Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 1 czerwca 2025 20:45
  • Data zakończenia: 1 czerwca 2025 21:19

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

THT to metoda

A. realizacji instalacji podtynkowej
B. montowania elementów elektronicznych na płytkach drukowanych
C. prowadzenia przewodów przez otwory w ścianach
D. umieszczania kabli w rurkach instalacyjnych
Montaż przewlekany THT (Through-Hole Technology) to technika montażu elementów elektronicznych, w której komponenty są wprowadzane przez otwory w płytkach drukowanych (PCB) i lutowane na ich odwrotnej stronie. Jest to jedna z tradycyjnych metod montażu, która jest powszechnie stosowana w produkcji elektroniki, zwłaszcza w przypadku urządzeń wymagających dużej mocy lub w trudnych warunkach operacyjnych. Przykłady zastosowania THT obejmują produkcję zasilaczy, modułów komunikacyjnych czy układów analogowych, gdzie stabilność połączeń i ich odporność na wibracje są kluczowe. Zgodnie z normami IPC-A-610, THT zapewnia wysoką jakość lutowania, a także dużą odporność mechaniczną, co czyni tę metodę odpowiednią do zastosowań przemysłowych. Warto również zauważyć, że THT umożliwia łatwe wymienianie komponentów, co jest istotne podczas serwisowania i naprawy urządzeń elektronicznych, co czyni tę metodę korzystną z perspektywy całkowitych kosztów cyklu życia produktu.

Pytanie 2

Silne pole elektrostatyczne wywołuje

A. wzrost wilgotności powietrza
B. wzrost temperatury otoczenia
C. zakłócenia w funkcjonowaniu aparatury kontrolno-pomiarowej
D. rozdzielenie laminatu, używanego jako podłoże płytki drukowanej
Silne pole elektrostatyczne może powodować zakłócenia w działaniu aparatury kontrolno-pomiarowej, co jest szczególnie istotne w kontekście urządzeń elektronicznych. W praktyce, te zakłócenia mogą prowadzić do błędnych odczytów, uszkodzeń sprzętu czy nawet całkowitego unieruchomienia systemu. Przykładem mogą być sytuacje, w których urządzenia pomiarowe, takie jak multimetry czy oscyloskopy, są narażone na wpływ silnych pól elektrostatycznych, co skutkuje nieprawidłowym działaniem. W branży elektronicznej, na przykład w laboratoriach badawczych, stosowane są standardy, takie jak IEC 61000-4-2, które regulują testowanie odporności na zakłócenia elektrostatyczne. Odpowiednie projektowanie i stosowanie ekranowania oraz uziemienia urządzeń jest kluczowe, aby zminimalizować wpływ pól elektrostatycznych na działanie aparatury. To wiedza, która powinna być podstawą dla inżynierów i techników pracujących w obszarze elektroniki oraz automatyki.

Pytanie 3

W tabeli wymieniono dane techniczne

Przetwornik2 Mpx high-performance CMOS
Rozdzielczość1920 × 1080 (2 Mpx)
Czułość0 lux z IR
Obiektyw2,8 mm
Kąt widzenia103°
FunkcjeAGC, BLC, DWDR
Zasilanie12 V DC
ZastosowanieZewnętrzne, IP66

A. odbiornika telewizyjnego.
B. czujki PIR.
C. kamery CCTV.
D. dekodera DVB-T.
Kamery CCTV są urządzeniami przeznaczonymi do monitorowania i rejestrowania obrazu w różnych warunkach oświetleniowych. W danych technicznych, które wskazują na przetwornik, rozdzielczość, czułość oraz obiektyw, można zauważyć, że są to kluczowe parametry dla jakości obrazu. Na przykład, wysoka rozdzielczość jest niezbędna do uzyskania wyraźnych nagrań, które są istotne w kontekście identyfikacji osób i zdarzeń. Czułość kamery, zwłaszcza w warunkach słabego oświetlenia, pozwala na skuteczne monitorowanie w nocy. Funkcje takie jak AGC (Automatic Gain Control) oraz BLC (Back Light Compensation) poprawiają jakość obrazu w trudnych warunkach oświetleniowych, co jest kluczowe dla skutecznego nadzoru. Zasilanie 12 V DC oraz oznaczenie IP66 świadczą o tym, że kamera jest przeznaczona do stosowania na zewnątrz i jest odporna na warunki atmosferyczne, co jest standardem w branży monitoringu wizyjnego. Użycie tego typu kamer jest powszechne w systemach zabezpieczeń budynków, parków i innych obiektów publicznych.

Pytanie 4

Jednym z komponentów urządzenia elektronicznego jest rezystor o wartości rezystancji 1 kΩ i mocy 1 W. Jeśli brakuje elementu o tych parametrach, można go zastąpić rezystorem

A. o niższej rezystancji i tej samej mocy
B. o identycznej rezystancji i niższej mocy
C. o identycznej rezystancji i wyższej mocy
D. o wyższej rezystancji i tej samej mocy
Ta odpowiedź jest prawidłowa, ponieważ w przypadku zastępowania rezystora istotne jest, aby zachować jego rezystancję oraz zwiększyć moc. Rezystor o rezystancji 1 kΩ i mocy 1 W oznacza, że przy maksymalnej mocy 1 W, rezystor ten może pracować bez przegrzewania się. Gdybyśmy chcieli zastąpić go innym rezystorem, powinniśmy wybrać taki o tej samej rezystancji (1 kΩ), aby nie zmieniać parametrów obwodu. Zwiększona moc pozwoli na bezpieczniejsze i bardziej stabilne działanie w przypadku, gdy obwód będzie wymagał większej mocy. Standardowe praktyki inżynieryjne zalecają zawsze dobierać komponenty z marginesem bezpieczeństwa, co oznacza, że wybór rezystora o większej mocy (np. 2 W lub 5 W) minimalizuje ryzyko uszkodzenia elementu oraz wydłuża jego żywotność. Przykłady zastosowania obejmują układy zasilające, gdzie elementy są narażone na zmienne obciążenia, a także w aplikacjach audio, gdzie stabilność działania jest kluczowa.

Pytanie 5

Aby przymocować przewód PE typu LY 1×2,5 mm2 do zacisku śrubowego, jakie rozwiązanie należy wybrać?

A. narzędzie lutownicze
B. koszulka termokurczliwa
C. spoiwo do metali
D. zacisk oczkowy
Zastosowanie zacisku oczkowego do przytwierdzenia przewodu PE typu LY 1×2,5 mm² do zacisku śrubowego jest najlepszym rozwiązaniem ze względu na jego właściwości mechaniczne oraz zapewnienie dobrej łączności elektrycznej. Zaciski oczkowe są projektowane tak, aby zapewnić mocne i niezawodne połączenie, co jest szczególnie ważne w przypadku przewodów ochronnych. Takie połączenie minimalizuje ryzyko luzów, które mogłyby prowadzić do zwiększonego oporu elektrycznego oraz potencjalnych awarii w instalacji. W praktyce, po przykręceniu zacisku do śruby, można być pewnym, że połączenie jest solidne i odporne na drgania i zmiany temperatury. W wielu branżach, takich jak budownictwo czy przemysł, stosowanie zacisków oczkowych jest standardem, co potwierdzają normy takie jak PN-EN 60439. Dobrą praktyką jest również regularne sprawdzanie stanu połączeń w instalacjach elektrycznych, aby zapewnić ich bezpieczeństwo i funkcjonalność przez długi czas.

Pytanie 6

Aby połączyć kable współosiowe o impedancji 75 Ω, należy

A. połączyć przewody poprzez ich skręcenie, a następnie zaizolować
B. zlutować przewody główne, zaizolować je, a następnie połączyć ekran
C. połączyć kable stosując kostkę zaciskową
D. użyć tzw. beczki do zestawienia dwóch wtyków typu F
Wybór tzw. beczki do połączenia dwóch wtyków typu F jest najlepszym rozwiązaniem w przypadku kabli współosiowych o impedancji 75 Ω. Beczkę stosuje się, aby zapewnić ciągłość sygnału oraz minimalizację strat, co jest kluczowe dla utrzymania jakości transmisji, zwłaszcza w zastosowaniach telewizyjnych czy w systemach transmisji danych. Wtyki typu F są powszechnie używane w instalacjach antenowych oraz w kablowych systemach telewizji. Beczkę można łatwo zainstalować, co czyni ją praktycznym rozwiązaniem, a także pozwala na łatwiejszą wymianę komponentów w razie potrzeby. Ważne jest, aby połączenie było dobrze wykonane, z uwzględnieniem odpowiednich technik montażowych, takich jak zabezpieczenie połączenia przed wilgocią i uszkodzeniami mechanicznymi. Używanie beczki do połączeń współosiowych jest zgodne z normami branżowymi, co zapewnia niezawodność i trwałość instalacji.

Pytanie 7

Antena paraboliczna jest używana do odbioru sygnałów

A. radiowych w paśmie UKF
B. telewizji naziemnej
C. telewizji satelitarnej
D. radiowych w zakresie fal długich i średnich
Odpowiedzi sugerujące, że antena paraboliczna służy do odbioru sygnałów telewizji naziemnej lub radiowych w paśmie UKF oraz fal długich i średnich są błędne z kilku powodów. Telewizja naziemna wykorzystuje inny typ anten, zazwyczaj anteny dipolowe lub szerokopasmowe, które są zaprojektowane do odbioru sygnałów nadawanych z wież telewizyjnych w bliskiej odległości. Anteny te nie są w stanie skoncentrować sygnału w taki sposób, jak antena paraboliczna, co ogranicza ich zasięg i jakość odbioru. Użycie anten parabolicznych do odbioru fal radiowych w zakresach UKF, długich czy średnich nie jest również uzasadnione. Fale te mają zupełnie inne właściwości fizyczne, a ich odbiór wymaga innych typów anten, które są w stanie efektywnie reagować na odpowiednią długość fali. Przykładowo, fale długie i średnie są odbierane poprzez anteny ferrytowe lub teleskopowe, które mają zdolność do odbioru sygnałów o znacznie większej długości fali. Typowym błędem myślowym jest zakładanie, że jedna antena może spełniać wszystkie funkcje odbiorcze, co prowadzi do nieporozumień dotyczących technologii radiowej i telewizyjnej. Każdy rodzaj sygnału wymaga dostosowanego rozwiązania antenowego, co jest kluczowe dla zapewnienia jakości i stabilności odbioru.

Pytanie 8

W instrukcji technicznej zasilacza impulsowego podano, że amplituda napięcia wyjściowego nie przekracza 50 mVpp. Co oznacza, że wartość nieprzekraczająca 50 mV to

A. skuteczna wartość napięcia tętnień
B. średnia wartość napięcia tętnień
C. międzyszczytowa wartość napięcia tętnień
D. maksymalna wartość napięcia tętnień
Odpowiedź dotycząca międzyszczytowej wartości napięcia tętnień jest poprawna, gdyż odnosi się ona do analizy sygnałów zmiennych w zasilaczach impulsowych. Międzyszczytowa wartość tętnień, oznaczająca różnicę między maksymalnym a minimalnym napięciem w jednym cyklu, jest kluczowym parametrem w ocenie jakości zasilania. Tętnienia napięcia wyjściowego są istotne, ponieważ mogą wpływać na stabilność pracy różnych komponentów elektronicznych. Zgodnie ze standardami, takimi jak IEC 61000-3-2, kontrola tętnień jest niezbędna dla zapewnienia zgodności z normami elektromagnetycznymi. Przykładem zastosowania tej wiedzy jest zaprojektowanie zasilacza do urządzeń audio, gdzie niskie tętnienia są kluczowe dla eliminacji zakłóceń, co przekłada się na lepszą jakość dźwięku. W praktyce, projektanci zasilaczy stosują różne techniki filtrowania, aby uzyskać jak najniższe wartości międzyszczytowe, co jest istotne dla poprawnego działania odbiorników elektronicznych.

Pytanie 9

Weryfikacja parametrów instalacji antenowej DVB-T wymaga dokonania

A. rezystancji kabla
B. bitowej stopy błędów
C. kąta elewacji oraz azymutu
D. izolacji kabla
Pomiar bitowej stopy błędów (BER) jest kluczowym parametrem podczas analizy jakości odbioru sygnału DVB-T. BER wskazuje, ile bitów zostało błędnie odebranych w stosunku do całkowitej liczby bitów, co pozwala na ocenę efektywności transmisji. W praktyce, im niższy wskaźnik błędów, tym lepsza jakość sygnału, co jest istotne dla zapewnienia stabilnego i niezawodnego odbioru. W przypadku DVB-T, standardowe wartości BER powinny wynosić poniżej 1E-6, co oznacza, że na milion przesyłanych bitów, nie więcej niż jeden powinien być błędny. Oprócz samego pomiaru BER, istotne jest również przeprowadzenie testów w różnych warunkach, takich jak zmiana położenia anteny czy zakłócenia sygnału, co pozwala na optymalizację instalacji antenowej. Dbanie o niską bitową stopę błędów jest zgodne z zaleceniami standardów ETSI i DVB, które kładą duży nacisk na jakość sygnału oraz odpowiednią konfigurację systemów odbiorczych.

Pytanie 10

W przypadku łączenia urządzeń audio na dużą odległość, jakie kable powinny być wykorzystane?

A. niesymetryczne (unbalanced)
B. sygnalizacyjne YKSY
C. sygnalizacyjne YKSwXs
D. symetryczne (balanced)
Kable symetryczne, znane również jako kable zbalansowane, są kluczowym elementem w połączeniach urządzeń akustycznych na większe odległości. Główna zaleta tych kabli polega na ich zdolności do redukcji zakłóceń elektromagnetycznych, co jest szczególnie ważne w kontekście długich tras sygnałowych. Dzięki zastosowaniu dwóch przewodów sygnałowych, które przesyłają sygnał w przeciwnych fazach, kable symetryczne eliminują wpływ zakłóceń zewnętrznych, co zapewnia czystość dźwięku i stabilność sygnału. Przykładem zastosowania mogą być instalacje nagłośnieniowe na koncertach, gdzie kable symetryczne są powszechnie używane do łączenia mikrofonów z mikserami audio, zwłaszcza w przypadku dużych odległości. W branży audio stosuje się standardy takie jak AES/EBU i XLR, które są typowymi złączami dla kabli symetrycznych. W praktyce, wybór kabli symetrycznych jest zgodny z najlepszymi praktykami, które zalecają ich stosowanie wszędzie tam, gdzie jakość sygnału i odporność na zakłócenia są kluczowe dla sukcesu technicznego występu lub nagrania.

Pytanie 11

Aby połączyć kartę sieciową komputera PC z routerem, należy użyć kabla z wtykami

A. RJ-45
B. DIN
C. JACK
D. BNC
Odpowiedź RJ-45 jest poprawna, ponieważ wtyki RJ-45 są standardowo używane do łączenia komputerów z routerami w sieciach lokalnych (LAN). RJ-45 to złącze, które obsługuje kable Ethernet, co umożliwia przesyłanie danych z dużymi prędkościami, typowo od 10 Mbps do 10 Gbps, w zależności od zastosowanego standardu (np. 10BASE-T, 100BASE-TX, 1000BASE-T). Wtyki te mają osiem styków, co pozwala na przesyłanie danych w formie zbalansowanej, co zwiększa odporność na zakłócenia elektromagnetyczne. Użycie kabla z wtykami RJ-45 jest zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 11801. W praktyce, RJ-45 jest najczęściej spotykanym złączem w domowych i biurowych sieciach komputerowych. Przykładem zastosowania jest podłączenie laptopa do routera, aby uzyskać stabilne połączenie internetowe. Warto również wspomnieć o różnych kategoriach kabli Ethernet, takich jak Cat5e, Cat6, które różnią się prędkościami transferu oraz zakresem częstotliwości, co również wpływa na ich zastosowanie w różnych sieciach.

Pytanie 12

Który przewód powinien być użyty do połączenia z siecią elektryczną transformatora znajdującego się w metalowej obudowie systemu alarmowego?

A. YDY 2 x 1,5 mm2
B. YTDY 4 x 0,75 mm2
C. YTDY 2 x 0,75 mm2
D. YDY 3 x 1,5 mm2
Odpowiedź YDY 3 x 1,5 mm2 jest poprawna, ponieważ przewód ten cechuje się odpowiednią konstrukcją i parametrami technicznymi, które idealnie nadają się do podłączenia transformatora w metalowej obudowie centralki alarmowej. Przewód YDY jest przewodem o podwyższonej odporności na działanie czynników zewnętrznych oraz na uszkodzenia mechaniczne, co jest kluczowe w zastosowaniach związanych z systemami alarmowymi. Posiada trzy żyły o przekroju 1,5 mm2, co zapewnia dostateczną wydajność prądową oraz minimalizuje straty energii. W praktyce, zastosowanie przewodu YDY 3 x 1,5 mm2 jest zgodne z wytycznymi norm PN-IEC 60364, które regulują instalacje elektryczne, a także z zasadami dotyczącymi ochrony przeciwporażeniowej. Przewód ten pozwala na bezpieczne i efektywne połączenie transformatora z siecią energetyczną, co jest kluczowe dla prawidłowego działania systemu alarmowego.

Pytanie 13

Aby wykonać otwór na kołek rozporowy w betonie, należy użyć

A. młota pneumatycznego
B. wiertarki udarowej
C. wkrętarki
D. młotka
Wykonanie otworu pod kołek rozporowy w ścianie betonowej wymaga zastosowania wiertarki udarowej, ponieważ jej konstrukcja łączy funkcję wiercenia z działaniem udarowym, co pozwala na efektywne przełamywanie twardych materiałów, takich jak beton. Wiertarka udarowa jest wyposażona w mechanizm udarowy, który generuje dodatkową siłę uderzenia, co znacznie ułatwia proces wiercenia w betonie, który charakteryzuje się dużą twardością i gęstością. Przykładem praktycznego zastosowania wiertarki udarowej jest montaż różnych elementów, takich jak półki, wieszaki czy systemy oświetleniowe, które wymagają solidnego osadzenia w betonie. W standardach budowlanych i remontowych zaleca się używanie wiertarek udarowych z odpowiednimi wiertłami do betonu, aby zapewnić zarówno skuteczność, jak i bezpieczeństwo pracy. Wybór odpowiedniej wiertarki i wierteł zgodnych z wymaganiami projektu jest kluczowy dla uzyskania trwałych i bezpiecznych połączeń.

Pytanie 14

Na schemacie ideowym elektronicznego urządzenia wskazano wartość rezystancji poprzez oznaczenie k22.
Jaką wartość ma ta rezystancja?

A. 22 Ω
B. 22 kΩ
C. 0,22 Ω
D. 0,22 kΩ
No to tak. Wartość rezystancji, którą mamy oznaczoną jako k22, to tak naprawdę 0,22 kΩ, a to jest równoznaczne z 220 Ω. Ten 'k' w tym przypadku to taki prefiks kilo, który oznacza, że to jest tysięczna wielokrotność jednostki. Ale w tym konkretnym przypadku, pierwsza cyfra '2' to nie dodatkowe zera, tylko pełna wartość. Umiejętność czytania oznaczeń rezystorów jest naprawdę ważna, jak chcesz projektować jakieś obwody elektroniczne. To pozwala dobrze dobrać wszystkie komponenty, co ma wielkie znaczenie dla funkcji i bezpieczeństwa całego układu. Zrozumienie tego systemu jest istotne nie tylko dla inżynierów, ale też dla tych, którzy są hobbystami w elektronice. W dzisiejszych czasach, normy takie jak IPC-2221 kładą duży nacisk na dokładne odczytywanie wartości rezystancji, żeby uniknąć różnych pomyłek w projektowaniu obwodów drukowanych, co jest ważne zarówno w przemyśle, jak i dla użytkowników końcowych.

Pytanie 15

Jakie urządzenie jest przeznaczone do bezdotykowego pomiaru temperatury?

A. kalorymetru
B. pirometru
C. luksomierza
D. multimetru
Pirometr jest urządzeniem służącym do bezdotykowego pomiaru temperatury obiektów. Działa na zasadzie rejestrowania promieniowania podczerwonego emitowanego przez ciało, co pozwala na określenie jego temperatury bez konieczności bezpośredniego kontaktu. Pirometry są niezwykle przydatne w sytuacjach, gdzie tradycyjne metody pomiaru, takie jak termometry, mogą być niepraktyczne lub niebezpieczne, na przykład w przypadku gorących powierzchni, elementów w ruchu lub materiałów szkodliwych. W przemyśle, medycynie, a także w laboratoriach, użycie pirometrów pozwala na szybkie i dokładne pomiary, co jest zgodne z najlepszymi praktykami w zakresie monitorowania procesów technologicznych oraz zapewnienia bezpieczeństwa. Warto również zaznaczyć, że wiele pirometrów jest wyposażonych w funkcje, które umożliwiają zapisywanie danych oraz ich analizę, co zwiększa efektywność monitorowania temperatury w dłuższym okresie czasu.

Pytanie 16

Którego koloru nie powinien mieć przewód fazowy w kablu zasilającym, który dostarcza napięcie z sieci energetycznej do sprzętu elektronicznego?

A. Brązowego
B. Czarnego
C. Niebieskiego
D. Szarego
Odpowiedź 'niebieskiego' jest poprawna, ponieważ w standardach oznaczania przewodów elektrycznych w Europie, kolor niebieski jest zarezerwowany dla przewodu neutralnego, a nie dla przewodu fazowego. Przewód fazowy powinien być w kolorze brązowym, czarnym lub szarym. W przypadku instalacji elektrycznych, prawidłowe oznaczenie przewodów jest kluczowe dla zapewnienia bezpieczeństwa i funkcjonalności systemów zasilania. Na przykład, w domowych instalacjach elektrycznych, każdy przewód powinien być właściwie oznaczony, aby uniknąć pomyłek przy podłączaniu urządzeń, co może prowadzić do uszkodzeń sprzętu lub zagrożenia porażeniem prądem. Zgodnie z normą PN-EN 60446, separacja kolorów przewodów elektrycznych jest niezbędna dla identyfikacji ich funkcji. Wiedza na temat oznaczeń kolorów przewodów jest istotna nie tylko dla elektryków, ale także dla każdego, kto zajmuje się instalacją lub naprawą urządzeń elektrycznych.

Pytanie 17

Podczas serwisowania urządzeń elektronicznych w stanie pod napięciem, stosowane narzędzia muszą mieć

A. odpowiednią izolację napięciową
B. wysoką wytrzymałość mechaniczną
C. metalowe uchwyty
D. utwardzone końcówki
Odpowiednia izolacja napięciowa narzędzi używanych w czasie prac serwisowych przy urządzeniach elektronicznych pod napięciem jest kluczowym elementem zapewnienia bezpieczeństwa. Izolacja ta minimalizuje ryzyko porażenia prądem elektrycznym, co może prowadzić do poważnych obrażeń lub nawet śmierci. Narzędzia z odpowiednią izolacją są zaprojektowane tak, aby wytrzymać określone napięcia, co jest zgodne z normami takimi jak IEC 60900, które określają wymagania dotyczące narzędzi izolowanych dla pracowników elektrotechnicznych. Przykładowo, przy użyciu wkrętaka z izolowaną rękojeścią, technik może bezpiecznie pracować przy urządzeniach pod napięciem do 1000V, co jest fundamentalne dla zachowania bezpieczeństwa. W praktyce stosowanie narzędzi z odpowiednią izolacją jest standardem w każdym warsztacie zajmującym się serwisem urządzeń elektrycznych, co podkreśla znaczenie przestrzegania zasad BHP w tej dziedzinie. Właściwa izolacja jest nie tylko wymaganiem prawnym, ale także praktycznym środkiem ochrony zdrowia pracowników.

Pytanie 18

Jakie urządzenie powinno być użyte wraz z konwerterem satelitarnym typu Quattro do rozprowadzania sygnałów telewizji satelitarnej z jednej anteny do wielu odbiorników TV-SAT?

A. Multiswitch
B. Modulator
C. Wzmacniacz
D. Tuner
Multiswitch jest urządzeniem, które umożliwia dystrybucję sygnału telewizyjnego satelitarnego z jednej anteny do wielu odbiorników telewizyjnych. W przypadku konwerterów typu Quattro, które dostarczają sygnały w czterech pasmach (V/H i Częstotliwości Niskie/Wysokie), multiswitch rozdziela sygnały z konwertera na wiele wyjść, co umożliwia podłączenie kilku tunerów satelitarnych. Umożliwia to jednoczesne oglądanie różnych programów telewizyjnych przez różne odbiorniki. Przykładem zastosowania jest instalacja w budynku wielorodzinnym, gdzie jeden zestaw antenowy i multiswitch pozwalają na obsługę kilku mieszkań. Zgodnie z normami instalacji telewizyjnych, multiswitch powinien być wybierany zgodnie z liczbą odbiorników oraz typem konwertera, co zapewnia optymalne parametry jakości sygnału.

Pytanie 19

Zawartość pamięci EPROM może zostać utracona w wyniku

A. braku napięcia zasilającego
B. obniżenia napięcia zasilającego poniżej 2,5 V
C. bezpośredniego wpływu promieni słonecznych
D. niesprawnego układu odświeżającego
Bezpośrednie działanie promieni słonecznych może prowadzić do uszkodzenia pamięci EPROM, ponieważ te układy są wrażliwe na promieniowanie UV. EPROM (Erasable Programmable Read-Only Memory) stosuje się w sytuacjach, w których potrzebne jest wielokrotne programowanie układu, a jego zawartość można usunąć poprzez naświetlanie promieniami UV. W praktyce oznacza to, że jeśli pamięć EPROM jest wystawiona na działanie intensywnego światła słonecznego, istnieje ryzyko, że dane zostaną przypadkowo usunięte. Z tego powodu w zastosowaniach przemysłowych i elektronicznych często stosuje się obudowy chroniące te pamięci przed bezpośrednim działaniem światła. Warto również zaznaczyć, że standardy dotyczące przechowywania urządzeń elektronicznych zalecają unikanie ekspozycji na silne źródła światła, aby zapewnić trwałość i wiarygodność przechowywanych danych. Zrozumienie tego zjawiska jest kluczowe dla inżynierów zajmujących się projektowaniem systemów elektronicznych, w których wykorzystuje się pamięci EPROM.

Pytanie 20

Który z elementów atmosferycznych wpływa na jakość sygnału telewizyjnego w standardzie DVB-T?

A. Wysoka temperatura powietrza
B. Duża wilgotność powietrza
C. Porywisty podmuch wiatru
D. Intensywny opad atmosferyczny
Intensywny opad atmosferyczny ma kluczowy wpływ na jakość odbioru sygnału telewizyjnego w standardzie DVB-T, ponieważ może prowadzić do znacznego osłabienia sygnału radiowego. Przeszkody atmosferyczne, w tym deszcz, mogą powodować tłumienie sygnału, co skutkuje zniekształceniem obrazu lub całkowitym brakiem sygnału. Na przykład, w przypadku silnych opadów deszczu, fale radiowe mogą być absorbowane i rozpraszane, co zmniejsza ich zasięg. W praktyce oznacza to, że użytkownicy, którzy znajdują się w obszarze o dużych opadach, mogą doświadczać problemów z jakością odbioru. W branży telekomunikacyjnej stosuje się różne metody, aby zminimalizować wpływ opadów na odbiór sygnału, takie jak stosowanie anten o wyższej czułości lub instalowanie wzmacniaczy sygnału. Zgodnie z normami DVB-T, projektowanie systemów nadawczych musi uwzględniać zmienne warunki atmosferyczne, aby zapewnić stabilność i jakość sygnału w różnych warunkach pogodowych, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 21

Jaką rolę odgrywa rejestrator w systemie telewizji dozorowej?

A. Kontroluje ruch kamery
B. Wzmacnia sygnał wizyjny
C. Zmienia ogniskową obiektywu
D. Zapisuje sygnał video
Rejestrator w systemie telewizji dozorowej odgrywa kluczową rolę w procesie monitorowania przez gromadzenie i przechowywanie sygnałów wideo. Jego podstawowym zadaniem jest zapis obrazu z kamer, co pozwala na późniejsze przeglądanie i analizowanie nagranych materiałów. Rejestratory mogą być różnego rodzaju, w tym cyfrowymi rejestratorami wideo (DVR) lub sieciowymi rejestratorami wideo (NVR), które różnią się metodą przechowywania danych. Zastosowanie rejestratorów w systemach CCTV umożliwia nie tylko archiwizację danych na wypadek incydentów, ale także dostarcza materiał dowodowy, który może być użyty w śledztwach lub postępowaniach prawnych. Dobrze skonfigurowany system rejestracji powinien spełniać standardy jakości obrazu, a także zapewniać odpowiednie zabezpieczenia danych, aby chronić prywatność i poufność nagrań. Przykładowo, w przypadku incydentu, operatorzy mogą szybko odtworzyć nagranie, co znacznie przyspiesza proces reakcji na zagrożenie i przyczynia się do poprawy bezpieczeństwa ogólnego obiektu.

Pytanie 22

Linka charakteryzująca się zwiększoną elastycznością, utworzona z wielu cienkich drucików miedzianych, nosi oznaczenie literowe

A. LgY
B. YDY
C. YDYp
D. DY
Odpowiedź LgY jest poprawna, ponieważ oznaczenie to odnosi się do linki o zwiększonej giętkości, która jest wykonana z wielu drobnych drucików miedzianych. W kontekście zastosowań elektrycznych i elektronicznych, linki te charakteryzują się wysoką elastycznością i odpornością na złamania, co jest kluczowe w przypadku aplikacji, gdzie ruch lub wibracje mogą prowadzić do uszkodzenia materiałów. Przykłady zastosowania obejmują połączenia w instalacjach audio, gdzie jakość przewodzenia sygnału jest istotna, a także w urządzeniach przenośnych, gdzie elastyczność przewodów pozwala na swobodę ruchu. Oznaczenie LgY jest powszechnie stosowane w branży kablowej, a jego zastosowanie jest zgodne z normami IEC 60228, które dotykają klasy przewodników oraz ich właściwości mechanicznych. Przewody LgY są również zgodne z normami jakości ISO, co potwierdza ich przydatność w zastosowaniach o wysokich wymaganiach technicznych.

Pytanie 23

Podczas pomiaru ciągłości obwodów za pomocą multimetru z brzęczykiem, dochodzi do aktywacji sygnału dźwiękowego. Co to oznacza?

A. badany obwód jest ciągły
B. w badanym obwodzie znajduje się źródło prądowe
C. w badanym obwodzie znajduje się złącze półprzewodnikowe
D. badany obwód jest uszkodzony
Pomiar ciągłości obwodu za pomocą multimetru z brzęczykiem jest kluczowym narzędziem w diagnostyce elektrycznej. Kiedy multimetr sygnalizuje dźwiękiem, oznacza to, że badany obwód jest ciągły, co potwierdza, że nie ma przerwy w połączeniu elektrycznym. Dźwięk wskazuje na to, że przepływ prądu jest możliwy, a zatem obwód jest sprawny. W praktyce, takie pomiary są niezbędne w instalacjach elektrycznych, gdyż pozwalają szybko zidentyfikować uszkodzenia kabli, złe połączenia lub problemy z urządzeniami. Na przykład, podczas sprawdzania instalacji w budynku, jeśli multimetr nie wydaje dźwięku, wskazuje to na problem, który wymaga dalszej diagnostyki. W branży elektrycznej standardy takie jak IEC 61010-1 definiują wymagania dotyczące bezpieczeństwa sprzętu pomiarowego, co podkreśla znaczenie stosowania odpowiednich narzędzi do analizy ciągłości obwodów. Dlatego umiejętność interpretacji wyników pomiarów jest niezbędna dla każdego elektryka.

Pytanie 24

Zakres częstotliwości, podany w dokumentacji technicznej wzmacniacza, to

A. częstotliwość graniczna dolna
B. suma częstotliwości granicznych górnej i dolnej
C. różnica między częstotliwością graniczną górną a dolną
D. częstotliwość graniczna górna
Pasmo przenoszenia wzmacniacza to taki zakres częstotliwości, w jakim działa on najlepiej. Można to opisać jako różnicę między górną a dolną częstotliwością graniczną. Tak więc, odpowiedź, którą wybrałeś, jest jak najbardziej trafna. W praktyce jest to mega ważne dla osób projektujących systemy audio, telekomunikacyjne czy inne urządzenia elektroniczne, gdzie jakość sygnału jest kluczowa. Na przykład, wzmacniacze audio zazwyczaj mają pasmo przenoszenia od 20 Hz do 20 kHz, co jest zbliżone do tego, co jesteśmy w stanie usłyszeć. Wzmacniacze operacyjne także mają swoje pasma, które trzeba zawsze brać pod uwagę przy projektach układów. Zrozumienie pasma przenoszenia naprawdę pomaga w optymalizacji projektów i eliminacji zniekształceń, co jest zgodne z tym, co powinno być w dobrym inżynieryjnym podejściu.

Pytanie 25

Na którym zakresie pomiarowym należy wykonywać precyzyjny pomiar napięcia po stronie wtórnej transformatora, którego parametry podano w tabeli?

Napięcie pierwotne230 V
Napięcie wtórne12 V
Prąd uzwojenia wtórnego2 A
Moc25 VA

A. 20 V AC
B. 200 V DC
C. 200 V AC
D. 20 V DC
Odpowiedź 20 V AC jest prawidłowa, ponieważ odpowiada charakterystyce napięcia wtórnego transformatora, które wynosi 12 V. W kontekście pomiarów elektrycznych, ważne jest, aby stosować przyrządy pomiarowe w odpowiednim zakresie, co zapewnia dokładność oraz bezpieczeństwo pomiarów. Dla napięcia zmiennego (AC) o wartości 12 V, najbliższy standardowy zakres pomiarowy, który nie przekracza wartości nominalnej, to 20 V AC. Praktyczne zastosowanie tego pomiaru odnosi się do wielu sytuacji w inżynierii elektrycznej, w których musimy monitorować napięcia w obwodach zasilających urządzenia elektroniczne. Stosowanie odpowiedniej skali pomiarowej nie tylko minimalizuje ryzyko uszkodzenia sprzętu, ale także pozwala na uzyskanie precyzyjnych wyników, które są kluczowe dla diagnostyki oraz serwisu urządzeń. Zgodnie z normami IEC oraz krajowymi przepisami, pomiar napięć powinien odbywać się w bezpiecznych i przewidywalnych warunkach. W związku z tym, dobór odpowiedniego zakresu pomiarowego jest fundamentalnym krokiem w zapewnieniu wysokiej jakości pracy z urządzeniami elektrycznymi.

Pytanie 26

Jaką rolę odgrywa urządzenie kontrolno-pomiarowe w systemie automatyki przemysłowej?

A. przetwornik
B. zawór regulacyjny
C. kontroler
D. zawór elektromagnetyczny
Przetwornik jest kluczowym elementem w systemach automatyki przemysłowej, odpowiedzialnym za konwersję sygnałów fizycznych na sygnały elektroniczne, które mogą być przetwarzane przez systemy sterowania. Działa on na zasadzie pomiaru różnych parametrów, takich jak temperatura, ciśnienie czy poziom cieczy, a następnie przekształca te dane na formę, która jest zrozumiała dla systemów sterujących. Przykładem zastosowania przetwornika może być czujnik temperatury, który przekształca temperaturę w sygnał analogowy lub cyfrowy, umożliwiając sterownikowi podjęcie odpowiednich działań, takich jak włączenie lub wyłączenie grzejnika. Zgodnie z normami ISA (International Society for Automation) oraz IEC (International Electrotechnical Commission), stosowanie odpowiednich przetworników jest kluczowe dla zapewnienia dokładności i niezawodności procesów przemysłowych. Przetworniki są również istotne dla monitorowania stanu produkcji i diagnostyki, co wpływa na efektywność i bezpieczeństwo pracy systemów automatyki.

Pytanie 27

Opady śniegu mogą prowadzić do znacznego obniżenia jakości odbioru sygnału

A. telewizyjnego naziemnego
B. telewizji satelitarnej
C. radiowego naziemnego
D. telewizji kablowej
Opady śniegu mogą znacząco wpłynąć na jakość odbioru sygnału telewizji satelitarnej ze względu na charakterystykę transmisji satelitarnej, która opiera się na sygnałach radiowych wysyłanych z satelitów krążących na wysokich orbitach. Sygnały te są podatne na zjawiska atmosferyczne, takie jak opady deszczu czy śniegu, które mogą powodować tłumienie sygnału. W przypadku opadów śniegu, cząsteczki wody i kryształki lodu mogą powodować znaczące straty sygnału, co skutkuje zakłóceniami lub całkowitym brakiem odbioru. Dla przykładu, w sytuacji intensywnych opadów śniegu, użytkownicy telewizji satelitarnej mogą doświadczać problemów z sygnałem, co może objawiać się w postaci zniekształceń obrazu, zacinania się transmisji lub brakiem sygnału. Standardy dotyczące instalacji anten satelitarnych oraz dobre praktyki wskazują, że odpowiednie umiejscowienie anteny oraz jej właściwe zabezpieczenie przed opadami mogą minimalizować te problemy, jednak całkowite ich wyeliminowanie może być trudne. Z tego powodu w regionach o dużych opadach śniegu, użytkownicy powinni rozważyć systemy, które potrafią zredukować wpływ warunków atmosferycznych na jakość sygnału.

Pytanie 28

Jak nazywa się jednostka ładunku elektrycznego?

A. kelwin
B. herc
C. farad
D. kulomb
Kulomb (C) jest jednostką ładunku elektrycznego w układzie SI, który jest powszechnie stosowany w naukach przyrodniczych oraz inżynierii elektrycznej. Definiuje się go poprzez ilość ładunku, która przepływa przez przewodnik, gdy prąd elektryczny o natężeniu jednego ampera płynie przez ten przewodnik przez jedną sekundę. Jest kluczowy w kontekście prawa Coulomba, które opisuje siłę elektrostatyczną między naładowanymi ciałami. Zrozumienie kulomba ma praktyczne zastosowanie w projektowaniu układów elektronicznych, gdzie precyzyjne obliczenie ładunku jest niezbędne do zapewnienia efektywności działania komponentów takich jak kondensatory, które przechowują ładunek elektryczny. W praktyce, w elektronice, często korzysta się z kulombów do określania pojemności kondensatorów, co jest kluczowe przy projektowaniu układów filtrujących oraz w systemach zasilania. Warto również zaznaczyć, że kulomb jest jednostką stosunkowo dużą, a w wielu zastosowaniach inżynieryjnych wykorzystuje się jego podwielkości, takie jak mikro-kulomb (μC) czy nano-kulomb (nC).

Pytanie 29

Całkowity koszt materiałów potrzebnych do zrealizowania instalacji elektrycznej w mieszkaniu wynosi 2 000 zł brutto. Koszt realizacji instalacji odpowiada 100% wartości brutto materiałów. Jaką sumę trzeba będzie zapłacić za realizację instalacji, jeśli stawka VAT na usługi wynosi 8%?

A. 4 320 zł
B. 4 160 zł
C. 2 320 zł
D. 2 160 zł
Analiza błędów w obliczeniach kosztów wykonania instalacji elektrycznej w mieszkaniu może ujawnić szereg nieporozumień dotyczących podstawowych zasad naliczania podatków i kosztów. Często pojawiają się błędne założenia dotyczące tego, jak należy obliczać całkowity koszt inwestycji, co może prowadzić do nieprawidłowych oszacowań. W przypadku podanych odpowiedzi wiele osób może skupić się na prostym dodawaniu kosztów materiałów i robocizny, nie uwzględniając prawidłowych zasad naliczania VAT. Zrozumienie, że usługi instalacyjne wymagają obliczenia VAT na całościowy koszt robocizny i materiałów, jest kluczowe. Dodatkowo, niektórzy mogą mylnie przypisać VAT tylko do kosztów materiałów, co jest niezgodne z przepisami. Na przykład, przyjmując, że koszt robocizny jest oddzielny od kosztów materiałów, można błędnie obliczyć całkowity koszt na podstawie niepełnych danych. Istotnym aspektem jest również znajomość obowiązujących stawek VAT dla różnych usług budowlanych, które mogą się różnić w zależności od rodzaju wykonywanych prac. Błędne jest również pominięcie faktu, że całkowity koszt inwestycji powinien zawierać wszystkie wydatki, a nie tylko te związane z materiałami. Zrozumienie tych zasad jest niezbędne w celu właściwej kalkulacji kosztów budowlanych oraz przy zachowaniu przejrzystości finansowej w projektach inwestycyjnych.

Pytanie 30

Którą z poniższych czynności nie uznaje się za element konserwacji systemów alarmowych?

A. Weryfikacja powiadamiania
B. Montaż manipulatora
C. Zamiana akumulatora
D. Sprawdzanie czujników
Wymiana akumulatora, testowanie czujników oraz kontrola powiadamiania to działania, które są integralną częścią konserwacji instalacji alarmowych. Wymiana akumulatora jest kluczowa, ponieważ zapewnia zasilanie systemu w przypadku awarii zasilania głównego. Bez sprawnego akumulatora system alarmowy nie będzie mógł działać w sytuacjach kryzysowych, co zagraża bezpieczeństwu. Testowanie czujników jest równie istotne, ponieważ może ujawnić problemy z ich działaniem, takie jak zanieczyszczenia czy uszkodzenia mechaniczne. Regularne testy pozwalają również na weryfikację, czy czujniki reagują odpowiednio na bodźce, co jest kluczowe dla skuteczności systemu. Kontrola powiadamiania to także istotny aspekt, który zapewnia, że wszystkie elementy systemu komunikacyjnego działają prawidłowo, co jest kluczowe w sytuacjach alarmowych. Ignorowanie tych czynności konserwacyjnych może prowadzić do poważnych usterek systemu i osłabienia jego funkcji ochronnych. Zatem, mylne jest myślenie, że montaż manipulatora może być porównywany z tymi działaniami konserwacyjnymi, gdyż jest to czynność związana z instalacją, a nie z bieżącym utrzymaniem systemu w należytym stanie operacyjnym.

Pytanie 31

Czy światło słoneczne może doprowadzić do utraty danych w pamięci rodzaju

A. SDRAM
B. DRAM
C. EPROM
D. EEPROM
EPROM (Erasable Programmable Read-Only Memory) to rodzaj pamięci, która może być programowana oraz kasowana za pomocą światła ultrafioletowego. W przeciwieństwie do pamięci EEPROM czy DRAM, EPROM jest pamięcią nieulotną, co oznacza, że zachowuje swoje dane nawet po odłączeniu zasilania. Jednakże, jej zawartość można usunąć poprzez wystawienie na działanie promieniowania UV. To sprawia, że EPROM jest stosunkowo łatwa do kasowania i programowania, co jest przydatne w aplikacjach, gdzie dane muszą być często aktualizowane, ale również wymagają długoterminowego przechowywania. Przykład zastosowania EPROM to w systemach wbudowanych, gdzie może być używana do przechowywania oprogramowania, które wymaga aktualizacji. W branży elektronicznej, standardy zalecają stosowanie pamięci EPROM w urządzeniach, które nie wymagają częstej wymiany danych, ale potrzebują elastyczności w programowaniu. Cały proces programowania i kasowania jest zgodny z dobrymi praktykami inżynierskimi, zapewniając długowieczność i niezawodność sprzętu.

Pytanie 32

Na stanowiskach zajmujących się naprawą i konserwacją sprzętu elektronicznego nie jest wymagane

A. klimatyzacji
B. wyłączników różnicowoprądowych
C. zerowania ochronnego
D. uziemienia ochronnego
Klimatyzacja, choć może być korzystna w pewnych warunkach pracy, nie jest wymagana na stanowiskach do naprawy i konserwacji urządzeń elektronicznych. Kluczowe jest, aby urządzenia te były odpowiednio wentylowane, co można osiągnąć poprzez naturalną cyrkulację powietrza lub odpowiednie systemy wentylacyjne. Dobrą praktyką w tym zakresie jest zapewnienie, że temperatura w pomieszczeniu nie przekracza zalecanych norm, aby nie wpływać negatywnie na wrażliwe komponenty elektroniczne. Zastosowanie klimatyzacji może być korzystne w kontekście stabilizacji temperatury, ale nie jest to wymóg normatywny. Przykładem może być warsztat serwisowy, gdzie mechanicy stosują wentylację, aby utrzymać optymalne warunki pracy, ale niekoniecznie korzystają z klimatyzacji. Warto zaznaczyć, że odpowiednie warunki pracy, w tym temperatura, mają kluczowe znaczenie dla wydajności i trwałości sprzętu elektronicznego.

Pytanie 33

Przed wymianą urządzenia w systemie elektronicznym, konieczne jest odłączenie przewodu zasilającego?

A. po usunięciu starego urządzenia
B. zanim rozpoczną się prace demontażowe
C. w trakcie instalacji nowego sprzętu
D. po zakończeniu montażu
Odpowiedź "przed rozpoczęciem prac demontażowych" jest prawidłowa, ponieważ bezpieczeństwo jest kluczowym aspektem w pracy z instalacjami elektronicznymi. Przed przystąpieniem do jakichkolwiek działań związanych z wymianą urządzenia, kluczowe jest odłączenie przewodu zasilającego. To działanie minimalizuje ryzyko porażenia prądem oraz uszkodzenia sprzętu. W praktyce, każdy technik powinien stosować się do procedur zawartych w normach bezpieczeństwa, takich jak PN-EN 50110-1, które nakładają obowiązek odłączenia zasilania przed przystąpieniem do pracy. Dodatkowo, w przypadku wymiany urządzeń, zawsze warto stosować się do zasad dotyczących oznaczania i dokumentacji prac, aby mieć pewność, że wszystkie etapy demontażu i montażu są odpowiednio udokumentowane. Przykładem może być sytuacja, gdy technik wymienia starą lampę na nową; przed przystąpieniem do demontażu lampy, powinien najpierw wyłączyć zasilanie, co zapewnia bezpieczeństwo zarówno jego, jak i osób znajdujących się w pobliżu.

Pytanie 34

Jaką rolę odgrywa konwerter w zestawie odbiorczym telewizji satelitarnej?

A. Pośredniczy w przesyłaniu sygnałów z satelity do odbiornika
B. Odbiera programy telewizyjne
C. Przekazuje informacje pomiędzy satelitami
D. Nadaje sygnały z satelity
Konwerter w odbiorczym zestawie telewizji satelitarnej pełni kluczową rolę w procesie odbioru sygnałów telewizyjnych. Jego podstawową funkcją jest pośrednictwo w przekazie sygnałów z satelity do odbiornika. W praktyce konwerter znajduje się na końcu anteny parabolicznej, która skupia sygnały z satelity. Sygnały te są zazwyczaj przesyłane w zakresie częstotliwości Ku lub C, a konwerter ma za zadanie przetworzyć je na niższe częstotliwości, które są bardziej odpowiednie do przesyłania przez kabel do odbiornika. Dzięki temu możliwe jest uzyskanie wysokiej jakości obrazu i dźwięku. Warto również zauważyć, że konwertery mogą mieć różne właściwości, takie jak podwójne wyjścia, co pozwala na jednoczesne korzystanie z dwóch tunerów. Zastosowanie konwertera jest zgodne z normami branżowymi, które określają standardy jakości sygnału oraz efektywności jego przetwarzania.

Pytanie 35

Wymiana bezpiecznika 500 mA na bezpiecznik 2 A w urządzeniu elektronicznym może prowadzić do

A. wzrostu strat cieplnych
B. uszkodzenia urządzenia
C. zwiększenia zużycia prądu
D. zmniejszenia efektywności
Zastąpienie bezpiecznika 500 mA bezpiecznikiem 2 A w sprzęcie elektronicznym może prowadzić do uszkodzenia urządzenia z kilku kluczowych powodów. Przede wszystkim, bezpiecznik jest elementem zabezpieczającym, którego zadaniem jest przerwanie obwodu w przypadku nadmiernego prądu, co zapobiega przeciążeniu i potencjalnym uszkodzeniom komponentów. Wymiana na bezpiecznik o znacznie wyższej wartości nominalnej oznacza, że urządzenie będzie mogło pracować z prądem, który znacznie przekracza jego nominalne parametry. Na przykład, jeśli urządzenie zostało zaprojektowane do pracy z maksymalnym prądem 500 mA, przepływ prądu 2 A może prowadzić do przegrzania elementów, takich jak kondensatory czy tranzystory, co skutkuje ich uszkodzeniem. Takie działania są sprzeczne z zasadami ochrony urządzeń i mogą prowadzić do kosztownych napraw. W kontekście standardów branżowych, takich jak IEC 60950 dotyczący bezpieczeństwa sprzętu IT, dobór odpowiednich bezpieczników jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności urządzeń. Warto również wspomnieć, że odpowiedni dobór bezpieczników w sprzęcie elektronicznym jest istotnym elementem inżynierii elektrycznej, który powinien być starannie przemyślany na etapie projektowania.

Pytanie 36

Analogowy oscyloskop dwukanałowy pozwala na pomiar

A. przesunięcia fazowego
B. stosunku sygnału do szumu
C. bitowej stopy błędów
D. współczynnika błędów modulacji
Odpowiedź "przesunięcie fazowe" jest poprawna, ponieważ analogowy oscyloskop dwukanałowy jest szczególnie przydatny do analizy sygnałów w czasie rzeczywistym, umożliwiając bezpośrednie porównanie dwóch sygnałów. Przesunięcie fazowe oznacza różnicę w czasie pomiędzy dwoma sygnałami, co jest kluczowe w wielu zastosowaniach elektronicznych, takich jak synchronizacja systemów, modulacja czy analiza obwodów. Z pomocą oscyloskopu można zaobserwować, jak dwa sygnały współpracują ze sobą, co pozwala na dokładne pomiary przesunięcia fazowego. Przykładem zastosowania tej techniki może być analizowanie sygnałów w systemach komunikacyjnych, gdzie dokładna synchronizacja sygnałów jest kluczowa dla poprawnego odbioru informacji. Ponadto, w przypadku analizy filtrów, przesunięcie fazowe może dostarczyć informacji o stabilności i charakterystyce częstotliwościowej systemu, co jest zgodne z najlepszymi praktykami w obszarze inżynierii elektronicznej.

Pytanie 37

Czujnik kontaktronowy, często wykorzystywany w systemach alarmowych, zmienia swój stan pod wpływem

A. zmiany natężenia dźwięku
B. pola elektrycznego
C. pola magnetycznego
D. zmiany temperatury
Czujnik kontaktronowy działa na zasadzie detekcji pola magnetycznego. W jego wnętrzu znajdują się dwa metalowe styki, które są zamknięte w hermetycznej obudowie. Gdy w pobliżu czujnika pojawia się pole magnetyczne, styki te zbliżają się do siebie, co skutkuje zmianą stanu czujnika z otwartego na zamknięty. To zjawisko jest wykorzystywane w systemach sygnalizacji włamania oraz w różnych zastosowaniach automatyki budynkowej. Na przykład, w systemach alarmowych, czujniki kontaktronowe mogą być umieszczane w drzwiach i oknach, by informować o ich otwarciu. Dobrą praktyką jest umieszczanie ich w miejscach, gdzie mogą być łatwo zintegrowane z centralą alarmową, co zwiększa bezpieczeństwo obiektu. Warto również zauważyć, że kontaktrony są preferowane w sytuacjach, gdzie wymagana jest wysoka niezawodność oraz estetyka, ponieważ ich działanie jest ciche, a sama konstrukcja jest minimalistyczna.

Pytanie 38

Parametry takie jak wzmocnienie mocy, moc wyjściowa, pasmo przenoszenia oraz współczynnik efektywności energetycznej odnoszą się do

A. filtra
B. zasilacza
C. generatora
D. wzmacniacza
Podane odpowiedzi wskazują na nieporozumienie dotyczące podstawowych funkcji i parametrów urządzeń elektronicznych. Zasilacz, mimo że jest kluczowym elementem systemu, nie ma na celu wzmocnienia sygnału, lecz dostarczenie odpowiedniego napięcia i prądu do innych komponentów. Zasilacz koncentruje się na stabilizacji napięcia oraz wydajności energetycznej, ale nie mierzy parametrów takich jak wzmocnienie mocy czy pasmo przenoszenia, które są specyficzne dla wzmacniaczy. Filtry, z drugiej strony, są zaprojektowane do selekcji określonych zakresów częstotliwości, co oznacza, że ich parametry nie obejmują współczynnika sprawności energetycznej w kontekście wzmacniania sygnałów; ich rolą jest eliminacja niepożądanych częstotliwości, a nie ich wzmocnienie. Generator natomiast służy do tworzenia sygnałów o określonej częstotliwości, a nie do ich wzmocnienia. Wzmacniacze są jedynymi urządzeniami w tej grupie, które bezpośrednio odnoszą się do podanych parametrów, co sprawia, że odpowiedzi związane z zasilaczem, filtrem i generatorem są nieprawidłowe. Nieporozumienia te mogą wynikać z mylenia ról poszczególnych elementów w systemie elektronicznym oraz braku zrozumienia ich funkcji i zastosowań w praktyce. Warto zwrócić uwagę na to, jak każdy z tych komponentów współpracuje w złożonych systemach elektronicznych, co jest istotne dla prawidłowego działania całego układu.

Pytanie 39

Co oznacza zapis IP20 w kontekście urządzenia elektronicznego?

A. moc pozorna
B. częstotliwość napięcia zasilającego
C. stopień ochrony obudowy
D. ilość zacisków wyjściowych
Zapis IP20 na urządzeniu elektronicznym oznacza stopień ochrony obudowy, który jest określany według standardu IEC 60529. IP to skrót od 'Ingress Protection' i wskazuje na poziom ochrony przed wnikaniem ciał stałych oraz cieczy. Liczba '2' oznacza, że obudowa jest chroniona przed dostępem do części niebezpiecznych przy użyciu palca (do 12,5 mm), co czyni ją względnie bezpieczną w normalnych warunkach eksploatacji. Liczba '0' wskazuje, że urządzenie nie jest chronione przed wodą. Przykładem zastosowania IP20 mogą być urządzenia elektroniczne używane w pomieszczeniach, które nie są narażone na kontakt z wodą, jak np. komputery stacjonarne czy osprzęt biurowy. Zrozumienie oznaczeń IP jest kluczowe dla zapewnienia odpowiedniego poziomu bezpieczeństwa i trwałości urządzeń w różnych środowiskach pracy. W praktyce, dobór odpowiedniego stopnia ochrony obudowy powinien być zgodny z warunkami, w jakich dany sprzęt będzie używany, aby zabezpieczyć go przed uszkodzeniami.

Pytanie 40

W oscyloskopie dwukanałowym do wejścia CH-B podłączono sygnał o znanej częstotliwości, natomiast do wejścia CH-A sygnał do analizy. W jaki sposób powinien być ustawiony oscyloskop, aby za pomocą krzywych Lissajous oszacować przybliżoną częstotliwość sygnału do badania?

A. DUAL
B. ADD
C. X - Y
D. SINGLE
Wybór trybów ADD, SINGLE oraz DUAL do analizy sygnałów w oscyloskopie dwukanałowym nie jest odpowiedni w kontekście określania częstotliwości sygnału badanego za pomocą krzywych Lissajous. Tryb ADD sumuje sygnały z obu kanałów, co uniemożliwia bezpośrednie porównanie ich relacji w czasie. Taki sposób prezentacji może być przydatny do analizy amplitudowej, ale nie dostarcza informacji o różnicach w częstotliwościach i fazach sygnałów. Z kolei tryb SINGLE pozwala na przechwycenie jednego sygnału na raz, co również ogranicza możliwości analizy porównawczej, istotnej dla krzywych Lissajous. Tryb DUAL, choć umożliwia jednoczesne wyświetlanie sygnałów z obu kanałów, nie dostarcza informacji o ich relacji w kontekście rysowania krzywych Lissajous, które wymagają specyficznego odchylania X-Y. Typowe błędy myślowe prowadzące do wyboru błędnych trybów obejmują niepełne zrozumienie funkcji poszczególnych trybów w oscyloskopie oraz ich zastosowań w analizie sygnałów. Aby skutecznie korzystać z oscyloskopu do analizy sygnałów, ważne jest zrozumienie, że różne tryby odchylania mają różne zastosowania, a ich wybór powinien być uzależniony od konkretnego celu analizy.