Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 21 maja 2025 13:46
  • Data zakończenia: 21 maja 2025 14:06

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

SEFI (SFI) to system wtryskowy

A. bezpośredni
B. gaźnikowy
C. jednopunktowy
D. wielopunktowy sekwencyjny
Odpowiedź "wielopunktowego sekwencyjnego" jest poprawna, ponieważ SEFI (SFI) odnosi się do systemu wtrysku paliwa, który jest powszechnie używany w nowoczesnych silnikach spalinowych. Systemy wielopunktowego wtrysku paliwa (MPI) charakteryzują się tym, że każdy cylinder silnika ma osobny wtryskiwacz, co pozwala na precyzyjne dawkowanie paliwa. Taki układ wtrysku zwiększa efektywność spalania oraz redukuje emisję szkodliwych substancji. Praktyczne zastosowanie tego typu systemu można zaobserwować w pojazdach osobowych, które muszą spełniać coraz bardziej rygorystyczne normy emisji spalin. Dodatkowo, wtrysk sekwencyjny umożliwia optymalizację mieszanki paliwowo-powietrznej na podstawie warunków pracy silnika, co przekłada się na lepszą dynamikę jazdy oraz oszczędność paliwa. Standardy, takie jak Euro 6, wymagają stosowania nowoczesnych systemów wtrysku, co czyni SEFI istotnym elementem nowoczesnych technologii motoryzacyjnych.

Pytanie 2

Aby zmierzyć luz zaworowy, konieczne jest posiadanie

A. szczelinomierza
B. głębokościomierza
C. mikrometru
D. passametra
Szczelinomierz to narzędzie niezbędne do pomiaru luzu zaworowego w silnikach spalinowych. Luz zaworowy odnosi się do przestrzeni między końcem zaworu a dźwignią zaworu (lub innym elementem napędu) i jest kluczowy dla prawidłowego działania silnika. Zbyt mały luz może prowadzić do zatarcia zaworów, natomiast zbyt duży luz może powodować nieprawidłowe działanie silnika i zwiększone zużycie paliwa. Szczelinomierz składa się z zestawu cienkich blaszek o różnych grubościach, które umożliwiają dokładne określenie luzu. Przykładowo, w silnikach o napędzie benzynowym, zaleca się regularne sprawdzanie luzu zaworowego co 10 000-15 000 km, co można wykonać właśnie przy pomocy szczelinomierza, zgodnie z zaleceniami producenta. Ponadto, znajomość i umiejętność stosowania szczelinomierza jest podstawowym elementem wyposażenia mechanika, co potwierdzają standardy branżowe i dobre praktyki w obsłudze silników.

Pytanie 3

Jakie jest typowe rozstawienie wykorbienia wału korbowego w silniku o trzech cylindrach w stopniach?

A. 90°
B. 270°
C. 180°
D. 120°
W silniku 3-cylindrowym wykorbienie wału korbowego jest najczęściej rozstawione co 120°. Taka konfiguracja wynika z konieczności zapewnienia równomiernego rozkładu sił działających na wał, co przekłada się na jego stabilność oraz równowagę podczas pracy. Wał korbowy w silnikach o nieparzystej liczbie cylindrów musi być odpowiednio skonstruowany, aby zminimalizować drgania i zapewnić płynność pracy jednostki napędowej. W praktyce, takie rozstawienie pozwala na uzyskanie lepszych osiągów silnika oraz mniejsze zużycie paliwa. Dodatkowo, zgodnie z zasadami inżynierii mechanicznej, odpowiedni rozkład kąta wykorbienia na cylindry w silniku 3-cylindrowym przyczynia się do efektywnego spalania mieszanki paliwowo-powietrznej, co ma kluczowe znaczenie dla osiągów i trwałości silnika. Stąd też konfiguracja 120° jest szeroko stosowana jako standard w branży motoryzacyjnej.

Pytanie 4

Po wykonaniu naprawy tłumika końcowego, trzeba przeprowadzić kontrolę pojazdu przy użyciu

A. miernika uniwersalnego
B. testera diagnostycznego
C. refraktometru
D. sonometru
Sonometr to instrument, który służy do pomiaru poziomu hałasu, a jego zastosowanie w kontroli tłumika końcowego pojazdu jest niezwykle istotne. Po naprawie tłumika, który ma na celu redukcję hałasu emitowanego przez silnik, ważne jest, aby upewnić się, że jego działanie jest zgodne z normami akustycznymi. W wielu krajach istnieją przepisy dotyczące dopuszczalnych poziomów hałasu emitowanego przez pojazdy, dlatego pomiar za pomocą sonometru jest kluczowy. Przykładowo, w Europie normy te są określane przez dyrektywy unijne, które regulują poziomy hałasu w pojazdach silnikowych. Używając sonometru, mechanik może określić, czy poziom hałasu mieści się w zalecanych granicach, co jest niezbędne dla zgodności z przepisami oraz dla komfortu użytkowników dróg. Przeprowadzone pomiary mogą również pomóc w identyfikacji niewłaściwych napraw, które mogą prowadzić do nadmiernego hałasu, co w konsekwencji może wpłynąć na dalsze działanie pojazdu oraz jego trwałość.

Pytanie 5

Optymalny poziom płynu chłodzącego w zbiorniku wyrównawczym powinien

A. przekraczać poziom maksymalny.
B. być poniżej dna zbiornika.
C. znajdować się pomiędzy poziomami oznaczającymi minimum i maksimum.
D. być poniżej poziomu minimalnego.
Prawidłowy poziom cieczy chłodzącej w zbiorniku wyrównawczym powinien znajdować się pomiędzy kreskami oznaczającymi minimum i maksimum, ponieważ to zapewnia optymalne działanie systemu chłodzenia silnika. Utrzymanie odpowiedniego poziomu cieczy jest kluczowe dla efektywności chłodzenia, co wpływa na prawidłowe funkcjonowanie silnika oraz zapobiega przegrzewaniu. Jeśli poziom cieczy będzie poniżej minimum, może to prowadzić do zjawiska 'wrzenia' płynu chłodzącego, a w konsekwencji do uszkodzenia silnika. Z drugiej strony, zbyt wysoki poziom cieczy może powodować nadmiar ciśnienia w układzie, co również jest niebezpieczne. Przykładowo, w samochodach osobowych, producenci zalecają regularne sprawdzanie poziomu płynu chłodzącego, szczególnie przed dłuższymi trasami. Dobre praktyki sugerują, aby sprawdzać poziom cieczy co najmniej raz w miesiącu oraz pamiętać o sezonowej wymianie płynu chłodzącego zgodnie z zaleceniami producenta pojazdu, co przyczynia się do wydłużenia żywotności silnika.

Pytanie 6

Kształt stożkowy przekroju tarczy hamulcowej kwalifikuje ją do

A. przeszlifowania
B. wymiany
C. napawania
D. przetoczenia
Stożkowatość przekroju tarczy hamulcowej jest oznaką zużycia, które może znacząco wpłynąć na działanie układu hamulcowego. W przypadku, gdy przekrój tarczy hamulcowej staje się stożkowaty, oznacza to, że jedna część tarczy jest bardziej zużyta niż inna. Taka nierównomierność może prowadzić do nieprawidłowego kontaktu między tarczą a klockami hamulcowymi, co skutkuje wydłużeniem drogi hamowania oraz zwiększeniem ryzyka wypadku. W takiej sytuacji wymiana tarczy hamulcowej jest najbezpieczniejszym i najbardziej skutecznym rozwiązaniem. Zgodnie z wytycznymi branżowymi, takie jak dokumenty ASI (Automotive Service Industry), regularne sprawdzanie stanu tarcz hamulcowych i ich wymiana w przypadku stwierdzenia jakichkolwiek deformacji jest kluczowe dla zapewnienia bezpieczeństwa pojazdu. Należy pamiętać, że inwestycja w nowe tarcze hamulcowe przekłada się na lepszą efektywność hamowania oraz długoterminowe oszczędności związane z naprawami.

Pytanie 7

Parametrem związanym z geometrią kół nie jest

A. zbieżność kół
B. kąt wyprzedzenia sworznia zwrotnicy
C. ciśnienie w ogumieniu
D. kąt nachylenia sworznia zwrotnicy
Ciśnienie w ogumieniu nie jest parametrem geometrii kół, ponieważ dotyczy jedynie stanu opon, a nie ich ustawienia czy kątów. Parametry geometrii, takie jak kąt pochylenia sworznia zwrotnicy, zbieżność kół oraz kąt wyprzedzenia sworznia zwrotnicy, mają kluczowe znaczenie dla właściwego prowadzenia pojazdu oraz jego stabilności na drodze. Kąt pochylenia sworznia zwrotnicy wpływa na kąt, pod jakim opona styka się z nawierzchnią, co z kolei ma wpływ na przyczepność i zużycie opon. Zbieżność kół odnosi się do ustawienia osi kół względem siebie oraz do kierunku jazdy, co jest istotne dla prawidłowego zachowania się pojazdu podczas skrętów. Kąt wyprzedzenia sworznia zwrotnicy, określający kąt, pod jakim oś obrotu koła jest ustawiona względem pionu, ma znaczenie dla stabilności jazdy i samoczynnego wracania kierownicy do pozycji neutralnej po skręcie. Dlatego znajomość tych parametrów jest kluczowa dla zapewnienia bezpieczeństwa, a ich regularna kontrola jest zalecana w praktyce motoryzacyjnej.

Pytanie 8

W jakim układzie lub systemie może być użyty czujnik Halla?

A. zasilania
B. zapłonowym
C. komfortu jazdy
D. cofania
Czujnik Halla jest kluczowym elementem w układzie zapłonowym silników spalinowych, ponieważ pozwala na precyzyjne monitorowanie położenia wału korbowego. Dzięki temu czujnik Halla może dostarczać istotne informacje do systemu sterującego, co jest niezbędne do synchronizacji momentu zapłonu. Działa on na zasadzie wykrywania zmian pola magnetycznego, co oznacza, że jego zastosowanie w tym kontekście zapewnia wysoką dokładność i niezawodność. W praktyce, czujnik Halla jest często stosowany w rozdzielaczach zapłonu, a także w systemach z zapłonem elektronicznym, które stały się standardem w nowoczesnych pojazdach. Innym przykładem jest wykorzystanie czujników Halla w systemach wtryskowych, gdzie precyzyjne pomiary są niezbędne do optymalizacji procesu spalania. Rozumienie roli czujnika Halla w zapłonie jest kluczowe dla diagnostyki i naprawy nowoczesnych silników, co czyni tę wiedzę niezbędną dla każdego technika samochodowego.

Pytanie 9

Mieszanka stechiometryczna to taka mieszanka, w której współczynnik nadmiaru powietrza wynosi

A. λ = 1,1
B. λ = 1,0
C. λ = 2,0
D. λ = 0,85
Mieszanka stechiometryczna to taka, w której współczynnik nadmiaru powietrza λ wynosi 1,0. Oznacza to, że ilość powietrza dostarczonego do reakcji jest dokładnie dobrana do zużycia całkowitej ilości paliwa. W praktyce oznacza to optymalne spalanie, które prowadzi do maksymalnej efektywności energetycznej oraz minimalizacji emisji szkodliwych substancji. W kontekście silników spalinowych i pieców przemysłowych, utrzymanie tego stanu jest kluczowe dla zapewnienia prawidłowego działania systemu. W branży energetycznej oraz w procesach chemicznych standardy takie jak ISO 50001 zalecają monitorowanie i optymalizację współczynnika λ w celu zwiększenia efektywności energetycznej. Przykładem zastosowania tej wiedzy może być dobór odpowiednich parametrów pracy pieca w celu osiągnięcia maksymalnej wydajności oraz minimalizacji emisji CO2. Tak więc, zrozumienie współczynnika nadmiaru powietrza jest kluczowe dla inżynierów zajmujących się optymalizacją procesów spalania.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Podczas analizy układu korbowo-tłokowego zauważono zarysowanie tłoka w rejonie pierścieni. Uszkodzony tłok powinien zostać

A. zregenerowany metodą klejenia
B. naprawiony przez oszlifowanie uszkodzonego miejsca papierem ściernym
C. wymieniony na nowy
D. pozostawiony bez naprawy do dalszego użytkowania
Wymiana uszkodzonego tłoka na nowy jest kluczowym elementem zapewnienia prawidłowego funkcjonowania silnika. Zarysowanie w części pierścieniowej tłoka może prowadzić do nieszczelności, co z kolei skutkuje utratą kompresji i obniżeniem efektywności pracy silnika. Praktyka wskazuje, że stosowanie uszkodzonych komponentów zamiast ich wymiany może prowadzić do poważniejszych awarii, w tym uszkodzenia cylindrów. Dobrym przykładem jest procedura przeglądów silników wysokoprężnych, gdzie zaleca się wymianę tłoków w przypadku stwierdzenia jakichkolwiek uszkodzeń. Przemysłowy standard jakości dla silników, zwany ISO 9001, promuje zasadę wymiany uszkodzonych części w celu zapewnienia długoterminowej efektywności i niezawodności. Wymiana tłoka na nowy, zgodnie z producentem, zapewnia optymalne dopasowanie oraz wydajność, co jest niezbędne w przypadku serwisowania i naprawy silników.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Po zakończeniu wymiany zaworów dolotowych w silniku należy

A. sprawdzić szczelność zaworów
B. zweryfikować twardość sprężyn zaworowych
C. usunąć zabezpieczenie trzonka zaworu
D. frezować gniazda zaworowe
Sprawdzanie szczelności zaworów jest kluczowym krokiem po wymianie zaworów dolotowych silnika. Zawory są odpowiedzialne za regulację przepływu mieszanki paliwowo-powietrznej do cylindrów oraz za wydobywanie spalin. Nieszczelność zaworów może prowadzić do znacznych strat mocy silnika, zwiększonego zużycia paliwa oraz nieprawidłowego działania jednostki napędowej. W praktyce, podczas sprawdzania szczelności zaworów, można wykorzystać metody takie jak próba ciśnieniowa, która polega na wprowadzeniu powietrza do cylindra i obserwacji, czy ciśnienie utrzymuje się na odpowiednim poziomie. Dobrą praktyką jest również użycie specjalistycznych narzędzi, takich jak zestawy do testowania szczelności, które umożliwiają dokładne określenie ewentualnych wycieków. Należy pamiętać, że zgodnie z normami branżowymi, regularne sprawdzanie szczelności zaworów powinno być częścią rutynowej konserwacji silnika, co pozwala na utrzymanie jego optymalnej wydajności oraz przedłużenie żywotności komponentów.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Aby zmierzyć wielkość luzu na zamku pierścienia tłokowego, jaki przyrząd należy zastosować?

A. mikrometr
B. czujnik zegarowy
C. szczelinomierz
D. suwmiarka
Szczelinomierz jest narzędziem pomiarowym służącym do dokładnego pomiaru luzów i szczelin, co czyni go idealnym do sprawdzania wielkości luzu na zamku pierścienia tłokowego. Praktyczne zastosowanie szczelinomierza polega na wprowadzeniu odpowiednich blaszek pomiarowych w szczelinę, co pozwala na precyzyjne określenie jej wielkości. W branży motoryzacyjnej i mechanicznej, w której tolerancje muszą być ściśle przestrzegane, użycie szczelinomierza jest standardem dobrych praktyk. Umożliwia on również pomiar szczelin w trudnodostępnych miejscach, gdzie inne narzędzia mogłyby być niewystarczające. Aby zapewnić optymalną wydajność silnika, ważne jest, aby luz między pierścionkami a cylindrem był odpowiedni. Przykładowo, zbyt mały luz może prowadzić do zatarcia silnika, natomiast zbyt duży luz może skutkować utratą ciśnienia sprężania. Dlatego stosowanie szczelinomierza w takich zastosowaniach jest kluczowe dla bezpieczeństwa i efektywności pracy silników.

Pytanie 16

Element zmieniający niskie napięcie na wyższe w układzie zapłonowym to

A. rozdzielacz zapłonu
B. aparat zapłonowy
C. świeca zapłonowa
D. cewka zapłonowa
Cewka zapłonowa to jeden z najważniejszych elementów układu zapłonowego w silnikach spalinowych. Jej głównym zadaniem jest zamiana niskiego napięcia z akumulatora (około 12V) w to wysokie, które wywołuje iskrę w świecach zapłonowych. Robi to dzięki zasadzie indukcji elektromagnetycznej. W cewce mamy dwa uzwojenia – pierwotne i wtórne. Kiedy prąd przepływa przez uzwojenie pierwotne, tworzy pole magnetyczne, które z kolei indukuje napięcie w uzwojeniu wtórnym, sięgając nawet 20-40 kV! Taki skok napięcia to klucz do zapalenia mieszanki paliwowo-powietrznej w cylindrze. Jeśli cewka zapłonowa jest uszkodzona, można mieć problemy z uruchomieniem silnika, a także z jego równą pracą oraz większym zużyciem paliwa. Dlatego warto regularnie sprawdzać stan cewki podczas przeglądów technicznych. Takie podejście jest zgodne z obowiązującymi normami konserwacji i naprawy samochodów.

Pytanie 17

Jednym z powodów, dla których nie następuje ładowanie (włączona czerwona lampka kontrolna ładowania akumulatora) przy pracującym silniku, może być

A. kompletnie naładowany akumulator
B. spalona żarówka świateł mijania
C. zwarcie w obwodzie sygnałowym akustycznym
D. zacięta szczotka w szczotkotrzymaczu alternatora
Zawieszona szczotka w szczotkotrzymaczu alternatora to jedna z najczęstszych przyczyn problemów z ładowaniem akumulatora. Te szczotki mają za zadanie przesyłać prąd do wirnika, więc muszą działać poprawnie, żeby alternator mógł generować energię. Jak szczotka jest zablokowana, to nie ma pełnego kontaktu z wirnikiem, przez co energia się nie wytwarza jak powinna. Zwykle objawia się to tym, że kontrolka ładowania akumulatora świeci na czerwono, co wskazuje na kłopoty z ładowaniem. Żeby to sprawdzić, zazwyczaj trzeba zajrzeć do alternatora i zmierzyć napięcie wyjściowe. W branży mówi się, że dobrze jest regularnie kontrolować stan szczotek, szczególnie w starszych autach, które mogą mieć spore zużycie. No i jak zauważysz jakiekolwiek problemy z ładowaniem, lepiej działać szybko, bo inaczej możesz uszkodzić akumulator lub inne elektryczne części w samochodzie.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jakie jest zadanie intercoolera?

A. podgrzewanie powietrza zasilającego.
B. oczyszczanie powietrza zasilającego.
C. redukcja temperatury spalin.
D. obniżenie temperatury powietrza zasilającego.
Intercooler jest kluczowym elementem systemu doładowania silnika, którego głównym zadaniem jest obniżenie temperatury powietrza dolotowego. Po sprężeniu, powietrze staje się gorące, co negatywnie wpływa na wydajność i moc silnika. Schłodzenie powietrza dolotowego przed jego wprowadzeniem do cylindrów przyczynia się do zwiększenia gęstości powietrza, co pozwala na lepsze spalanie mieszanki paliwowo-powietrznej. Dzięki temu silnik może pracować efektywniej, generując więcej mocy przy mniejszym zużyciu paliwa. W praktyce, zastosowanie intercoolera może przyczynić się do obniżenia temperatury powietrza o 30-50°C, co znacznie poprawia osiągi pojazdu. Intercoolery są stosowane w różnych typach silników, w tym w silnikach spalinowych z turbodoładowaniem oraz w aplikacjach wyścigowych, gdzie maksymalna wydajność jest kluczowa. Dobre praktyki w instalacji intercoolera obejmują jego umiejscowienie blisko turbosprężarki oraz optymalny dobór materiałów, aby zminimalizować straty ciepła oraz opory przepływu. Takie podejście jest zgodne z normami branżowymi w zakresie projektowania układów dolotowych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

System kontroli trakcji ma na celu utrzymanie przyczepności

A. poprzeczną opon napędowych
B. wzdłużną wszystkich opon.
C. wzdłużną i poprzeczną opon napędowych.
D. wzdłużną opon napędowych.
Zrozumienie funkcji układu kontroli trakcji jest kluczowe dla oceny, dlaczego inne odpowiedzi są niepoprawne. Odpowiedzi wskazujące na kontrolę przyczepności wzdłużnej wszystkich kół nie uwzględniają faktu, że układ TCS koncentruje się głównie na kołach napędowych, które mają za zadanie przeniesienie napędu. Koła te są narażone na większe obciążenia podczas przyspieszania, co sprawia, że kontrola ich przyczepności jest kluczowa dla zapewnienia stabilności. Odniesienie do poprzecznej kontroli kół napędowych w odpowiedziach również jest mylące. Poprzeczna stabilność pojazdu jest bardziej związana z układem ESP (Electronic Stability Program), który działa w sytuacjach, gdy pojazd zaczyna się ślizgać lub obracać, a nie podczas przyspieszania. Ostatnia odpowiedź, sugerująca kontrolę zarówno wzdłużną, jak i poprzeczną kół napędowych, także jest nieprawidłowa, ponieważ wprowadza zamieszanie między funkcjami różnych systemów. To rozróżnienie między przyczepnością i stabilnością jest kluczowe dla zrozumienia, jak różne systemy wspierają bezpieczeństwo w pojazdach. Typowym błędem myślowym jest dezinformacja dotycząca roli układów wspomagających, które działają w różnych warunkach jazdy i powinny być stosowane w odpowiednich kontekstach, aby efektywnie poprawić bezpieczeństwo pojazdu.

Pytanie 22

W pojeździe z silnikiem wysokoprężnym przeprowadzono pomiar emisji spalin uzyskując następujące wyniki: CO – 0,4g/km; NOx – 0,19g/km; PM – 0,008g/km; HC-0,03g/km; HC+NOx – 0,28g/km. Na podstawie dopuszczalnych wartości przedstawionych w tabeli, można pojazd zakwalifikować do grupy spełniającej co najwyżej normę

Dopuszczalne wartości emisji spalin w poszczególnych normach EURO
dla pojazdów z silnikiem wysokoprężnym
emisja
[g/km]
EURO 1EURO 2EURO 3EURO 4EURO 5EURO 6
CO3,1610,640,50,50,5
HC-0,150,060,050,050,05
NOx-0,550,50,250,180,08
HC+NOx1,130,70,560,30,230,17
PM0,140,080,050,0090,0050,005

A. EURO 5
B. EURO 6
C. EURO 3
D. EURO 4
Wybór normy EURO 3, EURO 5 lub EURO 6 jako odpowiedzi na to pytanie jest nieprawidłowy z kilku powodów. Norma EURO 3 dopuszcza wyższe limity emisji tlenku węgla (CO) wynoszące 2,3 g/km oraz tlenków azotu (NOx) na poziomie 0,5 g/km, co oznacza, że pojazd zakwalifikowany do tej normy mógłby emitować znacznie więcej zanieczyszczeń niż zmierzone wartości. Takie rozumienie norm skutkuje błędnym wnioskiem o spełnieniu standardów dla pojazdów EURO 3, ponieważ w rzeczywistości emisje muszą być niższe i dostosowane do aktualnych wymagań ochrony środowiska. Z kolei norma EURO 5 charakteryzuje się bardziej rygorystycznymi limitami, które znacznie obniżają dopuszczalne wartości emisji NOx do 0,18 g/km, co sprawia, że pojazd z pomiarem 0,19 g/km już nie spełnia tej normy. Natomiast norma EURO 6 wprowadza jeszcze surowsze wymagania, w tym limit 0,08 g/km dla NOx, co czyni niemożliwym zakwalifikowanie pojazdu do tej grupy, biorąc pod uwagę uzyskane wyniki. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, dotyczą braku zrozumienia różnic między normami oraz ich progresywnego zaostrzania w kontekście ochrony środowiska i zdrowia ludzi.

Pytanie 23

Zgodnie z informacjami od producenta, właściwa zbieżność kół przednich pojazdu powinna wynosić
1,5 mm ± 1,5 mm. Która z podanych wartości nie mieści się w zakresie tolerancji?

A. 3 mm
B. 1 mm
C. 4 mm
D. 2 mm
Odpowiedź 3 mm jest poprawna, ponieważ znajduje się ona poza zakresem tolerancji podanym przez producenta, który wynosi 1,5 mm ± 1,5 mm, co oznacza, że akceptowalne wartości powinny mieścić się w przedziale od 0 mm do 3 mm. Wartość 4 mm przekracza maksymalny dopuszczalny limit tolerancji, co może prowadzić do problemów z geometrią zawieszenia, a w efekcie wpływać na bezpieczeństwo i komfort jazdy. Utrzymanie właściwej zbieżności kół jest kluczowe dla równomiernego zużycia opon oraz optymalnej przyczepności pojazdu. Należy regularnie monitorować zbieżność kół, zwłaszcza po wymianie opon lub po kolizjach, aby zapewnić ich prawidłowe ustawienie. W praktyce serwisowej zaleca się korzystanie z profesjonalnych narzędzi do pomiaru zbieżności, które pozwalają na precyzyjne dostosowanie ustawień pojazdu według norm producenta.

Pytanie 24

Nadmierny luz pierścieni w gniazdach tłoka silnika spalinowego może prowadzić do

A. spadku stopnia sprężania
B. wzrostu ciśnienia sprężania
C. wzrostu zużycia oleju silnikowego
D. wzrostu zużycia paliwa
Nadmierny luz pierścieni w rowkach tłoka silnika spalinowego ma istotny wpływ na wydajność silnika oraz jego trwałość. Zwiększone zużycie oleju silnikowego jest bezpośrednim konsekwencją tego zjawiska. Pierścienie tłokowe mają za zadanie nie tylko uszczelniać komorę spalania, ale także regulować ilość oleju, który smaruje ściany cylindrów. Przy nadmiernym luzie pierścieni, olej może łatwiej przedostawać się do komory spalania, co prowadzi do jego spalania. To zjawisko może skutkować zwiększonym zużyciem oleju, co z kolei oznacza częstsze uzupełnianie oleju oraz może prowadzić do większego zanieczyszczenia spalin. Zgodnie z dobrymi praktykami branżowymi, regularna kontrola luzu pierścieni oraz ich stanu powinna być częścią rutynowej konserwacji silnika. Przykładem może być kontrola luzu pierścieni w silnikach wysokoprężnych, gdzie normalne zużycie oleju jest kluczowe dla efektywności i ekologiczności działania jednostki napędowej. Właściwe utrzymanie luzu pierścieni jest także rekomendowane przez wiele producentów silników, jako sposób na zapewnienie optymalnej pracy silnika.

Pytanie 25

Przed przystąpieniem do diagnostyki oraz regulacji zbieżności kół osi przedniej pojazdu, nie jest konieczne przeprowadzenie dokładnej oceny stanu technicznego

A. zawieszenia.
B. kierowniczego.
C. opon.
D. napędu.
Wybór układu napędowego jako odpowiedzi prawidłowej wynika z faktu, że przed diagnostyką i regulacją zbieżności kół osi przedniej samochodu, nie ma bezpośredniej potrzeby weryfikacji stanu technicznego układu napędowego. Regulacja zbieżności koncentruje się głównie na elementach zawieszenia i układu kierowniczego, ponieważ to one mają kluczowy wpływ na geometrię kół oraz właściwości jezdne pojazdu. Przykładowo, odpowiednie ustawienie zbieżności kół wpływa na równomierne zużycie ogumienia oraz stabilność jazdy, co jest istotne dla bezpieczeństwa. Normy branżowe, takie jak te ustalane przez organizacje motoryzacyjne, podkreślają znaczenie regularnych kontroli stanu zawieszenia i układu kierowniczego przed przystąpieniem do regulacji zbieżności. Rekomendacje dotyczące okresowych przeglądów technicznych samochodów wskazują na konieczność regularnego sprawdzania elementów, które bezpośrednio wpływają na zbieżność, takich jak końcówki drążków kierowniczych czy amoryzatory. Wiedza na temat tych aspektów jest niezbędna dla każdego mechanika pojazdowego, aby zapewnić bezpieczeństwo i wydajność pojazdu.

Pytanie 26

Jaki jest główny cel stosowania układu ABS w pojazdach?

A. Poprawa komfortu jazdy
B. Zwiększenie prędkości maksymalnej pojazdu
C. Zmniejszenie zużycia paliwa
D. Zwiększenie kontroli nad pojazdem podczas hamowania
Układ ABS, czyli Anti-lock Braking System, jest jednym z najważniejszych systemów bezpieczeństwa w pojazdach samochodowych. Jego głównym celem jest zapobieganie blokowaniu się kół podczas gwałtownego hamowania, co pozwala na utrzymanie kontroli nad pojazdem. Dzięki ABS kierowca ma możliwość jednoczesnego hamowania i manewrowania, co jest kluczowe w sytuacjach awaryjnych. System ten działa poprzez monitorowanie prędkości obrotowej kół i, w przypadku wykrycia ryzyka blokady, modulowanie ciśnienia hamulcowego. To pozwala na utrzymanie optymalnego kontaktu opon z nawierzchnią, co jest szczególnie ważne na śliskich lub mokrych drogach. W praktyce ABS znacznie skraca drogę hamowania na większości nawierzchni, co może dosłownie uratować życie. Wprowadzenie ABS stało się standardem w przemyśle motoryzacyjnym i jest zgodne z międzynarodowymi normami bezpieczeństwa. Układ ten jest również wsparciem dla innych systemów, jak ESP czy TCS, zwiększając ogólne bezpieczeństwo jazdy.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Podczas diagnostyki systemu klimatyzacji, który parametr jest kluczowy do sprawdzenia poprawności działania?

A. Napięcie akumulatora
B. Poziom płynu hamulcowego
C. Ciśnienie czynnika chłodniczego
D. Temperatura oleju silnikowego
Podczas diagnostyki systemu klimatyzacji w samochodach, kluczowym parametrem do sprawdzenia jest ciśnienie czynnika chłodniczego. Klimatyzacja działa poprzez cyrkulację czynnika chłodniczego, który przemienia się z cieczy w gaz i odwrotnie, co pozwala na absorpcję i usuwanie ciepła z wnętrza pojazdu. Ciśnienie czynnika chłodniczego jest istotnym wskaźnikiem, ponieważ zbyt niskie ciśnienie może sugerować wyciek lub niewystarczającą ilość czynnika, co z kolei prowadzi do nieefektywnego chłodzenia. Z kolei zbyt wysokie ciśnienie może wskazywać na blokadę w układzie lub problem z kompresorem. Sprawdzanie ciśnienia jest standardową praktyką podczas przeglądów serwisowych i napraw klimatyzacji, a jego prawidłowe wartości są zawsze określone przez producenta pojazdu. Dla technika zajmującego się obsługą i naprawą pojazdów, umiejętność prawidłowej oceny ciśnienia czynnika chłodniczego jest niezbędna, aby zapewnić efektywne działanie klimatyzacji i komfort wewnętrzny pojazdu.

Pytanie 29

Oznaczenie na alternatorze: 14V, 90A wskazuje

A. najmniejszy prąd wzbudzenia
B. sprawność alternatora
C. maksymalne natężenie prądu dla akumulatora
D. najniższe zdolności produkcyjne prądu
Zrozumienie oznaczeń alternatora jest kluczowe dla właściwej interpretacji jego specyfikacji. Wiele osób może błędnie zinterpretować zapis 14V, 90A, myląc jego znaczenie z innymi parametrami. Przykładowo, nieodpowiednie zrozumienie mocy alternatora może prowadzić do założenia, że 90A odnosi się do minimalnego natężenia prądu na akumulatorze. W rzeczywistości alternator służy do dostarczania prądu, a jego wydajność jest mierzona w kategoriach maksymalnej wartości prądu, jaką może wygenerować. Innym częstym błędem jest przekonanie, że 14V odzwierciedla minimalne możliwości wytwórcze prądu. Napięcie 14V to typowe napięcie robocze dla alternatorów w pojazdach, ale nie oznacza to, że jest to dolna granica wydajności; to raczej wartość optymalna dla ładowania akumulatora. Ponadto, mylenie prądu wzbudzenia z całkowitą wydajnością alternatora prowadzi do nieporozumień dotyczących jego funkcji. Prąd wzbudzenia jest niezbędny do wytworzenia pola magnetycznego w alternatorze, ale nie jest bezpośrednio związany z jego maksymalną mocą. Dlatego ważne jest, aby zrozumieć, że każdy z tych parametrów ma swoje specyficzne znaczenie i nie powinno się ich mylić. Prawidłowe zrozumienie tych pojęć pozwala na lepsze dobieranie komponentów oraz ich efektywne wykorzystanie, co jest kluczowe dla zapewnienia niezawodności systemu elektrycznego w pojeździe.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Podczas przyjmowania pojazdu do naprawy mechanik zauważył uszkodzenie układu wydechowego. W protokole zdawczo-odbiorczym powinien również zanotować informację uzyskaną od właściciela pojazdu na temat

A. numeru kontaktowego do przedstawiciela ubezpieczalni pojazdu
B. zakresu prac do wykonania w trakcie naprawy pojazdu
C. innych uszkodzeń wykrytych w pojeździe
D. najdłuższego czasu realizacji naprawy
Wybór odpowiedzi dotyczącej zakresu czynności w czasie naprawy pojazdu jest błędny, ponieważ nie odnosi się bezpośrednio do informacji, które mechanik powinien uzyskać od właściciela pojazdu w kontekście stanu technicznego. Zakres czynności jest często określany przez mechanika na podstawie diagnozy i nie jest to informacja, którą właściciel pojazdu powinien dostarczać. Innym błędnym aspektem jest skupienie na numerze telefonu przedstawiciela ubezpieczyciela pojazdu. Choć kontakt z ubezpieczycielem może być istotny, to jednak nie jest to informacja dotycząca stanu pojazdu, a protokół zdawczo-odbiorczy powinien koncentrować się na technicznych aspektach pojazdu. Maksymalny czas przeprowadzenia naprawy również nie jest kluczową informacją, którą mechanik powinien uzyskać w momencie przyjęcia pojazdu. Czas naprawy jest często uzależniony od dostępności części oraz złożoności usunięcia uszkodzeń, co czyni tę informację mniej wartościową w kontekście protokołu. Zrozumienie, które aspekty są istotne w kontekście protokołu, jest kluczowe dla prawidłowego zarządzania naprawami oraz budowania pozytywnych relacji z klientami.

Pytanie 32

Mierzenie suwmiarką uniwersalną z noniuszem nie pozwala na osiągnięcie precyzji pomiaru do

A. 0,10 mm
B. 0,02 mm
C. 0,05 mm
D. 0,01 mm
Odpowiedź 0,01 mm jest poprawna, ponieważ suwmiarki uniwersalne noniuszowe są zaprojektowane do pomiarów z precyzją do 0,01 mm. Precyzja ta wynika z konstrukcji noniusza, który pozwala na odczytanie wartości z dokładnością, jakiej nie osiągną inne narzędzia pomiarowe, na przykład linijki. W praktyce suwmiarka noniuszowa jest niezwykle użyteczna w inżynierii i mechanice, ponieważ umożliwia dokładne pomiary średnic, grubości, a także głębokości. Przykładowo, w procesie produkcji elementów maszyn, precyzyjne pomiary są kluczowe dla zapewnienia ich odpowiedniego dopasowania i funkcjonalności. Ponadto, zgodnie z normami ISO 14405, które określają tolerancje wymiarowe, użycie narzędzi pomiarowych o wysokiej precyzji, takich jak suwmiarki noniuszowe, jest zalecane, aby sprostać wymaganiom jakościowym w branży wytwórczej. Używając suwmiarki o dokładności 0,01 mm, inżynierowie mogą pewniej podejmować decyzje o obróbce i inspekcji, co przekłada się na lepszą jakość końcowych produktów.

Pytanie 33

W pneumatycznym systemie hamulcowym, elementem odpowiedzialnym za przechowywanie sprężonego powietrza jest

A. siłownik pneumatyczny
B. poduszka powietrzna
C. zbiornik powietrza
D. manometr
Zbiornik powietrza w pneumatycznym układzie hamulcowym jest kluczowym elementem odpowiedzialnym za magazynowanie sprężonego powietrza, które jest niezbędne do skutecznego działania hamulców. Zbiornik ten gromadzi powietrze w odpowiednim ciśnieniu, co umożliwia szybkie i efektywne uruchamianie hamulców w sytuacjach awaryjnych oraz w normalnych warunkach eksploatacyjnych. Przykładowo, w pojazdach ciężarowych oraz autobusach, zbiornik powietrza jest projektowany zgodnie z określonymi normami bezpieczeństwa, aby wytrzymał wysokie ciśnienia robocze. Dobre praktyki branżowe wskazują również na regularne kontrole zbiorników, w tym sprawdzanie ich szczelności oraz stanu technicznego, co jest niezbędne do zapewnienia bezpieczeństwa użytkowania. Utrzymując zbiornik powietrza w dobrym stanie, można zminimalizować ryzyko awarii układu hamulcowego i zapewnić nieprzerwaną wydajność działania systemu hamulcowego, co jest kluczowe w kontekście bezpieczeństwa transportu.

Pytanie 34

Symbol znajdujący się na oponie 145/50 wskazuje szerokość opony

A. w calach oraz wskaźnik profilu w milimetrach
B. w milimetrach oraz wskaźnik profilu w %
C. w calach oraz wskaźnik profilu w %
D. w milimetrach oraz wskaźnik profilu w milimetrach
Dobrze zauważyłeś, że symbol na oponie 145/50 mówi o szerokości opony w milimetrach i wskaźniku profilu w %, co jest naprawdę istotne. To znaczy, że szerokość opony to 145 mm, a ten 50 oznacza, że wysokość profilu to 50% z tej szerokości, czyli 72,5 mm. Zrozumienie tych oznaczeń jest ważne, bo odpowiednie opony mają ogromny wpływ na to, jak jeździmy - zarówno pod kątem bezpieczeństwa, jak i komfortu. Jak dobierasz nowe opony, warto wiedzieć, co oznaczają te liczby, żeby dobrze wybrać. Dzięki temu będziesz mieć lepszą przyczepność i krótszą drogę hamowania, co na pewno jest na plus na drodze.

Pytanie 35

Pomiar ciśnienia sprężania przeprowadza się, aby ocenić szczelność

A. chłodnicy
B. zaworów
C. układu wydechowego
D. opon
Pomiar ciśnienia sprężania w silniku spalinowym jest kluczowym testem diagnostycznym, który pozwala ocenić szczelność zaworów, a także ogólny stan silnika. Wysokiej jakości szczelność zaworów jest niezbędna do prawidłowego działania silnika, ponieważ zapewnia efektywne spalanie mieszanki paliwowo-powietrznej. W przypadku uszkodzenia lub niewłaściwego funkcjonowania zaworów, ciśnienie sprężania może być znacznie niższe niż normy producenta, co prowadzi do obniżenia mocy silnika, zwiększenia zużycia paliwa oraz emisji spalin. Standardowe procedury diagnostyczne, takie jak pomiar ciśnienia sprężania, są zalecane przez producentów silników i stosowane w warsztatach mechanicznych jako rutynowy element diagnostyki. Dobrą praktyką jest regularne przeprowadzanie takich testów, aby wykryć problemy, zanim doprowadzą one do poważniejszych awarii. Na przykład, w silnikach z uszkodzonymi zaworami wydechowymi, może wystąpić zjawisko "zaworu niezamkniętego" (ang. valve overlap), co znacząco obniża wydajność silnika. Testy ciśnienia sprężania powinny być przeprowadzane z użyciem odpowiednich narzędzi, takich jak manometry, które są kalibrowane i spełniają standardy branżowe.

Pytanie 36

W przypadku, gdy zużycie gładzi tulei cylindrowej jest mniejsze niż kolejny wymiar naprawczy, poddaje się ją regeneracji poprzez

A. roztaczanie
B. hartowanie
C. azotowanie
D. nawęglanie
Roztaczanie jest procesem technologicznym mającym na celu przywrócenie odpowiednich wymiarów tulei cylindrowej, które uległy zużyciu. Proces ten polega na usunięciu zużytej warstwy materiału i nadaniu nowego, precyzyjnego kształtu. Jest to szczególnie ważne w kontekście elementów silnikowych, gdzie precyzyjne dopasowanie ma kluczowe znaczenie dla ich prawidłowego działania. Roztaczanie można przeprowadzać na różnych maszynach, takich jak tokarki czy frezarki, a dobór narzędzi i parametrów obróbczych jest uzależniony od materiału tulei oraz wymagań jakościowych. W praktyce, regeneracja przez roztaczanie pozwala na znaczne wydłużenie żywotności elementów, co jest zgodne z zasadami zrównoważonego rozwoju i oszczędności materiałowych w przemyśle. Warto podkreślić, że roztaczanie jest standardową metodą regeneracji w branży motoryzacyjnej oraz w przemyśle maszynowym, co potwierdzają liczne normy i procedury opracowane przez profesjonalne organizacje.

Pytanie 37

Potrzeba regularnej wymiany płynu hamulcowego wynika głównie

A. ze zwiększenia zawartości wody w płynie
B. ze zmiany składu chemicznego płynu
C. z zanieczyszczenia płynu cząstkami i osadami
D. z zapowietrzenia układu hamulcowego
Zwiększenie zawartości wody w płynie hamulcowym jest kluczowym powodem, dla którego konieczna jest jego okresowa wymiana. Płyn hamulcowy, szczególnie ten na bazie glikolu, ma zdolność absorpcji wilgoci z otoczenia. W miarę upływu czasu, woda, która dostaje się do układu, obniża temperaturę wrzenia płynu. To zjawisko może prowadzić do wystąpienia zjawiska 'wodnego wrzenia', co jest niebezpieczne, ponieważ podczas hamowania płyn może osiągnąć temperaturę wrzenia, co skutkuje utratą ciśnienia w układzie hamulcowym, a tym samym zmniejszeniem skuteczności hamowania. W praktyce, normy bezpieczeństwa, takie jak te określone przez DOT (Department of Transportation), zalecają sprawdzanie zawartości wody w płynie hamulcowym co dwa lata lub po przejechaniu określonego przebiegu. Regularna wymiana płynu hamulcowego pomaga utrzymać optymalną wydajność hamulców i zapewnia bezpieczeństwo na drodze. Dbanie o układ hamulcowy jest zatem fundamentalnym aspektem utrzymania pojazdu, który wpływa na bezpieczeństwo kierowcy oraz pasażerów.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Amortyzatory, które zostały poddane badaniu metodą Eusama, mają współczynnik tłumienia drgań na poziomie 60%

A. kwalifikują się do wymiany
B. są w dobrym stanie
C. są w 40% uszkodzone
D. są w stanie dostatecznym
To, że amortyzatory kwalifikują się do wymiany przy 60% współczynnika tłumienia, to trochę nieporozumienie. Coś tu nie gra, bo taki współczynnik świadczy o tym, że amortyzatory są ok. Zwykle te sprawne mają przynajmniej 50%, więc jak coś mówi, że są w 40% niesprawne, to chyba trzeba to lepiej zrozumieć. Amortyzator z 60% działa normalnie i nie powinien być nazywany niesprawnym. I „dostateczny stan” też nie do końca oddaje rzeczywistość, bo to nie zapewnia odpowiednich parametrów. Musisz pamiętać, że amortyzatory są ważne dla całego zawieszenia i ich sprawność wpływa na bezpieczeństwo. Źle zrozumiane informacje o ich stanie technicznym mogą prowadzić do niepotrzebnych napraw i zagrożeń na drodze. Wiedza o tym, jak działają te rzeczy pod względem technicznym, jest kluczowa, żeby dobrze ocenić stan amortyzatorów.

Pytanie 40

Klient odwiedził warsztat, aby wymienić amortyzatory tylnej osi. Jaki jest łączny koszt tej usługi, jeśli czas potrzebny na wymianę jednego amortyzatora tylnej osi wynosi 0,6 rbg, stawka za roboczogodzinę to 125,00 zł, a koszt jednego amortyzatora to 70,00 zł?

A. 290,00 zł
B. 145,00 zł
C. 215,00 zł
D. 220,00 zł
Aby obliczyć całkowity koszt wymiany amortyzatorów osi tylnej, należy uwzględnić zarówno koszt robocizny, jak i koszt części. Czas pracy na wymianę jednego amortyzatora wynosi 0,6 rbg. Dla dwóch amortyzatorów, czas roboczy wynosi 0,6 rbg × 2 = 1,2 rbg. Koszt robocizny wynosi 125,00 zł za roboczogodzinę, co oznacza, że za 1,2 rbg zapłacimy 1,2 × 125,00 zł = 150,00 zł. Koszt dwóch amortyzatorów to 70,00 zł × 2 = 140,00 zł. Zatem całkowity koszt naprawy to 150,00 zł (robocizna) + 140,00 zł (amortyzatory) = 290,00 zł. Tego rodzaju obliczenia są standardem w branży motoryzacyjnej, gdzie precyzyjne kalkulacje kosztów są niezbędne do prawidłowego wyceny usług. Zrozumienie struktury kosztów pozwala na dostosowanie cen do oczekiwań klientów oraz utrzymanie konkurencyjności na rynku.