Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 9 czerwca 2025 20:18
  • Data zakończenia: 9 czerwca 2025 20:18

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Którą z czynności serwisowych w instalacji sieciowej można zignorować?

A. Ocena stanu zewnętrznej powłoki przewodów
B. Sprawdzenie przewodów sieciowych omomierzem
C. Testowanie przewodów sieciowych za pomocą testera
D. Wymiana luźnych złączy RJ
Sprawdzanie przewodów sieciowych testerem, wymiana obluzowanych złącz RJ oraz kontrola stanu powłoki zewnętrznej przewodów to wszystkie kluczowe czynności konserwacyjne, które nie powinny być pomijane przy utrzymaniu infrastruktury sieciowej. Tester kablowy jest niezbędnym narzędziem do diagnozowania problemów w okablowaniu. Umożliwia on wykrycie błędów w połączeniach, takich jak zwarcia, przerwy lub zamiany żył, co ma bezpośredni wpływ na jakość i stabilność połączenia sieciowego. Ignorowanie tej czynności może prowadzić do poważnych problemów z wydajnością sieci, co w efekcie może wpływać na całą organizację. Z kolei wymiana obluzowanych złącz RJ jest kluczowa, ponieważ takie złącza mogą prowadzić do utraty sygnału, co skutkuje przerwami w transmisji danych. Stabilne i dobrze zainstalowane złącza są fundamentem niezawodności całej sieci. Kontrola stanu powłoki zewnętrznej przewodów jest również niezbędna, ponieważ uszkodzenia mechaniczne mogą prowadzić do awarii przewodów, a także narażać je na działanie czynników atmosferycznych, co może wpłynąć na ich działanie. W kontekście standardów branżowych, takie jak ISO/IEC 11801, zaleca się regularne przeprowadzanie tych czynności konserwacyjnych, aby zapewnić wysoką jakość usług sieciowych oraz minimalizować ryzyko awarii.

Pytanie 2

Aby zidentyfikować brak ciągłości obwodu w instalacjach elektrycznych, należy użyć

A. wobulatora
B. omomierza
C. woltomierza
D. oscyloskopu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Omomierz jest narzędziem służącym do pomiaru oporu elektrycznego, co czyni go idealnym do lokalizowania braków ciągłości obwodu w instalacjach elektrycznych. W momencie, gdy występuje przerwanie obwodu, omomierz pozwala na dokładne określenie, czy dany segment instalacji ma odpowiednią wartość oporu. W praktyce, aby zweryfikować ciągłość obwodu, wykonuje się pomiar oporu między różnymi punktami w instalacji; jeśli wartość oporu wynosi zero lub jest bardzo bliska zeru, obwód jest ciągły. W przypadku braku ciągłości, omomierz zasygnalizuje dużą wartość oporu, co wskazuje na problem w instalacji. Warto również pamiętać, że stosowanie omomierza jest zgodne z normami PN-IEC 61010, które określają wymagania dotyczące bezpieczeństwa sprzętu elektrycznego. W codziennej pracy elektryka, umiejętność wykorzystania omomierza do lokalizacji usterki jest niezbędna, co wpływa na bezpieczeństwo oraz niezawodność instalacji elektrycznych.

Pytanie 3

Czujnik typu PIR służy do wykrywania

A. dymu
B. światła
C. ruchu
D. wilgoci

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujka typu PIR (Passive Infrared Sensor) jest urządzeniem wykrywającym ruch na podstawie analizy promieniowania podczerwonego emitowanego przez obiekty w swoim zasięgu. Działa na zasadzie detekcji zmian temperatury w polu widzenia czujnika, co jest istotne w kontekście monitorowania obszaru. Czujki te są szeroko stosowane w systemach zabezpieczeń, automatyce budynkowej oraz inteligentnych domach. Przykładem zastosowania jest system alarmowy, w którym czujka PIR uruchamia alarm w momencie wykrycia ruchu, co zwiększa bezpieczeństwo obiektu. Standardy branżowe, takie jak EN 50131, definiują wymagania dotyczące wydajności i niezawodności takich czujek, aby zapewnić ich skuteczność w detekcji ruchu. Dzięki swojej konstrukcji czujki PIR są energooszczędne, co czyni je idealnym wyborem do zastosowań w nowoczesnych systemach automatyzacji, gdzie ważna jest efektywność energetyczna. Właściwe umiejscowienie czujnika oraz jego kalibracja są kluczowe dla optymalizacji działania, co podkreśla potrzebę stosowania dobrych praktyk w instalacji i użytkowaniu tych urządzeń.

Pytanie 4

Jakie urządzenie cyfrowe powinno być użyte do porównania dwóch liczb zapisanych w określonym kodzie?

A. Converter.
B. Comparator.
C. Decoder.
D. Adder.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Komparator to układ cyfrowy służący do porównywania dwóch liczb zapisanych w danym kodzie, co czyni go idealnym narzędziem w zastosowaniach, gdzie istotna jest analiza relacji między dwoma wartościami, takich jak równość, większa lub mniejsza liczba. Komparatory są wykorzystywane w wielu dziedzinach, w tym w systemach cyfrowych, mikroprocesorach oraz w algorytmach przetwarzania sygnałów. Standardowe zastosowanie komparatorów obejmuje porównywanie wyników działań arytmetycznych, co może być kluczowe w aplikacjach takich jak kontrola jakości produkcji, systemy alarmowe oraz w automatyzacji procesów przemysłowych. Komparatory mogą działać na różnych poziomach, w tym jako prosty komparator bitowy, który porównuje pojedyncze bity, lub jako bardziej złożone układy, które analizują całe słowa binarne. Użycie komparatora w projektach cyfrowych pozwala na efektywną realizację operacji logicznych, co jest zgodne z najlepszymi praktykami inżynierii oprogramowania i projektowania systemów cyfrowych.

Pytanie 5

Urządzenie działające w sieci komputerowej, mające na celu powiększenie zasięgu transmisji przez odtworzenie pierwotnego kształtu sygnału, bez oceny poprawności przesyłanych informacji, to

A. hub
B. repeater
C. bridge
D. switch

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Repeater, znany również jako wzmacniacz sygnału, jest urządzeniem, które działa na warstwie fizycznej modelu OSI. Jego głównym zadaniem jest odbieranie sygnałów sieciowych, a następnie ich regeneracja i ponowne przesyłanie, co pozwala na zwiększenie zasięgu transmisji. Przykład zastosowania repeatera można zobaczyć w dużych biurach lub na kampusach uniwersyteckich, gdzie dystans między urządzeniami sieciowymi może przekraczać standardowy zasięg sieci Ethernet. W takich przypadkach repeater pozwala na efektywne łączenie kilku segmentów sieci, eliminując utratę jakości sygnału. Repeater działa bez analizy danych, co oznacza, że nie filtruje ani nie interpretuje przesyłanych informacji, co czyni go idealnym rozwiązaniem do rozszerzenia zasięgu. Dobre praktyki zalecają umieszczanie repeaterów w miejscach, gdzie sygnał jest najsłabszy, by maksymalnie wykorzystać ich możliwości. Warto również pamiętać o stosowaniu repeaterów w sieciach Wi-Fi, gdzie mogą znacznie poprawić jakość sygnału w trudno dostępnych lokalizacjach.

Pytanie 6

Jaki jest zakres pomiarowy watomierza, jeśli jego zakres prądowy wynosi 2 A, a zakres napięciowy to 200 V?

A. 400 W
B. 800 W
C. 100 W
D. 200 W

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiesz, żeby obliczyć zakres pomiarowy watomierza, trzeba skorzystać z wzoru na moc elektryczną. Mamy tutaj proste równanie: P = U * I. W tym przypadku to wygląda tak: prąd wynosi 2 A, a napięcie to 200 V. Jak to podstawisz do wzoru, wyjdzie ci P = 200 V * 2 A, co daje 400 W. To znaczy, że maksymalna moc, którą ten watomierz może zmierzyć, to 400 W – to pasuje do jego specyfikacji. W praktyce, jak będziesz mógł mierzyć różne urządzenia, ważne jest, żeby wiedzieć, jaki jest maksymalny zakres pomiarowy, bo inaczej ryzykujesz uszkodzenie urządzenia i błędne odczyty. Takie pomiary są przydatne w wielu sytuacjach – od monitorowania zużycia energii w domu po sprawdzanie wydajności w przemyśle. Zrozumienie zakresu pomiarowego jest kluczowe, bo pozwala inżynierom i technikom na właściwy dobór sprzętu do konkretnych zadań.

Pytanie 7

Na zdjęciu przedstawiono

Ilustracja do pytania
A. tyrystory
B. tensometry
C. diody
D. termistory

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Termistory to elementy elektroniczne, które zmieniają swoją rezystancję w odpowiedzi na zmiany temperatury. Wyróżniamy dwa główne typy termistorów: NTC (Negative Temperature Coefficient) i PTC (Positive Temperature Coefficient). W przypadku NTC, rezystancja maleje wraz ze wzrostem temperatury, co sprawia, że są one często wykorzystywane w aplikacjach pomiarowych, takich jak termometry elektroniczne, gdzie umożliwiają precyzyjne monitorowanie temperatury. Z kolei PTC zwiększa swoją rezystancję przy wzroście temperatury, co czyni je skutecznymi zabezpieczeniami przed przegrzaniem w urządzeniach elektrycznych. Przykłady zastosowań obejmują kontrolę temperatury w urządzeniach HVAC oraz w układach zasilania, gdzie termistory służą do ochrony komponentów przed uszkodzeniem. Zrozumienie działania termistorów i ich właściwości jest kluczowe w projektowaniu systemów elektronicznych, spełniającym wymagania dotyczące dokładności pomiarów temperatury oraz bezpieczeństwa urządzeń.

Pytanie 8

Pomiar temperatury radiatora służącego do chłodzenia mikroprocesora w urządzeniu elektronicznym można przeprowadzić przy użyciu

A. tensometru
B. pirometru
C. manometru
D. rotametru

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pirometr to narzędzie służące do bezdotykowego pomiaru temperatury powierzchni ciał stałych, cieczy oraz gazów. Jego działanie opiera się na zasadzie pomiaru promieniowania podczerwonego emitowanego przez obiekt. W przypadku radiatora chłodzącego mikroprocesor, pirometr pozwala na szybkie i precyzyjne określenie temperatury, co jest kluczowe dla zapewnienia efektywności chłodzenia oraz zapobiegania przegrzewaniu się procesora. W wielu zastosowaniach przemysłowych oraz w laboratoriach, pirometry są standardowym wyposażeniem, pozwalającym na monitorowanie temperatury w czasie rzeczywistym. Dzięki nim można uniknąć kontaktu z gorącymi elementami, co wpisuje się w zasady bezpieczeństwa pracy. W praktyce, pirometry są wykorzystywane nie tylko w elektronice, ale także w inżynierii materiałowej, medycynie oraz wielu innych dziedzinach, gdzie kontrola temperatury odgrywa kluczową rolę. Ich zastosowanie jest zgodne z normami ISO dotyczącymi pomiarów temperatury, co potwierdza ich wiarygodność oraz dokładność.

Pytanie 9

Korzystając z tabeli wskaż parametry pracy, przy których kamera nie może być uruchomiona?

Parametr pracy kamery IPWartość
Zasilanie12 VDC ±10%
Wilgotność5÷75%
Temperatura−25÷50°C

A. Zasilanie 10 V, temperatura 45°C.
B. Temperatura -10°C, wilgotność 40%.
C. Temperatura 30°C, wilgotność 45%.
D. Zasilanie 13 V, wilgotność 65%.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zasilanie 10 V, temperatura 45°C to parametry, przy których kamera nie może być uruchomiona. Standardy branżowe określają, że kamery powinny być zasilane napięciem w zakresie 10,8 V - 13,2 V, co oznacza, że zasilanie 10 V jest poniżej minimalnego wymaganego napięcia. Taka sytuacja może prowadzić do niestabilnej pracy urządzenia, a w skrajnych przypadkach do jego uszkodzenia. Ponadto, temperatura 45°C, chociaż nie przekracza górnej granicy tolerancji, w połączeniu z zasilaniem na dolnej granicy może prowadzić do przegrzania elementów elektronicznych, co z kolei wpływa na żywotność kamery. W praktyce, przed uruchomieniem kamery należy zawsze sprawdzić, czy wszystkie parametry pracy mieszczą się w zalecanych zakresach, co jest kluczowe dla zapewnienia jej prawidłowej i długotrwałej eksploatacji.

Pytanie 10

Podczas instalacji wzmacniacza antenowego najpierw należy

A. najpierw podłączyć zasilanie, uziemić, następnie podłączyć przewody antenowe, a na końcu zamontować urządzenie
B. najpierw podłączyć przewody antenowe, później włączyć zasilanie, uziemić i na końcu zamontować urządzenie
C. uziemić urządzenie, następnie podłączyć przewody antenowe, włączyć zasilanie, a na końcu zamontować urządzenie
D. zamontować urządzenie, uziemić, podłączyć przewody antenowe, a na końcu podłączyć zasilanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź polega na odpowiednim porządku prac przy montażu wzmacniacza antenowego. Proces ten powinien zaczynać się od zamontowania urządzenia, co zapewnia, że wszystkie elementy są prawidłowo zainstalowane i mają odpowiednie wsparcie mechaniczne. Następnie kluczowe jest uziemienie urządzenia, aby zminimalizować ryzyko uszkodzeń spowodowanych przepięciami czy wyładowaniami atmosferycznymi. Uziemienie jest istotnym krokiem w ochronie zarówno sprzętu, jak i osób korzystających z systemu. Po tym etapie powinno się podłączyć przewody antenowe, co jest niezbędne do prawidłowego funkcjonowania wzmacniacza, a na końcu można podłączyć zasilanie, co pozwoli na uruchomienie urządzenia. Taki porządek działań jest zgodny z dobrymi praktykami instalacyjnymi i zapewnia zarówno bezpieczeństwo, jak i skuteczność działania wzmacniacza. Przykładem zastosowania tych zasad może być instalacja anteny telewizyjnej, gdzie odpowiednia sekwencja zwiększa jakość odbioru sygnału.

Pytanie 11

Jak powinna wyglądać prawidłowa sekwencja działań przy konserwacji systemu automatyki przemysłowej?

A. Kontrola przewodów ciśnieniowych, przeprowadzenie pomiarów elektrycznych instalacji, zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych
B. Zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych, przeprowadzenie pomiarów elektrycznych instalacji, kontrola przewodów ciśnieniowych
C. Dokręcenie styków zaciskowych, kontrola przewodów ciśnieniowych, przeprowadzenie pomiarów elektrycznych instalacji, zapoznanie się z dokumentacją techniczną instalacji
D. Przeprowadzenie pomiarów elektrycznych instalacji, kontrola przewodów ciśnieniowych, zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa kolejność czynności konserwacyjnych w instalacji automatyki przemysłowej rozpoczyna się od zapoznania się z dokumentacją techniczną. Jest to kluczowy krok, który umożliwia zrozumienie specyfiki instalacji, funkcji poszczególnych komponentów oraz zależności pomiędzy nimi. Następnie, dokręcenie styków zaciskowych jest niezwykle istotne, ponieważ luźne połączenia mogą prowadzić do awarii, przepięć czy strat energii. Po tych działaniach przeprowadza się pomiary elektryczne, które pozwalają na ocenę stanu technicznego instalacji oraz identyfikację potencjalnych problemów, takich jak zwarcia czy niskie napięcia. Na końcu sprawdzane są przewody ciśnieniowe, co jest niezbędne dla zapewnienia bezpieczeństwa i funkcjonalności systemu. Taka kolejność gwarantuje, że wszystkie działania są wykonywane w sposób przemyślany i efektywny, zgodnie z najlepszymi praktykami branżowymi, a także normami bezpieczeństwa, co przyczynia się do długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 12

Jaką rolę w systemie antenowym TV-SAT odgrywa konwerter?

A. Tłumi i zmienia częstotliwość sygnału antenowego.
B. Zwiększa i przekształca częstotliwość sygnału z anteny.
C. Dostarcza antenie napięcie stałe.
D. Dostarcza antenie napięcie przemienne.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Konwerter w instalacji antenowej TV-SAT pełni kluczową rolę, polegającą na wzmacnianiu i przetwarzaniu sygnału. Odbiera sygnały mikrofalowe z satelity, które są na bardzo wysokich częstotliwościach, a następnie przekształca je na niższe częstotliwości, które mogą być przesyłane przez kable do odbiornika. Zmiana ta jest niezbędna, ponieważ kable stosowane w instalacjach satelitarnych, takie jak kabel koncentryczny, mają ograniczenia dotyczące długości i pasma, co sprawia, że wyższe częstotliwości nie mogą być przesyłane efektywnie. W praktyce konwerter działa na zasadzie wzmocnienia sygnału, co zapewnia lepszą jakość odbioru. Dobre praktyki w instalacji konwertera obejmują jego właściwe umiejscowienie na antenie, co minimalizuje straty sygnału oraz użycie wysokiej jakości kabli, aby zredukować tłumienie. Warto również zwrócić uwagę na dobór konwertera, który odpowiada standardom DVB-S lub DVB-S2, aby zapewnić zgodność z nowoczesnymi systemami odbioru telewizyjnego.

Pytanie 13

Jakiego rodzaju układ scalony jest oznaczany symbolem UCY7400?

A. Cyfrowy wykonany w technologii TTL
B. Analogowy wykonany w technologii TTL
C. Analogowy wykonany w technologii CMOS
D. Cyfrowy wykonany w technologii CMOS

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układ scalony oznaczany jako UCY7400 to prosto mówiąc, cyfrowy układ logiczny, zaprojektowany w technologii TTL, czyli Transistor-Transistor Logic. To, co jest fajne w TTL, to jego szybki czas przełączania. Dzięki temu, układy TTL są często używane tam, gdzie potrzebna jest błyskawiczna reakcja na sygnały. UCY7400 działa jako układ bramek NAND, co pozwala mu wykonywać różne operacje w logice cyfrowej. To czyni go takim podstawowym elementem w projektowaniu różnych układów cyfrowych. Możesz go używać do budowy prostych układów, jak sumatory, rejestry, czy porównywacze, które są naprawdę przydatne w systemach elektronicznych. W elektronice, TTL znalazł swoje miejsce w systemach wbudowanych i w edukacji, bo świetnie ukazuje podstawy logiki cyfrowej. Co więcej, technologia TTL jest bardziej odporna na zakłócenia i stabilniejsza w różnych temperaturach, co ma duże znaczenie w wielu branżach przemysłowych i handlowych.

Pytanie 14

W dokumentach technicznych dotyczących magnetofonów kasetowych często można znaleźć terminy "Dolby", "Dolby C". Co to oznacza w kontekście zastosowanego w urządzeniu systemu?

A. redukcji szumów
B. korekcji amplitudowej dźwięku
C. wzmocnienia sygnałów o małej amplitudzie
D. podbicia niskich tonów w urządzeniu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Systemy Dolby, takie jak Dolby B, Dolby C i inne, są powszechnie stosowane w magnetofonach kasetowych w celu redukcji szumów towarzyszących nagraniom dźwiękowym. Działają one na zasadzie kompresji i dekompresji sygnału audio, co pozwala na zminimalizowanie wpływu niepożądanych szumów podczas odtwarzania kaset. W szczególności Dolby C, wprowadzony w latach 80., oferuje poprawioną efektywność w porównaniu do wcześniejszych wersji, umożliwiając lepszą jakość dźwięku w szerszym zakresie dynamiki. Przykładowo, w zastosowaniach studiów nagraniowych, zastosowanie systemu Dolby C może znacząco poprawić jakość nagrań, zachowując jednocześnie ich naturalność i klarowność. Standardy Dolby są uznawane w branży audio jako jedne z najlepszych praktyk w zakresie redukcji szumów, co czyni je istotnym elementem zarówno w produkcji muzycznej, jak i w domowych systemach audio.

Pytanie 15

Urządzenie wykorzystywane do podziału lub łączenia sygnałów telewizyjnych i radiowych w systemach antenowych to

A. modulator
B. dekoder
C. spliter
D. generator

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Splitter, zwany też rozgałęźnikiem sygnału, to takie ważne urządzenie w instalacjach antenowych. Działa na zasadzie dzielenia sygnału radiowego lub telewizyjnego, co jest naprawdę przydatne, gdy mamy kilka odbiorników w jednym miejscu. Na przykład, kiedy chcemy, żeby w różnych pokojach był dostęp do telewizji, to splitter pozwala nam to zrobić bez potrzeby stawiania wielu anten. Fajnie jest wybierać splittery, które mają niski poziom strat sygnału. Dzięki temu odbiór jest lepszej jakości, co jest bardzo istotne. Takie standardy, jak DVB-T, mówią, że używanie dobrych splitterów zmniejsza zakłócenia, co pewnie wszyscy chcieliby, żeby tak działało. Ważne, żeby pasmo pracy splitera było odpowiednie do częstotliwości sygnału, bo wtedy zyskujemy lepszy przesył.

Pytanie 16

Na jaki zakres powinien być ustawiony woltomierz analogowy, aby minimalizować błąd pomiaru napięcia wynoszącego 19 V?

A. 0 do 2 V
B. 0 do 200 V
C. 0 do 700 V
D. 0 do 20 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Woltomierz analogowy powinien być ustawiony na zakres 0 do 20 V, aby minimalizować błąd pomiaru napięcia wynoszącego 19 V. Ustawienie na ten zakres umożliwia uzyskanie największej dokładności pomiaru, ponieważ analogowe przyrządy pomiarowe zazwyczaj osiągają swoją optymalną precyzję, gdy mierzona wartość znajduje się blisko górnej granicy zakresu. W przypadku napięcia 19 V, to ustawienie daje możliwość uzyskania dokładności w granicach 1-2% w zależności od specyfiki danego woltomierza. Używając zbyt szerokiego zakresu, jak 0 do 200 V lub 0 do 700 V, zjawisko nazywane 'efektem rozdzielczości' powoduje, że pomiary mogą być mniej precyzyjne, a większe wartości mogą generować znaczący błąd w odczycie. Na przykład, jeśli zakres zostanie ustawiony na 200 V, niewielkie zmiany napięcia w pobliżu 19 V mogą nie być wystarczająco wyraźnie widoczne na skali. Ponadto zgodnie z praktykami w zakresie metrologii, ważne jest, aby dostosować przyrządy pomiarowe do specyficznych warunków, co ma kluczowe znaczenie w laboratoriach oraz podczas prac inżynieryjnych, aby zapewnić wiarygodność wyników pomiarów.

Pytanie 17

Jaką czujkę powinno się zastosować, aby sygnalizować otwarcie drzwi?

A. Kontaktronową
B. Ultradźwiękową
C. Mikrofalową
D. Podczerwieni

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujka kontaktronowa jest najodpowiedniejszym rozwiązaniem do sygnalizacji otwarcia drzwi, ponieważ wykorzystuje zasadę działania, która opiera się na zbliżeniu dwóch styków magnetycznych. Gdy drzwi się otwierają, magnes umieszczony na drzwiach oddala się od styków, co powoduje ich rozłączenie. Taki mechanizm jest niezwykle niezawodny i często stosowany w systemach alarmowych oraz zabezpieczeniach budynków. Kontaktrony charakteryzują się prostotą instalacji oraz niskim zużyciem energii, co czyni je idealnym rozwiązaniem w przypadku monitorowania otwarcia drzwi. W praktyce czujki te można znaleźć w różnych aplikacjach, od domowych systemów alarmowych po zabezpieczenia w obiektach komercyjnych. Dobrą praktyką jest także ich integracja z systemami automatyki budynkowej, co zwiększa komfort użytkowania oraz efektywność zabezpieczeń. Warto podkreślić, że kontaktrony są zgodne z normami branżowymi dotyczącymi bezpieczeństwa i ochrony, co potwierdza ich skuteczność i powszechną akceptację w branży.

Pytanie 18

Zastosowanie uszkodzonych bezpieczników, zastępując je bezpiecznikami o większej wartości prądu znamionowego, może prowadzić do

A. większego zużycia energii
B. przeciążenia oraz zniszczenia instalacji
C. większego zużycia mocy
D. wzrostu napięcia źródła zasilania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiesz, wymiana uszkodzonych bezpieczników na te o wyższej wartości prądu może przynieść sporo problemów w instalacji elektrycznej. Bezpieczniki mają swoją rolę, chronią obwody przed przeciążeniem i zwarciami. Ich wartość znamionowa mówi, ile maksymalnie prądu można puścić przez obwód bez ryzyka uszkodzenia. Jak włożysz bezpiecznik o wyższej wartości, to obwód zacznie tolerować większy prąd, co może spalić przewody lub zepsuć urządzenia, które nie są na to gotowe. Przykład? Wyobraź sobie, że masz sprzęt, który jest stworzony do pracy z określonym prądem, a potem zmieniasz bezpiecznik. Dajesz mu więcej prądu i nagle urządzenie się przegrzewa, a w rezultacie kończy w śmietniku. W branży są normy, jak PN-IEC 60364, które podkreślają, jak ważne jest dobranie odpowiednich zabezpieczeń, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 19

Aby dostosować wartość temperatury w danym obiekcie, należy użyć

A. termometru
B. termopary
C. termowizora
D. termostatu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Termostat to urządzenie, które automatycznie reguluje temperaturę w danym obiekcie, zapewniając odpowiednie warunki do funkcjonowania lub przechowywania określonych materiałów. Działa na zasadzie pomiaru temperatury otoczenia i aktywacji grzania lub chłodzenia w zależności od ustawionych parametrów. Przykładem zastosowania termostatu może być system klimatyzacji w budynkach, gdzie termostat monitoruje temperaturę wewnętrzną i dostosowuje działanie klimatyzacji, aby utrzymać komfortowe warunki. W przemyśle, termostaty są używane w piecach, chłodniach czy inny urządzeniach wymagających precyzyjnej kontroli temperatury. Normy dotyczące instalacji i użycia termostatów w różnych aplikacjach, takie jak ISO 9001, zapewniają, że urządzenia te działają zgodnie z wymaganiami jakościowymi, co jest kluczowe dla zachowania efektywności i bezpieczeństwa procesów technologicznych.

Pytanie 20

TCP to protokół transmisyjny umożliwiający transfer pakietów danych

A. optycznego
B. radiowego
C. telewizyjnego
D. internetowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
TCP, czyli Transmission Control Protocol, to protokół komunikacyjny, który jest fundamentalnym elementem architektury Internetu. Jego główną rolą jest zapewnienie niezawodnego, uporządkowanego i kontrolowanego przesyłania danych pomiędzy urządzeniami w sieci. TCP działa na poziomie transportowym modelu OSI i jest szeroko stosowany w aplikacjach internetowych, takich jak przeglądarki internetowe, poczta elektroniczna czy protokoły transferu plików (FTP). Przykładowo, przy korzystaniu z przeglądarki internetowej, TCP zapewnia, że wszystkie pakiety danych są dostarczane w odpowiedniej kolejności oraz że żadne z nich nie zostaną utracone w trakcie transmisji. Dzięki mechanizmom takim jak retransmisja zgubionych pakietów oraz potwierdzenia odbioru, TCP jest standardem w wielu aplikacjach wymagających wysokiej niezawodności, co czyni go kluczowym w komunikacji internetowej. Zrozumienie działania TCP jest niezbędne dla każdego specjalisty w dziedzinie sieci komputerowych, ponieważ umożliwia to projektowanie i rozwiązywanie problemów związanych z transmisją danych w Internecie.

Pytanie 21

Który przewód powinien być użyty do połączenia z siecią elektryczną transformatora znajdującego się w metalowej obudowie systemu alarmowego?

A. YDY 3 x 1,5 mm2
B. YTDY 4 x 0,75 mm2
C. YTDY 2 x 0,75 mm2
D. YDY 2 x 1,5 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź YDY 3 x 1,5 mm2 jest poprawna, ponieważ przewód ten cechuje się odpowiednią konstrukcją i parametrami technicznymi, które idealnie nadają się do podłączenia transformatora w metalowej obudowie centralki alarmowej. Przewód YDY jest przewodem o podwyższonej odporności na działanie czynników zewnętrznych oraz na uszkodzenia mechaniczne, co jest kluczowe w zastosowaniach związanych z systemami alarmowymi. Posiada trzy żyły o przekroju 1,5 mm2, co zapewnia dostateczną wydajność prądową oraz minimalizuje straty energii. W praktyce, zastosowanie przewodu YDY 3 x 1,5 mm2 jest zgodne z wytycznymi norm PN-IEC 60364, które regulują instalacje elektryczne, a także z zasadami dotyczącymi ochrony przeciwporażeniowej. Przewód ten pozwala na bezpieczne i efektywne połączenie transformatora z siecią energetyczną, co jest kluczowe dla prawidłowego działania systemu alarmowego.

Pytanie 22

Użycie akumulatora żelowego w ekstremalnie niskich temperaturach prowadzi do

A. konieczności obniżenia napięcia ładowania
B. obniżenia pojemności akumulatora
C. wzrostu pojemności akumulatora
D. konieczności podwyższenia prądu ładowania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Użytkowanie akumulatora żelowego w bardzo niskich temperaturach prowadzi do zmniejszenia jego pojemności ze względu na zwiększony opór wewnętrzny, który występuje w wyniku niskich temperatur. W takich warunkach, chemiczne reakcje zachodzące w elektrolitach są spowolnione, co skutkuje obniżeniem zdolności akumulatora do przekazywania energii. Na przykład, w temperaturach poniżej -10°C, akumulatory żelowe mogą tracić nawet 30% swojej nominalnej pojemności. Z tego powodu, w praktyce, akumulatory te powinny być używane w warunkach, które zapewniają im optymalne temperatury pracy, zazwyczaj w zakresie 0°C do 40°C. W przypadku zastosowań w bardzo zimnym klimacie, warto rozważyć użycie akumulatorów przystosowanych do takich warunków, albo zainwestować w systemy ogrzewania akumulatorów, które pomogą utrzymać odpowiednią temperaturę operacyjną, co jest zgodne z rekomendacjami wielu producentów akumulatorów oraz standardami branżowymi.

Pytanie 23

Przyrząd, który pozwala na pomiar wartości międzyszczytowej szumów na wyjściu wzmacniacza, to

A. woltomierz cyfrowy
B. analyzer widma
C. oscyloskop jednokanałowy
D. miernik zniekształceń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oscyloskop jednokanałowy jest narzędziem, które umożliwia obserwację i analizę przebiegów elektrycznych w czasie rzeczywistym. Jego zastosowanie w pomiarze wartości międzyszczytowej szumów na wyjściu wzmacniacza jest szczególnie istotne, ponieważ pozwala na dokładną wizualizację i ocenę charakterystyki sygnału. Dzięki oscyloskopowi możemy zaobserwować nie tylko wartość RMS szumów, ale także ich charakter, co jest kluczowe w diagnostyce systemów audio i telekomunikacyjnych. Przykładem praktycznego zastosowania oscyloskopu w tej roli może być analiza sygnałów w aplikacjach audio, gdzie niska wartość szumów na wyjściu wzmacniacza jest niezbędna do uzyskania wysokiej jakości dźwięku. Dodatkowo, korzystając z oscyloskopu, możemy zidentyfikować źródła zakłóceń w systemie, co pozwala na ich eliminację i poprawę ogólnej jakości sygnału. W branży elektronicznej oscyloskopy są standardowym narzędziem wykorzystywanym do oceny parametrów sygnałów, co potwierdza ich wysoką wartość w procesach inżynieryjnych i testowych.

Pytanie 24

Jakie z wymienionych urządzeń znajduje zastosowanie w systemach zarządzania dostępem oraz zabezpieczeniach?

A. Skaner portów
B. Stacja czołowa
C. Centrala abonencka
D. Zamek elektroniczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zamek elektroniczny to kluczowy element systemów kontroli dostępu i zabezpieczeń. Jego głównym zadaniem jest zapewnienie, że tylko upoważnione osoby mają dostęp do określonych obszarów. W przeciwieństwie do tradycyjnych zamków mechanicznych, zamki elektroniczne wykorzystują technologie takie jak karty zbliżeniowe, biometryka czy aplikacje mobilne do otwierania drzwi. Przykłady zastosowania obejmują budynki biurowe, hotele oraz obiekty przemysłowe, gdzie bezpieczeństwo i kontrola dostępu są priorytetowe. Warto również zaznaczyć, że zamki elektroniczne mogą być integrowane z systemami alarmowymi i monitoringu, co podnosi ich efektywność. Standardy branżowe, takie jak ISO/IEC 27001, podkreślają znaczenie skutecznej kontroli dostępu w zarządzaniu bezpieczeństwem informacji. W praktyce, wiele firm decyduje się na zainstalowanie zamków elektronicznych, aby zwiększyć poziom bezpieczeństwa oraz uprościć proces zarządzania dostępem.

Pytanie 25

Jakiego typu konwerter powinien być zastosowany do niezależnego bezpośredniego połączenia czterech tunerów satelitarnych?

A. Quatro
B. Twin
C. Quad
D. Monoblock

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź Quad jest prawidłowa, ponieważ konwerter Quad pozwala na podłączenie czterech tunerów satelitarnych do jednego talerza antenowego. Posiada on cztery wyjścia, co umożliwia niezależne odbieranie sygnałów przez każdy z tunerów. Dzięki temu możliwe jest jednoczesne oglądanie różnych programów telewizyjnych lub nagrywanie ich, co jest istotne w przypadku gospodarstw domowych z większą liczbą użytkowników. Stosowanie konwertera Quad jest szczególnie zalecane w przypadku instalacji, gdzie użytkownicy chcą korzystać z różnych tunerów, co zwiększa funkcjonalność systemu satelitarnego. Zgodnie z najlepszymi praktykami branżowymi, takie rozwiązanie powinno być stosowane w instalacjach, gdzie planowane jest wykorzystanie większej liczby urządzeń jednocześnie, co zapewnia wygodę i elastyczność w dostępie do szerokiej gamy programów. Ważne jest również, aby konwerter był podłączony do odpowiedniego uchwytu antenowego, aby zapewnić stabilny odbiór sygnału. Warto również zwrócić uwagę na kompatybilność konwertera z posiadanymi tunerami, co ma kluczowe znaczenie dla prawidłowego działania całego systemu.

Pytanie 26

Jaką rolę w systemie automatyki przemysłowej odgrywa przetwornik?

A. Przekształca sygnał z czujnika
B. Kontroluje pracę siłownika
C. Rejestruje działanie sieci
D. Wizualizuje procesy przemysłowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przetwornik w sieci automatyki przemysłowej pełni kluczową rolę w przekształcaniu sygnałów z czujników na formaty odpowiednie do analizy i dalszego przetwarzania. Przykładem może być przetwornik temperatury, który konwertuje sygnał analogowy z czujnika na sygnał cyfrowy, który może być następnie interpretowany przez systemy sterowania. Takie przetworniki są standardowym elementem w systemach SCADA oraz w projektach związanych z monitorowaniem i kontrolą procesów przemysłowych. Dobre praktyki w zakresie użycia przetworników obejmują ich odpowiedni dobór do rodzaju sygnału oraz zastosowanie w kontekście wymaganych norm, takich jak IEC 61131-9, która definiuje standardy dla systemów automatyki. Oprócz przekształcania sygnałów, przetworniki często posiadają dodatkowe funkcje, takie jak filtracja szumów, co zwiększa dokładność pomiarów. Zrozumienie tej funkcji jest kluczowe dla efektywnego projektowania systemów automatyki, gdzie precyzyjne dane są fundamentem dla podejmowania decyzji operacyjnych.

Pytanie 27

Aby zidentyfikować miejsce uszkodzenia w 100-metrowym kablu telekomunikacyjnym umieszczonym w ziemi, należy zastosować

A. spektrometr.
B. reflektometr.
C. dalmiar.
D. multimetr.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Reflektometr to narzędzie stosowane w telekomunikacji, które umożliwia lokalizację uszkodzeń w kablach przez analizę odbicia sygnału. W przypadku kabla telekomunikacyjnego, reflektometr wykorzystuje zjawisko odbicia fali elektromagnetycznej, która jest wysyłana w kierunku kabla. Kiedy fala napotyka na przerwę lub uszkodzenie, część sygnału odbija się z powrotem do reflektometru, co pozwala na określenie miejsca przerwy. Przykładem zastosowania reflektometru może być lokalizacja uszkodzenia w kablu zainstalowanym w terenie, co jest kluczowe dla minimalizacji przestojów w pracy sieci. Standardy branżowe, takie jak ITU-T G.657, podkreślają znaczenie monitorowania i konserwacji kabli optycznych, a reflektometr jest nieocenionym narzędziem w tym kontekście. Dzięki jego zastosowaniu technicy mogą szybko i skutecznie zidentyfikować problem, co zwiększa efektywność operacyjną oraz zadowolenie klientów.

Pytanie 28

Podczas zdejmowania charakterystyki pasma przenoszenia filtrów wyniki zanotowano w poniższej tabeli. Jakiego rodzaju filtr był badany, jeżeli napięcie wejściowe wynosiło 2 V?

Uwyj=2 V
f1 Hz10 Hz100 Hz1 kHz10 kHz100 kHz1 MHz
Uwyj0,1 V0,2 V0,2 V1,5 V1,9 V2 V2 V

A. Dolnoprzepustowy.
B. Górnoprzepustowy.
C. Środkowoprzepustowy.
D. Środkowozaporowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Górnoprzepustowy" jest poprawna, ponieważ analizując dane z tabeli, zauważamy, że napięcie wyjściowe (Uwyj) zbliża się do napięcia wejściowego (Uwe=2V) przy wysokich częstotliwościach, co jest kluczowym wskaźnikiem dla filtrów górnoprzepustowych. Tego rodzaju filtry pozwalają na przepuszczanie sygnałów o wysokich częstotliwościach, podczas gdy sygnały o niskich częstotliwościach są tłumione. W praktyce, filtry górnoprzepustowe są szeroko stosowane w różnych aplikacjach, takich jak systemy audio, gdzie eliminują niskie tony, pozwalając na klarowność dźwięku. Także w telekomunikacji, filtry te są wykorzystywane do eliminacji zakłóceń w sygnałach wysokiej częstotliwości. Architektura takich filtrów często wykorzystuje elementy pasywne, takie jak kondensatory i cewki, oraz może być projektowana zgodnie z normami IEEE, co zapewnia ich funkcjonalność oraz zgodność z zasadami inżynieryjnymi. Warto również zwrócić uwagę na różne topologie filtrów górnoprzepustowych, które mogą być dostosowane do specyficznych potrzeb aplikacji, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektronicznej.

Pytanie 29

W analizowanym układzie przeprowadzono pomiar rezystancji Rx. Zgodnie z normami wartość rezystancji Rx=(10,06±0,03) Ω. Który z wyników pomiarowych nie jest zgodny z normą?

A. Rx = 10,06 Ω
B. Rx = 10,09 Ω
C. Rx = 10,00 Ω
D. Rx = 10,03 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź Rx = 10,00 Ω jest prawidłowa, ponieważ wartość ta znajduje się poza dopuszczalnym zakresem błędu pomiarowego określonego przez normę. Zgodnie z danymi, rezystancja Rx powinna wynosić 10,06 Ω z tolerancją ±0,03 Ω, co oznacza, że akceptowalne wartości rezystancji mieszczą się w przedziale od 10,03 Ω do 10,09 Ω. Wartość 10,00 Ω jest poniżej dolnej granicy normy, co czyni ją niezgodną z wymaganiami. W praktyce, takie pomiary są istotne w kontekście zapewnienia jakości produktów elektronicznych, gdzie każda jednostka musi spełniać określone specyfikacje. Normy takie jak IEC 60068-2-6 dostarczają wytycznych dotyczących testowania i określania tolerancji, co jest kluczowe w procesach produkcyjnych. Właściwe zrozumienie tolerancji w pomiarach rezystancji jest niezbędne do analizy i oceny właściwości materiałów oraz zapewnienia ich niezawodności w zastosowaniach inżynieryjnych.

Pytanie 30

Czujnik kontaktronowy to komponent, który reaguje głównie na zmiany

A. pola magnetycznego
B. temperatury
C. natężenia światła
D. wilgotności

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik kontaktronowy to całkiem ciekawy element. Działa na zasadzie reakcji na zmiany pola magnetycznego. Wygląda to tak, że mamy dwa ferromagnetyczne styki w szklanej rurce, a ta rurka jest wypełniona gazem lub próżnią. Kiedy magnes się zbliża, to pole magnetyczne sprawia, że te styki się zamykają lub otwierają. Jak to się dzieje, generuje sygnał elektryczny. Takie czujniki są często stosowane w alarmach, automatyce budynkowej czy też w różnych urządzeniach w przemyśle. Przykładowo, montuje się je w drzwiach i oknach, żeby informowały, gdy są otwarte lub zamknięte. To jest naprawdę ważne dla bezpieczeństwa. Warto też wspomnieć, że kontaktrony są znane z tego, że są niezawodne i mają długą żywotność, co czyni je bardzo popularnymi rozwiązaniami. Dzięki temu, że są proste w montażu i małe, idealnie nadają się do domowych systemów automatyki i inteligentnych budynków.

Pytanie 31

Brak uziemiającej opaski na nadgarstku pracownika podczas montażu układów CMOS może prowadzić do

A. porażenia prądem elektrycznym
B. poparzenia gorącym spoiwem
C. uszkodzenia układów scalonych
D. uszkodzenia sprzętu lutowniczego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Brak opaski uziemiającej na przegubie ręki podczas montażu układów CMOS to spory błąd, bo może prowadzić do uszkodzenia tych układów przez gromadzenie się ładunków elektrostatycznych. Układy CMOS są na to mega wrażliwe, co może skutkować ich trwałym uszkodzeniem, na przykład zmianami w ich właściwościach elektrycznych. Dlatego właśnie używanie opaski jest super ważne w miejscach, gdzie pracuje się z delikatnymi komponentami elektronicznymi. Opaska ta sprawia, że ładunek jest odprowadzany i przez to zmniejsza się ryzyko uszkodzeń. Z własnego doświadczenia wiem, że przestrzeganie norm jak ANSI/ESD S20.20 czy IEC 61340-5-1, które mówią o najlepszych praktykach w ochronie przed ESD, naprawdę się opłaca, jeśli chcemy mieć pewność co do jakości naszych produktów. Regularne szkolenia dla pracowników oraz stosowanie odpowiednich środków ochrony jak maty ESD czy opaski są kluczowe, by zminimalizować ryzyko przy montażu wrażliwych komponentów.

Pytanie 32

Jakie substancje stosuje się do wytrawiania płytek PCB?

A. nadsiarczan sodowy
B. pasta lutownicza
C. alkohol izopropylowy
D. topnik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nadsiarczan sodowy jest substancją chemiczną szeroko stosowaną w procesie wytrawiania płytek PCB (Printed Circuit Board). Jest to silny środek utleniający, który pozwala na efektywne usuwanie miedzi z powierzchni laminatu PCB, pozostawiając jedynie pożądane ścieżki przewodzące. Proces wytrawiania polega na umieszczaniu płytki w roztworze nadsiarczanu sodowego, co prowadzi do reakcji chemicznych, które skutkują usunięciem miedzi. W praktyce, nadsiarczan sodowy jest preferowany ze względu na swoją skuteczność oraz względnie niski koszt, co czyni go popularnym wyborem w przemyśle elektronicznym. Warto zaznaczyć, że podczas pracy z tym związkiem należy przestrzegać odpowiednich norm bezpieczeństwa, takich jak stosowanie rękawic ochronnych i okularów, aby zminimalizować ryzyko kontaktu z substancją. To podejście jest zgodne z najlepszymi praktykami branżowymi, które rekomendują stosowanie odpowiednich materiałów i technologii do uzyskania wysokiej jakości obwodów drukowanych.

Pytanie 33

Do jakiego złącza podłącza się sygnał: wizji zespolony, kolor R, kolor G, kolor B, luminancji i chrominancji oraz sygnał audio kanału lewego i prawego?

A. DIN 5
B. S-VHS
C. EUROSCART
D. JACK

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź EUROSCART jest poprawna, ponieważ to złącze zostało zaprojektowane z myślą o przesyłaniu sygnałów wideo oraz audio w zintegrowanej formie. Złącze to obsługuje wiele formatów sygnałowych, w tym zespolony sygnał wizji, kolory RGB (czerwony, zielony, niebieski), a także luminancję i chrominancję. Dzięki temu, EUROSCART jest często stosowane w sprzęcie audio-wideo, takim jak telewizory, odtwarzacze DVD oraz konsole do gier. Złącze EUROSCART zapewnia także przesyłanie sygnału audio dla lewego i prawego kanału, co czyni je wszechstronnym rozwiązaniem w domowych systemach multimedialnych. W praktyce, korzystając z EUROSCART, użytkownicy mogą podłączyć różne urządzenia, co ułatwia konfigurację sprzętu i zwiększa jego funkcjonalność. Warto również zauważyć, że złącze to spełnia odpowiednie normy branżowe, co gwarantuje wysoką jakość przesyłanego sygnału oraz zgodność z różnymi urządzeniami.

Pytanie 34

Aby zapobiec aktywacji sabotażu podczas wymiany elektroniki w czujniku ruchu w prawidłowo funkcjonującym systemie alarmowym, należy wykonać następujące kroki:

A. otworzyć obudowę czujki, włączyć tryb serwisowy, wyłączyć system alarmowy, wymienić elektronikę, zamknąć obudowę czujki, włączyć zasilanie systemu alarmowego
B. otworzyć obudowę czujki, wymienić elektronikę, zamknąć obudowę czujki, włączyć tryb serwisowy w celu zapisania danych
C. wyłączyć system alarmowy, otworzyć obudowę czujki, wymienić elektronikę, zamknąć obudowę czujki, włączyć zasilanie systemu alarmowego
D. włączyć tryb serwisowy, wyłączyć system alarmowy, otworzyć obudowę czujki, wymienić elektronikę, zamknąć obudowę czujki, włączyć zasilanie systemu alarmowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór właściwej procedury wymiany elektroniki w czujce ruchu w systemie alarmowym jest kluczowy dla zapewnienia bezpieczeństwa i integralności całego systemu. Włączenie trybu serwisowego jest pierwszym krokiem, który pozwala na ochronę przed nieautoryzowanymi zmianami w systemie. Tryb serwisowy często blokuje funkcje alarmowe, co zapobiega uruchomieniu fałszywych alarmów podczas wykonywania prac serwisowych. Następnie, wyłączenie systemu alarmowego jest niezbędne, aby uniknąć aktywacji alarmu w trakcie wymiany komponentów. Po otwarciu obudowy czujki można przystąpić do wymiany elektroniki. Ważne jest, aby zachować środki ostrożności, takie jak odłączenie zasilania przed rozpoczęciem pracy oraz stosowanie odpowiednich narzędzi, aby uniknąć uszkodzeń. Po zakończeniu wymiany elektroniki, zamknięcie obudowy oraz włączenie zasilania systemu alarmowego powinno odbywać się zgodnie z kolejnością, aby system mógł prawidłowo powrócić do pracy. Praktyczne zastosowanie tej procedury jest zgodne z najlepszymi praktykami w branży zabezpieczeń, które podkreślają znaczenie sekwencji działań w celu minimalizacji ryzyka błędów serwisowych.

Pytanie 35

Jakie elementy urządzeń elektronicznych opisuje termin LCD?

A. Wyświetlaczy ciekłokrystalicznych
B. Czujników zbliżeniowych
C. Sygnalizatorów akustycznych
D. Barier podczerwieni

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyświetlacze ciekłokrystaliczne, znane również jako LCD (ang. Liquid Crystal Display), to technologie wykorzystywane do wyświetlania informacji w urządzeniach elektronicznych, takich jak telewizory, monitory komputerowe, smartfony oraz wiele innych. LCDs działają na zasadzie modulacji światła przez ciekłe kryształy, co pozwala na uzyskanie wyraźnego obrazu przy stosunkowo niskim zużyciu energii. Przykładowo, w telewizorach LCD stosowane są podświetlenia LED, które w połączeniu z matrycą ciekłokrystaliczną tworzą obraz o wysokiej jakości. Zastosowanie LCD w codziennych urządzeniach elektronicznych uczyniło je standardem w branży, zwłaszcza w kontekście wysokiej rozdzielczości i efektywności energetycznej. Standardy takie jak ISO 9241 dotyczące ergonomii wyświetlaczy potwierdzają efektywność LCD w kontekście komfortu użytkowania. Ponadto, w ostatnich latach technologia LCD została znacznie rozwinięta, wprowadzając innowacje takie jak technologie IPS, które poprawiają kąty widzenia oraz odwzorowanie kolorów.

Pytanie 36

Aby zlokalizować metalowy obiekt w systemie automatyki przemysłowej, najbardziej odpowiednim rozwiązaniem będzie czujnik

A. indukcyjny
B. optyczny
C. temperatury
D. pojemnościowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik indukcyjny jest najbardziej odpowiednim rozwiązaniem do wykrywania metalowych przedmiotów w zastosowaniach automatyki przemysłowej. Działa na zasadzie generowania pola elektromagnetycznego, które zmienia się w obecności obiektu metalowego. Kiedy metalowy przedmiot wchodzi w zasięg pola, zmienia się jego wartości, co pozwala czujnikowi na detekcję obiektu. Jest to szczególnie użyteczne w zautomatyzowanych liniach produkcyjnych, gdzie precyzyjne wykrywanie elementów metalowych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności operacyjnej. Przykładowo, czujniki indukcyjne są powszechnie stosowane w robotyce do detekcji pozycji narzędzi lub komponentów, a także w systemach transportowych, gdzie mogą monitorować obecność części na taśmach produkcyjnych. W branży przemysłowej standardy takie jak ISO 13849-1 dotyczące bezpieczeństwa maszyn podkreślają znaczenie stosowania niezawodnych czujników wykrywających obecność obiektów, co czyni czujniki indukcyjne odpowiednim wyborem. Dodatkowo, ich odporność na zanieczyszczenia oraz możliwość pracy w trudnych warunkach, jak np. w wysokiej temperaturze czy w obecności wilgoci, sprawia, że są one często preferowanym rozwiązaniem w przemysłowych aplikacjach.

Pytanie 37

Analogowy woltomierz ma skalę od 0 do 100 działek. Jaka jest wartość napięcia, jeżeli pomiar był wykonany w zakresie 200 V, a wskaźnik wskazuje 80 działek?

A. 40 V
B. 160 V
C. 80 V
D. 120 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Woltomierz analogowy działa na zasadzie wskazywania wartości napięcia na skali w oparciu o wychylenie wskazówki. W przypadku pomiaru w zakresie 200 V, skala analogowa jest wyskalowana na 100 działek, co oznacza, że każda działka odpowiada wartości napięcia równej 2 V (200 V / 100 działek = 2 V/działkę). Jeśli wskazówka wychyla się na 80 działek, to wartość napięcia wynosi 80 działek * 2 V/działkę = 160 V. Przykład ten pokazuje, jak istotne jest zrozumienie skali woltomierza oraz prawidłowe przeliczanie wartości napięcia na podstawie wychylenia. W praktyce, takie pomiary są niezbędne w elektryce i elektronice, gdzie precyzyjne wskazanie napięcia jest kluczowe dla bezpieczeństwa i efektywności systemów. Przestrzeganie odpowiednich standardów pomiarowych, takich jak ISO 9001, jest również ważne w kontekście zapewnienia jakości pomiarów i wiarygodności wyników.

Pytanie 38

Zjawiska elektryczne w atmosferze mogą powodować indukowanie niepożądanych napięć, które mają wpływ na parametry anteny, co skutkuje

A. zmianą długości oraz powierzchni skutecznej
B. spadkiem impedancji wejściowej
C. zniekształceniem charakterystyki kierunkowej
D. spadkiem rezystancji promieniowania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyładowania atmosferyczne, takie jak pioruny, generują silne pola elektryczne i magnetyczne, które mogą wpływać na działanie anten. Zniekształcenia charakterystyki kierunkowej anteny są wynikiem zmian w polu elektromagnetycznym, co wpływa na sposób, w jaki antena promieniuje energię radiową w różnych kierunkach. Przykładem może być sytuacja, w której silne pole elektryczne w pobliżu anteny zmienia jej efektywność w kierunkach, w których wcześniej działała optymalnie. Takie zniekształcenia mogą prowadzić do utraty sygnału, co jest szczególnie istotne w telekomunikacji i systemach radarowych, gdzie precyzyjna charakterystyka kierunkowa jest kluczowa. W branży telekomunikacyjnej standardy, takie jak ITU-R P.526, podkreślają znaczenie ochrony anten przed wyładowaniami atmosferycznymi, aby zapewnić ich niezawodność i efektywność. W praktyce, stosowanie odpowiednich zabezpieczeń, takich jak uziemienie i przetworniki przepięć, jest niezbędne do minimalizacji ryzyka uszkodzeń spowodowanych zniekształceniami charakterystyki kierunkowej.

Pytanie 39

Aby zarchiwizować materiał wideo w rejestratorze, należy podłączyć go do gniazda na wewnętrznym dysku twardym

A. LAN
B. USB
C. HDMI
D. SATA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Złącze SATA (Serial ATA) jest standardem interfejsu, które umożliwia podłączenie dysków twardych oraz napędów SSD do systemów komputerowych. W kontekście archiwizacji materiału wideo w rejestratorze, złącze SATA jest preferowanym rozwiązaniem, ponieważ zapewnia wysoką przepustowość i niskie opóźnienia w transferze danych. Dyski twarde podłączone przez SATA mogą osiągać prędkości transferu danych rzędu 6 Gbps, co jest kluczowe przy pracy z dużymi plikami wideo, które wymagają szybkiego dostępu do przechowywanych informacji. Przykładowo, podczas nagrywania materiału w wysokiej rozdzielczości, jak 4K, niezbędne jest, aby system był w stanie szybko zapisywać i odczytywać duże ilości danych. Współczesne rejestratory wideo często wykorzystują napędy SATA, aby zapewnić optymalną wydajność oraz niezawodność w długoterminowym przechowywaniu danych. Ponadto, zgodność z tym standardem sprawia, że wymiana lub modernizacja dysków jest znacznie prostsza i tańsza, co jest zgodne z dobrymi praktykami w dziedzinie zarządzania infrastrukturą IT.

Pytanie 40

Aby zrealizować nierozłączne połączenie włókien światłowodowych, jakie urządzenie jest niezbędne?

A. lutownica.
B. spawarka.
C. klamry.
D. zgrzewarka.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Spawarka jest kluczowym narzędziem używanym do wykonania nierozłącznych połączeń włókien światłowodowych. Proces spawania polega na precyzyjnym połączeniu końcówek włókien za pomocą wysokotemperaturowego łuku elektrycznego, co pozwala na uzyskanie minimalnych strat sygnału i maksymalnej integralności optycznej. Użycie spawarki zapewnia, że włókna są idealnie wyrównane i połączone, co jest niezbędne dla zachowania jakości transmisji danych. Przykłady zastosowania spawarki obejmują instalacje sieci telekomunikacyjnych, systemy CCTV oraz wszelkie inne aplikacje, gdzie niezawodność i jakość połączeń są kluczowe. Zgodnie z normami IEC 61300-3-34, które definiują metody testowania i oceny połączeń włókien, należy stosować techniki spawania w celu osiągnięcia wysokiej wydajności systemu. Dobrze przeprowadzony proces spawania nie tylko eliminuje błąd w transmisji sygnału, ale także zwiększa odporność na czynniki zewnętrzne, co jest niezbędne w trudnych warunkach eksploatacyjnych.