Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 14 stycznia 2025 17:14
  • Data zakończenia: 14 stycznia 2025 17:33

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby zabezpieczyć naprawiane urządzenie elektroniczne przed działaniem ESD, należy

A. podłączyć urządzenie do źródła zasilania
B. zasilać urządzenie poprzez transformator separujący
C. przy demontażu obudowy wykazać szczególną ostrożność
D. otwierać urządzenie umieszczone na uziemionej macie
Otwarcie urządzenia umieszczonego na uziemionej macie jest kluczowym krokiem w zapobieganiu uszkodzeniom spowodowanym przez wyładowania elektrostatyczne (ESD). Uziemiona mata działa jak bariera ochronna, odprowadzając ładunki elektrostatyczne zgromadzone na powierzchni urządzenia lub na osobie wykonującej naprawy. Zgodnie z normą IEC 61340-5-1, takie praktyki są zalecane w środowiskach, gdzie wrażliwe komponenty elektroniczne są regularnie naprawiane. Używanie uziemionej maty minimalizuje ryzyko uszkodzenia delikatnych układów elektronicznych, które mogą być podatne na uszkodzenia spowodowane nawet niewielkimi wyładowaniami. Przykładem zastosowania takiej praktyki jest praca w laboratoriach serwisowych, gdzie technicy muszą często demontować i montować komponenty wrażliwe na ESD. Użycie uziemionej maty, w połączeniu z odpowiednim ubraniem antystatycznym, stanowi kompleksowe podejście do ochrony przed ESD.

Pytanie 2

Technik zajmował się naprawą odbiornika radiowego bez odłączania zasilania i doznał porażenia prądem elektrycznym. W udzielaniu mu pierwszej pomocy, co powinno być zrobione w pierwszej kolejności?

A. ustawić poszkodowanego w stabilnej pozycji bocznej
B. usunąć poszkodowanego spod wpływu prądu
C. położyć poszkodowanego na brzuchu z głową odchyloną na bok
D. ocenić parametry życiowe poszkodowanego
W sytuacji, gdy pracownik uległ porażeniu prądem elektrycznym, najważniejszym krokiem jest jak najszybsze uwolnienie go spod działania prądu. To jest kluczowe działanie, które powinno być wykonane jako pierwsze. Porażenie prądem elektrycznym może prowadzić do groźnych konsekwencji zdrowotnych, w tym do zatrzymania akcji serca, dlatego natychmiastowe odłączenie źródła prądu jest niezbędne. W praktyce, jeśli to możliwe, należy wyłączyć zasilanie w obwodzie elektrycznym, z którego korzystał poszkodowany. W przypadku, gdy wyłączenie zasilania jest niemożliwe, należy zastosować materiały izolacyjne (np. drewniane lub gumowe) do usunięcia poszkodowanego z miejsca porażenia. Po uwolnieniu z działania prądu, możemy przystąpić do oceny stanu poszkodowanego i udzielania dalszej pomocy, w tym ewentualnego wykonania resuscytacji krążeniowo-oddechowej. Zgodnie z wytycznymi organizacji zajmujących się bezpieczeństwem pracy, takie jak OSHA, kluczowe jest przestrzeganie zasad BHP i podejmowanie działań zgodnie z ustalonymi procedurami.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Która metoda instalacji podstaw koryt kablowych jest niewłaściwa?

A. Przyklejanie do podłoża
B. Mocowanie przy użyciu kołków rozporowych oraz wkrętów
C. Gipsowanie w bruzdach
D. Mocowanie przy pomocy stalowych gwoździ
Gipsowanie koryt kablowych w bruzdach to nie najlepszy pomysł na ich montaż. Gips nie da nam solidnej stabilności ani ochrony mechanicznej dla kabli. Jest dość kruchy i łatwo się łamie, co może spowodować kłopoty z całą konstrukcją. W praktyce lepiej używać czegoś mocniejszego, jak kołki rozporowe i wkręty. To zapewnia trwałość i bezpieczeństwo dla instalacji. Jeśli koryta są źle zamocowane, mogą się przemieszczać, a to już prosta droga do uszkodzenia kabli. Normy branżowe mówią jasno, że powinny być zamocowane stabilnie. Bezpieczne mocowanie, na przykład przy użyciu stalowych gwoździ, jest zgodne z tym, co zalecają producenci i standardy instalacyjne. Dzięki temu minimalizujemy ryzyko uszkodzeń i ułatwiamy ewentualne serwisowanie czy rozbudowywanie systemu.

Pytanie 5

Jakiego rodzaju diodą jest dioda o oznaczeniu BZV49-C7V5?

A. Tunelowa
B. Prostownicza
C. Zenera
D. Pojemnościowa
Dioda oznaczona jako BZV49-C7V5 jest diodą Zenera, która jest wykorzystywana głównie do regulacji napięcia w obwodach elektronicznych. Dioda Zenera działa w obszarze odwrotnego przebicia, co oznacza, że pozwala na stabilizację napięcia na zadanym poziomie, nawet w przypadku zmian w obciążeniu lub napięciu zasilania. Jest to niezwykle istotne w aplikacjach takich jak zasilacze, gdzie stabilność napięcia wejściowego jest kluczowa dla działania komponentów elektronicznych. Dioda BZV49-C7V5 charakteryzuje się maksymalnym napięciem Zenera wynoszącym około 7,5V, co czyni ją odpowiednią do zastosowań w niskonapięciowych układach elektronicznych. Przykładem zastosowania diod Zenera jest ich użycie w układach ochrony przed przepięciami, gdzie zapewniają one bezpieczeństwo wrażliwych komponentów poprzez ograniczanie napięcia do bezpiecznego poziomu. W branży elektronicznej standardy dotyczące stosowania diod Zenera podkreślają ich rolę w zabezpieczaniu układów przed niewłaściwymi wartościami napięcia, co może prowadzić do uszkodzeń podzespołów.

Pytanie 6

Która forma transmisji sygnału jest najbardziej odporna na zakłócenia elektromagnetyczne?

A. kabla koncentrycznego
B. skrętki ekranowanej
C. skrętki nieekranowanej
D. światłowodu
Transmisja sygnału za pośrednictwem światłowodu jest uważana za najbardziej odporną na zakłócenia elektromagnetyczne, co wynika z samej natury światłowodów. Sygnał przesyłany w światłowodach oparty jest na zjawisku całkowitego wewnętrznego odbicia światła, co sprawia, że sygnał nie jest narażony na zakłócenia elektromagnetyczne, jakie mogą wpływać na transmisję w przewodach miedzianych. W praktyce oznacza to, że światłowody są idealnym rozwiązaniem w środowiskach, gdzie występują silne źródła zakłóceń, takie jak w pobliżu dużych maszyn przemysłowych czy nadajników radiowych. Przykładem zastosowania światłowodów są sieci telekomunikacyjne oraz systemy informacyjne w dużych miastach, gdzie niezawodność i jakość transmisji danych są kluczowe. Zgodnie z normami ITU-T G.652 oraz G.657, światłowody zapewniają wysoką przepustowość i niskie tłumienie sygnału, co czyni je standardem w nowoczesnych instalacjach telekomunikacyjnych.

Pytanie 7

Zadaniem systemu jest ochrona przed dostępem osób nieupoważnionych do wyznaczonych stref w obiekcie oraz identyfikacja osób wchodzących i przebywających na terenie tych stref?

A. systemu alarmowego w razie włamania i napadu
B. monitoringu wizyjnego
C. przeciwpożarowego
D. kontroli dostępu
System kontroli dostępu to rozwiązanie, które ma na celu ograniczenie dostępu osób niepowołanych do określonych obszarów obiektu. Jego główną funkcją jest identyfikacja osób wchodzących oraz monitorowanie ich obecności w strefach o podwyższonej ochronie. Przykładami zastosowania systemów kontroli dostępu są karty magnetyczne, identyfikatory biometryczne oraz kodowe zamki elektroniczne. Te technologie są zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 27001, które skupiają się na zarządzaniu bezpieczeństwem informacji. Implementacja systemu kontroli dostępu zwiększa bezpieczeństwo obiektu, ograniczając ryzyko kradzieży, sabotażu czy nieautoryzowanego dostępu. W praktyce, systemy te często są zintegrowane z innymi systemami zabezpieczeń, tworząc kompleksowe rozwiązania do zarządzania bezpieczeństwem.

Pytanie 8

Jakie są poprawne etapy, które należy wykonać przy demontażu uszkodzonej kamery monitorującej?

A. Przewód sygnałowy odłączyć, zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować
B. Zasilanie wyłączyć, przewody zasilające odłączyć, przewód sygnałowy odłączyć, kamerę zdemontować
C. Zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować, przewód sygnałowy odłączyć
D. Zasilanie wyłączyć, przewód sygnałowy odłączyć, przewody zasilające odłączyć, kamerę zdemontować
Zgadza się, żeby bezpiecznie zdemontować kamerę, najpierw musisz wyłączyć zasilanie. To podstawowa zasada, bo zapobiega nieprzyjemnym sytuacjom, jak porażenie prądem. Potem odłączasz przewody zasilające, ale z zachowaniem ostrożności, bo nie chcesz zrobić zwarcia. Kiedy już masz wszystko odłączone, to czas na przewód sygnałowy. To ważne, żeby nie uszkodzić systemu monitoringu. Na końcu, jak masz pewność, że wszystko jest odłączone, możesz przystąpić do demontażu kamery. Takie podejście pozwala na bezpieczne i sprawne serwisowanie sprzętu, a to bardzo ważne, żeby wszystko działało jak należy.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Ile przewodów potrzeba do standardowego podłączenia czujnika ruchu z antysabotażowym wejściem?

A. 6
B. 4
C. 2
D. 8
Czujniki ruchu z wejściem antysabotażowym wymagają standardowego podłączenia z wykorzystaniem sześciu żył, co zapewnia prawidłową komunikację oraz zasilanie urządzenia. Do podstawowych funkcji należy zasilanie czujnika, wyjście alarmowe, oraz dwa obwody do połączenia antysabotażowego, które informują o ewentualnej próbie sabotażu. Dodatkowe żyły mogą być używane do komunikacji z centralą alarmową lub innymi elementami systemu zabezpieczeń. W praktyce, stosując sześć żył, zapewniamy nie tylko poprawne działanie czujnika, ale także jego integrację z innymi elementami systemu zabezpieczeń, co jest kluczowe w kontekście efektywnego monitorowania obszarów. Standardy branżowe, takie jak EN 50131, podkreślają znaczenie zgodności z takimi wymaganiami dla zapewnienia wysokiego poziomu bezpieczeństwa. Warto również pamiętać, że dobór odpowiednich żył i sposób ich prowadzenia może wpływać na skuteczność całego systemu alarmowego.

Pytanie 12

Aby zamontować element na szynie DIN, jakie narzędzie powinno zostać zastosowane?

A. wkrętaka płaskiego
B. cążków bocznych
C. klucza płaskiego
D. szczypiec płaskich
Wkrętak płaski to takie must-have, jeśli chodzi o montowanie elementów na szynie DIN. Dzięki niemu możesz łatwo i dokładnie dokręcać śruby i wkręty, które są naprawdę popularne, gdy mocujemy różne urządzenia elektryczne, jak moduły zabezpieczeń czy przekaźniki. W praktyce, jak już zakładamy te elementy na szynę, ważne jest, żeby śruby były dobrze dokręcone. To daje stabilność całej instalacji i zmniejsza ryzyko luźnych połączeń, które mogą narobić problemów. Z tego, co wiem, każdy element powinien być zamontowany zgodnie z odpowiednim momentem obrotowym, a wkrętak płaski daje możliwość dostosowania siły dokręcania do konkretnego komponentu. No i warto dodać, że wkrętaki płaskie są w różnych rozmiarach, więc można je używać w różnych sytuacjach. Poza tym, korzystanie z wkrętaka płaskiego zamiast innych narzędzi, jak klucz płaski czy cążki, jest lepsze dla ergonomii pracy i bezpieczeństwa, bo daje większą kontrolę podczas montażu.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakie zjawisko napięć związane jest z pojęciem rezonansu?

A. stabilizatorze napięcia o działaniu ciągłym
B. obwodzie równoległym R, L, C
C. stabilizatorze napięcia o działaniu impulsowym
D. obwodzie szeregowym R, L, C
Rezonans napięć występuje w obwodach szeregowych R, L, C, gdzie R to opornik, L to induktor, a C to kondensator. Gdy częstotliwość sygnału zmiennego osiąga wartość rezonansową, impedancja obwodu osiąga minimum, co prowadzi do maksymalizacji prądu. W takim stanie napięcia na elementach obwodu są ze sobą ściśle powiązane, co może prowadzić do zjawiska wzmacniania sygnału. Przykładem praktycznym zastosowania tego zjawiska jest obwód rezonansowy stosowany w radioodbiornikach, gdzie umożliwia selekcję określonej częstotliwości sygnału radiowego, eliminując inne zakłócenia. Zrozumienie tego zjawiska jest kluczowe w projektowaniu filtrów, oscylatorów oraz w systemach komunikacyjnych. W praktyce inżynierskiej, wiedza o rezonansie jest niezbędna do efektywnego projektowania układów elektronicznych, aby zapewnić ich stabilność i efektywność działania.

Pytanie 16

Jakie jest zadanie konwertera satelitarnego?

A. przesyłanie sygnału z odbiornika satelitarnego do satelity
B. dopasowywanie reaktancji anteny satelitarnej
C. regulacja napięcia w obwodzie antenowym
D. przekazywanie sygnału z satelity do odbiornika satelitarnego
Konwerter satelitarny odgrywa kluczową rolę w systemach telekomunikacyjnych, umożliwiając efektywne przesyłanie sygnałów z satelitów do odbiorników satelitarnych. Jego główną funkcją jest odbieranie sygnałów radiowych emitowanych przez satelity geostacjonarne, ich konwersja na niższe częstotliwości i przesyłanie ich do odbiornika. Dzięki temu możliwe jest korzystanie z różnych usług, takich jak telewizja satelitarna, internet satelitarny czy telekomunikacja. Przykładem zastosowania konwertera jest system dostarczania sygnału telewizyjnego do domów, gdzie konwerter umieszczony na antenie zbiera sygnał z satelity, a następnie przetworzony sygnał jest przesyłany do dekodera w telewizorze. Zgodnie z najlepszymi praktykami w branży, konwertery powinny być dostosowane do specyfikacji LNB (Low Noise Block), aby zminimalizować szumy i zapewnić optymalną jakość sygnału. Dodatkowo, konwertery muszą być zgodne z normami ITU i ETSI, co gwarantuje ich interoperacyjność w globalnych systemach satelitarnych.

Pytanie 17

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 1000 mV
B. 100 mV
C. 150 mV
D. 300 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 18

Jakie narzędzia są używane do określenia trasy przewodów na ścianie z betonu?

A. gwoździe oraz młot
B. ołówek i poziomica
C. wiertarka i kołki rozporowe
D. śruby i śrubokręt
Wybranie ołówka i poziomnicy do wyznaczenia trasy przewodów na ścianie betonowej jest najbardziej właściwym podejściem, ponieważ te narzędzia pozwalają na precyzyjne i estetyczne wykonanie pracy. Ołówek umożliwia zaznaczenie linii, po których będą prowadzone przewody, co jest kluczowe dla zachowania porządku i estetyki w instalacji. Poziomnica natomiast jest niezbędna do uzyskania dokładności w poziomie, co ma fundamentalne znaczenie dla zapewnienia prawidłowego ułożenia przewodów oraz ich prawidłowego funkcjonowania. Przykładowo, gdy przewody są prowadzone wzdłuż ściany, ich równe ułożenie nie tylko poprawia estetykę, ale również minimalizuje ryzyko uszkodzeń mechanicznych oraz ułatwia późniejsze prace konserwacyjne. Zgodnie ze standardami branżowymi, takie jak normy ISO dotyczące instalacji elektrycznych, precyzyjne wyznaczenie tras przewodów jest kluczowym elementem w zapewnieniu bezpieczeństwa i trwałości instalacji. Warto również pamiętać, że poprawnie wykonana instalacja nie tylko spełnia wymagania techniczne, ale również wpływa na komfort użytkowania przestrzeni.

Pytanie 19

Dwóch techników w czasie 5 godzin instaluje system wideofonowy dla 10 lokatorów. Koszt zakupu materiałów wynosi 2 000 zł. Jaki jest koszt instalacji dla jednego lokatora, jeżeli stawka roboczogodziny jednego pracownika to 50 zł, a całość obciążona jest 22% VAT?

A. 350 zł
B. 250 zł
C. 200 zł
D. 305 zł
Aby ustalić koszt instalacji dla pojedynczego lokatora, należy najpierw obliczyć całkowity koszt robocizny i materiałów. Dwóch monterów pracuje przez 5 godzin, co daje łącznie 10 roboczogodzin. Przy stawce 50 zł za godzinę roboczogodzina koszt robocizny wynosi 10 roboczogodzin x 50 zł = 500 zł. Następnie dodajemy koszt materiałów, który wynosi 2000 zł, co daje całkowity koszt instalacji równy 500 zł + 2000 zł = 2500 zł. Ponieważ instalacja dotyczy 10 lokatorów, koszt dla jednego lokatora wynosi 2500 zł / 10 = 250 zł. Należy jednak pamiętać, że do całkowitego kosztu dodawany jest podatek VAT w wysokości 22%. Zatem koszt brutto wynosi 250 zł + 22% x 250 zł = 250 zł + 55 zł = 305 zł. Takie podejście pokazuje, jak ważne jest uwzględnianie wszystkich kosztów oraz podatków przy kalkulacji cen, co jest standardem w branży budowlanej i instalacyjnej.

Pytanie 20

Jednym z komponentów urządzenia elektronicznego jest rezystor o wartości rezystancji 1 kΩ i mocy 1 W. Jeśli brakuje elementu o tych parametrach, można go zastąpić rezystorem

A. o identycznej rezystancji i wyższej mocy
B. o niższej rezystancji i tej samej mocy
C. o identycznej rezystancji i niższej mocy
D. o wyższej rezystancji i tej samej mocy
Ta odpowiedź jest prawidłowa, ponieważ w przypadku zastępowania rezystora istotne jest, aby zachować jego rezystancję oraz zwiększyć moc. Rezystor o rezystancji 1 kΩ i mocy 1 W oznacza, że przy maksymalnej mocy 1 W, rezystor ten może pracować bez przegrzewania się. Gdybyśmy chcieli zastąpić go innym rezystorem, powinniśmy wybrać taki o tej samej rezystancji (1 kΩ), aby nie zmieniać parametrów obwodu. Zwiększona moc pozwoli na bezpieczniejsze i bardziej stabilne działanie w przypadku, gdy obwód będzie wymagał większej mocy. Standardowe praktyki inżynieryjne zalecają zawsze dobierać komponenty z marginesem bezpieczeństwa, co oznacza, że wybór rezystora o większej mocy (np. 2 W lub 5 W) minimalizuje ryzyko uszkodzenia elementu oraz wydłuża jego żywotność. Przykłady zastosowania obejmują układy zasilające, gdzie elementy są narażone na zmienne obciążenia, a także w aplikacjach audio, gdzie stabilność działania jest kluczowa.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Aby prawidłowo uziemić system antenowy, nie powinno się używać

A. przewodu zerowego z sieci zasilającej
B. ciągłych rur z instalacji grzewczej
C. gołych przewodów miedzianych
D. ciągłych rur z instalacji wodociągowej
Przewód zerowy sieci zasilającej, znany również jako przewód neutralny, nie powinien być wykorzystywany do uziemienia systemu antenowego z kilku istotnych powodów. Przede wszystkim, uziemienie powinno zapewniać skuteczną ochronę przed przepięciami oraz minimalizować ryzyko porażenia prądem elektrycznym. Użycie przewodu zerowego może wprowadzać niebezpieczeństwo, ponieważ w przypadku uszkodzenia może on stać się przewodnikiem prądu, co stwarza poważne zagrożenie dla użytkowników. W standardach dotyczących instalacji elektrycznych, takich jak PN-IEC 60364, podkreśla się znaczenie oddzielania funkcji uziemienia od funkcji neutralnych. Właściwym podejściem jest wykorzystanie oddzielnego przewodu uziemiającego, który ma na celu skuteczne odprowadzanie prądu do ziemi. Przykładem praktycznego zastosowania tego rozwiązania jest instalacja anten, gdzie stosuje się specjalne systemy uziemiające, aby zabezpieczyć zarówno sprzęt, jak i osoby w jego otoczeniu przed skutkami wyładowań atmosferycznych czy innych zakłóceń elektrycznych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Która z podanych metod łączenia radiatora z obudową procesora gwarantuje najwyższą efektywność w odprowadzaniu ciepła?

A. Radiator został zamocowany bez użycia żadnych przekładek oraz past
B. Powierzchnie styku pokrywane są warstwami pasty termoprzewodzącej oraz oddzielone przekładką mikową
C. Między radiatorem a obudową znajduje się przekładka mikowa
D. Powierzchnia styku jest pokryta warstwą pasty termoprzewodzącej
Pasta termoprzewodząca jest kluczowym elementem w efektywnym odprowadzaniu ciepła z obudowy procesora do radiatora. Jej głównym zadaniem jest wypełnienie mikroskopijnych szczelin pomiędzy powierzchniami styku, co w znaczący sposób zwiększa powierzchnię wymiany ciepła. Standardowe metody montażu radiatorów często nie zapewniają idealnego przylegania, a pasta pomaga zminimalizować opór termiczny. Zastosowanie pasty termoprzewodzącej jest powszechną praktyką w branży komputerowej, gdzie dąży się do jak najskuteczniejszego chłodzenia procesorów. Warto również wspomnieć, że wybór odpowiedniej pasty, jej właściwości termiczne oraz sposób aplikacji mają istotny wpływ na efektywność całego systemu chłodzenia. Dobrą praktyką jest także regularna konserwacja, która polega na wymianie pasty w okresowych odstępach czasu, aby zapewnić optymalne parametry pracy sprzętu.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Aby podłączyć monitor do jednostki centralnej, należy użyć interfejsu

A. USB
B. SATA
C. IDE
D. D-SUB 15
Interfejs D-SUB 15, znany również jako VGA (Video Graphics Array), jest standardowym złączem stosowanym do przesyłania sygnału wideo z jednostki centralnej do monitora. To złącze umożliwia przesyłanie analogowego sygnału wideo, co czyni je jednym z najczęściej stosowanych rozwiązań w przypadku starszych monitorów oraz projektorów. D-SUB 15 jest zaprojektowany do obsługi rozdzielczości do 640x480 pikseli przy 60 Hz, a w przypadku nowszych technologii może obsługiwać wyższe rozdzielczości, chociaż z ograniczeniami wynikającymi z analogowej natury sygnału. W praktyce, aby prawidłowo podłączyć monitor z interfejsem D-SUB 15, użytkownik powinien upewnić się, że zarówno jednostka centralna, jak i monitor mają odpowiednie złącza. D-SUB 15 jest powszechnie stosowany w różnych zastosowaniach, takich jak prezentacje multimedialne czy w biurach, gdzie starsze technologie nadal są w użyciu.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Aby wykorzystać kamerę IP o wysokiej rozdzielczości, konieczne jest

A. obiektyw o wyższej rozdzielczości
B. zasilacz o większej mocy prądowej
C. rejestrator z dużą pojemnością dysku
D. dostęp do sieci komputerowej
Dostęp do sieci komputerowej jest kluczowy dla działania kamery megapikselowej IP, ponieważ te urządzenia wykorzystują protokół IP do przesyłania danych wideo. Kamery IP są w stanie transmitować obraz w czasie rzeczywistym przez sieć, co oznacza, że mogą być monitorowane zdalnie z różnych punktów dostępu. Przykładowo, w systemach monitoringu i zabezpieczeń, takie kamery mogą być zainstalowane w różnych lokalizacjach i połączone z serwerem lub chmurą, co umożliwia centralne zarządzanie i archiwizację nagrań. Warto również pamiętać, że w przypadku kamer megapikselowych, które oferują wysoką rozdzielczość, wymagana jest odpowiednia przepustowość sieci, aby zapewnić płynną transmisję obrazu bez opóźnień. Standardy takie jak H.264 lub H.265 wykorzystywane do kompresji wideo pomagają zredukować obciążenie sieci, co jest szczególnie ważne w dużych instalacjach monitorujących. Dobre praktyki w branży obejmują także zabezpieczenie sieci, aby chronić dane przesyłane przez kamery IP przed nieautoryzowanym dostępem.

Pytanie 37

Rezystor podciągający, który jest połączony z wyjściem bramki TTL w cyfrowych układach, stosuje się w celu

A. dopasowania impedancji w układach TTL
B. sprzęgania układów TTL→CMOS
C. eliminacji hazardu statycznego w układach TTL
D. sprzęgania układów CMOS→TTL
Stwierdzenia zawarte w odpowiedziach, które nie odnoszą się do pytania, wskazują na pewne nieporozumienia dotyczące funkcji rezystora podciągającego w kontekście układów cyfrowych. Odpowiedź dotycząca dopasowania impedancyjnego w układach TTL jest nieprawidłowa, ponieważ rezystor podciągający nie ma na celu optymalizacji impedancji, lecz stabilizacji stanu logicznego. Likwidacja hazardu statycznego w układach TTL to również błędne podejście, ponieważ hazard statyczny dotyczy głównie niepewnych stanów na wyjściu w skomplikowanych układach logicznych, a nie jest bezpośrednio związany z podciąganiem napięcia. Sprzęganie układów TTL do CMOS poprzez rezystor podciągający również nie jest trafne, ponieważ ta koncepcja odnosi się do interakcji pomiędzy różnymi technologiami logicznymi a nie do ich podciągania. W rzeczywistości, aby uniknąć takich nieporozumień, inżynierowie powinni zrozumieć, że rezystory podciągające są fundamentalnym elementem w zapewnieniu stabilności sygnałów w systemach cyfrowych, minimalizując ryzyko wystąpienia stanów pośrednich, co mogłoby prowadzić do nieprzewidywalnych zachowań w systemie. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania układów cyfrowych oraz ich integracji.

Pytanie 38

Aby zidentyfikować przerwę w obwodzie systemu alarmowego, należy użyć

A. manometru
B. generatora
C. multimetru
D. bramki
Multimetr jest kluczowym narzędziem w diagnostyce elektrycznej i elektronice, pozwalającym na pomiar napięcia, prądu oraz oporu w obwodach. W przypadku lokalizacji przerwy w obwodzie instalacji alarmowej, multimetr umożliwia szybkie zidentyfikowanie, czy obwód jest zamknięty, czy otwarty. Przykładowo, można ustawić multimetr na pomiar oporu (Ω) i sprawdzić, czy zasilany obwód wykazuje wartość bliską zeru (co wskazywałoby na zamknięcie obwodu) czy nieskończoności (co sugerowałoby przerwę). Dobrą praktyką jest również użycie funkcji pomiaru napięcia, aby upewnić się, że zasilanie dociera do wszystkich istotnych punktów obwodu. Warto również zwrócić uwagę na standardy bezpieczeństwa podczas pracy z urządzeniami elektrycznymi, takie jak odpowiednie uziemienie multimetru oraz przestrzeganie instrukcji producenta, co znacząco zmniejsza ryzyko uszkodzenia sprzętu oraz zapewnia bezpieczeństwo użytkownika w trakcie diagnostyki.

Pytanie 39

Jakie narzędzie wykorzystuje się do weryfikacji poprawności zainstalowanej sieci komputerowej?

A. analizatora sieci strukturalnych
B. testera wytrzymałości dielektrycznej
C. miernika z pomiarem MER
D. multimetru z pomiarem R
Analizator sieci strukturalnych to zaawansowane narzędzie, które jest kluczowe do oceny poprawności instalacji sieci komputerowej. Dzięki zastosowaniu tego urządzenia, technicy mogą przeprowadzać kompleksową analizę parametrów, takich jak tłumienie, refleksja mocy oraz jakość sygnału w sieciach telekomunikacyjnych. Analizatory te są zgodne z normami branżowymi, takimi jak TIA/EIA-568, które określają wymagania dotyczące instalacji kabli strukturalnych. W praktyce, analizator pozwala na diagnostykę problemów, które mogą wystąpić w trakcie użytkowania sieci, co wpływa na jej wydajność i stabilność. Przykładowo, podczas instalacji sieci w biurze, technik może użyć analizatora do sprawdzenia, czy wszystkie kable są prawidłowo podłączone i czy nie występują straty sygnału, co mogłoby prowadzić do problemów z połączeniami internetowymi. Tego typu narzędzia są niezbędne dla zapewnienia wysokiej jakości usług oraz minimalizacji ryzyka awarii sieci.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.