Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 kwietnia 2025 10:08
  • Data zakończenia: 25 kwietnia 2025 10:20

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Interfejs komunikacyjny umożliwia połączenie

A. pompy hydraulicznej z silnikiem
B. siłownika z programatorem
C. sterownika z programatorem
D. modułu rozszerzającego z grupą siłowników
Interfejs komunikacyjny jest kluczowym elementem systemów automatyki, który umożliwia wymianę danych pomiędzy sterownikami a programatorami. W kontekście automatyki przemysłowej, sterownik (np. PLC) zarządza procesami, a programator służy do jego programowania oraz monitorowania. Interfejsy komunikacyjne, takie jak Ethernet, Modbus, Profibus czy CAN, pozwalają na efektywne przesyłanie sygnałów i danych, co jest niezbędne do optymalizacji pracy systemów. Przykładowo, w nowoczesnych zakładach produkcyjnych, sprawna komunikacja pomiędzy sterownikami a programatorami jest kluczowa dla zdalnego monitorowania stanu maszyn oraz szybkiego reagowania na ewentualne awarie. Dobre praktyki w zakresie projektowania interfejsów komunikacyjnych obejmują zapewnienie odpowiedniej przepustowości, niezawodności oraz bezpieczeństwa przesyłu danych. Właściwe zrozumienie funkcji i zastosowania interfejsów komunikacyjnych jest niezbędne dla inżynierów zajmujących się automatyką, by tworzyć wydajne i bezpieczne systemy sterowania.

Pytanie 3

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Nasadowego
B. Dynamometrycznego
C. Płaskiego
D. Imbusowego
Odpowiedź 'imbusowy' jest poprawna, ponieważ śruby z łbem walcowym i gniazdem sześciokątnym są zaprojektowane do współpracy z kluczami imbusowymi. Klucz imbusowy, znany również jako klucz sześciokątny, ma kształt, który idealnie pasuje do gniazda w takiej śrubie. Umożliwia to łatwe i efektywne wykręcanie i wkręcanie śrub, a także zapewnia mocny chwyt, co jest szczególnie ważne w zastosowaniach wymagających dużego momentu obrotowego. Przykładowo, wiele rowerów, mebli flat-pack i urządzeń mechanicznych wykorzystuje tego rodzaju śruby, co sprawia, że klucz imbusowy jest niezbędnym narzędziem w narzędziowni. Standardy DIN 911 określają wymiary kluczy imbusowych, co gwarantuje ich uniwersalność i dostępność w różnych rozmiarach, co jest kluczowe w pracy z różnymi typami śrub. W związku z tym, używając klucza imbusowego, możemy zapewnić właściwe dopasowanie oraz uniknąć uszkodzenia śruby lub narzędzia.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Po programowym aktywowaniu czterech wyjść tranzystorowych w sterowniku PLC, które sterują cewkami elektrozaworów, stwierdzono, że nie wszystkie działają poprawnie. Pomiar napięcia UBE (między bazą a emiterem) tranzystorów na poszczególnych wyjściach wykazał następujące wartości: UBE1 = 1 V, UBE2 = 3 V, UBE3 = 0,7 V, UBE4 = 5 V. Wyniki pomiarów sugerują uszkodzenie

A. tranzystorów na wyjściach 2 i 4
B. wyłącznie tranzystora na wyjściu 3
C. wyłącznie tranzystora na wyjściu 4
D. tranzystorów na wyjściach 1 i 3
Zauważyłeś, że odpowiedź wskazuje na problemy z tranzystorami na wyjściach 2 i 4, co jest całkiem słuszne. Jak spojrzysz na pomiary napięcia UBE, to na wyjściu 4 wynosi ono 5 V. To oznacza, że tranzystor działa na pełnych obrotach, a dla typowych tranzystorów krzemowych powinno być w okolicach 0,7 V. Z kolei, na wyjściu 2 mamy 3 V, co jest zbyt dużo – to znaczy, że coś tu nie gra i tranzystor nie pracuje tak, jak powinien. Jak się takie rzeczy zdarzają, to mogą być problemy z działaniem podłączonych cewków, a to może być kłopotliwe. W przypadku sterowników PLC wszystko musi działać jak w zegarku, żeby system był ok. W sytuacjach awaryjnych, lepiej też regularnie robić testy i konserwację, by wyłapać takie usterki na czas. No i nie zaszkodzi znać standardy, jak IEC 61131, bo mogą pomóc unikać tego typu problemów w przyszłości.

Pytanie 6

Olej hydrauliczny klasy HL to olej

A. mineralny posiadający właściwości antykorozyjne
B. mineralny bez dodatków uszlachetniających
C. o polepszonych parametrach lepkości i temperatury
D. syntetyczny
Wybór innej opcji, która nie pasuje do rzeczywistych właściwości oleju hydraulicznego HL, może prowadzić do nieporozumień. Oleje z polepszonymi właściwościami, mimo że są przydatne, nie są HL, bo HL skupia się na ochronie przed korozją. Warto zauważyć, że oleje mineralne bez dodatków ochronnych to kiepski wybór w wielu przypadkach, gdzie ważna jest odporność na rdza. Oleje syntetyczne, chociaż mają swoje zalety, jak lepsza stabilność, nie zastąpią olejów mineralnych HL. Takie mylne wnioski mogą prowadzić do sytuacji, gdzie użycie niewłaściwego oleju skutkuje szybszym zużyciem sprzętu i awariami, więc ważne, żeby wybierać oleje zgodne z zaleceniami producentów. Te błędy wynikają z tego, że ludzie często nie rozumieją różnic między tymi olejami, a to jest kluczowe dla dobrego działania hydrauliki.

Pytanie 7

Przed zainstalowaniem podtynkowej instalacji zasilającej dla urządzenia mechatronicznego nie weryfikuje się

A. średnicy żył przewodu
B. wagi żył w przewodzie
C. stanu izolacji przewodu
D. ciągłości żył przewodu
Analizując pozostałe odpowiedzi, warto zwrócić uwagę na istotność każdego z wymienionych czynników w kontekście montażu instalacji elektrycznych. Sprawdzanie średnicy żył przewodu jest kluczowe, ponieważ niewłaściwie dobrana średnica może prowadzić do nadmiernego przegrzewania się przewodu, co skutkuje utratą efektywności energetycznej, a w najgorszym przypadku – do pożaru. Z tego względu, dobór odpowiednich przewodów zgodnie z normami, takimi jak PN-IEC 60364, jest obowiązkowy. Podobnie, ciągłość żył jest niezbędna do zapewnienia, że instalacja będzie działać poprawnie. Możliwość przerwania obwodu, np. w wyniku uszkodzenia przewodu, może prowadzić do nieprzewidzianych przestojów w działaniu urządzeń, co w kontekście przemysłowym ma poważne konsekwencje finansowe oraz operacyjne. Stan izolacji również nie może być bagatelizowany. Uszkodzenie izolacji naraża użytkowników na ryzyko porażenia prądem, a także umożliwia powstawanie zwarć, co z kolei może prowadzić do katastrof elektrycznych. Oparcie się na wadze żył jako kryterium przed montażem jest błędną strategią, ponieważ nie daje ono żadnych praktycznych informacji o bezpieczeństwie czy wydajności instalacji. Dlatego istotne jest, aby koncentrować się na sprawdzeniu średnicy, ciągłości oraz izolacji, co zapewnia bezpieczeństwo i funkcjonalność instalacji elektrycznych.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Aby zmierzyć temperaturę, należy podłączyć do wejścia sterownika PLC

A. czujnik rezystancyjny
B. przekaźnik elektromagnetyczny
C. prądnicę tachometryczną
D. czujnik indukcyjny
Podłączenie innych komponentów, takich jak prądnica tachometryczna, czujnik indukcyjny czy przekaźnik elektromagnetyczny, do pomiaru temperatury nie jest odpowiednie. Prądnica tachometryczna jest wykorzystywana do pomiaru prędkości obrotowej w silnikach i nie ma zastosowania w kontekście temperatury. Czujnik indukcyjny, z kolei, wykrywa obecność obiektów metalowych i również nie nadaje się do pomiaru temperatury. Przekaźnik elektromagnetyczny jest elementem wykonawczym, który służy do załączania lub wyłączania obwodów elektrycznych, a więc nie jest narzędziem pomiarowym. Typowym błędem myślowym jest mylenie funkcji różnych elementów w systemie automatyki. Często przy wyborze czujnika do pomiaru temperatury nie uwzględnia się specyfiki ich działania oraz przeznaczenia. W przypadku pomiaru temperatury, kluczowe jest, aby zastosować czujniki, które są przystosowane do tej funkcji, co znacznie zwiększa dokładność i niezawodność całego systemu. Wybór odpowiednich komponentów w systemie automatyki powinien być oparty na zrozumieniu ich przeznaczenia oraz właściwości, co jest zgodne z dobrymi praktykami projektowania systemów automatyki.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Pomiary izolacyjności w instalacjach elektrycznych realizuje się

A. technicznym mostkiem Thomsona
B. omomierzem
C. megaomomierzem
D. laboratoryjnym mostkiem Thomsona
Chociaż istnieje wiele narzędzi do pomiarów elektrycznych, nie każde z nich jest odpowiednie do oceny rezystancji izolacji. Omomierz, który jest jednym z wymienianych urządzeń, jest używany do pomiaru rezystancji w obwodach niskonapięciowych, ale nie nadaje się do pomiarów izolacji. Podczas pomiarów rezystancji izolacji kluczowe jest stosowanie wysokich napięć, które są generowane tylko przez megaomomierze. Z kolei laboratoria często korzystają z mostków Thomsona, jednak te urządzenia są bardziej przeznaczone do precyzyjnych pomiarów rezystancji w warunkach laboratoryjnych, a nie do oceny stanu izolacji w rzeczywistych instalacjach. Istotnym błędem w myśleniu jest przekonanie, że jakiekolwiek urządzenie pomiarowe wystarczy do oceny izolacji. W rzeczywistości, aby zapewnić bezpieczeństwo i niezawodność instalacji, należy korzystać z odpowiednich narzędzi i technik, które są zgodne z wytycznymi branżowymi. Ignorowanie tej zasady może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem czy pożar, co jest sprzeczne z najlepszymi praktykami w dziedzinie elektryki. Właściwy wybór narzędzi pomiarowych jest kluczowy dla uzyskania wiarygodnych wyników oraz zapobiegania potencjalnym zagrożeniom.

Pytanie 19

Siłownik, który przesuwa tłok w jedną stronę dzięki sprężonemu powietrzu, a powrót tłoka jest wymuszany przez sprężynę, określamy jako siłownik pneumatyczny

A. dwustronnej pracy.
B. dwustronnej pracy, bez amortyzacji.
C. jednostronnej pracy.
D. różnicowy.
Siłownik jednostronnego działania to urządzenie, w którym sprężone powietrze działa na tłok jedynie w jednym kierunku, podczas gdy jego powrót do pozycji wyjściowej jest wymuszany przez sprężynę. Tego typu siłowniki są powszechnie stosowane w aplikacjach, gdzie nie jest wymagane ciągłe działanie w obie strony, co czyni je idealnym rozwiązaniem w systemach automatyki i pneumatyki. Przykładem zastosowania siłowników jednostronnego działania są chwytaki pneumatyczne, które chwytają obiekty w jednym kierunku, a następnie powracają do pozycji startowej dzięki sprężynie. Warto zwrócić uwagę, że siłowniki tego typu są często projektowane zgodnie z normami ISO, co zapewnia ich wysoką jakość i niezawodność. Dodatkowo, ograniczenie ruchu do jednej strony pozwala na oszczędność miejsca oraz efektywniejsze wykorzystanie sprężonego powietrza, co przekłada się na niższe koszty eksploatacyjne w dłuższej perspektywie czasowej.

Pytanie 20

Filtr o charakterystyce pasmowo-zaporowej

A. przepuszcza sygnały w zakresie określonego pasma częstotliwości.
B. tłumi sygnały o niskich częstotliwościach.
C. tłumi sygnały o częstotliwościach w obrębie określonego pasma częstotliwości.
D. przepuszcza sygnały o niskich częstotliwościach.
W przypadku filtrów pasmowo-zaporowych istnieje wiele nieporozumień dotyczących ich funkcji i zastosowań. Odpowiedzi, które sugerują, że filtr ten przepuszcza sygnały o częstotliwościach wewnątrz wyznaczonego pasma częstotliwości, są zasadniczo mylne. Takie określenie odnosiłoby się raczej do filtrów pasmowych, które mają za zadanie przepuszczać sygnały w określonym zakresie częstotliwości, a nie ich tłumienie. Również te odpowiedzi, które wskazują na tłumienie sygnałów o małej częstotliwości, są błędne, ponieważ filtry pasmowo-zaporowe nie koncentrują się jedynie na niskich częstotliwościach, ale na eliminowaniu określonego zakresu częstotliwości, niezależnie od tego, czy są one niskie, średnie, czy wysokie. Typowe błędy myślowe prowadzące do tych błędnych wniosków często wynikają z nieporozumienia dotyczącego terminologii związanej z filtracją sygnałów. Zrozumienie, że filtry pasmowo-zaporowe aktywnie eliminują sygnały w określonym paśmie, a nie je przepuszczają, jest kluczowe dla poprawnego zastosowania tej teorii w praktyce inżynieryjnej. Dlatego ważne jest, aby przed przystąpieniem do projektowania lub analizy systemów wykorzystujących filtrację sygnałów, dokładnie zrozumieć działanie i właściwości różnych typów filtrów oraz ich zastosowanie w praktyce.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakiego typu silnik należy wykorzystać do zasilania systemu, który wymaga bardzo wysokiego momentu rozruchowego (przekraczającego moment znamionowy)?

A. Szeregowy
B. Asynchroniczny
C. Bocznikowy
D. Krokowy
Silnik szeregowy jest najbardziej odpowiedni do aplikacji wymagających wysokiego momentu rozruchowego, ponieważ jego konstrukcja pozwala na uzyskanie znacznie większego momentu przy niskich obrotach. W silniku szeregowym, uzwojenia wirnika są połączone szeregowo z uzwojeniem stojana, co powoduje, że przepływ prądu przez uzwojenia wirnika i stojana jest taki sam. W rezultacie, gdy silnik startuje, prąd wzrasta, co prowadzi do znaczącego wzrostu momentu obrotowego. Taka charakterystyka sprawia, że silniki szeregowe są powszechnie stosowane w aplikacjach takich jak dźwigi, przenośniki, czy inne urządzenia wymagające dużego momentu rozruchowego. Przykładowo, silniki szeregowe są wykorzystywane w systemach transportu materiałów, gdzie konieczne jest pokonanie początkowego oporu. Dobrą praktyką w branży jest dobór silnika szeregowego do zastosowań, gdzie moment rozruchowy przewyższa moment znamionowy, co zapewnia efektywne i bezpieczne użytkowanie maszyn.

Pytanie 23

Jaką czynność należy zrealizować w pierwszej kolejności, instalując oprogramowanie do programowania sterowników PLC?

A. Zaktualizować system operacyjny komputera, na którym zainstalowane będzie oprogramowanie
B. Przenieść z nośnika instalacyjnego wersję instalacyjną oprogramowania na dysk twardy komputera
C. Usunąć poprzednią wersję oprogramowania, które ma być zainstalowane
D. Zweryfikować minimalne wymagania, które musi spełniać komputer, na którym oprogramowanie będzie instalowane
Podejście do uaktualnienia systemu operacyjnego przed instalacją oprogramowania jest mylne, ponieważ niekoniecznie każdy system operacyjny musi być aktualizowany, aby nowe oprogramowanie mogło działać poprawnie. Wiele aplikacji jest zaprojektowanych do działania na określonych wersjach systemów, a ich aktualizacja może prowadzić do problemów z kompatybilnością, co jest często pomijane. Dodatkowo, odinstalowanie starszej wersji oprogramowania, które ma być zainstalowane, nie jest krokiem wstępnym, ale raczej działaniem, które powinno być podejmowane w przypadku, gdy starsza wersja koliduje z nową. Przykładowo, oprogramowanie PLC może mieć różne wersje, które są zaprojektowane tak, aby współdziałały z różnymi projektami. Zbyt pochopne usunięcie starszej wersji może skutkować utratą ważnych projektów lub konfiguracji. Kopiowanie wersji instalacyjnej na dysk twardy, chociaż istotne, również nie powinno być pierwszym krokiem. Zbyt częste pomijanie weryfikacji wymagań systemowych może prowadzić do frustracji użytkowników oraz nieefektywnej pracy. Ważne jest, aby przed jakimikolwiek działaniami związanymi z instalacją, skupić się na dokładnej analizie wymagań sprzętowych i programowych, co jest kluczowe w kontekście standardów zarządzania projektami oraz praktyk branżowych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Ciągłe sensory oraz wzmacniacze operacyjne stanowią standardowe komponenty systemu sterowania?

A. cyfrowego
B. programowalnego
C. binarnego
D. analogowego
Wybór odpowiedzi związanej z układami cyfrowymi nie jest najlepszy. Układy cyfrowe działają na dyskretnych wartościach, a nie na ciągłych sygnałach. Sensory i wzmacniacze analogowe muszą być najpierw odpowiednio przetworzone, na przykład przez konwersję analogowo-cyfrową, zanim będą mogły współpracować z systemami cyfrowymi. Odpowiedzi związane z układami programowalnymi czy binarnymi również nie mają sensu, bo nie odnoszą się do kluczowych cech analogowych sygnałów. Układy programowalne, jak PLC, łączą zarówno analogowe, jak i cyfrowe komponenty, ale same działają na zupełnie innych zasadach. Trzeba zrozumieć, że układy binarne nie mogą współpracować bezpośrednio z elementami działającymi w trybie ciągłym, ponieważ wymaga to zastosowania konwerterów. Kluczowe jest, żeby znać podstawy przetwarzania sygnałów, co pomoże lepiej zrozumieć różnice między tymi układami.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie jest właściwe podłączenie dla przyłącza oznaczonego literą 'T' w zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P i T?

A. Do siłownika dwustronnego działania
B. Do siłownika jednostronnego działania
C. Do zbiornika sprężonego powietrza
D. Do zbiornika oleju hydraulicznego
Podłączenie przyłącza "T" do zbiornika sprężonego powietrza, czy do siłownika jednostronnego lub dwustronnego nie jest dobrym pomysłem z kilku przyczyn. Po pierwsze, zawory hydrauliczne są stworzone do zarządzania olejem, a nie sprężonym powietrzem. Te dwa mają zupełnie różne właściwości. Jakbyśmy ich użyli zamiennie, to może to prowadzić do dziwnych problemów z działaniem systemu i, co gorsza, uszkodzenia elementów. Przyłącza do siłowników mają inne funkcje – tam olej wpływa, żeby siłownik mógł działać. Z doświadczenia wiem, że niezrozumienie funkcji tych przyłączy to prosta droga do awarii hydrauliki. Normy branżowe wymagają, żeby każdy element był odpowiednio podłączony, inaczej może być nie tylko nieefektywnie, ale też niebezpiecznie. W hydraulice każdy podzespół ma swoje zadanie, więc warto to mieć na uwadze, żeby wszystko działało tak, jak powinno.

Pytanie 34

Aby usunąć stycznik zamontowany na szynie, należy wykonać działania w poniższej kolejności:

A. odłączyć napięcie, odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny
B. odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie
C. zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody
D. odłączyć napięcie, zwolnić zatrzask i zdjąć stycznik z szyny, odkręcić przewody
Odpowiedź odłącz napięcie, odkręć przewody, zwolnij zatrzask i zdejmij stycznik z szyny jest prawidłowa, ponieważ przestrzega podstawowych zasad bezpieczeństwa oraz dobrych praktyk w zakresie pracy z urządzeniami elektrycznymi. Przede wszystkim, odłączenie napięcia jest kluczowym krokiem, który ma na celu zabezpieczenie operatora przed porażeniem elektrycznym. Gdy napięcie jest odłączone, można bezpiecznie manipulować urządzeniami. Następnie, odkręcenie przewodów powinno nastąpić przed zwolnieniem zatrzasku, aby uniknąć nieprzewidzianych sytuacji, takich jak przypadkowe zwarcie podczas demontażu. Po odłączeniu przewodów możliwe jest bezpieczne zwolnienie zatrzasku i zdjęcie stycznika z szyny. Taki sposób postępowania jest zgodny z normami BHP oraz zaleceniami producentów urządzeń, co zapewnia skuteczne i bezpieczne wykonanie demontażu. Przykłady zastosowania tej procedury można znaleźć w praktyce w obiektach przemysłowych, gdzie regularnie przeprowadza się konserwację i serwisowanie osprzętu elektrycznego.

Pytanie 35

Jaki czujnik powinno się wykorzystać do pomiaru wartości natężenia pola magnetycznego?

A. Hallotronowy
B. Tensometryczny
C. Pojemnościowy
D. Ultradźwiękowy
Wybór nieodpowiednich czujników do pomiaru pola magnetycznego może prowadzić do poważnych pomyłek w analizie i diagnostyce. Czujniki tensometryczne, na przykład, są przeznaczone do mierzenia sił i odkształceń, a więc nie mają zastosowania w detekcji pól magnetycznych. Działają na zasadzie zmian oporu elektrycznego w odpowiedzi na deformację mechaniczną, co czyni je skutecznymi w zastosowaniach takich jak pomiar siły wywieranej na strukturę, ale nie w pomiarze pól magnetycznych. Z kolei czujniki pojemnościowe mierzą zmiany pojemności elektrycznej wynikające z obecności obiektów w ich polu działania. Używane są często w czujnikach dotykowych i systemach wykrywania obecności, ale nie nadają się do pomiaru natężenia pola magnetycznego. Czujniki ultradźwiękowe opierają się na zasadzie odbicia fal dźwiękowych i są stosowane w detekcji odległości oraz w systemach automatyzacji, ale także nie mają zastosowania w detekcji pól magnetycznych. Dlatego ważne jest zrozumienie, który czujnik najlepiej odpowiada wymaganiom danej aplikacji, aby zapewnić dokładność i niezawodność pomiarów. Wybór odpowiedniego czujnika powinien opierać się na specyfikacji technicznej oraz wymaganiach konkretnego zastosowania w branży.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Ciśnienie o wartości 1 N/m2 to

A. 1 mmHg
B. 1 at
C. 1 Pa
D. 1 bar
Ciśnienie równe 1 N/m² jest równoznaczne z 1 Pa (paskalem), co jest jednostką miary ciśnienia w układzie SI. Definicja ciśnienia mówi, że jest to siła działająca na jednostkę powierzchni. W praktyce, 1 Pa oznacza, że na powierzchnię o wymiarach 1 m² działa siła o wartości 1 N. Paskal jest powszechnie stosowany w wielu dziedzinach, takich jak inżynieria mechaniczna, budownictwo oraz nauki przyrodnicze. Dla przykładu, w kontekście hydrauliki, ciśnienie 1 Pa jest niewielkie, ale w kontekście atmosferycznym, na poziomie morza, ciśnienie wynosi około 101325 Pa (czyli 1 atm), co pokazuje, jak mała jest jednostka 1 Pa w porównaniu do standardowego ciśnienia atmosferycznego. W praktyce, ciśnienie wyrażane w paskalach jest również często używane w procesach przemysłowych i laboratoryjnych, co czyni tę jednostkę kluczową w zrozumieniu i obliczeniach dotyczących sił działających w różnych systemach.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jedną z kluczowych funkcji oscyloskopu dwukanałowego jest dokonywanie pomiaru

A. natężenia pola elektrycznego
B. przesunięcia fazowego napięciowych przebiegów sinusoidalnych
C. indukcyjności własnej cewki
D. pojemności elektrycznej kondensatorów
Wybór odpowiedzi związanych z pomiarem indukcyjności własnej cewki, pojemności elektrycznej kondensatorów oraz natężenia pola elektrycznego jest błędny, ponieważ oscyloskop nie jest narzędziem przeznaczonym do bezpośrednich pomiarów tych parametrów. Pomiar indukcyjności cewki wymaga zastosowania specjalistycznych urządzeń, takich jak mierniki indukcyjności, które działają na zasadzie analizy obwodów rezonansowych lub wykorzystują metody pomiaru impedancji. Podobnie, pojemność kondensatorów nie jest mierzona oscyloskopem; zamiast tego wykorzystuje się multimetry lub specjalistyczne przyrządy pomiarowe. Natężenie pola elektrycznego również nie jest bezpośrednio mierzone przy użyciu oscyloskopu, ponieważ wymaga to zastosowania detektorów pola elektrycznego. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych odpowiedzi, obejmują mylenie funkcji różnych urządzeń pomiarowych oraz nieznajomość ich specyfikacji i zastosowań. W kontekście technologii elektronicznej, ważne jest, aby zrozumieć, które instrumenty są odpowiednie do określonych pomiarów, aby zapewnić dokładność i niezawodność wyników.

Pytanie 40

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 barów, działa z prędkością 50 cykli na minutę i zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania siłownika?

A. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
B. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
C. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
D. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
Odpowiedź, która podaje wydajność 5,3 m3/h i maksymalne ciśnienie 1,0 MPa, jest jak najbardziej trafna. To spełnia wymagania dla siłownika, który działa na sprężone powietrze. Siłownik zasuwa 50 cykli na minutę, a każdy cykl to 1,4 litra powietrza. Jak to policzymy, to wychodzi, że potrzebuje 70 litrów powietrza na minutę (czyli 50 cykli na minutę razy 1,4 l na cykl). Jak to przerobimy na metry sześcienne, to mamy 0,07 m3 na minutę, co po przeliczeniu na godzinę daje 4,2 m3/h. Żeby zniwelować straty związane z kompresją, sprężarka musi mieć wyższą wydajność. I właśnie ta 5,3 m3/h nie tylko pokrywa zapotrzebowanie siłownika, ale daje też pewien zapas. Co do maksymalnego ciśnienia sprężarki 1,0 MPa (czyli 10 bar), to też jest okej, bo obsługuje siłownik, który działa przy ciśnieniu 8 barów. Użycie sprężarki o tych parametrach to nie tylko kwestia wydajności, ale też pewności działania całego systemu pneumatycznego, co jest zgodne z normami branżowymi.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły