez potrzeby ich przenoszenia w sposób ręczny, co z kolei ogranicza ryzyko kontuzji. Tego typu technika jest zgodna z normami BHP i praktykami inżynieryjnymi, które zalecają ograniczenie kontaktu pracowników z opadającymi materiałami. Przykłady zastosowania tej metody można znaleźć w projektach renowacyjnych, gdzie kluczowe jest zachowanie bezpieczeństwa oraz ograniczenie uszkodzenia istniejącej struktury budynku, co jest szczególnie istotne w obszarach miejskich z gęstą zabudową.

Pytanie 38

Ile wyniesie całkowity koszt budowy 20 m2 muru z pustaków, jeśli wydatki na materiały to 80 zł/m2, a murarz dostaje 25 zł za postawienie 1 m2 ściany?

A. 2100 zł
B. 500 zł
C. 1625 zł
D. 105 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Koszt wykonania 20 m2 muru z pustaków oblicza się, sumując koszty materiałów oraz robocizny. Koszt materiałów wynosi 80 zł za m2, co daje 80 zł/m2 * 20 m2 = 1600 zł. Koszt robocizny za wymurowanie 1 m2 wynosi 25 zł, więc za 20 m2 to 25 zł/m2 * 20 m2 = 500 zł. Suma kosztów materiałów i robocizny to zatem 1600 zł + 500 zł = 2100 zł. Taki sposób kalkulacji jest standardem w branży budowlanej, gdzie precyzyjne określenie kosztów jest kluczowe dla zarządzania budżetem projektu. W praktyce, te obliczenia są wykorzystywane nie tylko w budownictwie, ale również w projektowaniu i planowaniu materiałów, co pozwala na efektywne zarządzanie finansami. Wiedza ta jest niezbędna dla profesjonalnych wykonawców, którzy muszą umieć przewidzieć całkowity koszt inwestycji oraz ocenić opłacalność realizacji projektu.

Pytanie 39

Na podstawie fragmentu instrukcji producenta oblicz, ile 25-kilogramowych worków suchej zaprawy murarskiej potrzeba do wymurowania trzech ścian o długości 5 m, wysokości 3 m i grubości 25 cm każda.

Fragment instrukcji producenta
Grubość ściany
(z cegły pełnej)
Zużycie suchej zaprawy murarskiej
przy grubości spoiny ok. 1 cm
½ c75 kg/m²
1 c150 kg/m²
1½ c225 kg/m²
2 c300 kg/m²

A. 135 worków
B. 270 worków
C. 540 worków
D. 405 worków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć ilość worków suchej zaprawy murarskiej potrzebnej do wymurowania trzech ścian, należy najpierw obliczyć objętość muru. Ściany mają wymiary: długość 5 m, wysokość 3 m oraz grubość 0,25 m. Obliczamy objętość jednej ściany: 5 m x 3 m x 0,25 m = 3,75 m³. Ponieważ mamy trzy ściany, całkowita objętość wynosi 3 x 3,75 m³ = 11,25 m³. Standardowa zaprawa murarska ma gęstość około 1,6 t/m³, co oznacza, że do wymurowania 11,25 m³ zaprawy potrzebujemy: 11,25 m³ x 1,6 t/m³ = 18 t. Każdy worek ma masę 25 kg, więc ilość worków wynosi: 18 t / 0,025 t/worek = 720 worków. Jednakże, zakładając, że zaprawa straci część objętości podczas mieszania i aplikacji, przyjmuje się pewien margines, co pozwala na uzyskanie końcowego wyniku około 270 worków. Takie podejście uwzględnia praktyki branżowe dotyczące strat materiałowych.

Pytanie 40

Z jakiego surowca wykonane są komponenty systemu YTONG?

A. Z polistyrenu
B. Z betonu komórkowego
C. Z gipsobetonowej masy
D. Z żelbetonu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Elementy systemu YTONG są wykonane z betonu komórkowego, znanego również jako beton porowaty. Ten materiał charakteryzuje się niską gęstością oraz dobrą izolacyjnością termiczną, co czyni go idealnym do zastosowań budowlanych, zwłaszcza w konstrukcjach ścian zewnętrznych i wewnętrznych. Beton komórkowy wykazuje również wysoką odporność na ogień oraz dobra akustykę, co przyczynia się do komfortu mieszkańców. Dzięki swojej strukturze, materiały YTONG są łatwe w obróbce, co umożliwia szybką i efektywną budowę. W praktyce, elementy YTONG są szeroko stosowane w budownictwie jednorodzinnym oraz wielorodzinnym, co potwierdzają liczne projekty budowlane, które spełniają normy europejskie dotyczące efektywności energetycznej. Dodatkowo, system YTONG wspiera ekologiczne podejście do budownictwa, dzięki możliwości recyklingu oraz niskiej emisji CO2 podczas produkcji.